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Vector addition systems with states (VASS)

Concurrent programs
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Biological processes (1, 0, 0)
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Vector addition systems with states (VASS)

Common operations used for modeling:

Reset

X< 0

O0—0

Transfer

X +— X+Vy
y < 0

O—0

Swap
X<y

O0—0

Copy

Xy

O0—0
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Vector addition systems with states (VASS)

Affine VASS:
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Complexity of reachability and coverability

No extensions

+ Resets + Transfers

TOWER-hard (cLLLm '19)
€ Ackermann (Leroux, Schmitz '19)

Undecidable (araki, kasami '76)

EXPSPACE-complete
(Lipton '76, Rackoff '78)

Ackermann-complete
(Schnoebelen '02, Figueira et al. '11)

2/11



Complexity of reachability and coverability

No extensions + Resets + Transfers
* - ’ o
—N TOWER-hard (cLLLm19) Undecidable (araki, Kasami '76)
€ Ackermann (Leroux, Schmitz '19)
i>N > EXPSPACE—complete Ackermann—.complete
(Lipton '76, Rackoff '78) (Schnoebelen '02, Figueira et al. '11)

,ﬂ'/'r‘ac'/'ab Iel

2/11



Complexity of reachability and coverability

No extensions + Resets + Transfers
* = , .
—N TOWER-hard (cLLLm19) Undecidable (araki, Kasami '76)
€ Ackermann (Leroux, Schmitz '19)
i>N > EXPSPACE—complete Ackermann—_complete
(Lipton '76, Rackoff '78) (Schnoebelen '02, Figueira et al. '11)

- Can be alleviated by using an over-approximation of =

» Successful in practice, eg. Esparza et al. CAV'14, B. et al. TACAS'16,

Geffroy et al. RP'16, Athanasiou et al. IJCAR'16

« We consider Z-VASS: counters allowed to drop below 0

2/11



Complexity of reachability and coverability

No extensions + Resets + Transfers
* = , .
—N TOWER-hard (cLLLm19) Undecidable (araki, Kasami '76)
€ Ackermann (Leroux, Schmitz '19)
i>N > EXPSPACE—complete Ackermann—.complete
(Lipton '76, Rackoff '78) (Schnoebelen '02, Figueira et al. '11)

« Can be alleviated by using an over-approximation of Sy

+ Successful in practice, e.g. Esparza et al. CAV'14, B. et al. TACAS'16,
Geffroy et al. RP'16, Athanasiou et al. 1JCAR16

- We consider Z-VASS: counters allowed to drop below 0

2/11



Complexity of reachability and coverability

No extensions + Resets + Transfers

TOWER-hard (cLLLm '19)

—N Undecidable (araki, kasami '76)
€ Ackermann (Leroux, Schmitz '19)
i>N > EXPSPACE-complete Ackermann-complete
- (Lipton '76, Rackoff '78) (Schnoebelen '02, Figueira et al. '11)
EX
} Z NP-complete (Haase, Halfon '14) ?
—z 2

2/11
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. z NP-complete (new proof) PSPACE-complete
—z >

Our contribution

- Any affine Z-VASS with finite matrix monoid
can be translated into an equivalent Z-VASS

- Reachability relation of such affine Z-VASS is semilinear

« Classification of complexity w.r.t. extensions 2/m



Complexity of reachability and coverability

Related work

» Finkel and Leroux (FstTcs'12)

Accelerations of affine counter machines
without control-states

« losif and Sangnier (aTva'16)

Complexity of model checking over flat structures with
guards defined by convex polyhedra

+ Cadilhac, Finkel and McKenzie (ijFcs'12)

Affine Parikh automata with finite-monoid restriction
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3  Undecidable

Affine Z-VASS

I

Transfer + copy Z-VASS 4

----------- 73--""3‘\""""" Remarks on

Transfer Z-VASS Copy Z-VASS monoids over N

PSPACE-complete ‘\ /,

Reset + permutation Z-VASS

NP-complete /' \

Reset Z-VASS Permutation Z-VASS

~N S
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Infinite monoids
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1) pecidable (+ semilinear) 2
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For every transition t: (®) 2% @) and o € T, let

M. = C(U):u
M, =A-M, ot(uy=A-o(u)+b
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For every transition t: (®) 2% @) and o € T, let

M. = e(u)=u

My=A-M,  otu)=A o(u)+b

Matrix monoid

My = {My : w e T}
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From affine Z-VASS to Z-VASS

Theorem

Let V be an affine Z-VASS. If My, is finite, then 3 Z-VASS V' s.t.
- p(u) Sz q(v)inV < p(u,0) =z q(0,v)in )’
* [V'| € poly(|V[, IMy])
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From affine Z-VASS to Z-VASS

Theorem

Let V be an affine Z-VASS. If My, is finite, then 3 Z-VASS V' s.t.
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Reachability is decidable for
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Semilinearity of affine Z-VASS

Corollary
If an affine Z-VASS has a finite monoid, then

{(u, v):pu) Sz q(v)} is semilinear
Proof

Follows from our translation and

known result on Z-VASS (Haase, Halfon RP'14)
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Semilinearity of affine Z-VASS

Corollary
If an affine Z-VASS has a finite monoid, then

{(u, v):pu) Sz q(v)} is semilinear

Observation
Converse is not true: (1 1>
- X

(Jng(o)
(29) &) ()

—1 1

=1 1
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Semilinearity of affine Z-VASS

Corollary
If an affine Z-VASS has a finite monoid, then

{(u, v):pu) Sz q(v)} is semilinear

Observation Boigelot '98, Finkel and Leroux '02
Converse is true for single state and single transition:

ODA-x+b
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Reachability in transfer Z-VASS is in PSPACE

- Transfer matrix: exactly one 1 per column,
hence |[My| < n" = 2nleen

« Transform transfer Z-VASS V into Z-VASS )’
of size poly(|V|,2"°s")

- Z-reachability has witnesses of the form whw? . .. wk
where |wyw;, - - - wy| < poly(|V'|) (B.etal Lics's)

+ Guess witness on the fly with polynomial space
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Idea: simulate linear bounded Turing machine
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Reachability in transfer Z-VASS is PSPACE-hard

Idea: simulate linear bounded Turing machine

,
\ 4
Aab b b
a b a b a b
rn(o 1 0 1 )

Simulation is faithful iff
the sum of bits is left unchanged
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Reachability in transfer Z-VASS is PSPACE-hard

Idea: simulate linear bounded Turing machine

.
A 4
aAb| b b
a b a b a b
r( 0 1 )

Swaps and resets
can be simulated by transfers
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Reachability in affine Z-VASS is undecidable Reichert 15

Reduction from the Post correspondence problem
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X<+ 4x+2 X+ x—1
y<—2y+1 y+—y—1
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X 44X+ 1 y<y—1
p s
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X+ 2x+1
y<+8y+3

Has solution iff p(1,1) =z q(1,1)
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Reachability in affine Z-VASS is undecidable Reichert 15

Reduction from the Post correspondence problem

10 01 1
Wy = Wy = W3 =
1 0 011
X<+ 4x+2 X+ x—1
y<—2y+1 y+—y—1
X+—Xx—1
X 44X+ 1 y<y—1 &
p s
y<2y
X+ 2x+1
Yy« 8y+3

Doubling can be done with
a gadget of transfers and copies S



Finite matrix monoids over N
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Finite matrix monoids over N

Some decidable

2
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- Unified approach to reachability in affine Z-VASS

+ Possible to remove transformations when
matrix monoid is finite

« Reachability relation of affine Z-VASS
is semilinear when monoid is finite

- Classification of complexity w.r.t. extensions
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Conclusion: further work

- Complexity of reachability for permutation Z-VASS?
- Size of matrix monoid for arbitrary affine Z-VASS?

« Characterization of classes of infinite matrix
monoids for which reachability is decidable?

1/1



Thank you! Vielen Dank!



