Handling Infinite Branching WSTS

Michael Blondin! 2, Alain Finkel! & Pierre McKenzie ! 2

1LSV, ENS Cachan

2DIRO, Université de Montréal

January 6, 2014

Introduction
Definitions

Decidability in Infinitely Branching WSTS

m Well-structured transition systems (WSTS) are known to
encompass a large number of infinite state systems.

N

95

Introduction
Definitions

Decidability in Infinitely Branching WSTS

m Well-structured transition systems (WSTS) are known to
encompass a large number of infinite state systems.

m Moreover, multiple decidability results are known on WSTS.

Introduction
Definitions

Decidability in Infinitely Branching WSTS

m Well-structured transition systems (WSTS) are known to
encompass a large number of infinite state systems.

m Moreover, multiple decidability results are known on WSTS.

m However, most results and techniques known suppose finite
branching.

Introduction
Definitions

Decidability in Infinitely Branching WSTS

m Well-structured transition systems (WSTS) are known to
encompass a large number of infinite state systems.

m Moreover, multiple decidability results are known on WSTS.

m However, most results and techniques known suppose finite
branching.

m Developing from a theory elaborated by Finkel and
Goubault-Larrecq, we introduce a way to work with infinitely
branching WSTS.

Introduction

Definitions

Decidability in Infinitely Branching WSTS

Ordered transition systems

S =(X,—s,<) where
m X set,
B —g C X X X,
m < quasi-ordering X.

6/95

Introduction

Definitions

Decidability in Infinitely Branching WSTS

Ordered transition systems

S =(X,—s,<) where
m X set: recursively enumerable,
B —s C X x X: decidable,
m < quasi-ordering X: decidable.

Introduction
Definitions
Decidability in Infinitely Branching WSTS

Well-ordered transition system (WSTS)

A WSTS is an ordered transition system (X, —, <) with
m well-quasi-ordering: Vxp,x1,... i <j s.t. x; < Xx;,

m monotony:
Vx — vy
A\ A\

Introduction

Definitions

Decidability in Infinitely Branching WSTS

(Some) types of monotony

Standard monotony:

vV x — y
A\ A\

Introduction

Definitions

Decidability in Infinitely Branching WSTS

(Some) types of monotony
Strong monotony:

Vx — vy
A A\

x’—>y’3

10 /95

Introduction

Definitions

Decidability in Infinitely Branching WSTS

(Some) types of monotony

Transitive monotony:

Vx —= vy
AN A\

11/95

Introduction

Definitions

Decidability in Infinitely Branching WSTS

(Some) types of monotony

Strict monotony:

vV x -y
A A
X |5y 3

12 /95

Introduction
Definitions
Decidability in Infinitely Branching WSTS

Branching

A WSTS (X, —, <) is finitely branching if Post(x) is finite for
every x € X.

13 /95

Introduction

Definitions
Decidability in Infinitely Branching WSTS

Branching

A WSTS (X, —, <) is finitely branching if Post(x) is finite for
every x € X.

Some infinitely branching WSTS

m Inserting FIFO automata (Cécé, Finkel, lyer 1996)

14 /95

Introduction

Definitions
Decidability in Infinitely Branching WSTS

Branching

A WSTS (X, —, <) is finitely branching if Post(x) is finite for
every x € X.

Some infinitely branching WSTS

m Inserting FIFO automata (Cécé, Finkel, lyer 1996)

m Inserting automata (Bouyer, Markey, Ouaknine, Schnoebelen,
Worrell 2012)

15/95

Introduction

Definitions
Decidability in Infinitely Branching WSTS

Branching

A WSTS (X, —, <) is finitely branching if Post(x) is finite for
every x € X.

Some infinitely branching WSTS

m Inserting FIFO automata (Cécé, Finkel, lyer 1996)

m Inserting automata (Bouyer, Markey, Ouaknine, Schnoebelen,
Worrell 2012)

m w-Petri nets (Geeraerts, Heussner, Praveen & Raskin 2013),

16 /95

Introduction

Definitions
Decidability in Infinitely Branching WSTS

Branching

A WSTS (X, —, <) is finitely branching if Post(x) is finite for
every x € X.

Some infinitely branching WSTS

m Inserting FIFO automata (Cécé, Finkel, lyer 1996)

m Inserting automata (Bouyer, Markey, Ouaknine, Schnoebelen,
Worrell 2012)

m w-Petri nets (Geeraerts, Heussner, Praveen & Raskin 2013),
m Parameterized WSTS,

17 /95

Introduction

Definitions
Decidability in Infinitely Branching WSTS

Branching

A WSTS (X, —, <) is finitely branching if Post(x) is finite for
every x € X.

Some infinitely branching WSTS

m Inserting FIFO automata (Cécé, Finkel, lyer 1996)

m Inserting automata (Bouyer, Markey, Ouaknine, Schnoebelen,
Worrell 2012)

m w-Petri nets (Geeraerts, Heussner, Praveen & Raskin 2013),
m Parameterized WSTS,

m etc.

18 /95

Introduction
Definitions
Decidability in Infinitely Branching WSTS

Effectiveness

A WSTS (X, —, <) is post-effective if it is possible to compute
|Post(x)| for every x € X.

19/95

Introduction

Definitions
Decidability in Infinitely Branching WSTS

Effectiveness

A WSTS (X, —, <) is post-effective if it is possible to compute
|Post(x)| for every x € X.

Remark

If Post(x) is finite, then it is computable by minimal hypotheses.
Therefore, our definition generalizes post-effectiveness for finitely
branching WSTS.

20 /95

Introduction

Definitions
Decidability in Infinitely Branching WSTS

Termination
Input: (X, —,<) a WSTS, x € X.

Question: dxg — x1 —> xo — ...7

Theorem (Finkel & Schnoebelen 2001)

Decidable for finitely branching post-effective WSTS with
transitive monotony.

21/95

Introduction

Definitions
Decidability in Infinitely Branching WSTS

Termination
Input: (X, —,<) a WSTS, x € X.

Question: dxg — x1 —> xo — ...7

Theorem (Blondin, Finkel & McKenzie in progress)

Undecidable for infinitely branching post-effective WSTS with
transitive monotony.

Introduction

Definitions
Decidability in Infinitely Branching WSTS

Boundedness
Input: (X, —,<) a WSTS, x € X.

Question: Post™(xp) finite?

Theorem (Finkel & Schnoebelen 2001)

Decidable for finitely branching post-effective WSTS with strict
monotony.

23 /95

Introduction

Definitions
Decidability in Infinitely Branching WSTS

Boundedness
Input: (X, —,<) a WSTS, x € X.

Question: Post™(xp) finite?

Theorem (Blondin, Finkel & McKenzie in progress)

Decidable for infinitely branching post-effective WSTS with strict
monotony.

24 /95

Introduction

Definitions
Decidability in Infinitely Branching WSTS

Coverability
Input: (X, —,<) a WSTS, xo,x € X.

Question: xg — x' > x?

Theorem (Abdulla, Cerans, Jonsson & Tsay 2000; Finkel &

Schnoebelen 2001)

Decidable for some classes of infinitely branching WSTS.

25 /95

Introduction

Definitions
Decidability in Infinitely Branching WSTS

Coverability
Input: (X, —,<) a WSTS, xg,x € X.

Question: xg = x' > x?

Theorem (Blondin, Finkel & McKenzie in progress)

Decidable for some classes of infinitely branching WSTS.

26 /95

Introduction

Definitions

Decidability in Infinitely Branching WSTS

Control-state maintainability
Input: (X,—,<)aWSTS, xo € X and {t1,...,t,} C X.

Question: 3 maximal execution xg — X1 — Xo — ... such
that Vi x; € 1 {t1,...,ts}?

Theorem (Finkel & Schnoebelen 2001)

Decidable for finitely branching post-effective WSTS with
stuttering monotony.

27 /95

Introduction

Definitions

Decidability in Infinitely Branching WSTS

Control-state maintainability
Input: (X,—,<)aWSTS, xo € X and {t1,...,t,} C X.

Question: 3 maximal execution xg — X1 — Xo — ... such
that Vi x; € 1 {t1,...,ts}?

Theorem (Blondin, Finkel & McKenzie in progress)

Undecidable for infinitely branching post-effective WSTS with
stuttering monotony.

28 /95

Handling Infinite Branching Ideals and completion
Examples

Downward closure

ID={xeX:3deDx<d}

Ideals

I C X is an ideal if it is

m downward closed: /= |/,

m directed: a,b€e] =— dcelst. a<cand b<c.

29 /95

Handling Infinite Branching Ideals and completion

Examples

Theorem (Finkel & Goubault-Larrecq 2009)

Every downward closed set in X is a finite union of ideals of X.

30/95

Handling Infinite Branching d completion

Theorem (Finkel & Goubault-Larrecq 2009)

Every downward closed set in X is a finite union of ideals of X.

Corollary (FGL 2009; Blondin, Finkel & McKenzie in progress)

Every downward closed subset decomposes canonically as the
union of its maximal ideals.

31/95

Handling Infinite Branching Ideals and completion
Examples

Completion (FGL 2009; Blondin, Finkel & McKenzie in progress)

The completion of S = (X, —s,<)is S = (X, —3, C) such that

m X = Ideals(X),

/o) if J appears in the canonical decomposition of

1 Post(/).

32/95

Handling Infinite Branching Ideals and completion
Examples

Theorem (FGL 2009; Blondin, Finkel & McKenzie in progress)

Let S = (X, —s, <) be a WSTS, then
mSis finitely branching.

33/95

Handling Infinite Branching Ideals and completion
Examples

Theorem (FGL 2009; Blondin, Finkel & McKenzie in progress)

Let S = (X, —s, <) be a WSTS, then
mSis finitely branching.

= S has strong monotony.

34 /95

Handling Infinite Branching Ideals and completion
Examples

Theorem (FGL 2009; Blondin, Finkel & McKenzie in progress)

Let S = (X, —s, <) be a WSTS, then
mSis finitely branching.
= S has strong monotony.

m SisaWSTSiff Sisa w>WSTSiffA<# B&1ACTBis a
wqo (by Jancar 1999).

35/95

Handling Infinite Branching Ideals and completion
Examples

Ideals in N

I C N9 is an ideal iff | = | x; X --- X | x4 with x; € N or x; = N.

36 /95

Handling Infinite Branching Ideals and completion
Examples

Ideals in N

I C N9 is an ideal iff | = | x; X --- X | x4 with x; € N or x; = N.

Representation

m |5 x N x |10 can be represented by (5,w, 10),

37 /95

Handling Infinite Branching Ideals and completion
Examples

Ideals in N

I C N9 is an ideal iff | = | x; X --- X | x4 with x; € N or x; = N.

Representation

m |5 x N x |10 can be represented by (5,w, 10),

B |5xXxNx|10C N x N x |20 can be tested by
(5,w,10) < (w, w, 20).

38 /95

Handling Infinite Branching Ideals and completion
Examples

VAS completions are post-effective

m Transitions can be carried in N9,

39 /95

Handling Infinite Branching Ideals and completion
Examples

VAS completions are post-effective

m Transitions can be carried in N9,

m The maximal elements obtained are the ideals of Postg(l).

40 /95

Handling Infinite Branching Ideals and completion
Examples

VAS completions are post-effective

m Transitions can be carried in N9,

m The maximal elements obtained are the ideals of Postg(l).

VAS A= {(2,-3,-5),(4,5,—1),(—6,—2,5)} and ideal
I=15x%xNx]10:

41 /95

Handling Infinite Branching Ideals and completion
Examples

VAS completions are post-effective

m Transitions can be carried in N9,

m The maximal elements obtained are the ideals of Postg(l).

Example

VAS A= {(2,-3,-5),(4,5,—1),(—6,—2,5)} and ideal
I=15x%xNx]10:

(5,w,10) + (2,—3,-5) = (7,w,5)

JPost(l) = | 7xNx |5

42 /95

Handling Infinite Branching Ideals and completion

Examples

VAS completions are post-effective

m Transitions can be carried in N9,

m The maximal elements obtained are the ideals of Postg(l).

Example

VAS A= {(2,-3,-5),(4,5,—1),(—6,—2,5)} and ideal
I=15x%xNx]10:

(5,w,10) + (4,5, -1) = (9,w,9)

JPost(/)= J7xNx|5U9xNx]9

43 /95

Handling Infinite Branching Ideals and completion

Examples

VAS completions are post-effective

m Transitions can be carried in N9,

m The maximal elements obtained are the ideals of Postg(l).

Example

VAS A= {(2,-3,-5),(4,5,—1),(—6,—2,5)} and ideal
I=15x%xNx]10:

(5,w,10) + (—6,-2,5) =0

JPost(/)=] 7xNx|5U | 9xNx]9

44 /95

Handling Infinite Branching Ideals and completion
Examples

VAS completions are post-effective

m Transitions can be carried in N9,

m The maximal elements obtained are the ideals of Postg(l).

Example

VAS A= {(2,-3,-5),(4,5,—1),(—6,—2,5)} and ideal
I=15x%xNx]10:

JPost(/)= | 7xNx|5U|9xNx]9

45 /95

Handling Infinite Branching Ideals and completion
Examples

VAS completions are post-effective

m Transitions can be carried in N9,

m The maximal elements obtained are the ideals of Postg(l).

Example

VAS A= {(2,-3,-5),(4,5,—1),(—6,—2,5)} and ideal
I=15x%xNx]10:

Postz(/) = {49 x N x | 9}

46 /95

Coverability
Termination

Decidability Control-state maintainability
Boundedness

Coverability
Input: (X, —,<) a WSTS, xp,x € X.

Question: xg = x' > x?

47 /95

Coverability
Termination

Decidability Control-state maintainability
Boundedness

Coverability
Input: (X, —,<) a WSTS, xp,x € X.
Question: xg € TPre*(1x)?

48 /95

Coverability

Termination
Decidability e maintainability

Coverability
Input: (X, —,<) a WSTS, xp,x € X.
Question: xg € TPre*(1x)?

Backward method (Abdulla, Cerans, Jonsson & Tsay 2000)

Compute sequence converging to 1 Pre*(1 x):

Yo = Tx
Y1 = Y u 1 Pre(YO)
Yo, = You1 U ¢ Pre(Y,,,l)

and verify if xg € Y.

49 /95

Coverability
Termination

Decidability Control-state maintainability
Boundedness

Coverability
Input: (X, —,<) a WSTS, xp,x € X.
Question: xg € TPre*(1x)?

Backward method (Abdulla, Cerans, Jonsson & Tsay 2000)

Compute sequence converging to 1 Pre*(1 x):

Yo = Tx
Yi. = Y u 1 Pre(YO)
Yo, = You1 U ¢ Pre(Y,,,l)

and verify if xg € Y,. Computing Pre not always effecient!

50 /95

Coverability
Termination

Decidability Control-state maintainability
Boundedness

Coverability
Input: (X, —,<) a WSTS, xg,x € X.

Question: xg = x' > x?

51/95

Coverability
Termination

Decidability Control-state maintainability
Boundedness

Coverability
Input: (X, —,<) a WSTS, xo,x € X.
Question: x € | Post*(xp)?

52 /95

Coverability
Termination
Decidability Control-state maintainability

Boundedness

Coverability
Input: (X, —,<) a WSTS, xo,x € X.
Question: x € | Post*(xp)?

Theorem (Blondin, Finkel & McKenzie in progress)

Coverability is decidable for WSTS with post-effective completion.

53 /95

Coverability
Termination

Decidability Control-state maintainability
Boundedness

Proof: two semi-algorithms to decide coverability

Coverability:

m Enumerate execution | xg i>§ /,

m Accept if x € [.

54 /95

Coverability
Termination

Decidability Control-state maintainability
Boundedness

Proof: two semi-algorithms to decide coverability

Coverability:

m Enumerate execution | xg i>§ /,

m Accept if x € [.

Non coverability:

m Enumerate D C X downward closed

55 /95

Coverability
Termination

Decidability Control-state maintainability
Boundedness

Proof: two semi-algorithms to decide coverability

Coverability:

m Enumerate execution | xg i>§ /,
m Accept if x € [.
Non coverability:

m Enumerate D=L U... U

56 /95

Coverability
Termination

Decidability Control-state maintainability
Boundedness

Proof: two semi-algorithms to decide coverability

Coverability:

m Enumerate execution | xg i>§ /,

m Accept if x € [.

Non coverability:

m Enumerate D C X downward closed

57 /95

Coverability
Termination

Decidability Control-state maintainability
Boundedness

Proof: two semi-algorithms to decide coverability

Coverability:

m Enumerate execution | xg i>§ /,

m Accept if x € [.

Non coverability:

m Enumerate D C X downward closed, xg € D

58 /95

Coverability
Termination

Decidability Control-state maintainability
Boundedness

Proof: two semi-algorithms to decide coverability

Coverability:

m Enumerate execution | xg i>§ /,
m Accept if x € [.
Non coverability:

m Enumerate D C X downward closed, | xp €D

59 /95

Coverability
Termination

Decidability Control-state maintainability
Boundedness

Proof: two semi-algorithms to decide coverability

Coverability:

m Enumerate execution | xg i>§ /,
m Accept if x € [.
Non coverability:

m Enumerate D C X downward closed, | xp C L U...U Iy

60 /95

Coverability
Termination

Decidability Control-state maintainability
Boundedness

Proof: two semi-algorithms to decide coverability

Coverability:

m Enumerate execution | xg i>§ /,

m Accept if x € [.

Non coverability:

m Enumerate D C X downward closed, 3i t.q. | xp C /;

61 /95

Coverability
Termination

Decidability Control-state maintainability
Boundedness

Proof: two semi-algorithms to decide coverability

Coverability:

m Enumerate execution | xg i>§ /,

m Accept if x € [.

Non coverability:

m Enumerate D C X downward closed, xg € D

Coverability
Termination

Decidability Control-state maintainability
Boundedness

Proof: two semi-algorithms to decide coverability

Coverability:

m Enumerate execution | xg i>§ /,

m Accept if x € [.

Non coverability:

m Enumerate D C X downward closed, xg € D and
1 Posts(D) C D

63 /95

Decidability e maintainability

Proof: two semi-algorithms to decide coverability

Coverability:

m Enumerate execution | xg i>§ /,

m Accept if x € [.

Non coverability:

m Enumerate D C X downward closed, xg € D and
JPosts(hU...Ulk) ChU...Ul

64 /95

Coverability

Decidability Control-state maintainability
Boundedness

Proof: two semi-algorithms to decide coverability

Coverability:

m Enumerate execution | xg i>§ /,

m Accept if x € [.

Non coverability:

m Enumerate D C X downward closed, xg € D and
JPosts(h)U... Ul Posts(lg) ChU...Ul

65 /95

Coverability
Termination

Decidability Control-state maintainability
Boundedness

Proof: two semi-algorithms to decide coverability

Coverability:

m Enumerate execution | xp i>§ /,
m Accept if x € I.

Non coverability:

m Enumerate D C X downward closed, xg € D and
(J171U...UJ17,,1) U...u (Jk71U...UJk7nk) Chu...Ul

Post/s\(ll):{Jlﬂ,...,J17,,1} POSt/S\(Ik):{Jkyl"“’Jk,"k}

66 /95

Coverability
Termination

Decidability Control-state maintainability
Boundedness

Proof: two semi-algorithms to decide coverability

Coverability:

m Enumerate execution | xg i>§ /,

m Accept if x € [.

Non coverability:

m Enumerate D C X downward closed, xg € D and
i, J, i’ t.q. J,"J' C I

67 /95

Coverability
Termination

Decidability Control-state maintainability
Boundedness

Proof: two semi-algorithms to decide coverability

Coverability:

m Enumerate execution | xg i>§ /,

m Accept if x € [.

Non coverability:

m Enumerate D C X downward closed, xg € D and
| Posts(D) € D,

68 /95

Decidability e maintainability

Proof: two semi-algorithms to decide coverability

Coverability:

m Enumerate execution | xg i>§ /,

m Accept if x € [.

Non coverability:

m Enumerate D C X downward closed, xg € D and
| Posts(D) € D,

m Reject if x ¢ D.

69 /95

Coverability

Decidability Control-state maintainability
Boundedness

Proof: two semi-algorithms to decide coverability

Coverability:

m Enumerate execution | xg i>§ /,

m Accept if x € [.

Non coverability:

m Enumerate D C X downward closed, xg € D and
| Posts(D) € D,

B Rejectif [x Z hU...Ul.

70 /95

Decidability e maintainability

Proof: two semi-algorithms to decide coverability

Coverability:

m Enumerate execution | xg i>§ /,

m Accept if x € [.

Non coverability:

m Enumerate D C X downward closed, xg € D and
| Posts(D) € D,

m Reject if Vi | x Z I;.

71/95

Coverability
Termi

Decidability Control-state maintainability
Boundedness

Proof: two semi-algorithms to decide coverability

Coverability:

m Enumerate execution | xp i>§ /,
m Accept if x € /.

Non coverability:

m Enumerate D C X downward closed, xg € D and
1 Posts(D) C D,

m Reject if x € D. Witness: D = | Posts(xp)

Coverability
Termination

Decidability Control-state maintainability
Boundedness

Input: (X, —,<) a WSTS, x € X.

Question: dxg — x1 —> xo — ...7

73 /95

Coverability
Termination
Decidability Control-state maintainability

Bound

Input: (X, —,<) a WSTS, x € X.

Question: dxg — x1 —> xo — ...7

Theorem (Blondin, Finkel & McKenzie in progress)

Termination is undecidable, even for post-effective w2-WSTS with
strong and strict monotony, and with post-effective completion.

74 /95

Coverability
Terminati
Decidability Control-state maintainability

Boundedness

Termination

Input: (X, —,<) a WSTS, xp € X.
Question: dxg — x1 — xp — ...7

Proof

Structural termination is undecidable for Transfer Petri nets
(Dufourd, Janéar & Schnoebelen 1999). Structural termination
reduces to termination by adding a new element that branches on
every other elements.

75 /95

Termination
Decidability Control-state maintainability
Boundedness

Execution boundedness

Input: (X, —,<) a WSTS, x € X.

Question: 3k bounding length of executions?

76 /95

Coverability
Termination

Decidability Control-state maintainability
Boundedness

Execution boundedness
Input: (X, —,<) a WSTS, x € X.

Question: 3k bounding length of executions?

Remark

Termination and execution boundedness are the same in finitely
branching WSTS.

77 /95

Decidability > maintainability
Boundedness

Relating executions of S and S

Let S = (X, —s, <) be a WSTS, then

mif x i>5 y, then for every ideal / O | x there exists an ideal
J 2 Ly such that | % J,

mif / £>§ J, then for every y € J there exists x € / such that
xSsy >y.

78 /95

Decidability > maintainability
Boundedness

Relating executions of S and S

Let S = (X, —s, <) be a WSTS with transitive monotony, then

m if x £>5 y, then for every ideal | D | x there exists an ideal
J 2 Ly such that | < J,

m if / Lg J, then for every y € J there exists x € [such that

>k
x=—sy >y.

79 /95

Decidability Control-state maintainability
Boundedness

Relating executions of S and S

Let S = (X, —s, <) be a WSTS with strong monotony, then

mif x i)s v, then for every ideal / O | x there exists an ideal
J 2 Ly such that | < J,

m if / i)g J, then for every y € J there exists x € [such that
k /
X=sy 2y.

80 /95

Termination
Decidability Control-state maintainability
Boundedness

Theorem (Blondin, Finkel & McKenzie in progress)

Execution boundedness is decidable for w?-WSTS with transitive
monotony, and with post-effective completion.

81/95

Termination
Decidability Control-state maintainability
Bound

Theorem (Blondin, Finkel & McKenzie in progress)

Execution boundedness is decidable for w?-WSTS with transitive
monotony, and with post-effective completion.

Proof

Executions are bounded in S iff bounded in S. Since S is finitely
branching, it suffices to solve termination in S.

82 /95

Te
Decidability Control-state maintainability
Boundedness

Control-state maintainability
Input: (X,—,<) aWSTS, xp € X and {t1,...,t,} C X.

Question: 3 maximal execution xg — X1 — Xo — ... such
that Vi x; € 1 {t1,...,tn}?

83 /95

[13%
[e]y]
Decidability tate maintainability

ness

Control-state maintainability
Input: (X,—,<) aWSTS, xp € X and {t1,...,t,} C X.

Question: 3 maximal execution xg — X1 — Xo — ... such
that Vi x; € 1 {t1,...,tn}?

Theorem (Blondin, Finkel & McKenzie in progress)

Control-state maintainability is undecidable, even for post-effective
w?-WSTS with strong and strict monotony, and with post-effective
completion.

84 /95

Decidability

Control-state maintainability boundedness

Input: (X,—,<)aWSTS, xo € X and {t1,...,t,} C X.
Question: dk bounding lengths of executions xp — x3 —
Xp — ...such that Vi x; € T{t1,...,ts}?

85 /95

Decidability

Control-state maintainability boundedness

Input: (X,—,<)aWSTS, xo € X and {t1,...,t,} C X.
Question: dk bounding lengths of executions xp — x3 —
Xp — ...such that Vi x; € T{t1,...,ts}?

RENEILS

Control-state maintainability and control-state maintainability
boundedness are (almost) the same in finitely branching WSTS.

86 /95

Termination
Decidability Control-state maintainability
Boundedness

Theorem (Blondin, Finkel & McKenzie in progress)

Control-state maintainability boundedness is decidable for
w?-WSTS with transitive monotony, and with post-effective
completion.

87 /95

[13%
[e]y]
Decidability tate maintainability

ness

Theorem (Blondin, Finkel & McKenzie in progress)

Control-state maintainability boundedness is decidable for
w?-WSTS with transitive monotony, and with post-effective
completion.

Proof

“Good" executions are bounded in S iff “good” executions are
bounded in S. Since S is finitely branching, it suffices to solve
control-state maintainability in S.

88 /95

ermination
Decidability Control-state maintainability
Boundedness

Input: (X, —,<) a WSTS, x € X.
Question: Post™(xp) finite?

89 /95

Decidability -state maintainability

Boundedness

Boundedness
Input: (X, —,<) a WSTS, x € X.

Question: Post™(xp) finite?

Theorem (Blondin, Finkel & McKenzie in progress)

Boundedness is decidable for post-effective WSTS with strict
monotony.

90 /95

Decidability Control-state maintainability

Boundedness

Boundedness
Input: (X, —,<) a WSTS, x € X.

Question: Post™(xp) finite?

Proof

Build a finite reachability tree as in (Finkel & Schnoebelen 2001)
returning “unbounded” if some infinite Post(x) is encountered.

91 /95

Conclusion

Open questions

m What hypotheses make termination and control-state
maintainability decidable?

92 /95

Conclusion

Open questions

m What hypotheses make termination and control-state
maintainability decidable?

m Other problems can be solved for infinitely branching WSTS?

93 /95

Conclusion

Open questions

m What hypotheses make termination and control-state
maintainability decidable?

m Other problems can be solved for infinitely branching WSTS?

m What other applications has the completion?

94 /95

Conclusion

Thank you! Merci!

95 /95

	Introduction
	Definitions
	Decidability in Infinitely Branching WSTS

	Handling Infinite Branching
	Ideals and completion
	Examples

	Decidability
	Coverability
	Termination
	Control-state maintainability
	Boundedness

	Conclusion

