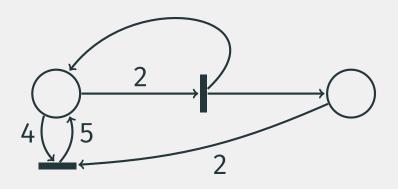
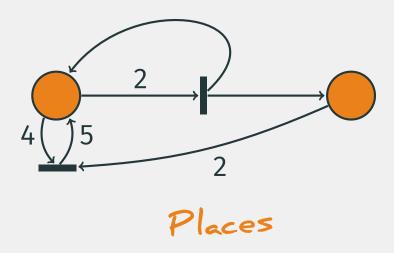
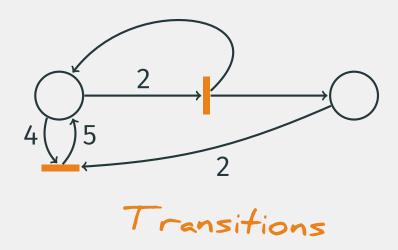
Approaching the Coverability Problem Continuously

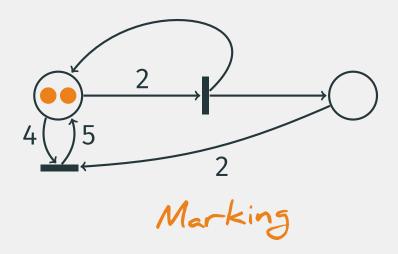
Michael Blondin

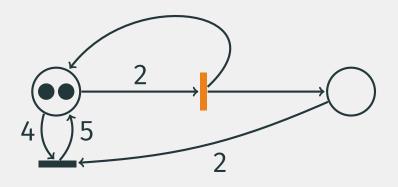
Joint work with Alain Finkel, Christoph Haase, Serge Haddad

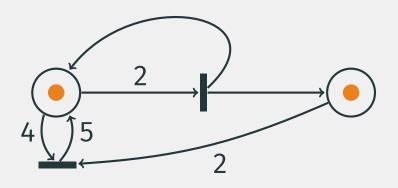


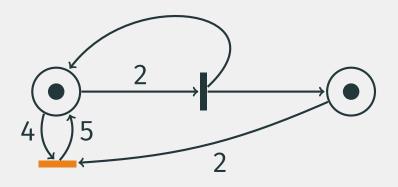


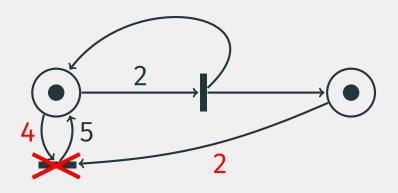


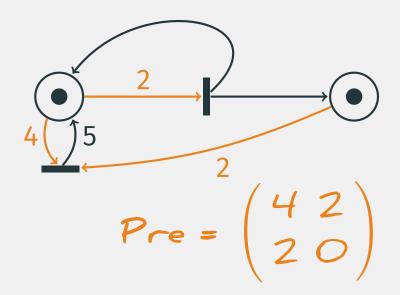


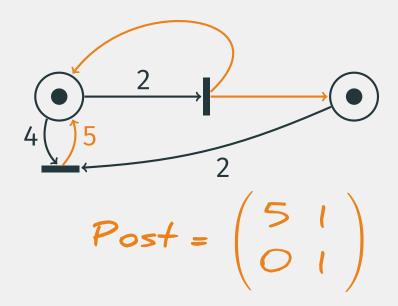












Lamport mutual exclusion "1-bit algorithm"

Lamport mutual exclusion "1-bit algorithm"

Lamport mutual exclusion "1-bit algorithm"

```
while True:
    x = True
    while y: pass
# critical section
    x = False
```

```
while True:
    y = True
    if x then:
    y = False
    while x: pass
    goto ♠
# critical section
y = False
```

while True: x = True

while y: pass

critical section

x = False

- ullet
- 0
- 0

while True:

y = True

if x then:
 y = False

while x: pass

goto 🊖

critical section

y = False

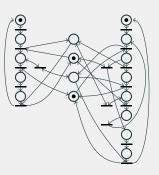
while True:	\odot
x = True	0
while y: pass	0
# critical section	0
x = False	0

```
while True:
    y = True
    if x then:
    y = False
    while x: pass
    goto    
# critical section
    y = False
```

while True:	\odot		\odot	while True:
<mark>x</mark> = True	0		0	<pre> y = True </pre>
while y: pass	0	•	0	if <mark>x</mark> then:
# critical section	0		0	y = False
x = False	0		0	while x: pass
			0	goto 🎓
			0	# critical section
			\circ	y = Falso

while True: • while True: x = Truev = True0 while y: pass if x then: • 0 y = False# critical section 0 x = False0 while x: pass 0 goto 🎓 # critical section y = False

```
while True:
    x = True
    while y: pass
# critical section
    x = False
```



y = False

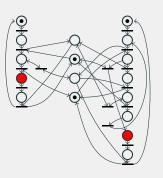
```
hile True:

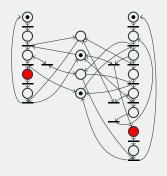
x = True

while y: pass

# critical section

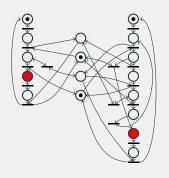
x = False
```



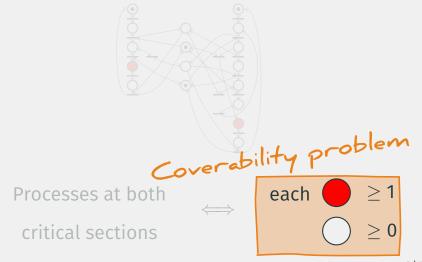


Processes at both critical sections

each ≥ 1



Processes at both critical sections



Coverability problem

Problem

Input: Petri net N, initial marking m_0 , target marking m

Question: Is some $\mathbf{m}' \geq \mathbf{m}$ reachable from \mathbf{m}_0 in \mathcal{N} ?

Coverability problem

Problem

Input: Petri net \mathcal{N} , initial marking \mathbf{m}_0 , target marking \mathbf{m}

Question: Is some $\mathbf{m}' \geq \mathbf{m}$ reachable from \mathbf{m}_0 in \mathcal{N} ?

EXPSPACE-complete

Lipton STOC'76, Rackoff TCS'78

Coverability problem

Problem

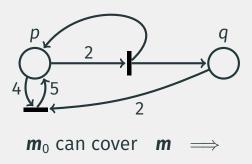
Input: Petri net \mathcal{N} , initial marking \mathbf{m}_0 , target marking \mathbf{m}

Question: Is some $\mathbf{m}' > \mathbf{m}$ reachable from \mathbf{m}_0 in \mathcal{N} ?

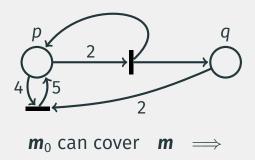
EXPSPACE-complete

Lipton STOC'76, Rackoff TCS'78

How can we be more efficient?

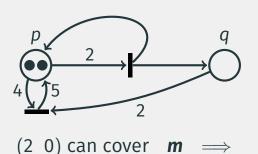


$$\exists \mathbf{v} \geq \mathbf{0} \text{ s.t. } \mathbf{m}_0 + (\mathbf{Post} - \mathbf{Pre}) \cdot \mathbf{v} \geq \mathbf{m}$$



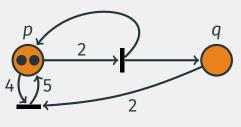
$$\exists \mathbf{v} \geq \mathbf{0} \text{ s.t. } \boxed{\mathbf{m}_0 + (\mathbf{Post} - \mathbf{Pre}) \cdot \mathbf{v} \geq \mathbf{m}}$$

State equation



$$2 + x - y \geq \boldsymbol{m}(p)$$

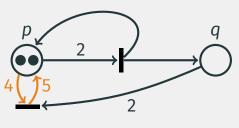
$$0-2x+y \geq \boldsymbol{m}(q)$$



(2 0) can cover
$$\mathbf{m} \implies$$

$$2 + x - y \geq m(p)$$

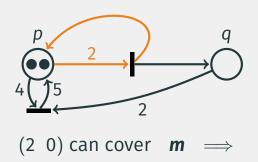
$$0-2x+y \geq m(q)$$



(2 0) can cover
$$\mathbf{m} \implies$$

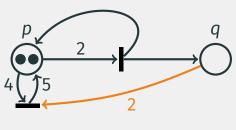
$$2 + x - y \geq m(p)$$

$$0-2x+y \geq \boldsymbol{m}(q)$$



$$2 + x - y \geq m(p)$$

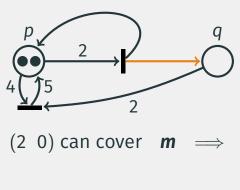
$$0-2x+y \geq \boldsymbol{m}(q)$$



(2 0) can cover
$$m \implies$$

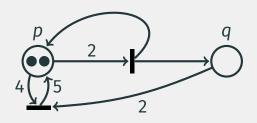
$$2 + x - y \geq \mathbf{m}(p)$$

$$0 - 2x + y \geq m(q)$$



$$2 + x - y \geq \boldsymbol{m}(p)$$

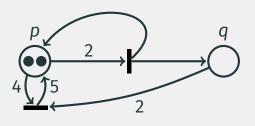
$$0-2x+y\geq m(q)$$



$$(2 \ 0) \ can \ cover (0 \ 3) \Longrightarrow$$

$$2 + x - y \geq 0$$

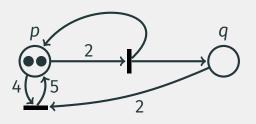
$$0-2x+y \geq 3$$



$$(2 \ 0) \ can \ cover (0 \ 3) \Longrightarrow$$

$$2 + x - y \ge 0$$

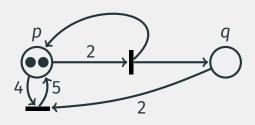
 $0 - 2x + y \ge 3$



$$(2 \ 0)$$
 can cover $(0 \ 2) \Longrightarrow$

$$2 + x - y \ge 0$$

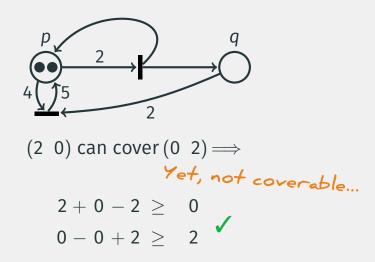
$$0 - 2x + y \ge 2$$

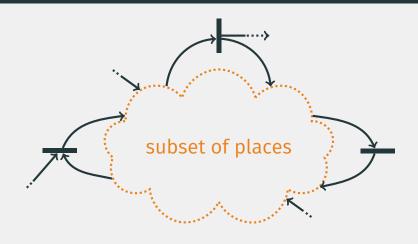


$$(2 \ 0) \ can \ cover (0 \ 2) \Longrightarrow$$

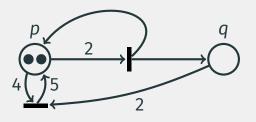
$$2 + 0 - 2 \ge 0$$

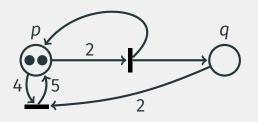
 $0 - 0 + 2 \ge 2$



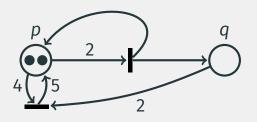


Once trap has tokens, it will always have tokens



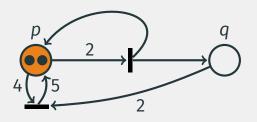


$$2 + x - y \ge 0$$
$$0 - 2x + y \ge 2$$



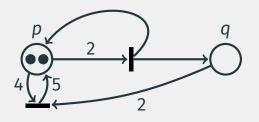
$$2 + x - y = 0$$

$$0-2x+y=2$$

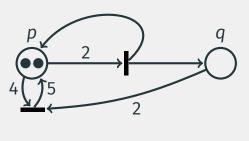


$$2 + x - y = 0$$

 $0 - 2x + y = 2$



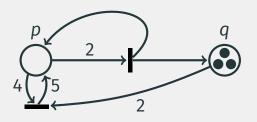
- (2 0) can cover (0 2)?
 - State equation ✓
 - Trap constraints X



 $(2 \ 0)$ can cover $(0 \ 2)$? \sim

State equation

Trap constraints X



(0 3) can cover (1 1)?

$$0 + x - y \ge 1$$

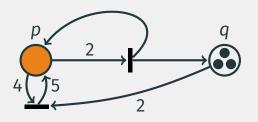
$$3 - 2x + y \ge 1$$



(0 3) can cover (1 1)?

$$0 + 1 - 0 \ge 1$$

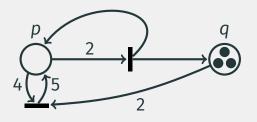
$$3-2\cdot 1+0\geq 1$$



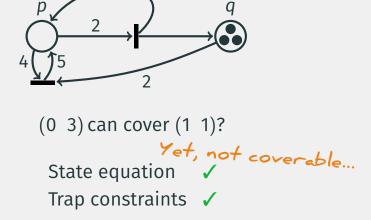
(0 3) can cover (1 1)?

$$0 + 1 - 0 \ge 1$$

$$3-2\cdot 1+0\geq 1$$



- (0 3) can cover (1 1)?
 - State equation ✓
 - Trap constraints ✓



m is coverable from m_0

 \mathbf{m}_0, \mathbf{m} satisfy state equation and trap constraints

m is not coverable from m_0

 m_0 , m do not satisfy state equation or trap constraints

m is not coverable from m_0

 m_0 , m do not satisfy state equation or trap constraints

Efficient in practice!

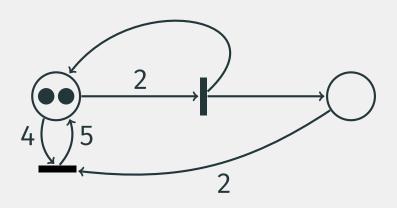
Esparza, Ledesma-Garza, Majumdar, Meyer & Niksic CAV'14

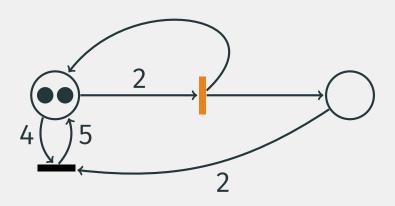
m is not coverable from m_0

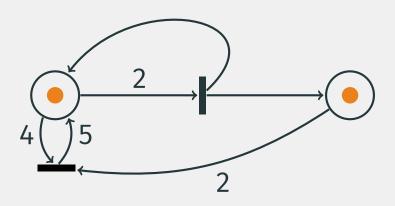
 m_0, m do not satisfy

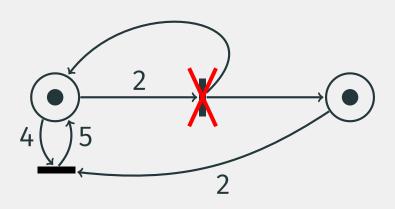
state equation or trap constraints

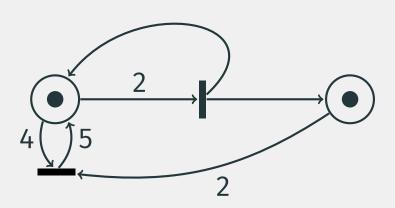
Any finer approximation, yet efficient?

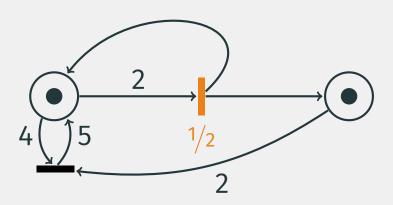


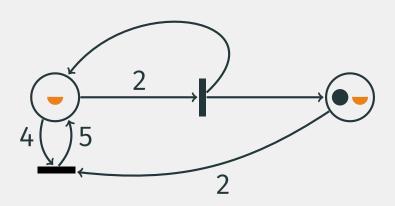


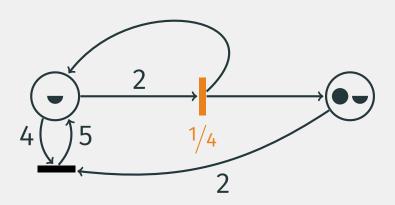


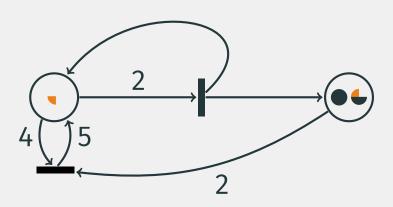


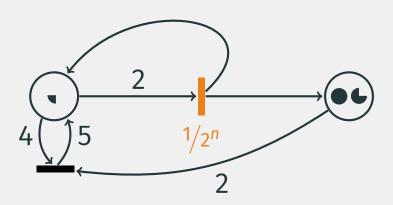


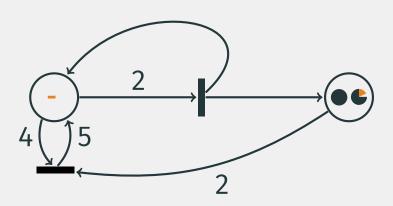












Continuity to over-approximate coverability

 \mathbf{m} is coverable from \mathbf{m}_0

 \Downarrow

m is \mathbb{Q} -coverable from m_0

Continuity to over-approximate coverability

 \mathbf{m} is coverable from \mathbf{m}_0

EXPSPACE

 \bigvee

m is \mathbb{Q} -coverable from m_0

₩ #

m₀ and **m** satisfy state equation & trap constraints

PTIME

Esparza & Melzer FMSD'00 Esparza, Ledesma-Garza, Majumdar, Meyer & Niksic CAV'14

PTIME / NP / cONP

Continuity to over-approximate coverability

m is not coverable from m_0 $\searrow \Gamma$ \uparrow m is not \mathbb{Q} -coverable from m_0

Coverability in continuous Petri nets

Fix some continuous Petri net (P, T, Pre, Post)

m is \mathbb{Q} -coverable from m_0 iff...

Fraca & Haddad Fundam. Inf.'15

Fix some continuous Petri net (P, T, Pre, Post)

```
\emph{m} is \mathbb{Q}-coverable from \emph{m}_0 iff... Fraca & Haddad Fundam. Inf.'15 there exist \emph{m}' \geq \emph{m} and \emph{v} \in \mathbb{Q}_{\geq 0}^T such that \emph{m}' = \emph{m}_0 + (\mathsf{Post} - \mathsf{Pre}) \cdot \emph{v}
```

Fix some continuous Petri net (P, T, Pre, Post)

m is \mathbb{Q} -coverable from m_0 iff... Fraca & Haddad Fundam. Inf.'15 there exist $m' \geq m$ and $\mathbf{v} \in \mathbb{Q}_{\geq 0}^{\mathsf{T}}$ such that

- $m' = m_0 + (Post Pre) \cdot v$
- some execution from $\emph{\textbf{m}}_0$ fires exactly $\{t \in \textit{T} : \emph{\textbf{v}}_t > 0\}$

Fix some continuous Petri net (P, T, Pre, Post)

m is \mathbb{Q} -coverable from m_0 iff... Fraca & Haddad Fundam. Inf.'15 there exist $m' \geq m$ and $\mathbf{v} \in \mathbb{Q}_{\geq 0}^{\mathsf{T}}$ such that

- $m' = m_0 + (Post Pre) \cdot v$
- some execution from \mathbf{m}_0 fires exactly $\{t \in T : \mathbf{v}_t > 0\}$
- some execution to \mathbf{m}' fires exactly $\{t \in T : \mathbf{v}_t > 0\}$

m is \mathbb{Q} -coverable from m_0 iff...

Fraca & Haddad Fundam, Inf. '15

- $m' = m_0 + (Post Pre) \cdot v$
- some execution from \mathbf{m}_0 fires exactly $\{t \in \{a,b\} : \mathbf{v}_t > 0\}$
- some execution to m' fires exactly $\{t \in \{a, b\} : v_t > 0\}$

m is \mathbb{Q} -coverable from m_0 iff...

Fraca & Haddad Fundam. Inf. '15

- $0 + \mathbf{v}_a \mathbf{v}_b \ge 1$ $3 - 2\mathbf{v}_a + \mathbf{v}_b \ge 1$
- some execution from $\emph{\textbf{m}}_0$ fires exactly $\{t \in \{a,b\}: \emph{\textbf{v}}_t > 0\}$
- some execution to \mathbf{m}' fires exactly $\{t \in \{a, b\} : \mathbf{v}_t > 0\}$

m is \mathbb{Q} -coverable from m_0 iff...

Fraca & Haddad Fundam. Inf. '15

•
$$0 + \mathbf{v}_a - \mathbf{v}_b \ge 1$$
 $\Longrightarrow \mathbf{v}_a = 1, \ \mathbf{v}_b = 0, \ \mathbf{m}' = \mathbf{m}$ $3 - 2\mathbf{v}_a + \mathbf{v}_b \ge 1$

- some execution from $\emph{\textbf{m}}_0$ fires exactly $\{t \in \{a,b\}: \emph{\textbf{v}}_t > 0\}$
- some execution to m' fires exactly $\{t \in \{a, b\} : v_t > 0\}$

m is \mathbb{Q} -coverable from m_0 iff...

Fraca & Haddad Fundam. Inf. '15

•
$$0 + \mathbf{v}_a - \mathbf{v}_b \ge 1 \implies \mathbf{v}_a = 1, \ \mathbf{v}_b = 0, \ \mathbf{m}' = \mathbf{m}$$

- some execution from \mathbf{m}_0 fires exactly $\{t \in \{a,b\} : \mathbf{v}_t > 0\}$
- some execution to m' fires exactly $\{t \in \{a, b\} : v_t > 0\}$

m is \mathbb{O} -coverable from m_0 iff...

Fraca & Haddad Fundam, Inf. '15

•
$$0 + \mathbf{v}_a - \mathbf{v}_b \ge 1 \implies \mathbf{v}_a = 1, \ \mathbf{v}_b = 0, \ \mathbf{m}' = \mathbf{m}$$

- some execution from \mathbf{m}_0 fires exactly $\{t \in \{a, b\} : \mathbf{v}_t > 0\}$
- some execution to m' fires exactly $\{t \in \{a, b\} : v_t > 0\}$

m is \mathbb{Q} -coverable from m_0 iff...

Fraca & Haddad Fundam. Inf. '15

•
$$0 + \mathbf{v}_a - \mathbf{v}_b \ge 1 \implies \mathbf{v}_a = 1, \ \mathbf{v}_b = 0, \ \mathbf{m}' = \mathbf{m}$$

 $3 - 2\mathbf{v}_a + \mathbf{v}_b \ge 1$

- some execution from m_0 fires exactly $\{a\}$
- some execution to m' fires exactly $\{a\}$

m is \mathbb{Q} -coverable from m_0 iff...

Fraca & Haddad Fundam. Inf. '15

•
$$0 + \mathbf{v}_a - \mathbf{v}_b \ge 1 \implies \mathbf{v}_a = 1, \ \mathbf{v}_b = 0, \ \mathbf{m}' = \mathbf{m}$$

 $3 - 2\mathbf{v}_a + \mathbf{v}_b \ge 1$

- some execution from m₀ fires exactly {a}
- some execution to m' fires exactly $\{a\}$

m is \mathbb{Q} -coverable from m_0 iff...

Fraca & Haddad Fundam. Inf. '15

there exist $\mathbf{m}' \geq \mathbf{m}$ and $\mathbf{v}_a, \mathbf{v}_b \in \mathbb{Q}_{\geq 0}$ such that

•
$$0 + \mathbf{v}_a - \mathbf{v}_b \ge 1 \implies \mathbf{v}_a = 1, \ \mathbf{v}_b = 0, \ \mathbf{m}' = \mathbf{m}$$

 $3 - 2\mathbf{v}_a + \mathbf{v}_b \ge 1$

• some execution from \mathbf{m}_0 fires exactly $\{a\}$

• some execution to m' fires exactly $\{a\}$

m is \mathbb{Q} -coverable from m_0 iff...

Fraca & Haddad Fundam. Inf. '15

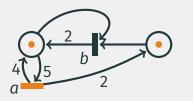
there exist $\mathbf{m}' \geq \mathbf{m}$ and $\mathbf{v}_a, \mathbf{v}_b \in \mathbb{Q}_{\geq 0}$ such that

•
$$0 + \mathbf{v}_a - \mathbf{v}_b \ge 1 \implies \mathbf{v}_a = 1, \ \mathbf{v}_b = 0, \ \mathbf{m}' = \mathbf{m}$$

 $3 - 2\mathbf{v}_a + \mathbf{v}_b \ge 1$

• some execution from \mathbf{m}_0 fires exactly $\{a\}$

some execution to m' fires exactly {a}



$$m_0 = (0,3)$$

$$m = (1, 1)$$

m is \mathbb{Q} -coverable from m_0 iff...

Fraca & Haddad Fundam. Inf. '15

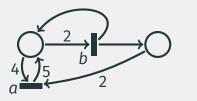
there exist $\mathbf{m}' \geq \mathbf{m}$ and $\mathbf{v}_a, \mathbf{v}_b \in \mathbb{Q}_{\geq 0}$ such that

•
$$0 + \mathbf{v}_a - \mathbf{v}_b \ge 1 \implies \mathbf{v}_a = 1, \ \mathbf{v}_b = 0, \ \mathbf{m}' = \mathbf{m}$$

 $3 - 2\mathbf{v}_a + \mathbf{v}_b \ge 1$

• some execution from \mathbf{m}_0 fires exactly $\{a\}$

some execution to m' fires exactly {a}



$$\mathbf{m}_0 = (0,3)$$

$$m = (1, 1)$$

m is \mathbb{Q} -coverable from m_0 iff...

Fraca & Haddad Fundam. Inf. '15

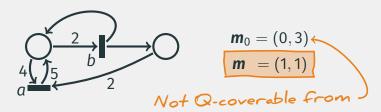
there exist $\mathbf{m}' \geq \mathbf{m}$ and $\mathbf{v}_a, \mathbf{v}_b \in \mathbb{Q}_{\geq 0}$ such that

•
$$0 + \mathbf{v}_a - \mathbf{v}_b \ge 1 \implies \mathbf{v}_a = 1, \ \mathbf{v}_b = 0, \ \mathbf{m}' = \mathbf{m}$$

 $3 - 2\mathbf{v}_a + \mathbf{v}_b \ge 1$

• some execution from \mathbf{m}_0 fires exactly $\{a\}$

• some execution to m' fires exactly $\{a\}$



m is \mathbb{Q} -coverable from m_0 iff...

Fraca & Haddad Fundam. Inf. '15

there exist $\mathbf{m}' \geq \mathbf{m}$ and $\mathbf{v}_a, \mathbf{v}_b \in \mathbb{Q}_{\geq 0}$ such that

•
$$0 + \mathbf{v}_a - \mathbf{v}_b \ge 1 \implies \mathbf{v}_a = 1, \ \mathbf{v}_b = 0, \ \mathbf{m}' = \mathbf{m}$$

 $3 - 2\mathbf{v}_a + \mathbf{v}_b \ge 1$

• some execution from \mathbf{m}_0 fires exactly $\{a\}$

• some execution to m' fires exactly $\{a\}$

Polynomial time!

m is \mathbb{Q} -coverable from m_0 iff...

Fraca & Haddad Fundam, Inf. '15

there exist $\mathbf{m}' \geq \mathbf{m}$ and $\mathbf{v} \in \mathbb{Q}_{>0}^{\mathsf{T}}$ such that

- $m' = m_0 + (Post Pre) \cdot v$
- some execution from \mathbf{m}_0 fires exactly $\{t \in T : \mathbf{v}_t > 0\}$
- some execution to m' fires exactly $\{t \in T : \mathbf{v}_t > 0\}$

Logical characterizationB., Finkel, Haase & Haddad TACAS'16 \mathbb{Q} -coverability can be encoded in a linear size formula of existential $\mathsf{FO}(\mathbb{Q}_{\geq 0},+,<)$

 \emph{m} is \mathbb{Q} -coverable from \emph{m}_0 iff... Fraca & Haddad Fundam. Inf.'15 there exist $\emph{m}' \geq \emph{m}$ and $\emph{v} \in \mathbb{Q}_{\geq 0}^{\mathsf{T}}$ such that

- $m' = m_0 + (Post Pre) \cdot v$
- some execution from \mathbf{m}_0 fires exactly $\{t \in T : \mathbf{v}_t > 0\}$
- some execution to \mathbf{m}' fires exactly $\{t \in T : \mathbf{v}_t > 0\}$

Logical characterization

B., Finkel, Haase & Haddad TACAS'16

Q-coverability can be encoded in a linear size formula of

existential
$$FO(\mathbb{N}, +, <)$$

Even better approximation

m is \mathbb{Q} -coverable from m_0 iff...

Fraca & Haddad Fundam. Inf. '15

there exist $extbf{ extit{m}}' \geq extbf{ extit{m}}$ and $extbf{ extit{v}} \in \mathbb{Q}_{\geq 0}^{\mathsf{T}}$ such that

•
$$m' = m_0 + (Post - Pre) \cdot v$$

- some execution from \mathbf{m}_0 fires exactly $\{t \in T : \mathbf{v}_t > 0\}$
- some execution to \mathbf{m}' fires exactly $\{t \in T : \mathbf{v}_t > 0\}$

Logical characterization B., Finkel, Haase & Haddad TACAS'16 \mathbb{Q} -coverability can be encoded in a linear size formula of existential $\mathsf{FO}(\mathbb{Q}_{\geq 0},+,<)$

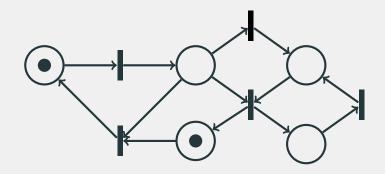
m is \mathbb{Q} -coverable from m_0 iff... Fraca & Haddad Fundam. Inf.'15 there exist $m' \geq m$ and $\mathbf{v} \in \mathbb{Q}_{>0}^T$ such that

- $m' = m_0 + (Post Pre) \cdot v$ Straightforward
- some execution from \mathbf{m}_0 fires exactly $\{t \in T : \mathbf{v}_t > 0\}$
- some execution to \mathbf{m}' fires exactly $\{t \in T : \mathbf{v}_t > 0\}$

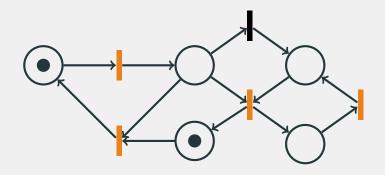
Logical characterization B., Finkel, Haase & Haddad TACAS'16 $\mathbb Q$ -coverability can be encoded in a linear size formula of existential $\mathsf{FO}(\mathbb Q_{\geq 0},+,<)$

 \emph{m} is \mathbb{Q} -coverable from \emph{m}_0 iff... Fraca & Haddad Fundam. Inf.'15 there exist $\emph{m}' \geq \emph{m}$ and $\emph{v} \in \mathbb{Q}_{\geq 0}^T$ such that

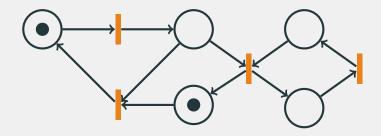
- $m' = m_0 + (Post Pre) \cdot v$ More subtle
- some execution from $\emph{\textbf{m}}_0$ fires exactly $\{t \in \textit{T} : \emph{\textbf{v}}_t > 0\}$
- some execution to \mathbf{m}' fires exactly $\{t \in T : \mathbf{v}_t > 0\}$



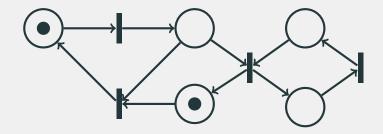
Testing whether some transitions can be fired from initial marking



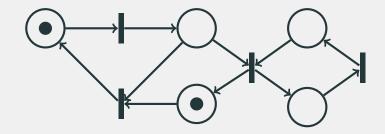
Testing whether some transitions can be fired from initial marking



Testing whether some transitions can be fired from initial marking

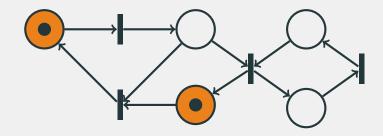


Simulate a "breadth-first" transitions firing

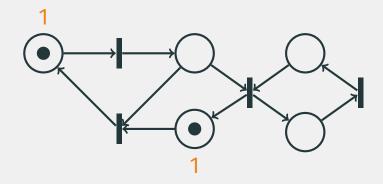


Simulate a "breadth-first" transitions firing by numbering places/transitions

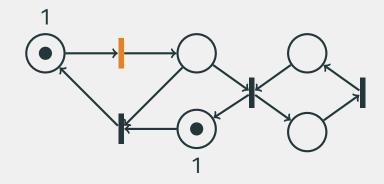
Verma, Seidl & Schwentick CADE'05



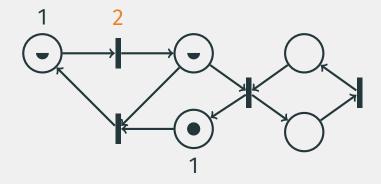
Simulate a "breadth-first" transitions firing by numbering places/transitions



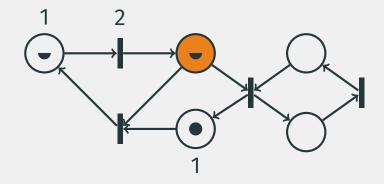
Simulate a "breadth-first" transitions firing by numbering places/transitions



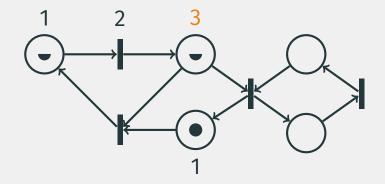
Simulate a "breadth-first" transitions firing by numbering places/transitions



Simulate a "breadth-first" transitions firing by numbering places/transitions



Simulate a "breadth-first" transitions firing by numbering places/transitions



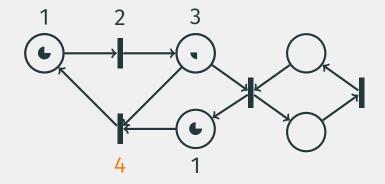
Simulate a "breadth-first" transitions firing by numbering places/transitions

Verma, Seidl & Schwentick CADE'05



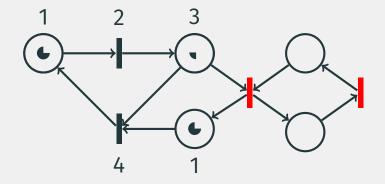
Simulate a "breadth-first" transitions firing by numbering places/transitions

Verma, Seidl & Schwentick CADE'05

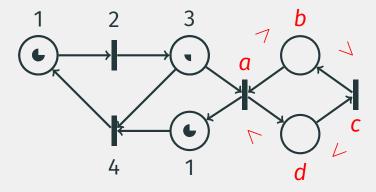


Simulate a "breadth-first" transitions firing by numbering places/transitions

Verma, Seidl & Schwentick CADE'05

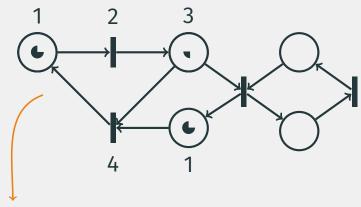


Simulate a "breadth-first" transitions firing by numbering places/transitions



Simulate a "breadth-first" transitions firing by numbering places/transitions

Verma, Seidl & Schwentick CADE'05



$$\varphi(\mathbf{x}) = \exists \mathbf{y} : \bigwedge_{p \in P} \mathbf{y}(p) > 0 \to \bigwedge_{t \in ^{ullet} p} \mathbf{y}(t) < \mathbf{y}(p) \cdots$$

Q-coverability: efficient but incomplete...

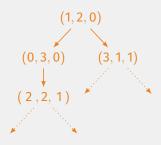
Combine approaches!

Forward algorithm

- Build reachability tree from initial marking
- "Accelerate" loops

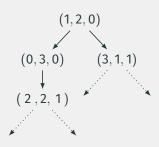
Forward algorithm

- Build reachability tree from initial marking
- "Accelerate" loops



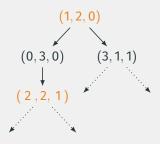
Forward algorithm

- Build reachability tree from initial marking
- "Accelerate" loops



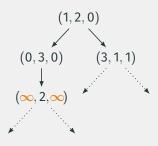
Forward algorithm

- Build reachability tree from initial marking
- "Accelerate" loops



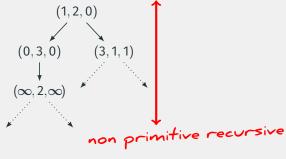
Forward algorithm

- Build reachability tree from initial marking
- "Accelerate" loops



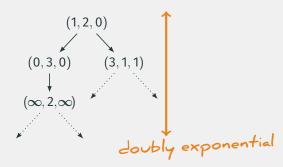
Forward algorithm

- Build reachability tree from initial marking
- "Accelerate" loops



Forward algorithm

- Build reachability tree from initial marking
- "Accelerate" loops



Forward algorithm

Karp & Miller JCSS'69

- Build reachability tree from initial marking
- "Accelerate" loops

Backward algorithm

Arnold & Latteux Calcolo'78, Abdulla, Cerans, Jonsson & Tsay Lics'96

- · Start from upward closure of target marking
- Compute predecessors of current markings

Forward algorithm

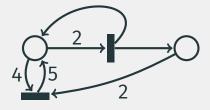
Karp & Miller JCSS'69

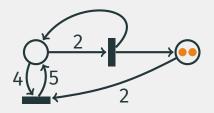
- Build reachability tree from initial marking
- "Accelerate" loops

Backward algorithm

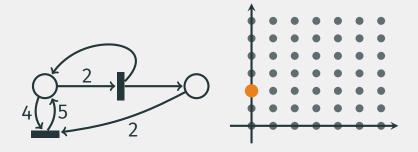
Arnold & Latteux Calcolo'78, Abdulla, Cerans, Jonsson & Tsay Lics'96

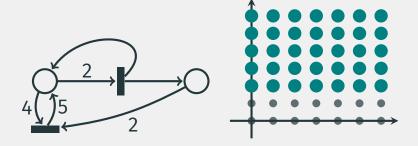
- Start from upward closure of target marking
- Compute predecessors of current markings

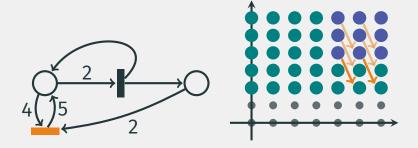


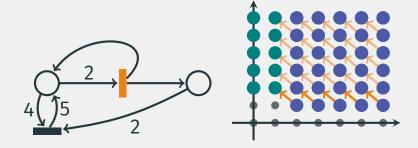


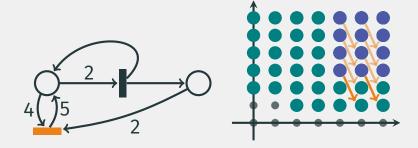
What initial markings may cover (0,2)?

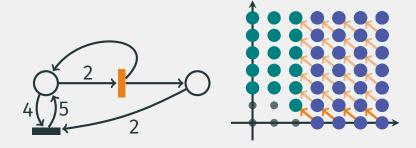


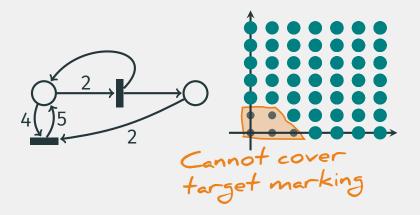


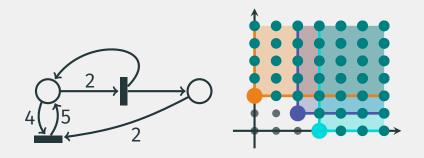






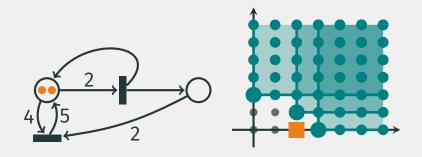




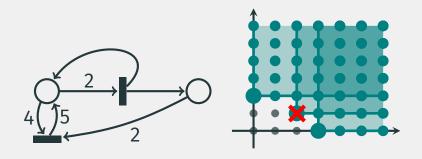


Basis size may become doubly exponential

Bozzelli & Ganty RP'11



We only care about some initial marking...



We only care about some initial marking...

Prune basis with Q-coverability!

if target marking **m** is not Q-coverable:
return False

Polynomial time

```
if target marking m is not \mathbb{Q}-coverable:
    return False
X = \{\text{target marking } \boldsymbol{m}\}
while (initial marking m_0 not covered by X):
    B = \text{markings obtained from } X \text{ one step backward}
    B = B \setminus \{ \boldsymbol{b} \in B : \neg \varphi(\boldsymbol{b}) \}
    if B = \emptyset: return False
    \varphi(\mathbf{x}) = \varphi(\mathbf{x}) \wedge \bigwedge_{\text{pruned } \mathbf{b}} \mathbf{x} \not\geq \mathbf{b}
   X = X \cup B
return True
```

```
if target marking m is not \mathbb{Q}-coverable:
    return False
X = \{\text{target marking } \boldsymbol{m}\}\
while (initial marking m_0 not covered by X):
    B = \text{markings obtained from } X \text{ one step backward}
    B = B \setminus \{ \boldsymbol{b} \in B : \neg \varphi(\boldsymbol{b}) \}
    if B = \emptyset: return False
    \varphi(\mathbf{x}) = \varphi(\mathbf{x}) \wedge \bigwedge_{\text{pruned } \mathbf{b}} \mathbf{x} \not\geq \mathbf{b}
   X = X \cup B
return True
```

```
if target marking m is not \mathbb{Q}-coverable:
    return False
X = \{\text{target marking } \boldsymbol{m}\}
while (initial marking m_0 not covered by X):
    B = \text{markings obtained from } X \text{ one step backward}
    B = B \setminus \{ \boldsymbol{b} \in B : \neg \varphi(\boldsymbol{b}) \}
    if B = \emptyset: return False
    \varphi(\mathbf{x}) = \varphi(\mathbf{x}) \wedge \bigwedge_{\text{pruned } \mathbf{b}} \mathbf{x} \not\geq \mathbf{b}
   X = X \cup B
return True
```

```
if target marking m is not \mathbb{Q}-coverable:
    return False
X = \{\text{target marking } \boldsymbol{m}\}
while (initial marking \mathbf{m}_0 not covered by X):
   B = markings obtained from X one step backward
   B = B \setminus \{ \boldsymbol{b} \in B : \neg \varphi(\boldsymbol{b}) \}
    if B = \emptyset: return False
   \varphi(\mathbf{x}) = \varphi(\mathbf{x}) \wedge \bigwedge_{\text{pruned } \mathbf{b}} \mathbf{x} \not\geq \mathbf{b}
   X = X \cup B
return True
```

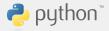
```
if target marking m is not \mathbb{Q}-coverable:
    return False
X = \{\text{target marking } \boldsymbol{m}\}\
while (initial marking m_0 not covered by X):
    B = \text{markings obtained from } X \text{ one step backward}
   B = B \setminus \{b \in B : \neg \varphi(b)\} Q-coverability pruning if B = \emptyset: return False (better than poly. time)
   \varphi(\mathbf{x}) = \varphi(\mathbf{x}) \wedge \bigwedge_{\mathsf{pruned} \ \mathbf{b}} \mathbf{x} \geq \mathbf{b}
   X = X \cup B
return True
```

```
if target marking m is not \mathbb{Q}-coverable:
    return False
X = \{\text{target marking } \boldsymbol{m}\}
while (initial marking \mathbf{m}_0 not covered by X):
    B = \text{markings obtained from } X \text{ one step backward}
    B = B \setminus \{ \boldsymbol{b} \in B : \neg \varphi(\boldsymbol{b}) \}
    if B = \emptyset: return False
    \varphi(\mathbf{x}) = \varphi(\mathbf{x}) \wedge \bigwedge_{\text{pruned } \mathbf{b}} \mathbf{x} \not\geq \mathbf{b}
   X = X \cup B
return True
```

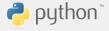
```
if target marking m is not \mathbb{Q}-coverable:
   return False
X = \{\text{target marking } \boldsymbol{m}\}\
while (initial marking m_0 not covered by X):
   B = \text{markings obtained from } X \text{ one step backward}
   B = B \setminus \{ \boldsymbol{b} \in B : \neg \varphi(\boldsymbol{b}) \}
   if B = \emptyset: return False SMT solver guidance
   \varphi(\mathbf{x}) = \varphi(\mathbf{x}) \wedge \bigwedge_{\text{pruned } \mathbf{b}} \mathbf{x} \not\geq \mathbf{b} \longleftarrow
   X = X \cup B
return True
```

```
if target marking m is not \mathbb{Q}-coverable:
    return False
X = \{\text{target marking } \boldsymbol{m}\}
while (initial marking \mathbf{m}_0 not covered by X):
    B = \text{markings obtained from } X \text{ one step backward}
    B = B \setminus \{ \boldsymbol{b} \in B : \neg \varphi(\boldsymbol{b}) \}
    if B = \emptyset: return False
    \varphi(\mathbf{x}) = \varphi(\mathbf{x}) \wedge \bigwedge_{\text{pruned } \mathbf{b}} \mathbf{x} \not\geq \mathbf{b}
   X = X \cup B
return True
```

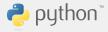
```
if target marking m is not \mathbb{Q}-coverable:
    return False
X = \{\text{target marking } \boldsymbol{m}\}
while (initial marking \mathbf{m}_0 not covered by X):
    B = \text{markings obtained from } X \text{ one step backward}
    B = B \setminus \{ \boldsymbol{b} \in B : \neg \varphi(\boldsymbol{b}) \}
    if B = \emptyset: return False
    \varphi(\mathbf{x}) = \varphi(\mathbf{x}) \wedge \bigwedge_{\text{pruned } \mathbf{b}} \mathbf{x} \not\geq \mathbf{b}
   X = X \cup B
return True
```



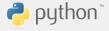
- 760 lines of code
- · uses the MIST .spec format for counter machines
- supports dense/sparse matrices through NumPy/SciPy
- experimental parallelism support



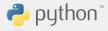
- 760 lines of code
- uses the MIST.spec format for counter machines
- supports dense/sparse matrices through NumPy/SciPy
- experimental parallelism support



- 760 lines of code
- uses the MIST.spec format for counter machines
- supports dense/sparse matrices through NumPy/SciPy
- experimental parallelism support



- 760 lines of code
- · uses the MIST .spec format for counter machines
- supports dense/sparse matrices through NUMPY/SCIPY
- · experimental parallelism support



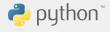
- 760 lines of code
- uses the MIST.spec format for counter machines
- supports dense/sparse matrices through NumPy/SciPy
- experimental parallelism support



- 760 lines of code
- uses the MIST.spec format for counter machines
- supports dense/sparse matrices through NumPy/SciPy
- experimental parallelism support

SMT solver: Z3 (Microsoft research)

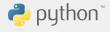
- $FO(\mathbb{Q}_{\geq 0},+,<)$ formula satisfiability
- Fraca & Haddad "polynomial time" algorithm (rational linear programming with <)



- 760 lines of code
- · uses the MIST .spec format for counter machines
- supports dense/sparse matrices through NUMPY/SCIPY
- experimental parallelism support

SMT solver: Z3 (Microsoft research)

- $FO(\mathbb{Q}_{\geq 0},+,<)$ formula satisfiability
- Fraca & Haddad "polynomial time" algorithm (rational linear programming with <)



- 760 lines of code
- uses the MIST.spec format for counter machines
- supports dense/sparse matrices through NumPy/SciPy
- experimental parallelism support

SMT solver: Z3 (Microsoft research)

- $FO(\mathbb{Q}_{\geq 0},+,<)$ formula satisfiability
- Fraca & Haddad "polynomial time" algorithm (rational linear programming with <)

QCOVER tested against

- MIST: Ganty, Meuter, Delzanno, Kalyon, Raskin & Van Begin '07
- BFC: Kaiser, Kroening & Wahl ACM TOPLAS'14
- PETRINIZER: Esparza, Ledesma-Garza, Majumdar, Meyer & Niksic CAV'14

QCOVER tested against

- MIST: Ganty, Meuter, Delzanno, Kalyon, Raskin & Van Begin '07
- BFC: Kaiser, Kroening & Wahl ACM TOPLAS'14
- PETRINIZER: Esparza, Ledesma-Garza, Majumdar, Meyer & Niksic CAV'14

QCover tested against

- MIST: Ganty, Meuter, Delzanno, Kalyon, Raskin & Van Begin '07
- BFC: Kaiser, Kroening & Wahl ACM TOPLAS'14
- PETRINIZER: Esparza, Ledesma-Garza, Majumdar, Meyer & Niksic CAV'14

QCover tested against

- MIST: Ganty, Meuter, Delzanno, Kalyon, Raskin & Van Begin '07
- BFC: Kaiser, Kroening & Wahl ACM TOPLAS'14
- PETRINIZER: Esparza, Ledesma-Garza, Majumdar, Meyer & Niksic cav'14

- 176 Petri nets: average of 1054 places & 8458 transitions
- Drawn from 5 existing suites

QCover tested against

- MIST: Ganty, Meuter, Delzanno, Kalyon, Raskin & Van Begin '07
- BFC: Kaiser, Kroening & Wahl ACM TOPLAS'14
- PETRINIZER: Esparza, Ledesma-Garza, Majumdar, Meyer & Niksic CAV'14

- 176 Petri nets: average of 1054 places & 8458 transitions
- Drawn from 5 existing suites including
 - Multithreaded C programs with shared memory (BFC)
 - Mutual exclusion, communication protocols, etc. (MIST)
 - ERLANG concurrent programs (SOTER, D'Osualdo, Kochems & Ong SAS'13)
 - Message analysis of a medical and a bug tracking system (Petrinizer)

QCover tested against

- MIST: Ganty, Meuter, Delzanno, Kalyon, Raskin & Van Begin '07
- BFC: Kaiser, Kroening & Wahl ACM TOPLAS'14
- PETRINIZER: Esparza, Ledesma-Garza, Majumdar, Meyer & Niksic CAV'14

- 176 Petri nets: average of 1054 places & 8458 transitions
- Drawn from 5 existing suites including
 - Multithreaded C programs with shared memory (BFC)
 - Mutual exclusion, communication protocols, etc. (MIST)
 - ERLANG concurrent programs (SOTER, D'Osualdo, Kochems & Ong SAS'13)
 - Message analysis of a medical and a bug tracking system (Petrinizer)

QCover tested against

- MIST: Ganty, Meuter, Delzanno, Kalyon, Raskin & Van Begin '07
- BFC: Kaiser, Kroening & Wahl ACM TOPLAS'14
- PETRINIZER: Esparza, Ledesma-Garza, Majumdar, Meyer & Niksic cav'14

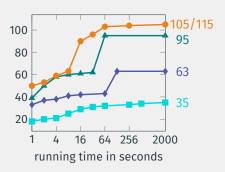
- 176 Petri nets: average of 1054 places & 8458 transitions
- Drawn from 5 existing suites including
 - Multithreaded C programs with shared memory (BFC)
 - Mutual exclusion, communication protocols, etc. (MIST)
 - ERLANG concurrent programs (SOTER, D'Osualdo, Kochems & Ong SAS'13)
 - Message analysis of a medical and a bug tracking system (Petrinizer)

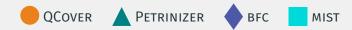
QCover tested against

- MIST: Ganty, Meuter, Delzanno, Kalyon, Raskin & Van Begin '07
- BFC: Kaiser, Kroening & Wahl ACM TOPLAS'14
- PETRINIZER: Esparza, Ledesma-Garza, Majumdar, Meyer & Niksic cav'14

- 176 Petri nets: average of 1054 places & 8458 transitions
- Drawn from 5 existing suites including
 - Multithreaded C programs with shared memory (BFC)
 - Mutual exclusion, communication protocols, etc. (MIST)
 - ERLANG concurrent programs (SOTER, D'Osualdo, Kochems & Ong SAS'13)
 - Message analysis of a medical and a bug tracking system (Petrinizer)

Instances proven safe



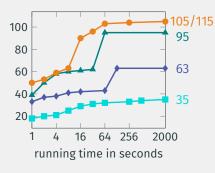


BFC

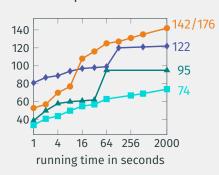
77370 trans

3 secs.

Instances proven safe



Instances proven safe or unsafe

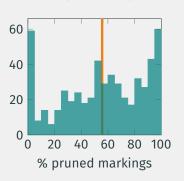


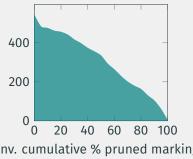
QCOVER

A PETRINIZER

MIST

Markings pruning efficiency across all iterations





 Combine our approach with a forward algorithm to better handle unsafe instances

Combine our approach with a forward algorithm to better

- Combine our approach with a forward algorithm to better handle unsafe instances
- Use more efficient data structures, e.g. sharing trees

(Delzanno, Raskin & Van Begin STTT'04)

- Combine our approach with a forward algorithm to better handle unsafe instances
- Use more efficient data structures, e.g. sharing trees
 (Delzanno, Raskin & Van Begin STTT'04)
- Extend to Petri nets with transfer/reset arcs

Thank you! Vielen Dank!