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Overview

Population protocols: distributed computing
model for massive networks of passively mobile

finite-state agents

Model e.g. networks of passively mobile sensors and
chemical reaction networks

Protocols compute predicates of the form φ : Nd → {0, 1}

e.g. φ(m,n) is computed by m+ n agents
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Overview

Population protocols: distributed computing
model for massive networks of passively mobile

finite-state agents

This talk: automatic verification and
expected termination time analysis

Model e.g. networks of passively mobile sensors and
chemical reaction networks

Protocols compute predicates of the form φ : Nd → {0, 1}

e.g. φ(m,n) is computed by m+ n agents
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Population protocols Angluin et al. PODC’04

• anonymous mobile agents with very few resources

• agents change states via random pairwise interactions

• each agent has opinion true/false

• computes by stabilizing agents to some opinion
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Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

• Each agent in a
state of {0, 1, 2, 3, 4}

• (m,n) 7→ (m+ n,0)
if m+ n < 4

• (m,n) 7→ (4, 4)
if m+ n ≥ 4

1

1

1

0

1
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Example: majority protocol

# blue agents ≥ # red agents?

Protocol:

• Two large agents
become small blue
agents

• Large agents convert
small agents to their
colour
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Demonstration
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Population protocols: formal model

• States: finite set Q

• Opinions: O : Q → {false,true}

• Initial states: I ⊆ Q

• Transitions: T ⊆ Q2 × Q2
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Population protocols: interactions

P[fire p,q 7→ p′,q′ in C] =


2 · C(p) · C(q)

n2 − n if p ̸= q

C(p) · (C(p)− 1)
n2 − n if p = q

P[C −→ C′] =
∑

t s.t. C t−→C′

P[fire t in C]

All agents can interact pairwise
(complete topology)

Agent 1 Agent 2

Agent 3 Agent 4
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Population protocols: computations

Underlying Markov chain:
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Population protocols: computations

A protocol computes a predicate f : NNNI → {0, 1}
if runs reach common stable consensus

with probability 1
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Population protocols: computations

A protocol computes a predicate f : NNNI → {0, 1}
if runs reach common stable consensus

with probability 1
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. . .

Expressive power Angluin, Aspnes, Eisenstat PODC’06

Population protocols compute precisely predicates
definable in Presburger arithmetic, i.e. FO(N, +, <)
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Verifying correctness

Protocol broken for B = R:

B R −→ b b
B r −→ B b
R b −→ R r

b r −→ b b

B R B R −→ B R b b −→ B R r b −→ b b r b −→ b b b b
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Verifying correctness

Protocol correct with tie-breaker:
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Verifying correctness

Easy fix, but protocols can become complex even forB ≥ R:
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Easy fix, but protocols can become complex even forB ≥ R:

How to verify

correctness
automatically?
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Verifying correctness

Testing whether a protocol computes φ
amounts to testing:

¬∃C,D : C ∗−−→ D ∧
C is initial ∧
D is in a BSCC ∧
opinion(D) ̸= φ(C)

Theorem Esparza et al. CONCUR’15

Verification is decidable
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Verification: 1st approach

¬∃C,D : C ∗−−→ D ∧
C is initial ∧
D is in a BSCC ∧
opinion(D) ̸= φ(C)

As difficult as verification
Ackermannan-complete

(Leroux; Czerwinski & Orlikowski FOCS'21, Esparza et al. CONCUR'15)

Theorem Esparza et al. CONCUR’15

Verification is decidable
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Verification: 1st approach

¬∃C,D : C ∗99K D ∧
C is initial ∧
D is in a BSCC ∧
opinion(D) ̸= φ(C)

Relaxed with Presburger-definable
overapproximation!

Theorem Esparza et al. CONCUR’15

Verification is decidable
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Verification: 1st approach

¬∃C,D : C ∗99K D ∧
C is initial ∧
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Verification: 1st approach

¬∃C,D : C ∗99K D ∧
C is initial ∧
D is terminal ∧
opinion(D) ̸= φ(C)

BSCCs are of size 1
for many protocols!

Theorem Esparza et al. CONCUR’15

Verification is decidable
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Verification: 1st approach

¬∃C,D : C ∗99K D ∧
C is initial ∧
D is terminal ∧
opinion(D) ̸= φ(C)

Testable with an SMT solver

Theorem Esparza et al. CONCUR’15

Verification is decidable
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Verification: 1st approach

¬∃C,D : C ∗99K D ∧
C is initial ∧
D is terminal ∧
opinion(D) ̸= φ(C)

But how to know whether
all BSCCs are of size 1?

Theorem Esparza et al. CONCUR’15

Verification is decidable
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Silent protocols

A protocol is silent if fair executions reach terminal configurations

• Testing silentness is as hard as verification of correctness

• But many protocols satisfy a common design

. . .

BSCCs of size 1
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Silent protocols: layered termination

Partition T = T1 ∪ T2 ∪ · · · ∪ Tn s.t. for every i

• all executions restricted to Ti terminate

• if T1 ∪ · · · ∪ Ti−1 disabled in C and C Ti∗−−→ D, then
T1 ∪ · · · ∪ Ti−1 also disabled in D

C
T1∗ T2∗ Tn∗
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• all executions restricted to Ti terminate
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Silent protocols: layered termination

B R −→ b b
B r −→ B b
R b −→ R r
b r −→ b b

T1
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B R −→ b b
B r −→ B b
R b −→ R r
b r −→ b b

Bad partition: not all executions over T1 terminate

{B,B,R,R} −→ {B,b,b,R} −→ {B,b, r,R} −→
{B,b,b,R} −→ {B,b, r,R} −→ · · ·

T1
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Silent protocols: layered termination

B R −→ b b R b −→ R r B r −→ B b
b r −→ b b

T1 T2 T3
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{B∗, R∗}
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Silent protocols: layered termination
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Theorem

Deciding whether a protocol is strongly silent ∈ NP

T1 T2 T3
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Verification: 2nd approach

Recent efficient protocols are not silent!

More powerful approach:
using “correctness certificates”
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Correctness certificates

Approach: certify that φ is computed correctly for b ∈ {0, 1}

X0

X1

r0 : Configs → N

6
5

3
3

2
2

• C ∈ Xi ∧ C ∗−→ C′ =⇒ C′ ∈ Xi
• X0 ⊇ {C : C is initial and φ(C) = b}
• X1 ⊆ {C : opinion(C) = b}

• C ∗−→ C′ =⇒ r0(C) ≥ r0(C′)
• ∀C ∈ X0\X1 ∃C′ ∈ X0 : C ∗−→ C′∧r0(C) > r0(C′)
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with b-consensus
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Stage graphs

Stage graph: same idea with X0, X1, . . . , Xk organized in a DAG

B R −→ b b
B r −→ B b
R b −→ R r
b r −→ b b

X0 = {C : C(B) < C(R)}

X1 = {C : C(B) = 0 < C(R)}

X2 = {C : C(B) + C(b) = 0 < C(R)}

r0(C) = C(B) + C(R)

r1(C) = C(b)

9/13



Stage graphs

Stage graph: same idea with X0, X1, . . . , Xk organized in a DAG

B R −→ b b
B r −→ B b
R b −→ R r
b r −→ b b

X0 = {C : C(B) < C(R)}

X1 = {C : C(B) = 0 < C(R)}

X2 = {C : C(B) + C(b) = 0 < C(R)}

r0(C) = C(B) + C(R)

r1(C) = C(b)

9/13



Stage graphs

Stage graph: same idea with X0, X1, . . . , Xk organized in a DAG

B R −→ b b
B r −→ B b
R b −→ R r
b r −→ b b

X0 = {C : C(B) < C(R)}

X1 = {C : C(B) = 0 < C(R)}

X2 = {C : C(B) + C(b) = 0 < C(R)}

r0(C) = C(B) + C(R)

r1(C) = C(b)

9/13



Stage graphs

Stage graph: same idea with X0, X1, . . . , Xk organized in a DAG

B R −→ b b
B r −→ B b
R b −→ R r
b r −→ b b

X0 = {C : C(B) < C(R)}

X1 = {C : C(B) = 0 < C(R)}

X2 = {C : C(B) + C(b) = 0 < C(R)}

r0(C) = C(B) + C(R)

r1(C) = C(b)

9/13



Stage graphs

A stage graph is Presburger if

• Each set Xi is Presburger-definable

• Each ranking function ri is Presburger-definable

• Each ri can be decreased in at most Bi steps

Theorem
Every correct protocol has Presburger stage graphs
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Stage graphs

A stage graph is Presburger if

• Each set Xi is Presburger-definable

• Each ranking function ri is Presburger-definable

• Each ri can be decreased in at most Bi steps

Theorem
Every correct protocol has Presburger stage graphs

Computable and checkable in practice

with SMT solving!
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Demonstration
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Expected termination time

B,R 7→ b,b
B, r 7→ B,b
R,b 7→ R, r
b, r 7→ b,b

O(B) = O(b) = O(T) = O(t) = 1
O(R) = O(r) = 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14

101

104

107

number of agents initially in state R

expected number
of steps to

stable consensus

Correctly computes predicate #B ≥ #R

...but how fast?
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• Natural to look for fast protocols

• Bounds on expected termination time useful since generally
not possible to know whether a protocol has stabilized 10/13
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Correctly computes predicate #B ≥ #R

...but how fast?

Theorem Angluin et al. PODC’04

Every Presburger-definable predicate is computable by
a protocol with expected termination time ∈ O(n2 log n)
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Simulations show that it is slow
when R has slight majority:
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Is it faster?
Yes, for size 15...
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Expected termination time

B,R 7→ T, t X, y 7→ X, x for x, y ∈ {b, r, t}
B, T 7→ B,b
R, T 7→ R, r
T, T 7→ T, t

O(B) = O(b) = O(T) = O(t) = 1
O(R) = O(r) = 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14

101

104

107

number of agents initially in state R

expected number
of steps to

stable consensus

Obtained using PRISM

Clément et al. ICDCS'11, Offtermatt '17
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Expected termination time

B,R 7→ T, t X, y 7→ X, x for x, y ∈ {b, r, t}
B, T 7→ B,b
R, T 7→ R, r
T, T 7→ T, t

O(B) = O(b) = O(T) = O(t) = 1
O(R) = O(r) = 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14

101

104

107

number of agents initially in state R

expected number
of steps to

stable consensus

Goal: analyze time
for all sizes
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Expected termination time: formal definition

Random variable StepsX:

assigns to each run σ the smallest k s.t. σk ∈ X, otherwise ∞

Maximal expected termination time
We are interested in time : N → N where

time(n) = max{EC[StepsStable] : C is initial and |C| = n}
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Expected termination time: stage graphs

B,R 7→ T, t
B, T 7→ B,b
R, T 7→ R, r
T, T 7→ T, t
X, y 7→ X, x

{C : C(B) = C(R) ∧
C(B) + C(R) + C(T) > 0}

{C : C(B) = C(R) = 0 ∧ C(T) = 1}

{C : C(B) + C(R) = 0 ∧ C(T) = 1 ∧
C(b) + C(r) = 0}

C(B) + C(R)

C(b) + C(r)C(b) + C(r)

EC[StepsC(b)+C(r)=0] ≤
C(b)+C(r)∑

i=1

n2
2 · C(T) · i

≤
n∑
i=1

n2
i

≤ α · n2 · log n
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Expected termination time: stage graphs

In practice, able to report:

O(n2), O(n2 log n), O(n3), O(nc), O(2n)
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Demonstration
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Conclusion: summary

Population protocols analyzable automatically:

• Verification + explanation of correctness

• Bounds on expected termination time

• Tool support
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Conclusion: future work

• Asymptotic lower bounds on
expected termination time?

• Verification of extensions of the model?

• Quantitative model checking?
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Thank you!
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