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model for massive networks of passively mobile 8 220%
finite-state agents

Model e.g. networks of passively mobile sensors and
chemical reaction networks

Protocols compute predicates of the form : N9 — {0,1}

e.g. ¢(m,n) is computed by m + n agents
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Population protocols Angluin et al. PODC'04

< anonymous mobile agents with very few resources

- agents change states via random pairwise interactions

each agent has opinion true/false

« computes by stabilizing agents to some opinion

2/13



Population protocols Angluin et al. PODC'04

« anonymous mobile agents with very few resources

- agents change states via random pairwise interactions

each agent has opinion true/false

« computes by stabilizing agents to some opinion

119 %9q

2/13



Population protocols Angluin et al. PODC'04

< anonymous mobile agents with very few resources

- agents change states via random pairwise interactions

each agent has opinion true/false

« computes by stabilizing agents to some opinion

1149%

2/13



Population protocols Angluin et al. PODC'04

< anonymous mobile agents with very few resources

- agents change states via random pairwise interactions

each agent has opinion true/false

« computes by stabilizing agents to some opinion

R LA L)

2/13



Population protocols Angluin et al. PODC'04

< anonymous mobile agents with very few resources

- agents change states via random pairwise interactions

each agent has opinion true/false

« computes by stabilizing agents to some opinion

19444

2/13



Population protocols Angluin et al. PODC'04

< anonymous mobile agents with very few resources

- agents change states via random pairwise interactions

each agent has opinion true/false

« computes by stabilizing agents to some opinion

11444

2/13



Population protocols Angluin et al. PODC'04

< anonymous mobile agents with very few resources

- agents change states via random pairwise interactions

each agent has opinion true/false

« computes by stabilizing agents to some opinion

11444

2/13



Population protocols Angluin et al. PODC'04

< anonymous mobile agents with very few resources

- agents change states via random pairwise interactions

each agent has opinion true/false

« computes by stabilizing agents to some opinion

"4 @i@*@i@

2/13



Population protocols Angluin et al. PODC'04

< anonymous mobile agents with very few resources

- agents change states via random pairwise interactions

each agent has opinion true/false

« computes by stabilizing agents to some opinion

EREREY

2/13



Population protocols Angluin et al. PODC'04

< anonymous mobile agents with very few resources

- agents change states via random pairwise interactions

each agent has opinion true/false

- computes by stabilizing agents to some opinion

Aty

2/13



Population protocols Angluin et al. PODC'04

< anonymous mobile agents with very few resources

- agents change states via random pairwise interactions

each agent has opinion true/false

« computes by stabilizing agents to some opinion
Ley g Ley =g L]
oo oo 2
. . _ 0%
1] 1] Q.

AL

2/13



Example: threshold protocol

Are there at least 4 sick birds?

1

1
L4



Example: threshold protocol

Are there at least 4 sick birds?

1
44

Protocol:

- Each agentin a
state of {0,1,2,3, 4}

* (m,n)— (M+n,0)
ifm+n<éb

« (m,n) — (4,4)
ifm+n>a4




Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

- Each agentin a

state of {0,1,2,3, 4}

* (m,n)+— (m+n,0)
ifm+n<é

* (m,n) = (4 4)
ifm+n>4



Example: threshold protocol

Are there at least 4 sick birds?

114
L4

Protocol:

- Each agentin a
state of {0,1,2,3, 4}

* (m,n)— (M+n,0)
ifm+n<éb

« (m,n) — (4,4)
ifm+n>a4




Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

- Each agentin a

state of {0,1,2,3, 4}

* (m,n)+— (m+n,0)
ifm+n<é

* (m,n) = (4 4)
ifm+n>4



Example: threshold protocol

Are there at least 4 sick birds?

114
L4

Protocol:

- Each agentin a
state of {0,1,2,3, 4}

* (m,n)— (M+n,0)
ifm+n<éb

« (m,n) — (4,4)
ifm+n>a4




Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

- Each agentin a

state of {0,1,2,3, 4}

* (m,n)+— (m+n,0)
ifm+n<é

* (m,n) = (4 4)
ifm+n>4




Example: threshold protocol

Are there at least 4 sick birds?

114
L4

(0]

Protocol:

- Each agentin a
state of {0,1,2,3, 4}

* (m,n)+— (m+n,0)
ifm+n<é

* (m,n) = (4 4)
ifm+n>4




Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

- Each agentin a
state of {0,1,2,3, 4}

* (m,n)+— (m+n,0)
ifm+n<é

* (m,n) = (4 4)
ifm+n>4




Example: threshold protocol

Are there at least 4 sick birds?
3/13

(0]

Protocol:

- Each agentin a
state of {0,1,2,3, 4}

* (m,n)+— (m+n,0)
ifm+n<é

* (m,n) = (4 4)
ifm+n>4




Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

- Each agentin a
state of {0,1,2,3, 4}

* (m,n)+— (m+n,0)
ifm+n<é

* (m,n) = (4 4)
ifm+n>4

3/13



Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

- Each agentin a 4
state of {0,1,2,3, 4}
* (m,n)+— (m+n,0)

ifm+n<é

4
44

* (m,n) = (4 4)
ifm+n>4




Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

- Each agentin a
state of {0,1,2,3, 4}

* (m,n)+— (m+n,0)
ifm+n<é

* (m,n) = (4 4)
ifm+n>4




Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

- Each agentin a 4
state of {0,1,2,3, 4}
* (m,n)+— (m+n,0)

ifm+n<é

4
44

* (m,n) = (4 4)
ifm+n>4




Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

- Each agentin a
state of {0,1,2,3, 4}

* (m,n)+— (m+n,0)
ifm+n<é

* (m,n) = (4 4)
ifm+n>4




Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

- Each agentin a 4
state of {0,1,2,3, 4}
* (m,n)+— (m+n,0)

ifm+n<é

4
44

* (m,n) = (4 4)
ifm+n>4




Example: threshold protocol

Are there at least 4 sick birds?

Protocol: [:::]
- Each agentin a

state of {0,1,2,3, 4}

2o @

@i
@i
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Example: majority protocol

i blue agents 2 # red agents?

Protocol: EI
 Two large agents l@ |
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Population protocols: formal model

- States:
- Opinions:
- Initial states:

« Transitions:

finite set Q
0: Q — {false, true}
IcQ

TCQ*x Q@

Qi1
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Population protocols: formal model

- States: finite set Q

+ Opinions: 0: Q — {false, true}
- Initial states: IcQ

- Transitions: TCQx@

LR 90
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Population protocols: interactions

All agents can interact pairwise
(complete topology)

Agent 1 Agent 2

Agent 3 Agent 4
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Population protocols: interactions

Plfire p,q — p’,q"in (] =
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Population protocols: computations

Underlying Markov chain:

-Sl44444
6 g3 2
10 10 10
¥ Z

Lided [P Ladee [P Laaae P Ladan [P Ladad
“ 3 2z ik
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Population protocols: computations

A protocol computes a predicate f: N' — {0,1}

if runs reach
with probability 1
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Population protocols: computations

A protocol computes a predicate f: N' — {0,1}

if runs reach common stable consensus
with probability 1

Expressive power Angluin, Aspnes, Eisenstat PODC'06

Population protocols compute precisely predicates
definable in Presburger arithmetic, i.e. FO(N, +, <)
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Verifying correctness
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Verifying correctness

Easy fix, but protocols can become complex even for B 2 R:

Fast and Exact Majority in Population Protocols

Dan Alistarh Rati Gelashvili” Milan Vojnovié
Microsoft Research MIT Microsoft Research

A oEME)= { |z|  if € StrongStates or x € WeakStates;
# 1 ifz € IntermediateStates.

1 ifz € {+0,1q4,..., 11,3,5,...,m};
2om@={ 1, Sl :
3 value(z) = sgn(x) - weight ()

/* Functions for rounding state interactions */
1 ifz = —1;1; if x = 1;z, otherwise

IS

o«

7 Shift-to-Zero(z) = { L1
z

L f 40 if sgn(z) >0
o Sgnozeria) = { 1) G
9 procedure update(z, y)
10 if (weight(x) > 0 and weight(y) > 1) or (weight(y) > 0 and weight(z) > 1) then

6l o R, mxhw(r]:»mhm[y)) and yf « By (,,,,y,,,»(,qj,mw(w
12 else if weight(x) - weight(y) = 0 and value(x) + value(y) > 0 then

13 if weight(x) # 0 then 2’ « Shift-to-Zero(x) and y'  Sign-to-Zero(x)
14 else y « Shift-to-Zero(y) and @’ < Sign-to-Zero(y)

15 else if (z € {~14,+14} and weight(y) = 1 and sgn(z) # sgn(y)) or

16 (y € {~14,+14} and weight(z) = 1 and sgn(y) # sgn(z)) then

17 z' « —0 and y' + 40

18 else

19 a' « Shift-to-Zero(x) and y' < Shift-to-Zero(y) 6/13
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7 Shift-to-Zero(x) = { 1j41  ifa = 1; for some index j < d +
L B al/TomaT Ica 7 5

+0 if sgn(x) > 0
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9 procedure update(z, y)
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Testing whether a protocol computes ¢
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Cis initial A
D isin a BSCC A
opinion(D) # ¢(C)
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Verifying correctness

Testing whether a protocol computes ¢
amounts to testing:

-3C,D: C= DA
Cis initial A
D isin a BSCC A
opinion(D) # ¢(C)
Theorem Esparza et al. CONCUR’15

Verification is decidable
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Verification: 1° approach

-3C,D: C=DA
Cis initial A
D isin a BSCC A
opinion(D) # ¢(C)

As aaﬁﬂcu# as verification

Ac/<er‘m=mnan-c0mple+e
Uerour; Crerwinski & Oclikowski FOCSZ |,  Esparza of ol CONCUR (5)
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Silent protocols

A protocol is silent if fair executions reach terminal configurations

BSCCs of size 1
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Silent protocols

A protocol is silent if fair executions reach terminal configurations
« Testing silentness is as hard as verification of correctness

+ But many protocols satisfy a common design

| ]
BSCCs of size 1
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Silent protocols: layered termination

Partition T=T{UT,U---UT, s.t. for every i

« all executions restricted to T; terminate

« ifTyU---UT;_; disabled in Cand C Ir, D, then
T1U---UT;_4 also disabled in D

-T_1*, LENK e | Tn-

~

8/13



Silent protocols: layered termination

Partition T=T{UT,U---UT, s.t. for every i

« all executions restricted to T; terminate

« ifTyU---UT;_; disabled in Cand C Ir, D, then
T1U---UT;_4 also disabled in D

T Tn"

h 4
~

8/13



Silent protocols: layered termination

Partition T=T,UT,U---UT, s.t. for every i

« all executions restricted to T; terminate

« ifTyU---UT;_; disabled in Cand C Ir, D, then
T1U---UT;_4 also disabled in D

8/13



Silent protocols: layered termination

Partition T=T,UT,U---UT, s.t. for every i

« all executions restricted to T; terminate

« ifTyU---UT;_; disabled in Cand C Ir, D, then
T1U---UT;_4 also disabled in D

G S L

8/13



Silent protocols: layered termination

Partition T=T,UT,U---UT, s.t. for every i

« all executions restricted to T; terminate

« ifTyU---UT;_; disabled in Cand C Ir, D, then
T1U---UT;_4 also disabled in D

[ S L B B L

8/13




Silent protocols: layered termination

T
BR—bb
Br —-Bb
Rb— Rr
br -bb

8/13



Silent protocols: layered termination

T
BR—-bD
Br —-Bb
Rb— Rr
br —-bb

Bad partition: not all executions over T, terminate

8/13
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Bad partition: not all executions over T, terminate
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Silent protocols: layered termination

T4 Ty T3

BR>bb | RbsRr i B5F—7Bb

br—bb

Theorem

Deciding whether a protocol is strongly silent € NP
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Verification: 2" approach

Recent efficient protocols are not silent!
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Verification: 2" approach

Recent efficient protocols are not silent!

More powerful approach:
using “correctness certificates”
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Correctness certificates

Approach: certify that o is computed correctly for b < {0,1}

ro: Configs — N
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C CGX,C%C/ — C/GX,‘

CIOSecl under rech\abili'iLV
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Correctness certificates

Approach: certify that ¢ is computed correctly for b € {0,1}

cCeXNCEHC = CeX
* Xo 2 {C: Cisinitial and ¢(C) = b}

Xo contains all initial conpgs
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cCeXNCEHC = CeX
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Stage graphs

Stage graph: same idea with Xo, X1, ..., X, organized in a DAG

BR - bb
Br —- Bb
Rb — Rr
br — bb

9/13



Stage graphs

Stage graph: same idea with Xo, X1, ..., X, organized in a DAG

BR— bb
Br —- Bb
Rb — Rr
br — bb

9/13



Stage graphs

Stage graph: same idea with Xo, X1, ..., X, organized in a DAG

BR— bb
Br —- Bb
Rb — Rr
br — bb

9/13



Stage graphs

Stage graph: same idea with Xo, X1, ..., X, organized in a DAG

BR— bb
Br —- Bb
Rb — Rr
br — bb :r1(C):C(b)

% — {C: C(B)+ C(b) = 0 < C(R)}
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Stage graphs

A stage graph is Presburger if

- Each set X; is Presburger-definable
« Each ranking function r; is Presburger-definable

« Each r; can be decreased in at most B; steps
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A stage graph is Presburger if

- Each set X; is Presburger-definable
« Each ranking function r; is Presburger-definable

« Each r; can be decreased in at most B; steps

Theorem
Every correct protocol has Presburger stage graphs

C.OMPU‘{’able ané cL‘ec/<cJ>'e T Pr‘«c‘/’ice
with SMT solviné.l
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Demonstration



Expected termination time

B.R — bb
B,r — B,b
R,b — Rr
b,r — bb

Cor‘r‘ec'HV cOMPU‘!LeS Pr‘ec'ic«‘l(’e #B 2 #R
IDU'IL L-OW -CaS'(’.?
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Expected termination time

B.R — b,b
B.,r — B.b
R,b — Rr
b,r — bb

Cor-r‘ec'Hy comPu+es Preéic«'{'e #B 2 #R
bt Low Faust?

Natural to look for fast protocols

Bounds on expected termination time useful since generally
not possible to know whether a protocol has stabilized 10/13



Expected termination time

B.R — b,b
B.,r — B,b
R,b — Rr
b,r — bb

Cor-r‘ec'{‘ly COMPU+€S Pr‘eéic«'{'e #B 2 #R
bt Low Eust?

Theorem Angluin et al. PODC'04

Every Presburger-definable predicate is computable by

a protocol with expected termination time € O(n?log n)
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Expected termination time
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Expected termination time
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Expected termination time

X,y — X x forx,ye{b,rt}

BR — Tt
BT — B,b
RT — R
TT — Tt

)

expected number
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stable consensus
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Expected termination time

BR — Tt X,y — X, x forx,ye{b,r,t}

BT — B,b

R,T — R,r 60“\[ c«\a’yz.e +lme

T.T — Tt for a“ sizes

| |

107 | 2

expected number

of stepsto  10*| 1

stable consensus e E = § = E E : _—

10155555555555115

1234567 89101121314
number of agents initially in state R 10/13



Expected termination time: formal definition

Random variable Steps,:

assigns to each run o the smallest k s.t. o, € X, otherwise oc
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Expected termination time: stage graphs
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TT —» Tt
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Expected termination time: stage graphs

B,.R — Tt
B,T — B,b
RT = Rr Eqm+qm
T —» Tt
C(b) + C(r)
ch)+cr o {C:C(B)+C(R)=0ACT)=1A

Ec[Stepscpyicl < D 2. ¢ i
=
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Expected termination time: stage graphs

In practice, able to report:

O(n?), O(n*logn), O(n?), O(n°), O2")
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Demonstration



Population protocols analyzable automatically:

- Verification + explanation of correctness
- Bounds on expected termination time

- Tool support
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Conclusion: future work

- Asymptotic lower bounds on
expected termination time?

- Verification of extensions of the model?

- Quantitative model checking?
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Thank you!



