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Our implementation : QCover B., Finkel, Haase & Haddad "16

P Pljthon s SMT Solver Z3 (Microsoft Research)
https://github.com/blondimi/qcover

Benchmarked on...

* 176 Petri nets (avg. 1054 places, 8458 trans.)

+ multi-threaded C programs with shared-memory
- Erlang concurrent programs

- Protocols : mutual exclusion, communication, etc.

- Messages provenance analysis : medical and bug-tracking sys.
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Our implementation : QCover B., Finkel, Haase & Haddad '16

Markings pruning efficiency across all iterations
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Thank you!
Vielen Dank!
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