The Logical View on Continuous Petri Nets

Michael Blondin

Joint work with Alain Finkel, Christoph Haase, Serge Haddad

[J
universite Université rH'\

PARIS-SACLAY de Montréal

The Logical View on Continuous Petri Nets

Michael Blondin

Joint work with Alain Finkel, Christoph Haase, Serge Haddad

[J
universite Université rH'\

PARIS-SACLAY de Montréal

C A CHAN

INVENTORS FOR THE DIGITAL WORLD

1/10

1/10

1/10

1/10

1/10

1/10

1/10

1/10

1/10

L 2

O——F—®

1/10

Safety verification with Petri nets

Process 1 Process 2

2/10

Safety verification with Petri nets

Process 1 Process 2

critical section

critical section

2/10

Safety verification with Petri nets

while true: while true:
X = true & Vy=true
whiley: pass if x then:
critical section y = false
x = false while x: pass
goto W
critical section
y = false

2/10

Safety verification with Petri nets

while true: while true:
X = true & N =true
while[§: pass if§then:
critical section ¥ = false
X = false while®: pass
goto W

critical section
y|= false

2/10

Safety verification with Petri nets

while true: ® while true:
X = true [0) & Vy=true
while y: pass [®) if x then:
critical section [0) y = false
x = false [®) while x: pass

goto W
critical section
y = false

2/10

Safety verification with Petri nets

goto W
critical section

while true: ® ® while true:

X = true 0O @ & Vy=true

whiley: pass O @ if x then:

critical section O @) y = false

x = false e 9} while x: pass
(@)
(@)
@)

y = false

2/10

Safety verification with Petri nets

while true: ® ® while true:

X = true O ®) O & Vy=true

whiley: pass o) ® '®) if @then:

critical section O 0) y = false

X = false e O while[: pass
@) goto W
O # critical section
O y = false

2/10

Safety verification with Petri nets

goto W
critical section

while true: ® ® while true:

X = true O O O & = true

whilelff: pass o) ® '®) if x then:

critical section O @) O ¥ = false

x = false e ® O while x: pass
O
O
O

y|= false

2/10

Safety verification with Petri nets

while true: while true:
X = true & Vy=true
whiley: pass if x then:
critical section y = false
x = false while x: pass
goto W
critical section
y = false

2/10

Safety verification with Petri nets

critical section

critical section

2/10

Safety verification with Petri nets

Processes at both ’ =1

critical sections

2/10

Safety verification with Petri nets

Processes at both . =1

critical sections

2/10

Safety verification with Petri nets

Hyper-Acker‘m«nnian [

(L eroux £ Sclbitz '1 5)

Qeachbi'i'l'v ?r-ob'em

Processes at both ’ =1

critical sections

2/10

Safety verification with Petri nets

| \/

Processes at both

| \/

critical sections

.. @
e

2/10

Safety verification with Petri nets

EXP SPACE—comPIe'vLe [

(L.ip-/'on 76, Rackof'78)

Cover‘«bi‘i+~7 Pf_Ob'em

Processes at both ’ >1
critical sections O >0

2/10

(Discrete) Petri nets

3/10

(Discrete) Petri nets

3/10

(Discrete) Petri nets

3/10

(Discrete) Petri nets

3/10

-(-Bisa:fte)- Petri nets David & Alla '87
C ontinvous

3/10

Petri nets David & Alla '87

Continvous

®
N

3/10

Petri nets David & Alla '87

Continvous

3/10

Petri nets David & Alla '87

Continvous

3/10

Petri nets David & Alla '87

Continvous

3/10

Petri nets David & Alla '87

Continvous

3/10

Petri nets David & Alla '87

Continvous

3/10

Petri nets David & Alla '87

Continvous

Miarget reachable from myp;,

|

Miarget Q-reachable from my,;,

3/10

Petri nets David & Alla '87

Continvous

Miarget reachable from m;;

Mhiarget Q-reachable from m;;;

3/10

Petri nets David & Alla '87

Continvous

Mhiarget NOt reachable from myg;;
Sefety

Miarget NOt Q-reachable from my;;

3/10

Logical characterization of Q-reachability

Fix some continuous Petri net (P, T, Pre, Post)

m;i; is Q-reachable from myarget iff... Fraca & Haddad 13

4/10

Logical characterization of Q-reachability

Fix some continuous Petri net (P, T, Pre, Post)

m;i; is Q-reachable from myarget iff... Fraca & Haddad 13

there exists ve QL, such that

4/10

Logical characterization of Q-reachability

Fix some continuous Petri net (P, T, Pre, Post)

m;i; is Q-reachable from myarget iff... Fraca & Haddad 13

there exists ve QL, such that

* Miarget = Mipjy + (Post — Pre) - v

4/10

Logical characterization of Q-reachability

Fix some continuous Petri net (P, T, Pre, Post)

m;i; is Q-reachable from myarget iff... Fraca & Haddad '13

there exists ve QL, such that
* Miarget = Mipjy + (Post — Pre) - v

+ an execution from m;,; fires exactly {t € T: v; > 0}

4/10

Logical characterization of Q-reachability

O 2] ,O M (2,0;

b Myarget = (0,2
. (]
m;i; is Q-reachable from myarget iff... Fraca & Haddad '13
there exists such that

* Miarget = My + (Post — Pre) - v
+ an execution from m;,;; fires exactly

+ an execution to Myarget fires exactly

4/10

Logical characterization of Q-reachability

O 2] ,O M (2,0;

b Miarget = (0,2

- (]

m;i; is Q-reachable from myarget iff... Fraca & Haddad '13

there exists vq,v, € Q>0 such that

- an execution from m;,;; fires exactly {t € {a,b} : v > 0}

- an execution to Muarget fires exactly {t € {a,b} : v; > 0}

4/10

Logical characterization of Q-reachability

O 2] ,O M (2,0;

b Myarget = (0,2
. (]
m;i; is Q-reachable from myarget iff... Fraca & Haddad '13

there exists vq,v, € Q>0 such that

2—Vqg—Vp=0
Vb:2

- an execution from m;,;; fires exactly {t € {a,b} : v > 0}

- an execution to Muarget fires exactly {t € {a,b} : v; > 0}

4/10

Logical characterization of Q-reachability

O 2] ,O M (2,0;

b Miarget = (0,2

- (]
m;i; is Q-reachable from myarget iff... Fraca & Haddad '13

there exists vq,v, € Q>0 such that

2—Vqg—Vp=0
Vb:2

— Vg =0, v,=2 v
- an execution from m;,;; fires exactly {t € {a,b} : v > 0}

- an execution to Muarget fires exactly {t € {a,b} : v; > 0}

4/10

Logical characterization of Q-reachability

O 2] ,O M (2,0;

b Miarget = (0,2

- (]
m;i; is Q-reachable from myarget iff... Fraca & Haddad '13

there exists vq,v, € Q>0 such that

2—Vqg—Vp=0
Vb:2

— Vg =0, v,=2 v
+ an execution from m;,;; fires exactly

+ an execution to Myarget fires exactly

4/10

Logical characterization of Q-reachability

O 2] ,O M (2,0;

b Miarget = (0,2

- (]
m;i; is Q-reachable from myarget iff... Fraca & Haddad '13

there exists vq,v, € Q>0 such that

2—Vqg—Vp=0
Vb:2

— Vg =0, v,=2 v
+ an execution from m;,;; fires exactly

+ an execution to Myarget fires exactly

4/10

Logical characterization of Q-reachability

O 2 O M (2,0;

b Miarget = (0,2

- (]
m;i; is Q-reachable from myarget iff... Fraca & Haddad '13

there exists vq,v, € Q>0 such that

2—Vqg—Vp=0
Vb:2

— Vg =0, v,=2 v

- an execution to Myarget fires exactly {b}

4/10

Logical characterization of Q-reachability

O 2] ,O M (2,0;

b Miarget = (0,2

- (]
m;i; is Q-reachable from myarget iff... Fraca & Haddad '13

there exists vq,v, € Q>0 such that

2—Vqg—Vp=0
Vb:2

— Vg =0, v,=2 v
« an execution from m;,;; fires exactly {b} v

- an execution to Myarget fires exactly {b}

4/10

Logical characterization of Q-reachability

()‘/2_7 O M = (2,0)

b Miarget = (0,2)

- (]
m;i; is Q-reachable from myarget iff... Fraca & Haddad '13

there exists vq,v, € Q>0 such that

2—Vqg—Vp=0
Vb:2

— Vg =0, v,=2 v

« an execution from m;,;; fires exactly {b} v

4/10

Logical characterization of Q-reachability

2)4 O minie = (2,0)
T b Miarget = (0,2)

(]
m;i; is Q-reachable from myarget iff... Fraca & Haddad '13

there exists vq,v, € Q>0 such that

2—Vqg—Vp=0
Vb:2

— Vg =0, v,=2 v

« an execution from m;,;; fires exactly {b} v

4/10

Logical characterization of Q-reachability

O 2] ,O M (2,0;

b Miarget = (0,2

- (]
m;i; is Q-reachable from myarget iff... Fraca & Haddad '13

there exists vq,v, € Q>0 such that

2—Vqg—Vp=0
Vb:2

— Vg =0, v,=2 v
« an execution from m;,;; fires exactly {b} v

- an execution to Myarget fires exactly {b} X

4/10

Logical characterization of Q-reachability

O 2] ,O M (2,0;

b Miarget = (0,2

- (]
m;i; is Q-reachable from myarget iff... Fraca & Haddad '13

there exists vq,v, € Q>0 such that

2—Vqg—Vp=0
Vb:2

— Vg =0, v,=2 v
« an execution from m;,;; fires exactly {b} v

- an execution to Myarget fires exactly {b} X

4/10

Logical characterization of Q-reachability

Theorem B., Finkel, Haase & Haddad '16
Q-reachability definable by linear size formula of

3FO(Q, +,<)

m;i; is Q-reachable from myarget iff... Fraca & Haddad '13

there exists ve QL, such that
* Miarget = Mipjy + (Post — Pre) - v
+ an execution from m;,; fires exactly {t € T: v; > 0}

+ an execution to Miarget fires exactly {t € T: vy > 0}

4/10

Logical characterization of Q-reachability

Theorem B., Finkel, Haase & Haddad '16
Q-reachability definable by linear size formula of

JFO(N, +, <)

m;i; is Q-reachable from myarget iff... Fraca & Haddad '13

there exists ve QL, such that
* Miarget = Mipjy + (Post — Pre) - v
+ an execution from m;,; fires exactly {t € T: v; > 0}

+ an execution to Miarget fires exactly {t € T: vy > 0}

4/10

Logical characterization of Q-reachability

Theorem B., Finkel, Haase & Haddad '16
Q-reachability definable by linear size formula of

3FO(Q, +,<)

m;i; is Q-reachable from myarget iff... Fraca & Haddad '13

there exists ve QL, such that
* Miarget = Mipjy + (Post — Pre) - v
+ an execution from m;,; fires exactly {t € T: v; > 0}

+ an execution to Miarget fires exactly {t € T: vy > 0}

4/10

Logical characterization of Q-reachability

Theorem B., Finkel, Haase & Haddad '16
Q-reachability definable by linear size formula of

3 FO(Q, +,<)

m;i; is Q-reachable from myarget iff... Fraca & Haddad '13

there exists ve QL, such that

+ an execution from m;,; fires exactly {t € T: v; > 0}

+ an execution to Miarget fires exactly {t € T: vy > 0}

4/10

Logical characterization of Q-reachability

Theorem B., Finkel, Haase & Haddad '16
Q-reachability definable by linear size formula of

3 FO(Q, +,<)

m;i; is Q-reachable from myarget iff... Fraca & Haddad '13

there exists ve QL, such that

* Miarget = Mipjy + (Post — Pre) - v

4/10

Encoding the firing set conditions

5/10

Encoding the firing set conditions

Testing whether some transitions can be fired
from initial marking

5/10

Encoding the firing set conditions

Testing whether some transitions can be fired
from initial marking

5/10

Encoding the firing set conditions

5/10

Encoding the firing set conditions

Simulate a "breadth-first" transitions firing

5/10

Encoding the firing set conditions

Simulate a "breadth-first" transitions firing

by numbering places/transitions

Verma, Seidl & Schwentick '05
5/10

Encoding the firing set conditions

Simulate a "breadth-first" transitions firing

by numbering places/transitions

Verma, Seidl & Schwentick '05
5/10

Encoding the firing set conditions

2ol

Simulate a "breadth-first" transitions firing

by numbering places/transitions

Verma, Seidl & Schwentick '05
5/10

Encoding the firing set conditions

Simulate a "breadth-first" transitions firing

by numbering places/transitions

Verma, Seidl & Schwentick '05
5/10

Encoding the firing set conditions

Simulate a "breadth-first" transitions firing

by numbering places/transitions

Verma, Seidl & Schwentick '05
5/10

Encoding the firing set conditions

Simulate a "breadth-first" transitions firing

by numbering places/transitions

Verma, Seidl & Schwentick '05
5/10

Encoding the firing set conditions

1 2 3
w)I w
1

Simulate a "breadth-first" transitions firing

by numbering places/transitions

Verma, Seidl & Schwentick '05
5/10

Encoding the firing set conditions

Simulate a "breadth-first" transitions firing

by numbering places/transitions

Verma, Seidl & Schwentick '05
5/10

Encoding the firing set conditions

Simulate a "breadth-first" transitions firing

by numbering places/transitions

Verma, Seidl & Schwentick '05
5/10

Encoding the firing set conditions
b
/O<I
a
C
O
L
d

Simulate a "breadth-first" transitions firing

by numbering places/transitions
Verma, Seidl & Schwentick '05

5/10

Encoding the firing set conditions

5/10

From continuous to discrete coverability

6/10

From continuous to discrete coverability

6/10

From continuous to discrete coverability

32, Q) ‘

6/10

From continuous to discrete coverability

6/10

From continuous to discrete coverability

0000
A A3 2a A Au
@0 0-0<0

;O 00000

6/10

From continuous to discrete coverability

6/10

From continuous to discrete coverability

® 0000
® 0000
® 0000
® 0000
° 0000

6/10

From continuous to discrete coverability

6/10

From continuous to discrete coverability

Cennot cover
+ar-ée+ m«rkiné

6/10

From continuous to discrete coverability

00>

6/10

From continuous to discrete coverability

[
J
~
~

O

We only care about m;;;

6/10

From continuous to discrete coverability

We only care about m;;;
Prune basis with Q-reachability!

6/10

Backward coverability modulo Q-reachability

1f Myarget IS NOt Q-coverable:
return false

7/10

Backward coverability modulo Q-reachability

1f Myarget IS NOt Q-coverable:
return false

X = {Miarget}

while (m;,;; not covered by X):
B = markings obtained from X one step backward
B=B\{beB:—pb)}
if B=0: return false
©(X) = @(X) A Aprunedp X 2 b
X=XUB

return true

7/10

Backward coverability modulo Q-reachability

1f Myarget IS NOt Q-coverable:

return false

while (m;,;; not covered by X):
B = markings obtained from X one step backward

B=B\{beB:—-pb)}
if B=0: return false

P(X) = () A /\prunedb x7b
X=XUB

return true

7/10

Backward coverability modulo Q-reachability

1f Myarget IS NOt Q-coverable:
return false
X = {Miarget}
while
B = markings obtained from X one step backward
B=B\{beB:—-pb)}
if B=0: return false

p(X) = p(x) A /\prunedb x%b
X=XUB

return true

7/10

Backward coverability modulo Q-reachability

1f Myarget IS NOt Q-coverable:
return false
X = {Myarget }
while (m;,;; not covered by X):
B = markings obtained from X one step backward

B=B\{beB:—-pb)}
if B=0: return false

p(X) = p(X) A /\prunedb x*b o
X=XUB

return true °

7/10

Backward coverability modulo Q-reachability

1f Myarget IS NOt Q-coverable:

return false

X = {Myarget }
while (m;,;; not covered by X):
B = markings obtained from X one step backward

— B\ «{b cB: ﬁ;(b)} @~coverq{>{/1"/-7 Pr—um'né
(better 4L,

“n poly. Fime)

if B=0: return false

p(X) = p(x) A /\prunedb x%b
X=XUB

return true

7/10

Backward coverability modulo Q-reachability

1f Myarget IS NOt Q-coverable:
return false

X = {Miarget }

while (m;,;; not covered by X):
B = markings obtained from X one step backward
B=B\{beB:—pb)}

if return
p(X) = p(x) A /\prunedb x%b
X=XUB

return true

7/10

Backward coverability modulo Q-reachability

1f Myarget IS NOt Q-coverable:
return false

X = {Miarget}

while (m;,;; not covered by X):
B = markings obtained from X one step backward
B=B\{beB:-pb)} SMT solver guidance
if B=0: return false (—/
p(X) = o(X) A Aprunedp X 2 b

X=XUB

return true

7/10

Backward coverability modulo Q-reachability

1f Myarget IS NOt Q-coverable:
return false
X = {Miarget}
while (m;,;; not covered by X):
B = markings obtained from X one step backward

B=B\{beB:—-pb)}
if B=0: return false
p(X) = p(x) A /\prunedb x%b

return true

7/10

Backward coverability modulo Q-reachability

1f Myarget IS NOt Q-coverable:
return false

X = {Miarget}

while (m;,;; not covered by X):
B = markings obtained from X one step backward
B=B\{beB:—pb)}
if B=0: return false
©(X) = @(X) A Aprunedp X 2 b
X=XUB

return

7/10

Our implementation : QCover B., Finkel, Haase & Haddad "16

P Pljthon s SMT Solver Z3 (Microsoft Research)
https://github.com/blondimi/qcover

Benchmarked on...

* 176 Petri nets (avg. 1054 places, 8458 trans.)

+ multi-threaded C programs with shared-memory
- Erlang concurrent programs

- Protocols : mutual exclusion, communication, etc.

- Messages provenance analysis : medical and bug-tracking sys.

8/10

Our implementation : QCover B., Finkel, Haase & Haddad "16

Instances proven safe

100 »
I 95
80 *
60 . y 63
40 .
20‘* *
|

| | |
1 4 16 64 256 2000
temps d'exécution en secs.

QCOVER A\ PETRINIZER ‘ BFC MIST

(Esparza et al. '14) (Kaiser et al.'12) (Ganty et al. '07) 8/10

Our implementation : QCover B., Finkel, Haase & Haddad "16

Instances proven safe

100 »
I 95
80 *
60 . y 63
40 .
20" *
|

| | |
1T 4 16 64 256 2000
temps d'exécution en secs.

QCOVER A\ PETRINIZER ‘ BFC MIST

(Esparza et al. '14) (Kaiser et al.'12) (Ganty et al. '07) 8/10

Our implementation : QCover B., Finkel, Haase & Haddad "16

Instances proven safe Instances proven safe or unsafe
\ \
100 b 140 :
I 95
80 | 120
b 63 100
60 o” 80
40 r 60
20, - 40
[| | | | [| | | |
1 4 16 64 256 2000 1 4 16 64 256 2000
temps d'exécution en secs. running time in seconds

QCOVER A\ PETRINIZER ‘ BFC MIST

(Esparza et al. '14) (Kaiser et al.'12) (Ganty et al. '07) 8/10

Our implementation : QCover B., Finkel, Haase & Haddad '16

Markings pruning efficiency across all iterations

400
200
0 0
0 20 40 60 80 100 0 20 40 60 80 100
% pruned markings inv. cumulative % pruned markings

8/10

Another application : from logic to complexity

Continuous

Reachability
Coverability
(Fraca & Haddad "13)

9/10

Another application : from logic to complexity

Continuous

Inclusion

Reachability
Coverability

9/10

Another application : from logic to complexity

Continuous

vm (i, m) > /(. m)

+ bounds on sys. linear inequalities
Inclusion

Reachability
Coverability

9/10

Another application : from logic to complexity

Continuous Discrete

Inclusion

Reachability
Coverability

9/10

Another application : from logic to complexity

Continuous

Struct. liveness
Liveness

Exst. home state

Home state
Inclusion

Reachability
Coverability
Boundedness

Discrete

9/10

« Combine our approach with a forward algorithm

- Use upward closed sets data stuctures
(e.g. sharing trees Delzanno et al. '04)

- Continuous vector addition systems with states (VASS)

10/10

- Support Petri net extensions : [resets
« Combine our approach with a forward algorithm

- Use upward closed sets data stuctures
(e.g. sharing trees Delzanno et al. '04)

- Continuous vector addition systems with states (VASS)

&——0O

10/10

- Support Petri net extensions : [resets
« Combine our approach with a forward algorithm

- Use upward closed sets data stuctures
(e.g. sharing trees Delzanno et al. '04)

- Continuous vector addition systems with states (VASS)
@——O

10/10

- Support Petri net extensions : [resets
« Combine our approach with a forward algorithm

- Use upward closed sets data stuctures
(e.g. sharing trees Delzanno et al. '04)

- Continuous vector addition systems with states (VASS)

O——®

10/10

+ Support Petri net extensions : transfers/
« Combine our approach with a forward algorithm

- Use upward closed sets data stuctures
(e.g. sharing trees Delzanno et al. '04)

- Continuous vector addition systems with states (VASS)

@1

10/10

+ Support Petri net extensions : transfers/
« Combine our approach with a forward algorithm

- Use upward closed sets data stuctures
(e.g. sharing trees Delzanno et al. '04)

- Continuous vector addition systems with states (VASS)

10/10

+ Support Petri net extensions : transfers/
« Combine our approach with a forward algorithm

- Use upward closed sets data stuctures
(e.g. sharing trees Delzanno et al. '04)

- Continuous vector addition systems with states (VASS)

O

10/10

« Support Petri net extensions : transfers/resets

- Use upward closed sets data stuctures
(e.g. sharing trees Delzanno et al. '04)

- Continuous vector addition systems with states (VASS)

$59/61 BFC

oF ‘ ‘ ‘ 0 PETRINIZER (NOT SUPPORTED)

|
1 4 16 64 256 2000
running time in seconds

10/10

« Support Petri net extensions : transfers/resets

« Combine our approach with a forward algorithm

- Continuous vector addition systems with states (VASS)

10/10

- Support Petri net extensions : transfers/resets
« Combine our approach with a forward algorithm

- Use upward closed sets data stuctures
(e.g. sharing trees Delzanno et al. '04)

10/10

Thank you!
Vielen Dank!

	Annexe

