Formal analysis of crowd systems

Michael Blondin

UD Université de
Sherbrooke



Formal analysis of crowd systems

Michael Blondin

Joint work with J. Esparza, M. Helfrich, S. Jaax, A. Kucera, P. ). Meyer

UD Université de
Sherbrooke



Population protocols: distributed computing
model for massive networks of passively mobile
finite-state agents

1/13



- - - 8% %% 00

G - P QOO%

- %do ™ q
G % é) o0

Population protocols: distributed computing o0 &

model for massive networks of passively mobile 8§ gzo%

finite-state agents

Model e.g. networks of passively mobile sensors and
chemical reaction networks

1/13



e . o . % & o0
Population protocols: distributed computing oo0 &

model for massive networks of passively mobile 8 220%
finite-state agents

Model e.g. networks of passively mobile sensors and
chemical reaction networks

Protocols compute predicates of the form : N9 — {0,1}

e.g. ¢(m,n) is computed by m + n agents

1/13



- - - 8% %% 00
@ - g %%

G & o0
Population protocols: distributed computing %00 o &
model for massive networks of passively mobile 8§ gzo%

finite-state agents

This talk: automatic verification and
expected termination time analysis

1/13



Population protocols Angluin et al. PODC'04

< anonymous mobile agents with very few resources

- agents change states via random pairwise interactions

each agent has opinion true/false

« computes by stabilizing agents to some opinion

2/13



Population protocols Angluin et al. PODC'04

« anonymous mobile agents with very few resources

- agents change states via random pairwise interactions

each agent has opinion true/false

« computes by stabilizing agents to some opinion

119 %9q

2/13



Population protocols Angluin et al. PODC'04

< anonymous mobile agents with very few resources

- agents change states via random pairwise interactions

each agent has opinion true/false

« computes by stabilizing agents to some opinion

1149%

2/13



Population protocols Angluin et al. PODC'04

< anonymous mobile agents with very few resources

- agents change states via random pairwise interactions

each agent has opinion true/false

« computes by stabilizing agents to some opinion

R LA L)

2/13



Population protocols Angluin et al. PODC'04

< anonymous mobile agents with very few resources

- agents change states via random pairwise interactions

each agent has opinion true/false

« computes by stabilizing agents to some opinion

19444

2/13



Population protocols Angluin et al. PODC'04

< anonymous mobile agents with very few resources

- agents change states via random pairwise interactions

each agent has opinion true/false

« computes by stabilizing agents to some opinion

11444

2/13



Population protocols Angluin et al. PODC'04

< anonymous mobile agents with very few resources

- agents change states via random pairwise interactions

each agent has opinion true/false

« computes by stabilizing agents to some opinion

11444

2/13



Population protocols Angluin et al. PODC'04

< anonymous mobile agents with very few resources

- agents change states via random pairwise interactions

each agent has opinion true/false

« computes by stabilizing agents to some opinion

"4 @i@*@i@

2/13



Population protocols Angluin et al. PODC'04

< anonymous mobile agents with very few resources

- agents change states via random pairwise interactions

each agent has opinion true/false

« computes by stabilizing agents to some opinion

EREREY

2/13



Population protocols Angluin et al. PODC'04

< anonymous mobile agents with very few resources

- agents change states via random pairwise interactions

each agent has opinion true/false

- computes by stabilizing agents to some opinion

Aty

2/13



Population protocols Angluin et al. PODC'04

< anonymous mobile agents with very few resources

- agents change states via random pairwise interactions

each agent has opinion true/false

« computes by stabilizing agents to some opinion
Ley g Ley =g L]
oo oo 2
. . _ 0%
1] 1] Q.

AL

2/13



Example: threshold protocol

Are there at least 4 sick birds?

1

1
L4



Example: threshold protocol

Are there at least 4 sick birds?

1
44

Protocol:

- Each agentin a
state of {0,1,2,3, 4}

* (m,n)— (M+n,0)
ifm+n<éb

« (m,n) — (4,4)
ifm+n>a4




Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

- Each agentin a

state of {0,1,2,3, 4}

* (m,n)+— (m+n,0)
ifm+n<é

* (m,n) = (4 4)
ifm+n>4



Example: threshold protocol

Are there at least 4 sick birds?

114
L4

Protocol:

- Each agentin a
state of {0,1,2,3, 4}

* (m,n)— (M+n,0)
ifm+n<éb

« (m,n) — (4,4)
ifm+n>a4




Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

- Each agentin a

state of {0,1,2,3, 4}

* (m,n)+— (m+n,0)
ifm+n<é

* (m,n) = (4 4)
ifm+n>4



Example: threshold protocol

Are there at least 4 sick birds?

114
L4

Protocol:

- Each agentin a
state of {0,1,2,3, 4}

* (m,n)— (M+n,0)
ifm+n<éb

« (m,n) — (4,4)
ifm+n>a4




Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

- Each agentin a

state of {0,1,2,3, 4}

* (m,n)+— (m+n,0)
ifm+n<é

* (m,n) = (4 4)
ifm+n>4




Example: threshold protocol

Are there at least 4 sick birds?

114
L4

(0]

Protocol:

- Each agentin a
state of {0,1,2,3, 4}

* (m,n)+— (m+n,0)
ifm+n<é

* (m,n) = (4 4)
ifm+n>4




Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

- Each agentin a
state of {0,1,2,3, 4}

* (m,n)+— (m+n,0)
ifm+n<é

* (m,n) = (4 4)
ifm+n>4




Example: threshold protocol

Are there at least 4 sick birds?
3/13

(0]

Protocol:

- Each agentin a
state of {0,1,2,3, 4}

* (m,n)+— (m+n,0)
ifm+n<é

* (m,n) = (4 4)
ifm+n>4




Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

- Each agentin a
state of {0,1,2,3, 4}

* (m,n)+— (m+n,0)
ifm+n<é

* (m,n) = (4 4)
ifm+n>4

3/13



Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

- Each agentin a 4
state of {0,1,2,3, 4}
* (m,n)+— (m+n,0)

ifm+n<é

4
44

* (m,n) = (4 4)
ifm+n>4




Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

- Each agentin a
state of {0,1,2,3, 4}

* (m,n)+— (m+n,0)
ifm+n<é

* (m,n) = (4 4)
ifm+n>4




Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

- Each agentin a 4
state of {0,1,2,3, 4}
* (m,n)+— (m+n,0)

ifm+n<é

4
44

* (m,n) = (4 4)
ifm+n>4




Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

- Each agentin a
state of {0,1,2,3, 4}

* (m,n)+— (m+n,0)
ifm+n<é

* (m,n) = (4 4)
ifm+n>4




Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

- Each agentin a 4
state of {0,1,2,3, 4}
* (m,n)+— (m+n,0)

ifm+n<é

4
44

* (m,n) = (4 4)
ifm+n>4




Example: threshold protocol

Are there at least 4 sick birds?

Protocol: [:::]
- Each agentin a

state of {0,1,2,3, 4}

2o @

@i
@i

* (m,n)+— (m+n,0)

ifm+n<a |I_f'_'l\

* (m,n) = (4 4)
ifm+n>4




Example: majority protocol

i blue agents 2 # red agents?

1
L 8

8
. 5



Example: majority protocol

i blue agents 2 # red agents?

Protocol:

 Two large agents
become small blue
agents

- Large agents convert
small agents to their
colour

1
L 8

8
. 5



Example: majority protocol

i blue agents 2 # red agents?

Protocol:

 Two large agents
become small blue
agents

- Large agents convert
small agents to their
colour

1



Example: majority protocol

i blue agents 2 # red agents?

Protocol:

 Two large agents
become small blue
agents

- Large agents convert
small agents to their
colour

1T 1

4/13



Example: majority protocol

i blue agents 2 # red agents?

Protocol:

 Two large agents
become small blue
agents

- Large agents convert
small agents to their
colour

4/13



Example: majority protocol

i blue agents 2 # red agents?

Protocol:

 Two large agents
become small blue
agents

- Large agents convert
small agents to their
colour

1T 1

4/13



Example: majority protocol

i blue agents 2 # red agents?

Protocol:

 Two large agents
become small blue
agents

- Large agents convert
small agents to their
colour

4/13



Example: majority protocol

i blue agents 2 # red agents?

Protocol:

 Two large agents
become small blue
agents

- Large agents convert
small agents to their
colour

1T 1

4/13



Example: majority protocol

i blue agents 2 # red agents?

Protocol:

 Two large agents
become small blue
agents

- Large agents convert
small agents to their
colour

4/13



Example: majority protocol

i blue agents 2 # red agents?

Protocol:

 Two large agents
become small blue
agents

- Large agents convert
small agents to their
colour

1

1

1

1

4/13



Example: majority protocol

i blue agents 2 # red agents?

Protocol:
 Two large agents i

become small blue
agents

- Large agents convert
small agents to their

colour i i

4/13



Example: majority protocol

i blue agents 2 # red agents?

Protocol:

 Two large agents
become small blue
agents

- Large agents convert
small agents to their
colour

1

1

1

1

4/13



Example: majority protocol

i blue agents 2 # red agents?

Protocol:

 Two large agents
become small blue
agents

- Large agents convert
small agents to their
colour

1

1

®

4/13



Example: majority protocol

i blue agents 2 # red agents?

Protocol:

 Two large agents
become small blue
agents

- Large agents convert
small agents to their
colour

1

1

1

1

4/13



Example: majority protocol

i blue agents 2 # red agents?

Protocol:
 Two large agents
become small blue
agents

- Large agents convert
small agents to their

colour ‘/ i

4/13



Example: majority protocol

i blue agents 2 # red agents?

Protocol:

 Two large agents
become small blue
agents

- Large agents convert
small agents to their
colour

1

1

1

1

4/13



Example: majority protocol

i blue agents 2 # red agents?

Protocol:
 Two large agents i«
become small blue
agents

- Large agents convert
small agents to their

colour i

4/13



Example: majority protocol

i blue agents 2 # red agents?

Protocol:

 Two large agents
become small blue
agents

- Large agents convert
small agents to their
colour

1

1

1

1

4/13



Example: majority protocol

i blue agents 2 # red agents?

Protocol: EI
 Two large agents l@ |
become small blue
agents
- Large agents convert .@
small agents to their :I

colour ‘/

4/13



Demonstration



Population protocols: formal model

- States:
- Opinions:
- Initial states:

« Transitions:

finite set Q
0: Q — {false, true}
IcQ

TCQ*x Q@

Qi1

5/13




Population protocols: formal model

- States:

- Opinions:

- Initial states:

« Transitions:

)

L]

finite set Q
O: Q— {false, true}
IcQ

TCQ*x Q@

&

TN

5/13



Population protocols: formal model

- States:
- Opinions:

- Initial states:

« Transitions:

finite set Q

0: Q — {false, true}
ICQ

TCQ*x Q@

5/13



Population protocols: formal model

- States: finite set Q

+ Opinions: 0: Q — {false, true}
- Initial states: IcQ

- Transitions: TCQx@

LR 90

5/13



Population protocols: interactions

All agents can interact pairwise
(complete topology)

Agent 1 Agent 2

Agent 3 Agent 4

5/13



Population protocols: interactions

2-C(p)-C .
n(zp)_ n(Q) ifp#aq
Plfire p,q+— p’,q inC] =
C(p) - (C .
(p)ng _(p) -
Agent 1 Agent 2
Agent 3 Agent 4

5/13



Population protocols: interactions

2-C(p)-C(q) .
“hton TP#A
Plfire p,g+— p’,q inC] =
clp)-(Cp)—=1) .
Py R ifp=gq
Agent 1 Agent 2

Agent 3 Agent 4

5/13



Population protocols: interactions

2-C(p)-C .
n(zp)_n(Q) ifp#aq
Plfire p,g+— p’,q inC] =
Cp)-(Cp) =) .
Py R ifp=gq
P q

5/13



Population protocols: interactions

2-C(p)-C .
n(zp)_n(Q) ifp#aq
Plfire p,g+— p’,q inC] =
Cp)-(Cp) =) .
Py R ifp=gq
P q

5/13



Population protocols: interactions

Plfire p,q — p’,q"in (] =
¢(p) AEC_(p) -
P[C— (] = Z Plfire tin C]
t st CC/

5/13



Population protocols: computations

Underlying Markov chain:

-Sl44444
6 g3 2
10 10 10
¥ Z

Lided [P Ladee [P Laaae P Ladan [P Ladad
“ 3 2z ik

5/13



Population protocols: computations

A protocol computes a predicate f: N' — {0,1}

if runs reach
with probability 1

5/13



Population protocols: computations

A protocol computes a predicate f: N' — {0,1}

if runs reach common stable consensus
with probability 1

Expressive power Angluin, Aspnes, Eisenstat PODC'06

Population protocols compute precisely predicates
definable in Presburger arithmetic, i.e. FO(N, +, <)

5/13



Verifying correctness

Protocol broken for B = R:
BR - bb

Br — Bb
Rb — Rr

6/13



Verifying correctness

Protocol broken for B = R:

BR - bb
Br — Bb
Rb — Rr

BRBR

6/13



Verifying correctness

Protocol broken for B = R:

BR - bb
Br — Bb
Rb — Rr

BRBR—BRbD

6/13



Verifying correctness

Protocol broken for B = R:

BR - bb
Br — Bb
Rb — Rr

BRBR—-BRbb—BRrb

6/13



Verifying correctness

Protocol broken for B = R:

BR - bb
Br — Bb
Rb — Rr

BRBR—-BRbb—BRrb—bbrb

6/13



Verifying correctness

Protocol correct with tie-breaker:
BR - bb
Br — Bb

Rb — Rr
br - bb

BRBR—-BRbb—BRrb—bbrb

6/13



Verifying correctness

Protocol correct with tie-breaker:
BR - bb
Br — Bb

Rb — Rr
br - bb

BRBR—-BRbb—-BRrb—bbrb—bbbb

6/13



Verifying correctness

Easy fix, but protocols can become complex even for B 2 R:

Fast and Exact Majority in Population Protocols

Dan Alistarh Rati Gelashvili” Milan Vojnovié
Microsoft Research MIT Microsoft Research

A oEME)= { |z|  if € StrongStates or x € WeakStates;
# 1 ifz € IntermediateStates.

1 ifz € {+0,1q4,..., 11,3,5,...,m};
2om@={ 1, Sl :
3 value(z) = sgn(x) - weight ()

/* Functions for rounding state interactions */
1 ifz = —1;1; if x = 1;z, otherwise

IS

o«

7 Shift-to-Zero(z) = { L1
z

L f 40 if sgn(z) >0
o Sgnozeria) = { 1) G
9 procedure update(z, y)
10 if (weight(x) > 0 and weight(y) > 1) or (weight(y) > 0 and weight(z) > 1) then

6l o R, mxhw(r]:»mhm[y)) and yf « By (,,,,y,,,»(,qj,mw(w
12 else if weight(x) - weight(y) = 0 and value(x) + value(y) > 0 then

13 if weight(x) # 0 then 2’ « Shift-to-Zero(x) and y'  Sign-to-Zero(x)
14 else y « Shift-to-Zero(y) and @’ < Sign-to-Zero(y)

15 else if (z € {~14,+14} and weight(y) = 1 and sgn(z) # sgn(y)) or

16 (y € {~14,+14} and weight(z) = 1 and sgn(y) # sgn(z)) then

17 z' « —0 and y' + 40

18 else

19 a' « Shift-to-Zero(x) and y' < Shift-to-Zero(y) 6/13



Verifying correctness

Easy fix, but protocols can become complex even for B 2 R:

Fast and Exact Majority in Population Protocols

Dan Alistarh Rati Gelashvili” Milan Vojnovié
Microsoft Research MIT Microsoft Research

A oEME)= { |z|  if 2 € StrongStates or x € WeakStates;
= 1 ifz € IntermediateStates. .
{ 1 ifze{+01q,..., 11,3,5,...,m}; HOW +O Verﬂpy
—1 otherwise.
3 walue(z) = sgn() - weight(z)
/* Functions for rounding state interactions */

1 ife = —1;1; if z = 1; @, otherwise Cor‘rec-#ness

2 sgn(z) =

4 ¢(x) =
5 Ry (k) = ¢(k if k odd integer, k — 1 if k even)
6 Ry(k) = o(k if k odd integer, k + 1 if k even)
—1j41  if@ = —1; for some index j < d . 7
7 Shift-to-Zero(x) = { 1j41  ifa = 1; for some index j < d +
L B al/TomaT Ica 7 5

+0 if sgn(x) > 0

8 Sr,gnrta—Z('m(ﬂ'):{ —0  oherwise.

9 procedure update(z, y)
10 if (weight(x) > 0 and weight(y) > 1) or (weight(y) > 0 and weight(z) > 1) then

6l o R, mxhw(ﬂ:»mhm(y)) and yf « By (uyxhw(7~):ywlur(y7)

12 else if weight(z) - weight(y) = 0 and value(x) + value(y) > 0 then

13 if weight(z) # 0 then ' < Shift-to-Zero(z) and y' + Sign-to-Zero(x)
14 else y' « Shift-to-Zero(y) and a’ < Sign-to-Zero(y)

15 elseif (z€{-1q4,+14} and weight(y) = 1 and sgn(z) # sgn(y)) or

16 (y € {~14,+14} and weight(zx) =1 and sgn(y) # sgn(z)) then

17 2’ + -0 and y + +0

18 els

e
19 a' « Shift-to-Zero(x) and y' < Shift-to-Zero(y) 6/13



Verifying correctness

Testing whether a protocol computes ¢
amounts to testing:

-3C,D: C= DA
Cis initial A
D isin a BSCC A
opinion(D) # ¢(C)

6/13



Verifying correctness

Testing whether a protocol computes ¢
amounts to testing:

-3C,D: C= DA
Cis initial A
D isin a BSCC A
opinion(D) # ¢(C)
Theorem Esparza et al. CONCUR’15

Verification is decidable

6/13



Verification: 1° approach

-3C,D: C=DA
Cis initial A
D isin a BSCC A
opinion(D) # ¢(C)

As aaﬁﬂcu# as verification

Ac/<er‘m=mnan-c0mple+e
Uerour; Crerwinski & Oclikowski FOCSZ |,  Esparza of ol CONCUR (5)

7/13



Verification: 1° approach

-3C,D: C-“5DA
Cis initial A
D isina BSCC A
opinion(D) # ¢(C)

Qelakec‘ WI+L| Pr‘esbur‘éer‘-cleanable

Over‘aPPr‘OXl'Ma‘HO'\.l

7/13



Verification: 1° approach

—3C,D: C-“5D A
Cis initial A
D isin a BSCCA
opinion(D) # ¢(C)

DifCcult 4o express

7/13



Verification: 1° approach

-3C,D: C->DA
Cis initial A
D is terminal A
opinion(D) # ¢(C)
BSCCs are of size |

for Nany Pr‘O‘DLOC_OIS./

7/13



Verification: 1° approach

—3C,D: C-S>DA
Cis initial A
D is terminal A
opinion(D) # ¢(C)

T osteble with an SMT solver

7/13



Verification: 1° approach

—3C,D: C-“sDA
Cis initial A
D is terminal A
opinion(D) # ¢(C)
But Low to know wihetler
ol BSCCs are of size |7

7/13



Silent protocols

A protocol is silent if fair executions reach terminal configurations

BSCCs of size 1

8/13



Silent protocols

A protocol is silent if fair executions reach terminal configurations
« Testing silentness is as hard as verification of correctness

+ But many protocols satisfy a common design

| ]
BSCCs of size 1

8/13



Silent protocols: layered termination

Partition T=T{UT,U---UT, s.t. for every i

« all executions restricted to T; terminate

« ifTyU---UT;_; disabled in Cand C Ir, D, then
T1U---UT;_4 also disabled in D

-T_1*, LENK e | Tn-

~

8/13



Silent protocols: layered termination

Partition T=T{UT,U---UT, s.t. for every i

« all executions restricted to T; terminate

« ifTyU---UT;_; disabled in Cand C Ir, D, then
T1U---UT;_4 also disabled in D

T Tn"

h 4
~

8/13



Silent protocols: layered termination

Partition T=T,UT,U---UT, s.t. for every i

« all executions restricted to T; terminate

« ifTyU---UT;_; disabled in Cand C Ir, D, then
T1U---UT;_4 also disabled in D

8/13



Silent protocols: layered termination

Partition T=T,UT,U---UT, s.t. for every i

« all executions restricted to T; terminate

« ifTyU---UT;_; disabled in Cand C Ir, D, then
T1U---UT;_4 also disabled in D

G S L

8/13



Silent protocols: layered termination

Partition T=T,UT,U---UT, s.t. for every i

« all executions restricted to T; terminate

« ifTyU---UT;_; disabled in Cand C Ir, D, then
T1U---UT;_4 also disabled in D

[ S L B B L

8/13




Silent protocols: layered termination

T
BR—bb
Br —-Bb
Rb— Rr
br -bb

8/13



Silent protocols: layered termination

T
BR—-bD
Br —-Bb
Rb— Rr
br —-bb

Bad partition: not all executions over T, terminate

8/13



Silent protocols: layered termination

T
BR—-bDb
Br —-Bb
Rb— Rr
br -bb

Bad partition: not all executions over T, terminate

{B,B,R,R} — {B,b,b,R} — {B,b,r,R} —
{B,b,b,R} — {B,b,r,R} — -

8/13



Silent protocols: layered termination

Ty T, T3

BR>bb | RbsRr i B5F—7Bb

br—bb

8/13



Silent protocols: layered termination

Ty T, T3

BR>bb | RbsRr i B5F—7Bb
] br—bb
#B > #R:
{B*, R*}

8/13



Silent protocols: layered termination
n X i T,

BR>bb | RbsRr i B5F—7Bb

br—bb

#B > #R:
{B*, R>I<}_*){B>I<7 b>|<7 r*}

8/13



Silent protocols: layered termination
n X in X in

BR>bb | RbsRr i B5F—7Bb

br—bb

#B > #R:
{B*’ R>I<}_*){B>I<7 b>|<7 r*}

8/13



Silent protocols: layered termination
T x i T, x i T3 x

BR>bb . Rb_—Rr i EBFr—BD
: br—bb

#B > #R:

8/13



Silent protocols: layered termination

Ty T, T3

BR>bb | RbsRr i B5F—7Bb

br—bb

#B > #R:

#R > #B:
{R*, B*}

8/13



Silent protocols: layered termination
n X i T,

BR>bb | RbsRr i B5F—7Bb

br—bb

#B > #R:

#R > #B:
{R*, B*} — {R", b*, r*}

8/13



Silent protocols: layered termination
n X in X in

BR>bb | RbsRr i B5F—7Bb

br—bb

#B > #R:

H#R > #B:
{R*, B*} — {R", b*, r'} — {R", r}

8/13



Silent protocols: layered termination
T x i T, x i T3 x

BR>bb . Rb_—Rr i EBFr—BD
: br—bb

#B > #R:

H#R > #B:
{R*, B*} — {R", b*, r'} — {R", r}

8/13



Silent protocols: layered termination

T4 Ty T3

BR>bb | RbsRr i B5F—7Bb

br—bb

Theorem

Deciding whether a protocol is strongly silent € NP

8/13



Verification: 2" approach

Recent efficient protocols are not silent!

9/13



Verification: 2" approach

Recent efficient protocols are not silent!

More powerful approach:
using “correctness certificates”

9/13



Correctness certificates

Approach: certify that o is computed correctly for b < {0,1}

ro: Configs — N

9/13



Correctness certificates

Approach: certify that ¢ is computed correctly for b € {0,1}

C CGX,C%C/ — C/GX,‘

CIOSecl under rech\abili'iLV

ro: Configs — N

9/13



Correctness certificates

Approach: certify that ¢ is computed correctly for b € {0,1}

cCeXNCEHC = CeX
* Xo 2 {C: Cisinitial and ¢(C) = b}

Xo contains all initial conpgs

ro: Configs — N

9/13



Correctness certificates

Approach: certify that ¢ is computed correctly for b € {0,1}

cCeXNCEHC = CeX
« Xo 2 {C: Cisinitial and ¢(C) = b}
« X3 C {C: opinion(C) = b}

< onl~7 contains confés

witlh b-consensus
ro: Configs -+ N

9/13



Correctness certificates

Approach: certify that ¢ is computed correctly for b € {0,1}

cCeXNCEHC = CeX

« Xo 2 {C: Cisinitial and ¢(C) = b}
+ X1 C {C: opinion(C) = b}

» C5C = 1o(C) > ro(C')

ro: Configs — N o is nonclecr-easiné

9/13



Correctness certificates

Approach: certify that ¢ is computed correctly for b € {0,1}

cCeXNCEHC = CeX
« Xo 2 {C: Cisinitial and ¢(C) = b}
+ X1 C {C: opinion(C) = b}

« C5C = ro(C) > ro(C)

« VC € Xo\ X4 3C e Xy : C 5 C’I’O(C) > rO(C’)
ro: Configs — N
o s Wea/<17 c:lecr‘easiné

9/13



Correctness certificates

Approach: certify that ¢ is computed correctly for b € {0,1}

ro: Configs — N

cCeXNCEHC = CeX
« Xo 2 {C: Cisinitial and ¢(C) = b}
+ X1 C {C: opinion(C) = b}

« C5HC = ro(C) > ro(C)
- VC ¢ Xo\X1 3C € XO - C i> C//\ro(C) > ro(C/)

9/13



Correctness certificates

Approach: certify that ¢ is computed correctly for b € {0,1}

cCeXNCEHC = CeX
« Xo 2 {C: Cisinitial and ¢(C) = b}
+ X1 C {C: opinion(C) = b}

« C5HC = ro(C) > ro(C)
- VC ¢ Xo\X1 3C € XO - C i> C//\ro(C) > ro(C/)

ro: Configs — N

9/13



Correctness certificates

Approach: certify that ¢ is computed correctly for b € {0,1}

cCeXNCEHC = CeX
« Xo 2 {C: Cisinitial and ¢(C) = b}
+ X1 C {C: opinion(C) = b}

« C5HC = ro(C) > ro(C)
- VC ¢ Xo\X1 3C € XO - C i> C//\ro(C) > ro(C/)

ro: Configs — N

9/13



Correctness certificates

Approach: certify that ¢ is computed correctly for b € {0,1}

cCeXNCEHC = CeX
« Xo 2 {C: Cisinitial and ¢(C) = b}
+ X1 C {C: opinion(C) = b}

« C5HC = ro(C) > ro(C)
- VC ¢ Xo\X1 3C € XO - C i> C//\ro(C) > ro(C/)

ro: Configs — N

9/13



Correctness certificates

Approach: certify that ¢ is computed correctly for b € {0,1}

ro: Configs — N

cCeXNCEHC = CeX
« Xo 2 {C: Cisinitial and ¢(C) = b}
+ X1 C {C: opinion(C) = b}

« C5HC = ro(C) > ro(C)
- VC ¢ Xo\X1 3C € XO - C i> C//\ro(C) > ro(C/)

9/13



Correctness certificates

Approach: certify that ¢ is computed correctly for b € {0,1}

ro: Configs — N

cCeXNCEHC = CeX
« Xo 2 {C: Cisinitial and ¢(C) = b}
+ X1 C {C: opinion(C) = b}

« C5HC = ro(C) > ro(C)
- VC ¢ Xo\X1 3C € XO - C i> C//\ro(C) > ro(C/)

9/13



Correctness certificates

Approach: certify that ¢ is computed correctly for b € {0,1}

ro: Configs — N

cCeXNCEHC = CeX
« Xo 2 {C: Cisinitial and ¢(C) = b}
+ X1 C {C: opinion(C) = b}

« C5HC = ro(C) > ro(C)
- VC ¢ Xo\X1 3C € XO - C i> C//\ro(C) > ro(C/)

9/13



Stage graphs

Stage graph: same idea with Xo, X1, ..., X, organized in a DAG

BR - bb
Br —- Bb
Rb — Rr
br — bb

9/13



Stage graphs

Stage graph: same idea with Xo, X1, ..., X, organized in a DAG

BR— bb
Br —- Bb
Rb — Rr
br — bb

9/13



Stage graphs

Stage graph: same idea with Xo, X1, ..., X, organized in a DAG

BR— bb
Br —- Bb
Rb — Rr
br — bb

9/13



Stage graphs

Stage graph: same idea with Xo, X1, ..., X, organized in a DAG

BR— bb
Br —- Bb
Rb — Rr
br — bb :r1(C):C(b)

% — {C: C(B)+ C(b) = 0 < C(R)}

9/13



Stage graphs

A stage graph is Presburger if

- Each set X; is Presburger-definable
« Each ranking function r; is Presburger-definable

« Each r; can be decreased in at most B; steps

9/13



Stage graphs

A stage graph is Presburger if

- Each set X; is Presburger-definable
« Each ranking function r; is Presburger-definable

« Each r; can be decreased in at most B; steps

9/13



Stage graphs

A stage graph is Presburger if

- Each set X; is Presburger-definable
+ Each ranking function r; is Presburger-definable

« Each r; can be decreased in at most B; steps

9/13



Stage graphs

A stage graph is Presburger if

- Each set X; is Presburger-definable
« Each ranking function r; is Presburger-definable

« Each r; can be decreased in at most B; steps

9/13



Stage graphs

A stage graph is Presburger if

- Each set X; is Presburger-definable
« Each ranking function r; is Presburger-definable

« Each r; can be decreased in at most B; steps

Theorem
Every correct protocol has Presburger stage graphs

9/13



Stage graphs

A stage graph is Presburger if

- Each set X; is Presburger-definable
« Each ranking function r; is Presburger-definable

« Each r; can be decreased in at most B; steps

Theorem
Every correct protocol has Presburger stage graphs

C.OMPU‘{’able ané cL‘ec/<cJ>'e T Pr‘«c‘/’ice
with SMT solviné.l

9/13



Demonstration



Expected termination time

B.R — bb
B,r — B,b
R,b — Rr
b,r — bb

Cor‘r‘ec'HV cOMPU‘!LeS Pr‘ec'ic«‘l(’e #B 2 #R
IDU'IL L-OW -CaS'(’.?

10/13



Expected termination time

B.R — b,b
B.,r — B.b
R,b — Rr
b,r — bb

Cor-r‘ec'Hy comPu+es Preéic«'{'e #B 2 #R
bt Low Faust?

Natural to look for fast protocols

Bounds on expected termination time useful since generally
not possible to know whether a protocol has stabilized 10/13



Expected termination time

B.R — b,b
B.,r — B,b
R,b — Rr
b,r — bb

Cor-r‘ec'{‘ly COMPU+€S Pr‘eéic«'{'e #B 2 #R
bt Low Eust?

Theorem Angluin et al. PODC'04

Every Presburger-definable predicate is computable by

a protocol with expected termination time € O(n?log n)
10/13



Expected termination time

B,R
B, r
R.b

b,r

£ & L&

b,b
B,b
R,r
b.b Sinulations sbow tlat i+ is slow
’ when R Leas sliéLnL maj'ori+7:
SR zgigigtration

100000 {B: 7, R: 8}
B 7 {B: 3, R: 12}
B 27 {B: 4, R: 11}
100000 {B: 7, R: 8}

[ ] 3 {B: 13, R: 2} 10/13



Expected termination time

Tt X,y — X, x forx,ye{b,r,t}

AH’er‘na'/‘ive Pro-FoCol
witl explicit ties

10/13



Expected termination time

BR — Tt X,y — X, x forx,ye{b,r,t}

BT — B,b

RT — Rr Is i+ -Cc\S‘{'er‘.?
|_>

AI‘/’er-nc:/'ive Pro+0col
wm‘L. exPhchL ties

10/13



Expected termination time

BR — Tt X,y — X, x forx,ye{b,r,t}

BT — B,b

RT — Rt Is it CaS'/’ef‘-?
TT — T,t Yes, ‘Cor‘ size lS

)

10/

expected number
of stepsto  10*
stable consensus

o D
12 3 4 5 6 7 8 91011121314
number of agents initially in state R

10/13



Expected termination time

X,y — X x forx,ye{b,rt}

BR — Tt
BT — B,b
RT — R
TT — Tt

)

expected number
of steps to
stable consensus

Ob'/'aineé usiné PQ’SM

10/

10*

101

Clement et al. ICDCS'L L, Offtermeatt 1 7

1 2 3 4 5 6 7 8 91011121314
number of agents initially in state R

10/13



Expected termination time

BR — Tt X,y — X, x forx,ye{b,r,t}

BT — B,b

R,T — R,r 60“\[ c«\a’yz.e +lme

T.T — Tt for a“ sizes

| |

107 | 2

expected number

of stepsto  10*| 1

stable consensus e E = § = E E : _—

10155555555555115

1234567 89101121314
number of agents initially in state R 10/13



Expected termination time: formal definition

Random variable Steps,:

assigns to each run o the smallest k s.t. o, € X, otherwise oc

11/13



Expected termination time: formal definition

Random variable Stepsy:

assigns to each run o the smallest k s.t. o, € X, otherwise co

Maximal expected termination time
We are interested in time: N — N where

time(n) = max{Ec[StepSsipie] : Cis initial and |C| = n}

11/13



Expected termination time: formal definition

Random variable Stepsy:

assigns to each run o the smallest k s.t. o, € X, otherwise co

Maximal expected termination time
We are interested in time: N — N where

time(n) = max{E[Steps ] : Cisinitial and |[C| = n}

11/13



Expected termination time: formal definition

Random variable Stepsy:

assigns to each run o the smallest k s.t. o, € X, otherwise co

Maximal expected termination time
We are interested in time: N — N where

time(n) = max{ : Cisinitial and |C| = n}

11/13



Expected termination time: formal definition

Random variable Stepsy:

assigns to each run o the smallest k s.t. o, € X, otherwise co

Maximal expected termination time
We are interested in time: N — N where

time(n) =

11/13



Expected termination time: stage graphs

B.R — Tt
B, T — B,b
R,T — Rr
TT —» Tt
Xy — XX

12/13



Expected termination time: stage graphs

B.R — Tt
B, T — B,b
RT —» R
T — Tt
Xy — XX

12/13



Expected termination time: stage graphs

B.R — Tt
B, T — B,b
RT —» R
T — Tt
Xy — XX

12/13



Expected termination time: stage graphs

B,R
B, T
R,T
T.T
X,y

L& L & &

T, t
B,b
R,r
T, t
X, X

C(b) + C(r)

{C:C(B)+ C(R)=0AC(T) =1A

N C(b)+C(r) =0} P

12/13



Expected termination time: stage graphs

B,.R — Tt
B,T — B,b
RT = Rr Eqm+qm
T —» Tt
C(b) + C(r)
ch)+cr o {C:C(B)+C(R)=0ACT)=1A

Ec[Stepscpyicl < D 2. ¢ i
=

N C(b)+C(r) =0} P

12/13

AN
)
>
™
o
()
>



Expected termination time: stage graphs

In practice, able to report:

O(n?), O(n*logn), O(n?), O(n°), O2")

12/13



Demonstration



Population protocols analyzable automatically:

- Verification + explanation of correctness
- Bounds on expected termination time

- Tool support

13/13



Conclusion: future work

- Asymptotic lower bounds on
expected termination time?

- Verification of extensions of the model?

- Quantitative model checking?

13/13



Thank you!



