
Formal analysis of crowd systems

Michael Blondin

Joint work with J. Esparza, M. Helfrich, S. Jaax, A. Kučera, P. J. Meyer

Formal analysis of crowd systems

Michael Blondin
Joint work with J. Esparza, M. Helfrich, S. Jaax, A. Kučera, P. J. Meyer

Overview

Population protocols: distributed computing
model for massive networks of passively mobile

finite-state agents

Model e.g. networks of passively mobile sensors and
chemical reaction networks

Protocols compute predicates of the form φ : Nd → {0, 1}

e.g. φ(m,n) is computed by m+ n agents

1/13

Overview

Population protocols: distributed computing
model for massive networks of passively mobile

finite-state agents

Model e.g. networks of passively mobile sensors and
chemical reaction networks

Protocols compute predicates of the form φ : Nd → {0, 1}

e.g. φ(m,n) is computed by m+ n agents

1/13

Overview

Population protocols: distributed computing
model for massive networks of passively mobile

finite-state agents

Model e.g. networks of passively mobile sensors and
chemical reaction networks

Protocols compute predicates of the form φ : Nd → {0, 1}

e.g. φ(m,n) is computed by m+ n agents

1/13

Overview

Population protocols: distributed computing
model for massive networks of passively mobile

finite-state agents

This talk: automatic verification and
expected termination time analysis

Model e.g. networks of passively mobile sensors and
chemical reaction networks

Protocols compute predicates of the form φ : Nd → {0, 1}

e.g. φ(m,n) is computed by m+ n agents

1/13

Population protocols Angluin et al. PODC’04

• anonymous mobile agents with very few resources

• agents change states via random pairwise interactions

• each agent has opinion true/false

• computes by stabilizing agents to some opinion

2/13

Population protocols Angluin et al. PODC’04

• anonymous mobile agents with very few resources

• agents change states via random pairwise interactions

• each agent has opinion true/false

• computes by stabilizing agents to some opinion

2/13

Population protocols Angluin et al. PODC’04

• anonymous mobile agents with very few resources

• agents change states via random pairwise interactions

• each agent has opinion true/false

• computes by stabilizing agents to some opinion

2/13

Population protocols Angluin et al. PODC’04

• anonymous mobile agents with very few resources

• agents change states via random pairwise interactions

• each agent has opinion true/false

• computes by stabilizing agents to some opinion

2/13

Population protocols Angluin et al. PODC’04

• anonymous mobile agents with very few resources

• agents change states via random pairwise interactions

• each agent has opinion true/false

• computes by stabilizing agents to some opinion

2/13

Population protocols Angluin et al. PODC’04

• anonymous mobile agents with very few resources

• agents change states via random pairwise interactions

• each agent has opinion true/false

• computes by stabilizing agents to some opinion

2/13

Population protocols Angluin et al. PODC’04

• anonymous mobile agents with very few resources

• agents change states via random pairwise interactions

• each agent has opinion true/false

• computes by stabilizing agents to some opinion

2/13

Population protocols Angluin et al. PODC’04

• anonymous mobile agents with very few resources

• agents change states via random pairwise interactions

• each agent has opinion true/false

• computes by stabilizing agents to some opinion

2/13

Population protocols Angluin et al. PODC’04

• anonymous mobile agents with very few resources

• agents change states via random pairwise interactions

• each agent has opinion true/false

• computes by stabilizing agents to some opinion

2/13

Population protocols Angluin et al. PODC’04

• anonymous mobile agents with very few resources

• agents change states via random pairwise interactions

• each agent has opinion true/false

• computes by stabilizing agents to some opinion

2/13

Population protocols Angluin et al. PODC’04

• anonymous mobile agents with very few resources

• agents change states via random pairwise interactions

• each agent has opinion true/false

• computes by stabilizing agents to some opinion

2/13

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

• Each agent in a
state of {0, 1, 2, 3, 4}

• (m,n) 7→ (m+ n,0)
if m+ n < 4

• (m,n) 7→ (4, 4)
if m+ n ≥ 4

1

1

1

0

1

3/13

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

• Each agent in a
state of {0, 1, 2, 3, 4}

• (m,n) 7→ (m+ n,0)
if m+ n < 4

• (m,n) 7→ (4, 4)
if m+ n ≥ 4

1

1

1

0

1

3/13

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

• Each agent in a
state of {0, 1, 2, 3, 4}

• (m,n) 7→ (m+ n,0)
if m+ n < 4

• (m,n) 7→ (4, 4)
if m+ n ≥ 4

1

1

1

0

1

3/13

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

• Each agent in a
state of {0, 1, 2, 3, 4}

• (m,n) 7→ (m+ n,0)
if m+ n < 4

• (m,n) 7→ (4, 4)
if m+ n ≥ 4

2

1

1

0

0

3/13

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

• Each agent in a
state of {0, 1, 2, 3, 4}

• (m,n) 7→ (m+ n,0)
if m+ n < 4

• (m,n) 7→ (4, 4)
if m+ n ≥ 4

2

1

1

0

0

3/13

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

• Each agent in a
state of {0, 1, 2, 3, 4}

• (m,n) 7→ (m+ n,0)
if m+ n < 4

• (m,n) 7→ (4, 4)
if m+ n ≥ 4

2

1

1

0

0

3/13

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

• Each agent in a
state of {0, 1, 2, 3, 4}

• (m,n) 7→ (m+ n,0)
if m+ n < 4

• (m,n) 7→ (4, 4)
if m+ n ≥ 4

2

1

1

0

0

3/13

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

• Each agent in a
state of {0, 1, 2, 3, 4}

• (m,n) 7→ (m+ n,0)
if m+ n < 4

• (m,n) 7→ (4, 4)
if m+ n ≥ 4

2

2

0

0

0

3/13

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

• Each agent in a
state of {0, 1, 2, 3, 4}

• (m,n) 7→ (m+ n,0)
if m+ n < 4

• (m,n) 7→ (4, 4)
if m+ n ≥ 4

2

2

0

0

0

3/13

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

• Each agent in a
state of {0, 1, 2, 3, 4}

• (m,n) 7→ (m+ n,0)
if m+ n < 4

• (m,n) 7→ (4, 4)
if m+ n ≥ 4

4

4

0

0

0

3/13

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

• Each agent in a
state of {0, 1, 2, 3, 4}

• (m,n) 7→ (m+ n,0)
if m+ n < 4

• (m,n) 7→ (4, 4)
if m+ n ≥ 4

4

4

0

0

0

3/13

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

• Each agent in a
state of {0, 1, 2, 3, 4}

• (m,n) 7→ (m+ n,0)
if m+ n < 4

• (m,n) 7→ (4, 4)
if m+ n ≥ 4

4

4

0

4

0

3/13

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

• Each agent in a
state of {0, 1, 2, 3, 4}

• (m,n) 7→ (m+ n,0)
if m+ n < 4

• (m,n) 7→ (4, 4)
if m+ n ≥ 4

4

4

0

4

0

3/13

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

• Each agent in a
state of {0, 1, 2, 3, 4}

• (m,n) 7→ (m+ n,0)
if m+ n < 4

• (m,n) 7→ (4, 4)
if m+ n ≥ 4

4

4

0

4

4

3/13

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

• Each agent in a
state of {0, 1, 2, 3, 4}

• (m,n) 7→ (m+ n,0)
if m+ n < 4

• (m,n) 7→ (4, 4)
if m+ n ≥ 4

4

4

0

4

4

3/13

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

• Each agent in a
state of {0, 1, 2, 3, 4}

• (m,n) 7→ (m+ n,0)
if m+ n < 4

• (m,n) 7→ (4, 4)
if m+ n ≥ 4

4

4

4

4

4

3/13

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

• Each agent in a
state of {0, 1, 2, 3, 4}

• (m,n) 7→ (m+ n,0)
if m+ n < 4

• (m,n) 7→ (4, 4)
if m+ n ≥ 4

4

4

4

4

4

3/13

Example: majority protocol

blue agents ≥ # red agents?

Protocol:

• Two large agents
become small blue
agents

• Large agents convert
small agents to their
colour

4/13

Example: majority protocol

blue agents ≥ # red agents?

Protocol:

• Two large agents
become small blue
agents

• Large agents convert
small agents to their
colour

4/13

Example: majority protocol

blue agents ≥ # red agents?

Protocol:

• Two large agents
become small blue
agents

• Large agents convert
small agents to their
colour

4/13

Example: majority protocol

blue agents ≥ # red agents?

Protocol:

• Two large agents
become small blue
agents

• Large agents convert
small agents to their
colour

4/13

Example: majority protocol

blue agents ≥ # red agents?

Protocol:

• Two large agents
become small blue
agents

• Large agents convert
small agents to their
colour

4/13

Example: majority protocol

blue agents ≥ # red agents?

Protocol:

• Two large agents
become small blue
agents

• Large agents convert
small agents to their
colour

4/13

Example: majority protocol

blue agents ≥ # red agents?

Protocol:

• Two large agents
become small blue
agents

• Large agents convert
small agents to their
colour

4/13

Example: majority protocol

blue agents ≥ # red agents?

Protocol:

• Two large agents
become small blue
agents

• Large agents convert
small agents to their
colour

4/13

Example: majority protocol

blue agents ≥ # red agents?

Protocol:

• Two large agents
become small blue
agents

• Large agents convert
small agents to their
colour

4/13

Example: majority protocol

blue agents ≥ # red agents?

Protocol:

• Two large agents
become small blue
agents

• Large agents convert
small agents to their
colour

4/13

Example: majority protocol

blue agents ≥ # red agents?

Protocol:

• Two large agents
become small blue
agents

• Large agents convert
small agents to their
colour

4/13

Example: majority protocol

blue agents ≥ # red agents?

Protocol:

• Two large agents
become small blue
agents

• Large agents convert
small agents to their
colour

4/13

Example: majority protocol

blue agents ≥ # red agents?

Protocol:

• Two large agents
become small blue
agents

• Large agents convert
small agents to their
colour

4/13

Example: majority protocol

blue agents ≥ # red agents?

Protocol:

• Two large agents
become small blue
agents

• Large agents convert
small agents to their
colour

4/13

Example: majority protocol

blue agents ≥ # red agents?

Protocol:

• Two large agents
become small blue
agents

• Large agents convert
small agents to their
colour

4/13

Example: majority protocol

blue agents ≥ # red agents?

Protocol:

• Two large agents
become small blue
agents

• Large agents convert
small agents to their
colour

4/13

Example: majority protocol

blue agents ≥ # red agents?

Protocol:

• Two large agents
become small blue
agents

• Large agents convert
small agents to their
colour

4/13

Example: majority protocol

blue agents ≥ # red agents?

Protocol:

• Two large agents
become small blue
agents

• Large agents convert
small agents to their
colour

4/13

Example: majority protocol

blue agents ≥ # red agents?

Protocol:

• Two large agents
become small blue
agents

• Large agents convert
small agents to their
colour

4/13

Demonstration

4/13

Population protocols: formal model

• States: finite set Q

• Opinions: O : Q → {false,true}

• Initial states: I ⊆ Q

• Transitions: T ⊆ Q2 × Q2

5/13

Population protocols: formal model

• States: finite set Q

• Opinions: O : Q → {false,true}

• Initial states: I ⊆ Q

• Transitions: T ⊆ Q2 × Q2

5/13

Population protocols: formal model

• States: finite set Q

• Opinions: O : Q → {false,true}

• Initial states: I ⊆ Q

• Transitions: T ⊆ Q2 × Q2

5/13

Population protocols: formal model

• States: finite set Q

• Opinions: O : Q → {false,true}

• Initial states: I ⊆ Q

• Transitions: T ⊆ Q2 × Q2

5/13

Population protocols: interactions

P[fire p,q 7→ p′,q′ in C] =


2 · C(p) · C(q)

n2 − n if p ̸= q

C(p) · (C(p)− 1)
n2 − n if p = q

P[C −→ C′] =
∑

t s.t. C t−→C′

P[fire t in C]

All agents can interact pairwise
(complete topology)

Agent 1 Agent 2

Agent 3 Agent 4
5/13

Population protocols: interactions

P[fire p,q 7→ p′,q′ in C] =


2 · C(p) · C(q)

n2 − n if p ̸= q

C(p) · (C(p)− 1)
n2 − n if p = q

P[C −→ C′] =
∑

t s.t. C t−→C′

P[fire t in C]

Agent 1 Agent 2

Agent 3 Agent 4
5/13

Population protocols: interactions

P[fire p,q 7→ p′,q′ in C] =


2 · C(p) · C(q)

n2 − n if p ̸= q

C(p) · (C(p)− 1)
n2 − n if p = q

P[C −→ C′] =
∑

t s.t. C t−→C′

P[fire t in C]

Agent 1 Agent 2

Agent 3 Agent 4
5/13

Population protocols: interactions

P[fire p,q 7→ p′,q′ in C] =


2 · C(p) · C(q)

n2 − n if p ̸= q

C(p) · (C(p)− 1)
n2 − n if p = q

P[C −→ C′] =
∑

t s.t. C t−→C′

P[fire t in C]

p q

q r
5/13

Population protocols: interactions

P[fire p,q 7→ p′,q′ in C] =


2 · C(p) · C(q)

n2 − n if p ̸= q

C(p) · (C(p)− 1)
n2 − n if p = q

P[C −→ C′] =
∑

t s.t. C t−→C′

P[fire t in C]

p q

q r
5/13

Population protocols: interactions

P[fire p,q 7→ p′,q′ in C] =


2 · C(p) · C(q)

n2 − n if p ̸= q

C(p) · (C(p)− 1)
n2 − n if p = q

P[C −→ C′] =
∑

t s.t. C t−→C′

P[fire t in C]

5/13

Population protocols: computations

Underlying Markov chain:

start

2
10

2
10

2
10

1
10

2
10

1
10

2
10

2
10

6
10

6
10

2
10

4
10

3
10

4
10

1
10

Init0

01

0

Init1

1 1

Init2

1?

X X

. . .

5/13

Population protocols: computations

A protocol computes a predicate f : NNNI → {0, 1}
if runs reach common stable consensus

with probability 1

start

2
10

2
10

2
10

1
10

2
10

1
10

2
10

2
10

6
10

6
10

2
10

4
10

3
10

4
10

1
10

Init0

0

1

0

Init1

1 1

Init2

1

?

X X

. . .

5/13

Population protocols: computations

A protocol computes a predicate f : NNNI → {0, 1}
if runs reach common stable consensus

with probability 1

start

2
10

2
10

2
10

1
10

2
10

1
10

2
10

2
10

6
10

6
10

2
10

4
10

3
10

4
10

1
10

Init0

01

0

Init1

1 1

Init2

1?

X X

. . .

Expressive power Angluin, Aspnes, Eisenstat PODC’06

Population protocols compute precisely predicates
definable in Presburger arithmetic, i.e. FO(N, +, <)

5/13

Verifying correctness

Protocol broken for B = R:

B R −→ b b
B r −→ B b
R b −→ R r

b r −→ b b

B R B R −→ B R b b −→ B R r b −→ b b r b −→ b b b b

6/13

Verifying correctness

Protocol broken for B = R:

B R −→ b b
B r −→ B b
R b −→ R r

b r −→ b b

B R B R

−→ B R b b −→ B R r b −→ b b r b −→ b b b b

6/13

Verifying correctness

Protocol broken for B = R:

B R −→ b b
B r −→ B b
R b −→ R r

b r −→ b b

B R B R −→ B R b b

−→ B R r b −→ b b r b −→ b b b b

6/13

Verifying correctness

Protocol broken for B = R:

B R −→ b b
B r −→ B b
R b −→ R r

b r −→ b b

B R B R −→ B R b b −→ B R r b

−→ b b r b −→ b b b b

6/13

Verifying correctness

Protocol broken for B = R:

B R −→ b b
B r −→ B b
R b −→ R r

b r −→ b b

B R B R −→ B R b b −→ B R r b −→ b b r b

−→ b b b b

6/13

Verifying correctness

Protocol correct with tie-breaker:

B R −→ b b
B r −→ B b
R b −→ R r
b r −→ b b

B R B R −→ B R b b −→ B R r b −→ b b r b

−→ b b b b

6/13

Verifying correctness

Protocol correct with tie-breaker:

B R −→ b b
B r −→ B b
R b −→ R r
b r −→ b b

B R B R −→ B R b b −→ B R r b −→ b b r b −→ b b b b

6/13

Verifying correctness

Easy fix, but protocols can become complex even forB ≥ R:

6/13

Verifying correctness

Easy fix, but protocols can become complex even forB ≥ R:

How to verify

correctness
automatically?

6/13

Verifying correctness

Testing whether a protocol computes φ
amounts to testing:

¬∃C,D : C ∗−−→ D ∧
C is initial ∧
D is in a BSCC ∧
opinion(D) ̸= φ(C)

Theorem Esparza et al. CONCUR’15

Verification is decidable

6/13

Verifying correctness

Testing whether a protocol computes φ
amounts to testing:

¬∃C,D : C ∗−−→ D ∧
C is initial ∧
D is in a BSCC ∧
opinion(D) ̸= φ(C)

Theorem Esparza et al. CONCUR’15

Verification is decidable

6/13

Verification: 1st approach

¬∃C,D : C ∗−−→ D ∧
C is initial ∧
D is in a BSCC ∧
opinion(D) ̸= φ(C)

As difficult as verification
Ackermannan-complete

(Leroux; Czerwinski & Orlikowski FOCS'21, Esparza et al. CONCUR'15)

Theorem Esparza et al. CONCUR’15

Verification is decidable

7/13

Verification: 1st approach

¬∃C,D : C ∗99K D ∧
C is initial ∧
D is in a BSCC ∧
opinion(D) ̸= φ(C)

Relaxed with Presburger-definable
overapproximation!

Theorem Esparza et al. CONCUR’15

Verification is decidable

7/13

Verification: 1st approach

¬∃C,D : C ∗99K D ∧
C is initial ∧
D is in a BSCC ∧
opinion(D) ̸= φ(C)

Difficult to express

Theorem Esparza et al. CONCUR’15

Verification is decidable

7/13

Verification: 1st approach

¬∃C,D : C ∗99K D ∧
C is initial ∧
D is terminal ∧
opinion(D) ̸= φ(C)

BSCCs are of size 1
for many protocols!

Theorem Esparza et al. CONCUR’15

Verification is decidable

7/13

Verification: 1st approach

¬∃C,D : C ∗99K D ∧
C is initial ∧
D is terminal ∧
opinion(D) ̸= φ(C)

Testable with an SMT solver

Theorem Esparza et al. CONCUR’15

Verification is decidable

7/13

Verification: 1st approach

¬∃C,D : C ∗99K D ∧
C is initial ∧
D is terminal ∧
opinion(D) ̸= φ(C)

But how to know whether
all BSCCs are of size 1?

Theorem Esparza et al. CONCUR’15

Verification is decidable

7/13

Silent protocols

A protocol is silent if fair executions reach terminal configurations

• Testing silentness is as hard as verification of correctness

• But many protocols satisfy a common design

. . .

BSCCs of size 1
8/13

Silent protocols

A protocol is silent if fair executions reach terminal configurations

• Testing silentness is as hard as verification of correctness

• But many protocols satisfy a common design

. . .

BSCCs of size 1
8/13

Silent protocols: layered termination

Partition T = T1 ∪ T2 ∪ · · · ∪ Tn s.t. for every i

• all executions restricted to Ti terminate

• if T1 ∪ · · · ∪ Ti−1 disabled in C and C Ti∗−−→ D, then
T1 ∪ · · · ∪ Ti−1 also disabled in D

C
T1∗ T2∗ Tn∗

8/13

Silent protocols: layered termination

Partition T = T1 ∪ T2 ∪ · · · ∪ Tn s.t. for every i

• all executions restricted to Ti terminate

• if T1 ∪ · · · ∪ Ti−1 disabled in C and C Ti∗−−→ D, then
T1 ∪ · · · ∪ Ti−1 also disabled in D

C
T1∗ T2∗ Tn∗

8/13

Silent protocols: layered termination

Partition T = T1 ∪ T2 ∪ · · · ∪ Tn s.t. for every i

• all executions restricted to Ti terminate

• if T1 ∪ · · · ∪ Ti−1 disabled in C and C Ti∗−−→ D, then
T1 ∪ · · · ∪ Ti−1 also disabled in D

C
T1∗ T2∗ Tn∗

8/13

Silent protocols: layered termination

Partition T = T1 ∪ T2 ∪ · · · ∪ Tn s.t. for every i

• all executions restricted to Ti terminate

• if T1 ∪ · · · ∪ Ti−1 disabled in C and C Ti∗−−→ D, then
T1 ∪ · · · ∪ Ti−1 also disabled in D

C
T1∗ T2∗ Tn∗

8/13

Silent protocols: layered termination

Partition T = T1 ∪ T2 ∪ · · · ∪ Tn s.t. for every i

• all executions restricted to Ti terminate

• if T1 ∪ · · · ∪ Ti−1 disabled in C and C Ti∗−−→ D, then
T1 ∪ · · · ∪ Ti−1 also disabled in D

C Cterm
T1∗ T2∗ Tn∗

8/13

Silent protocols: layered termination

B R −→ b b
B r −→ B b
R b −→ R r
b r −→ b b

T1

8/13

Silent protocols: layered termination

B R −→ b b
B r −→ B b
R b −→ R r
b r −→ b b

Bad partition: not all executions over T1 terminate

T1

8/13

Silent protocols: layered termination

B R −→ b b
B r −→ B b
R b −→ R r
b r −→ b b

Bad partition: not all executions over T1 terminate

{B,B,R,R} −→ {B,b,b,R} −→ {B,b, r,R} −→
{B,b,b,R} −→ {B,b, r,R} −→ · · ·

T1

8/13

Silent protocols: layered termination

B R −→ b b R b −→ R r B r −→ B b
b r −→ b b

T1 T2 T3

8/13

Silent protocols: layered termination

B R −→ b b R b −→ R r B r −→ B b
b r −→ b b

T1 T2 T3

{B∗, R∗}
#B ≥ #R:

8/13

Silent protocols: layered termination

B R −→ b b R b −→ R r B r −→ B b
b r −→ b b

T1 T2 T3

{B∗, R∗}
#B ≥ #R:

{B∗, b∗, r∗}*

8/13

Silent protocols: layered termination

B R −→ b b R b −→ R r B r −→ B b
b r −→ b b

T1 T2 T3

{B∗, R∗}
#B ≥ #R:

{B∗, b∗, r∗}*

8/13

Silent protocols: layered termination

B R −→ b b R b −→ R r B r −→ B b
b r −→ b b

T1 T2 T3

{B∗, R∗}
#B ≥ #R:

{B∗, b∗, r∗}* {B∗, b∗}*

8/13

Silent protocols: layered termination

B R −→ b b R b −→ R r B r −→ B b
b r −→ b b

T1 T2 T3

{B∗, R∗}
#B ≥ #R:

{B∗, b∗, r∗}* {B∗, b∗}*

{R+, B∗}
#R > #B:

8/13

Silent protocols: layered termination

B R −→ b b R b −→ R r B r −→ B b
b r −→ b b

T1 T2 T3

{B∗, R∗}
#B ≥ #R:

{B∗, b∗, r∗}* {B∗, b∗}*

{R+, B∗}
#R > #B:

{R+, b∗, r∗}*

8/13

Silent protocols: layered termination

B R −→ b b R b −→ R r B r −→ B b
b r −→ b b

T1 T2 T3

{B∗, R∗}
#B ≥ #R:

{B∗, b∗, r∗}* {B∗, b∗}*

{R+, B∗}
#R > #B:

{R+, b∗, r∗}* {R+, r∗}*

8/13

Silent protocols: layered termination

B R −→ b b R b −→ R r B r −→ B b
b r −→ b b

T1 T2 T3

{B∗, R∗}
#B ≥ #R:

{B∗, b∗, r∗}* {B∗, b∗}*

{R+, B∗}
#R > #B:

{R+, b∗, r∗}* {R+, r∗}*

8/13

Silent protocols: layered termination

B R −→ b b R b −→ R r B r −→ B b
b r −→ b b

Theorem

Deciding whether a protocol is strongly silent ∈ NP

T1 T2 T3

8/13

Verification: 2nd approach

Recent efficient protocols are not silent!

More powerful approach:
using “correctness certificates”

9/13

Verification: 2nd approach

Recent efficient protocols are not silent!

More powerful approach:
using “correctness certificates”

9/13

Correctness certificates

Approach: certify that φ is computed correctly for b ∈ {0, 1}

X0

X1

r0 : Configs → N

6
5

3
3

2
2

• C ∈ Xi ∧ C ∗−→ C′ =⇒ C′ ∈ Xi
• X0 ⊇ {C : C is initial and φ(C) = b}
• X1 ⊆ {C : opinion(C) = b}

• C ∗−→ C′ =⇒ r0(C) ≥ r0(C′)
• ∀C ∈ X0\X1 ∃C′ ∈ X0 : C ∗−→ C′∧r0(C) > r0(C′)

9/13

Correctness certificates

Approach: certify that φ is computed correctly for b ∈ {0, 1}

X0

X1

r0 : Configs → N

6
5

3
3

2
2

• C ∈ Xi ∧ C ∗−→ C′ =⇒ C′ ∈ Xi

• X0 ⊇ {C : C is initial and φ(C) = b}
• X1 ⊆ {C : opinion(C) = b}

• C ∗−→ C′ =⇒ r0(C) ≥ r0(C′)
• ∀C ∈ X0\X1 ∃C′ ∈ X0 : C ∗−→ C′∧r0(C) > r0(C′)

Closed under reachability

9/13

Correctness certificates

Approach: certify that φ is computed correctly for b ∈ {0, 1}

X0

X1

r0 : Configs → N

6
5

3
3

2
2

• C ∈ Xi ∧ C ∗−→ C′ =⇒ C′ ∈ Xi
• X0 ⊇ {C : C is initial and φ(C) = b}

• X1 ⊆ {C : opinion(C) = b}

• C ∗−→ C′ =⇒ r0(C) ≥ r0(C′)
• ∀C ∈ X0\X1 ∃C′ ∈ X0 : C ∗−→ C′∧r0(C) > r0(C′)

X0 contains all initial configs

9/13

Correctness certificates

Approach: certify that φ is computed correctly for b ∈ {0, 1}

X0

X1

r0 : Configs → N

6
5

3
3

2
2

• C ∈ Xi ∧ C ∗−→ C′ =⇒ C′ ∈ Xi
• X0 ⊇ {C : C is initial and φ(C) = b}
• X1 ⊆ {C : opinion(C) = b}

• C ∗−→ C′ =⇒ r0(C) ≥ r0(C′)
• ∀C ∈ X0\X1 ∃C′ ∈ X0 : C ∗−→ C′∧r0(C) > r0(C′)

X1 only contains configs

with b-consensus

9/13

Correctness certificates

Approach: certify that φ is computed correctly for b ∈ {0, 1}

X0

X1

r0 : Configs → N

6
5

3
3

2
2

• C ∈ Xi ∧ C ∗−→ C′ =⇒ C′ ∈ Xi
• X0 ⊇ {C : C is initial and φ(C) = b}
• X1 ⊆ {C : opinion(C) = b}

• C ∗−→ C′ =⇒ r0(C) ≥ r0(C′)

• ∀C ∈ X0\X1 ∃C′ ∈ X0 : C ∗−→ C′∧r0(C) > r0(C′)

r0 is nondecreasing

9/13

Correctness certificates

Approach: certify that φ is computed correctly for b ∈ {0, 1}

X0

X1

r0 : Configs → N

6
5

3
3

2
2

• C ∈ Xi ∧ C ∗−→ C′ =⇒ C′ ∈ Xi
• X0 ⊇ {C : C is initial and φ(C) = b}
• X1 ⊆ {C : opinion(C) = b}

• C ∗−→ C′ =⇒ r0(C) ≥ r0(C′)
• ∀C ∈ X0\X1 ∃C′ ∈ X0 : C ∗−→ C′∧r0(C) > r0(C′)

r0 is weakly decreasing

9/13

Correctness certificates

Approach: certify that φ is computed correctly for b ∈ {0, 1}

X0

X1

r0 : Configs → N

6

5
3

3
2

2

• C ∈ Xi ∧ C ∗−→ C′ =⇒ C′ ∈ Xi
• X0 ⊇ {C : C is initial and φ(C) = b}
• X1 ⊆ {C : opinion(C) = b}

• C ∗−→ C′ =⇒ r0(C) ≥ r0(C′)
• ∀C ∈ X0\X1 ∃C′ ∈ X0 : C ∗−→ C′∧r0(C) > r0(C′)

9/13

Correctness certificates

Approach: certify that φ is computed correctly for b ∈ {0, 1}

X0

X1

r0 : Configs → N

6
5

3
3

2
2

• C ∈ Xi ∧ C ∗−→ C′ =⇒ C′ ∈ Xi
• X0 ⊇ {C : C is initial and φ(C) = b}
• X1 ⊆ {C : opinion(C) = b}

• C ∗−→ C′ =⇒ r0(C) ≥ r0(C′)
• ∀C ∈ X0\X1 ∃C′ ∈ X0 : C ∗−→ C′∧r0(C) > r0(C′)

9/13

Correctness certificates

Approach: certify that φ is computed correctly for b ∈ {0, 1}

X0

X1

r0 : Configs → N

6
5

3

3
2

2

• C ∈ Xi ∧ C ∗−→ C′ =⇒ C′ ∈ Xi
• X0 ⊇ {C : C is initial and φ(C) = b}
• X1 ⊆ {C : opinion(C) = b}

• C ∗−→ C′ =⇒ r0(C) ≥ r0(C′)
• ∀C ∈ X0\X1 ∃C′ ∈ X0 : C ∗−→ C′∧r0(C) > r0(C′)

9/13

Correctness certificates

Approach: certify that φ is computed correctly for b ∈ {0, 1}

X0

X1

r0 : Configs → N

6
5

3
3

2
2

• C ∈ Xi ∧ C ∗−→ C′ =⇒ C′ ∈ Xi
• X0 ⊇ {C : C is initial and φ(C) = b}
• X1 ⊆ {C : opinion(C) = b}

• C ∗−→ C′ =⇒ r0(C) ≥ r0(C′)
• ∀C ∈ X0\X1 ∃C′ ∈ X0 : C ∗−→ C′∧r0(C) > r0(C′)

9/13

Correctness certificates

Approach: certify that φ is computed correctly for b ∈ {0, 1}

X0

X1

r0 : Configs → N

6
5

3
3

2

2

• C ∈ Xi ∧ C ∗−→ C′ =⇒ C′ ∈ Xi
• X0 ⊇ {C : C is initial and φ(C) = b}
• X1 ⊆ {C : opinion(C) = b}

• C ∗−→ C′ =⇒ r0(C) ≥ r0(C′)
• ∀C ∈ X0\X1 ∃C′ ∈ X0 : C ∗−→ C′∧r0(C) > r0(C′)

9/13

Correctness certificates

Approach: certify that φ is computed correctly for b ∈ {0, 1}

X0

X1

r0 : Configs → N

6
5

3
3

2
2

• C ∈ Xi ∧ C ∗−→ C′ =⇒ C′ ∈ Xi
• X0 ⊇ {C : C is initial and φ(C) = b}
• X1 ⊆ {C : opinion(C) = b}

• C ∗−→ C′ =⇒ r0(C) ≥ r0(C′)
• ∀C ∈ X0\X1 ∃C′ ∈ X0 : C ∗−→ C′∧r0(C) > r0(C′)

9/13

Correctness certificates

Approach: certify that φ is computed correctly for b ∈ {0, 1}

X0

X1

r0 : Configs → N

6
5

3
3

2
2

• C ∈ Xi ∧ C ∗−→ C′ =⇒ C′ ∈ Xi
• X0 ⊇ {C : C is initial and φ(C) = b}
• X1 ⊆ {C : opinion(C) = b}

• C ∗−→ C′ =⇒ r0(C) ≥ r0(C′)
• ∀C ∈ X0\X1 ∃C′ ∈ X0 : C ∗−→ C′∧r0(C) > r0(C′)

9/13

Stage graphs

Stage graph: same idea with X0, X1, . . . , Xk organized in a DAG

B R −→ b b
B r −→ B b
R b −→ R r
b r −→ b b

X0 = {C : C(B) < C(R)}

X1 = {C : C(B) = 0 < C(R)}

X2 = {C : C(B) + C(b) = 0 < C(R)}

r0(C) = C(B) + C(R)

r1(C) = C(b)

9/13

Stage graphs

Stage graph: same idea with X0, X1, . . . , Xk organized in a DAG

B R −→ b b
B r −→ B b
R b −→ R r
b r −→ b b

X0 = {C : C(B) < C(R)}

X1 = {C : C(B) = 0 < C(R)}

X2 = {C : C(B) + C(b) = 0 < C(R)}

r0(C) = C(B) + C(R)

r1(C) = C(b)

9/13

Stage graphs

Stage graph: same idea with X0, X1, . . . , Xk organized in a DAG

B R −→ b b
B r −→ B b
R b −→ R r
b r −→ b b

X0 = {C : C(B) < C(R)}

X1 = {C : C(B) = 0 < C(R)}

X2 = {C : C(B) + C(b) = 0 < C(R)}

r0(C) = C(B) + C(R)

r1(C) = C(b)

9/13

Stage graphs

Stage graph: same idea with X0, X1, . . . , Xk organized in a DAG

B R −→ b b
B r −→ B b
R b −→ R r
b r −→ b b

X0 = {C : C(B) < C(R)}

X1 = {C : C(B) = 0 < C(R)}

X2 = {C : C(B) + C(b) = 0 < C(R)}

r0(C) = C(B) + C(R)

r1(C) = C(b)

9/13

Stage graphs

A stage graph is Presburger if

• Each set Xi is Presburger-definable

• Each ranking function ri is Presburger-definable

• Each ri can be decreased in at most Bi steps

Theorem
Every correct protocol has Presburger stage graphs

9/13

Stage graphs

A stage graph is Presburger if

• Each set Xi is Presburger-definable

• Each ranking function ri is Presburger-definable

• Each ri can be decreased in at most Bi steps

Theorem
Every correct protocol has Presburger stage graphs

9/13

Stage graphs

A stage graph is Presburger if

• Each set Xi is Presburger-definable

• Each ranking function ri is Presburger-definable

• Each ri can be decreased in at most Bi steps

Theorem
Every correct protocol has Presburger stage graphs

9/13

Stage graphs

A stage graph is Presburger if

• Each set Xi is Presburger-definable

• Each ranking function ri is Presburger-definable

• Each ri can be decreased in at most Bi steps

Theorem
Every correct protocol has Presburger stage graphs

9/13

Stage graphs

A stage graph is Presburger if

• Each set Xi is Presburger-definable

• Each ranking function ri is Presburger-definable

• Each ri can be decreased in at most Bi steps

Theorem
Every correct protocol has Presburger stage graphs

9/13

Stage graphs

A stage graph is Presburger if

• Each set Xi is Presburger-definable

• Each ranking function ri is Presburger-definable

• Each ri can be decreased in at most Bi steps

Theorem
Every correct protocol has Presburger stage graphs

Computable and checkable in practice

with SMT solving!
9/13

Demonstration

9/13

Expected termination time

B,R 7→ b,b
B, r 7→ B,b
R,b 7→ R, r
b, r 7→ b,b

O(B) = O(b) = O(T) = O(t) = 1
O(R) = O(r) = 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14

101

104

107

number of agents initially in state R

expected number
of steps to

stable consensus

Correctly computes predicate #B ≥ #R

...but how fast?

10/13

Expected termination time

B,R 7→ b,b
B, r 7→ B,b
R,b 7→ R, r
b, r 7→ b,b

O(B) = O(b) = O(T) = O(t) = 1
O(R) = O(r) = 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14

101

104

107

number of agents initially in state R

expected number
of steps to

stable consensus

Correctly computes predicate #B ≥ #R

...but how fast?

• Natural to look for fast protocols

• Bounds on expected termination time useful since generally
not possible to know whether a protocol has stabilized 10/13

Expected termination time

B,R 7→ b,b
B, r 7→ B,b
R,b 7→ R, r
b, r 7→ b,b

O(B) = O(b) = O(T) = O(t) = 1
O(R) = O(r) = 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14

101

104

107

number of agents initially in state R

expected number
of steps to

stable consensus

Correctly computes predicate #B ≥ #R

...but how fast?

Theorem Angluin et al. PODC’04

Every Presburger-definable predicate is computable by
a protocol with expected termination time ∈ O(n2 log n)

10/13

Expected termination time

B,R 7→ b,b
B, r 7→ B,b
R,b 7→ R, r
b, r 7→ b,b

O(B) = O(b) = O(T) = O(t) = 1
O(R) = O(r) = 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14

101

104

107

number of agents initially in state R

expected number
of steps to

stable consensus

Simulations show that it is slow
when R has slight majority:

10/13

Expected termination time

B,R 7→ T, t X, y 7→ X, x for x, y ∈ {b, r, t}
B, T 7→ B,b
R, T 7→ R, r
T, T 7→ T, t

O(B) = O(b) = O(T) = O(t) = 1
O(R) = O(r) = 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14

101

104

107

number of agents initially in state R

expected number
of steps to

stable consensus

Alternative protocol
with explicit ties

10/13

Expected termination time

B,R 7→ T, t X, y 7→ X, x for x, y ∈ {b, r, t}
B, T 7→ B,b
R, T 7→ R, r
T, T 7→ T, t

O(B) = O(b) = O(T) = O(t) = 1
O(R) = O(r) = 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14

101

104

107

number of agents initially in state R

expected number
of steps to

stable consensus

Alternative protocol
with explicit ties

Is it faster?

10/13

Expected termination time

B,R 7→ T, t X, y 7→ X, x for x, y ∈ {b, r, t}
B, T 7→ B,b
R, T 7→ R, r
T, T 7→ T, t

O(B) = O(b) = O(T) = O(t) = 1
O(R) = O(r) = 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14

101

104

107

number of agents initially in state R

expected number
of steps to

stable consensus

Is it faster?
Yes, for size 15...

10/13

Expected termination time

B,R 7→ T, t X, y 7→ X, x for x, y ∈ {b, r, t}
B, T 7→ B,b
R, T 7→ R, r
T, T 7→ T, t

O(B) = O(b) = O(T) = O(t) = 1
O(R) = O(r) = 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14

101

104

107

number of agents initially in state R

expected number
of steps to

stable consensus

Obtained using PRISM

Clément et al. ICDCS'11, Offtermatt '17

10/13

Expected termination time

B,R 7→ T, t X, y 7→ X, x for x, y ∈ {b, r, t}
B, T 7→ B,b
R, T 7→ R, r
T, T 7→ T, t

O(B) = O(b) = O(T) = O(t) = 1
O(R) = O(r) = 0

1 2 3 4 5 6 7 8 9 10 11 12 13 14

101

104

107

number of agents initially in state R

expected number
of steps to

stable consensus

Goal: analyze time
for all sizes

10/13

Expected termination time: formal definition

Random variable StepsX:

assigns to each run σ the smallest k s.t. σk ∈ X, otherwise ∞

Maximal expected termination time
We are interested in time : N → N where

time(n) = max{EC[StepsStable] : C is initial and |C| = n}

11/13

Expected termination time: formal definition

Random variable StepsX:

assigns to each run σ the smallest k s.t. σk ∈ X, otherwise ∞

Maximal expected termination time
We are interested in time : N → N where

time(n) = max{EC[StepsStable] : C is initial and |C| = n}

11/13

Expected termination time: formal definition

Random variable StepsX:

assigns to each run σ the smallest k s.t. σk ∈ X, otherwise ∞

Maximal expected termination time
We are interested in time : N → N where

time(n) = max{EC[StepsStable] : C is initial and |C| = n}

11/13

Expected termination time: formal definition

Random variable StepsX:

assigns to each run σ the smallest k s.t. σk ∈ X, otherwise ∞

Maximal expected termination time
We are interested in time : N → N where

time(n) = max{EC[StepsStable] : C is initial and |C| = n}

11/13

Expected termination time: formal definition

Random variable StepsX:

assigns to each run σ the smallest k s.t. σk ∈ X, otherwise ∞

Maximal expected termination time
We are interested in time : N → N where

time(n) = max{EC[StepsStable] : C is initial and |C| = n}

11/13

Expected termination time: stage graphs

B,R 7→ T, t
B, T 7→ B,b
R, T 7→ R, r
T, T 7→ T, t
X, y 7→ X, x

{C : C(B) = C(R) ∧
C(B) + C(R) + C(T) > 0}

{C : C(B) = C(R) = 0 ∧ C(T) = 1}

{C : C(B) + C(R) = 0 ∧ C(T) = 1 ∧
C(b) + C(r) = 0}

C(B) + C(R)

C(b) + C(r)C(b) + C(r)

EC[StepsC(b)+C(r)=0] ≤
C(b)+C(r)∑

i=1

n2
2 · C(T) · i

≤
n∑
i=1

n2
i

≤ α · n2 · log n

12/13

Expected termination time: stage graphs

B,R 7→ T, t
B, T 7→ B,b
R, T 7→ R, r
T, T 7→ T, t
X, y 7→ X, x

{C : C(B) = C(R) ∧
C(B) + C(R) + C(T) > 0}

{C : C(B) = C(R) = 0 ∧ C(T) = 1}

{C : C(B) + C(R) = 0 ∧ C(T) = 1 ∧
C(b) + C(r) = 0}

C(B) + C(R)

C(b) + C(r)C(b) + C(r)

EC[StepsC(b)+C(r)=0] ≤
C(b)+C(r)∑

i=1

n2
2 · C(T) · i

≤
n∑
i=1

n2
i

≤ α · n2 · log n

12/13

Expected termination time: stage graphs

B,R 7→ T, t
B, T 7→ B,b
R, T 7→ R, r
T, T 7→ T, t
X, y 7→ X, x

{C : C(B) = C(R) ∧
C(B) + C(R) + C(T) > 0}

{C : C(B) = C(R) = 0 ∧ C(T) = 1}

{C : C(B) + C(R) = 0 ∧ C(T) = 1 ∧
C(b) + C(r) = 0}

C(B) + C(R)

C(b) + C(r)C(b) + C(r)

EC[StepsC(b)+C(r)=0] ≤
C(b)+C(r)∑

i=1

n2
2 · C(T) · i

≤
n∑
i=1

n2
i

≤ α · n2 · log n

12/13

Expected termination time: stage graphs

B,R 7→ T, t
B, T 7→ B,b
R, T 7→ R, r
T, T 7→ T, t
X, y 7→ X, x

{C : C(B) = C(R) ∧
C(B) + C(R) + C(T) > 0}

{C : C(B) = C(R) = 0 ∧ C(T) = 1}

{C : C(B) + C(R) = 0 ∧ C(T) = 1 ∧
C(b) + C(r) = 0}

C(B) + C(R)

C(b) + C(r)

C(b) + C(r)

EC[StepsC(b)+C(r)=0] ≤
C(b)+C(r)∑

i=1

n2
2 · C(T) · i

≤
n∑
i=1

n2
i

≤ α · n2 · log n

12/13

Expected termination time: stage graphs

B,R 7→ T, t
B, T 7→ B,b
R, T 7→ R, r
T, T 7→ T, t
X, y 7→ X, x

{C : C(B) = C(R) ∧
C(B) + C(R) + C(T) > 0}

{C : C(B) = C(R) = 0 ∧ C(T) = 1}

{C : C(B) + C(R) = 0 ∧ C(T) = 1 ∧
C(b) + C(r) = 0}

C(B) + C(R)

C(b) + C(r)

C(b) + C(r)

EC[StepsC(b)+C(r)=0] ≤
C(b)+C(r)∑

i=1

n2
2 · C(T) · i

≤
n∑
i=1

n2
i

≤ α · n2 · log n 12/13

Expected termination time: stage graphs

In practice, able to report:

O(n2), O(n2 log n), O(n3), O(nc), O(2n)

12/13

Demonstration

12/13

Conclusion: summary

Population protocols analyzable automatically:

• Verification + explanation of correctness

• Bounds on expected termination time

• Tool support

13/13

Conclusion: future work

• Asymptotic lower bounds on
expected termination time?

• Verification of extensions of the model?

• Quantitative model checking?

13/13

Thank you!

13/13

