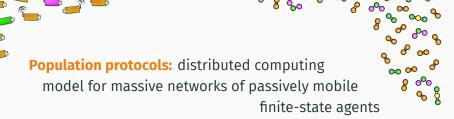
Automatic Analysis of Population Protocols

Michael Blondin

Joint work with Javier Esparza, Stefan Jaax, Antonín Kučera, Philipp J. Meyer

Population protocols: distributed computing model for massive networks of passively mobile finite-state agents

Model *e.g.* networks of passively mobile sensors and chemical reaction networks



Model *e.g.* networks of passively mobile sensors and chemical reaction networks

Protocols compute predicates of the form $\varphi \colon \mathbb{N}^d \to \{0,1\}$ e.g. $\varphi(m,n)$ is computed by m+n agents

This talk: automatic verification and expected termination time analysis

- · anonymous mobile agents with very few resources
- · agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

- · anonymous mobile agents with very few resources
- · agents change states via random pairwise interactions
- · each agent has opinion true/false
- · computes by stabilizing agents to some opinion

- · anonymous mobile agents with very few resources
- · agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

- · anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- · computes by stabilizing agents to some opinion

- · anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- · each agent has opinion true/false
- · computes by stabilizing agents to some opinion

- · anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

- · anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- · each agent has opinion true/false
- · computes by stabilizing agents to some opinion

- · anonymous mobile agents with very few resources
- · agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

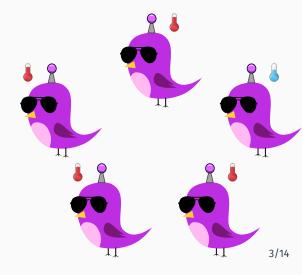


- · anonymous mobile agents with very few resources
- · agents change states via random pairwise interactions
- · each agent has opinion true/false
- computes by stabilizing agents to some opinion

- · anonymous mobile agents with very few resources
- · agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

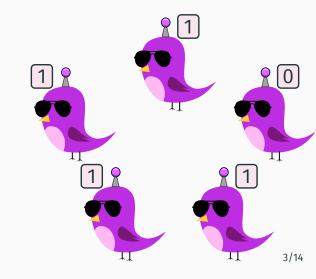
- · anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

Are there at least 4 sick birds?



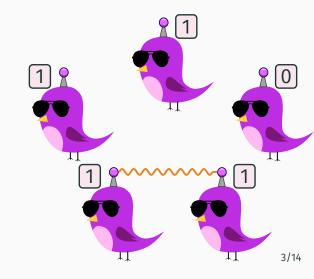
Are there at least 4 sick birds?

- Each agent in a state of {0,1,2,3,4}
- $(m,n) \mapsto (m+n,0)$ if m+n < 4
- $(m, n) \mapsto (4, 4)$ if m + n > 4



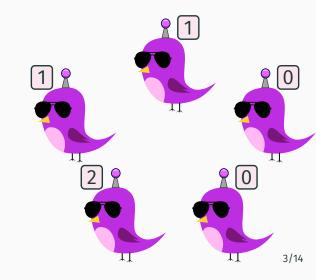
Are there at least 4 sick birds?

- Each agent in a state of {0,1,2,3,4}
- $(m,n) \mapsto (m+n,0)$ if m+n < 4
- $(m, n) \mapsto (4, 4)$ if m + n > 4



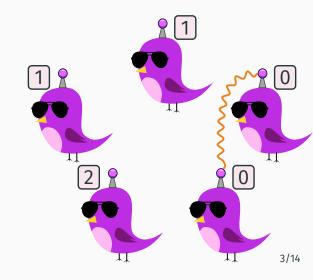
Are there at least 4 sick birds?

- Each agent in a state of {0,1,2,3,4}
- $(m,n) \mapsto (m+n,0)$ if m+n < 4
- $(m, n) \mapsto (4, 4)$ if m + n > 4



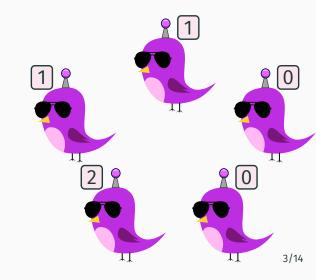
Are there at least 4 sick birds?

- Each agent in a state of {0,1,2,3,4}
- $(m,n) \mapsto (m+n,0)$ if m+n < 4
- $(m, n) \mapsto (4, 4)$ if m + n > 4



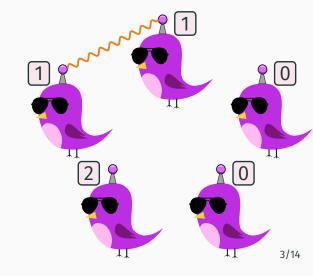
Are there at least 4 sick birds?

- Each agent in a state of {0,1,2,3,4}
- $(m,n) \mapsto (m+n,0)$ if m+n < 4
- $(m, n) \mapsto (4, 4)$ if m + n > 4



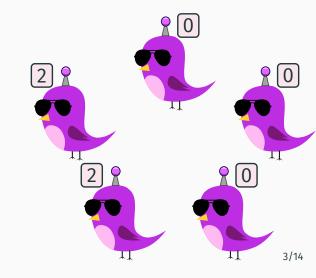
Are there at least 4 sick birds?

- Each agent in a state of {0,1,2,3,4}
- $(m,n) \mapsto (m+n,0)$ if m+n < 4
- $(m, n) \mapsto (4, 4)$ if m + n > 4



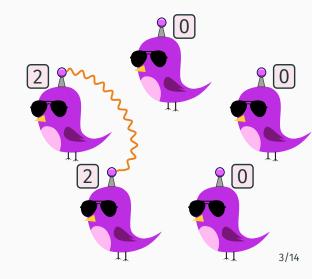
Are there at least 4 sick birds?

- Each agent in a state of {0,1,2,3,4}
- $(m,n) \mapsto (m+n,0)$ if m+n < 4
- $(m, n) \mapsto (4, 4)$ if m + n > 4



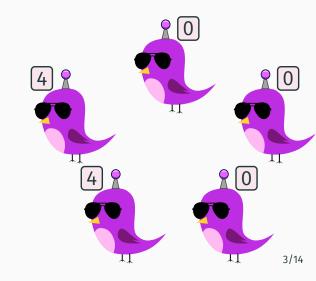
Are there at least 4 sick birds?

- Each agent in a state of {0,1,2,3,4}
- $(m,n) \mapsto (m+n,0)$ if m+n < 4
- $(m,n) \mapsto (4,4)$ if $m+n \geq 4$



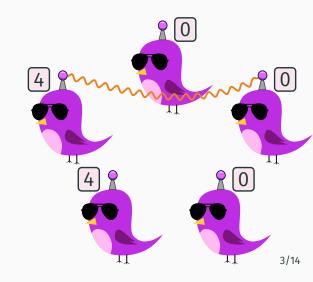
Are there at least 4 sick birds?

- Each agent in a state of {0,1,2,3,4}
- $(m,n) \mapsto (m+n,0)$ if m+n < 4
- $(m, n) \mapsto (4, 4)$ if m + n > 4



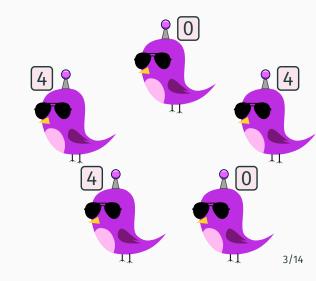
Are there at least 4 sick birds?

- Each agent in a state of {0,1,2,3,4}
- $(m,n) \mapsto (m+n,0)$ if m+n < 4
- $(m, n) \mapsto (4, 4)$ if m + n > 4



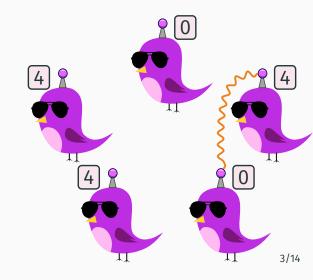
Are there at least 4 sick birds?

- Each agent in a state of {0,1,2,3,4}
- $(m,n) \mapsto (m+n,0)$ if m+n < 4
- $(m, n) \mapsto (4, 4)$ if m + n > 4



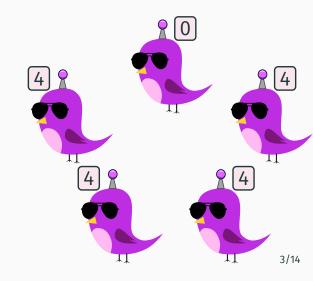
Are there at least 4 sick birds?

- Each agent in a state of {0,1,2,3,4}
- $(m,n) \mapsto (m+n,0)$ if m+n < 4
- $(m, n) \mapsto (4, 4)$ if m + n > 4



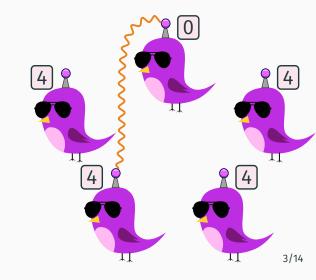
Are there at least 4 sick birds?

- Each agent in a state of {0,1,2,3,4}
- $(m,n) \mapsto (m+n,0)$ if m+n < 4
- $(m, n) \mapsto (4, 4)$ if $m + n \ge 4$



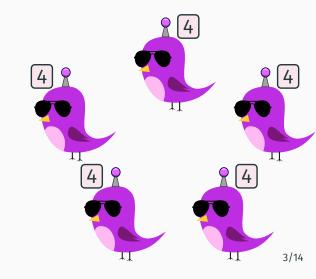
Are there at least 4 sick birds?

- Each agent in a state of {0, 1, 2, 3, 4}
- $(m,n) \mapsto (m+n,0)$ if m+n < 4
- $(m, n) \mapsto (4, 4)$ if m + n > 4



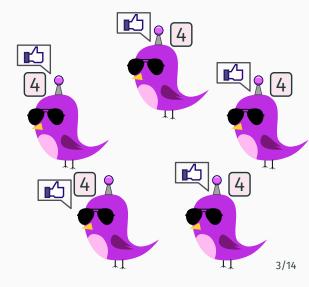
Are there at least 4 sick birds?

- Each agent in a state of {0,1,2,3,4}
- $(m,n) \mapsto (m+n,0)$ if m+n < 4
- $(m, n) \mapsto (4, 4)$ if m + n > 4



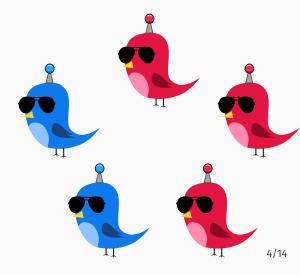
Are there at least 4 sick birds?

- Each agent in a state of {0,1,2,3,4}
- $(m,n) \mapsto (m+n,0)$ if m+n < 4
- $(m, n) \mapsto (4, 4)$ if $m + n \ge 4$



Example: majority protocol

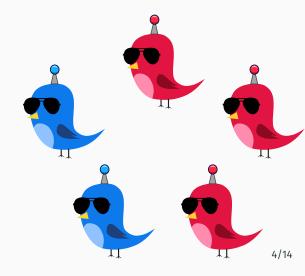
blue agents ≥ # red agents?



Example: majority protocol

blue agents ≥ # red agents?

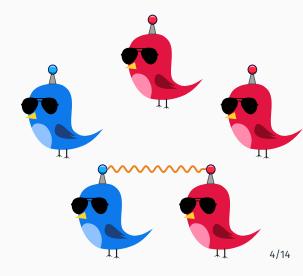
- Two large agents become small blue agents
- Large agents convert small agents to their colour



Example: majority protocol

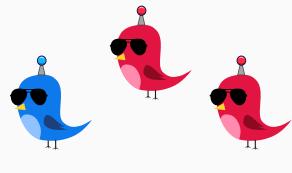
blue agents ≥ # red agents?

- Two large agents become small blue agents
- Large agents convert small agents to their colour



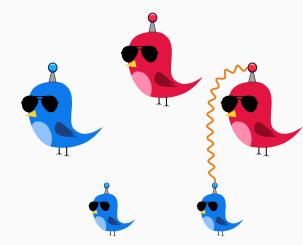
blue agents ≥ # red agents?

- Two large agents become small blue agents
- Large agents convert small agents to their colour



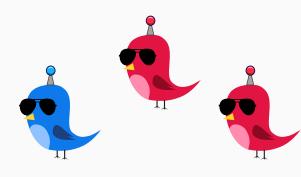
blue agents ≥ # red agents?

- Two large agents become small blue agents
- Large agents convert small agents to their colour



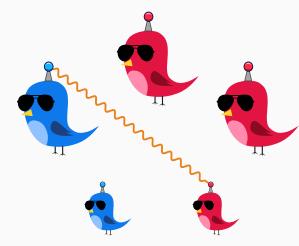
blue agents ≥ # red agents?

- Two large agents become small blue agents
- Large agents convert small agents to their colour



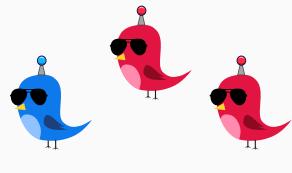
blue agents ≥ # red agents?

- Two large agents become small blue agents
- Large agents convert small agents to their colour



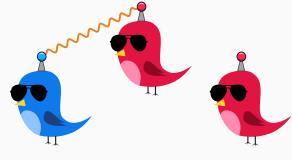
blue agents ≥ # red agents?

- Two large agents become small blue agents
- Large agents convert small agents to their colour



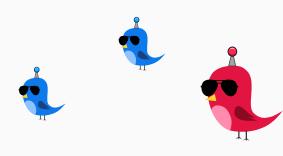
blue agents ≥ # red agents?

- Two large agents become small blue agents
- Large agents convert small agents to their colour



blue agents ≥ # red agents?

- Two large agents become small blue agents
- Large agents convert small agents to their colour

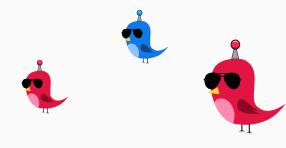


blue agents ≥ # red agents?

- Two large agents become small blue agents
- Large agents convert small agents to their colour

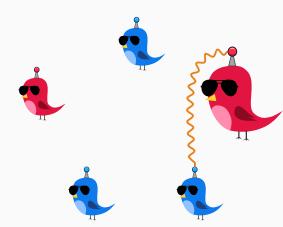
blue agents ≥ # red agents?

- Two large agents become small blue agents
- Large agents convert small agents to their colour



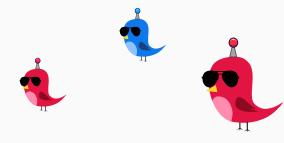
blue agents ≥ # red agents?

- Two large agents become small blue agents
- Large agents convert small agents to their colour



blue agents ≥ # red agents?

- Two large agents become small blue agents
- Large agents convert small agents to their colour

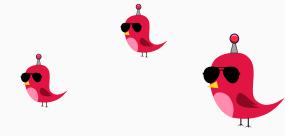


blue agents ≥ # red agents?

- Two large agents become small blue agents
- Large agents convert small agents to their colour

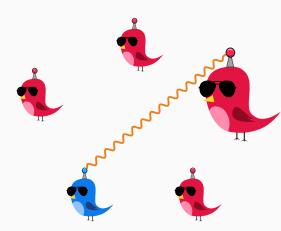
blue agents ≥ # red agents?

- Two large agents become small blue agents
- Large agents convert small agents to their colour



blue agents ≥ # red agents?

- Two large agents become small blue agents
- Large agents convert small agents to their colour



blue agents ≥ # red agents?

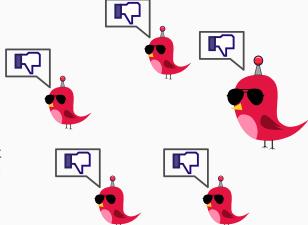
- Two large agents become small blue agents
- Large agents convert small agents to their colour

blue agents ≥ # red agents?

Protocol:

 Two large agents become small blue agents

 Large agents convert small agents to their colour



• States: finite set Q

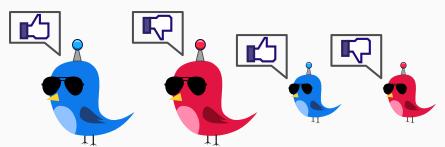
• Opinions: $O: Q \rightarrow \{false, true\}$

• Initial states: $I \subseteq Q$

• States: finite set Q

• Opinions: $O: Q \rightarrow \{false, true\}$

• Initial states: $I \subseteq Q$



• States: finite set Q

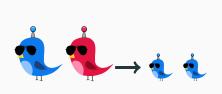
• Opinions: $O: Q \rightarrow \{false, true\}$

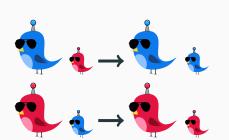
• Initial states: $I \subseteq Q$

• States: finite set Q

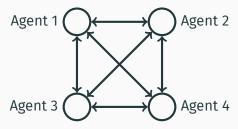
• Opinions: $O: Q \rightarrow \{false, true\}$

• Initial states: $I \subseteq Q$

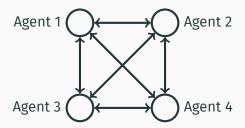




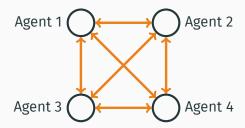
All agents can interact pairwise (complete topology)



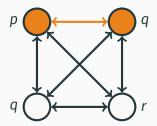
$$\mathbb{P}[\text{fire } p, q \mapsto p', q' \text{ in } C] = \begin{cases} \frac{2 \cdot C(p) \cdot C(q)}{n^2 - n} & \text{if } p \neq q \\ \\ \frac{C(p) \cdot (C(p) - 1)}{n^2 - n} & \text{if } p = q \end{cases}$$



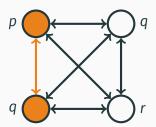
$$\mathbb{P}[\text{fire } p, q \mapsto p', q' \text{ in } C] = \begin{cases} \frac{2 \cdot C(p) \cdot C(q)}{n^2 - n} & \text{if } p \neq q \\ \frac{C(p) \cdot (C(p) - 1)}{n^2 - n} & \text{if } p = q \end{cases}$$



$$\mathbb{P}[\text{fire } p, q \mapsto p', q' \text{ in } C] = \begin{cases} \frac{2 \cdot C(p) \cdot C(q)}{n^2 - n} & \text{if } p \neq q \\ \frac{C(p) \cdot (C(p) - 1)}{n^2 - n} & \text{if } p = q \end{cases}$$



$$\mathbb{P}[\text{fire } p, q \mapsto p', q' \text{ in } C] = \begin{cases} \frac{2 \cdot C(p) \cdot C(q)}{n^2 - n} & \text{if } p \neq q \\ \frac{C(p) \cdot (C(p) - 1)}{n^2 - n} & \text{if } p = q \end{cases}$$

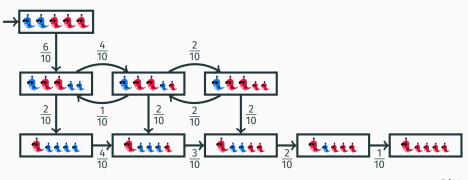


$$\mathbb{P}[\text{fire } p, q \mapsto p', q' \text{ in } C] = \begin{cases} \frac{2 \cdot C(p) \cdot C(q)}{n^2 - n} & \text{if } p \neq q \\ \frac{C(p) \cdot (C(p) - 1)}{n^2 - n} & \text{if } p = q \end{cases}$$

$$\mathbb{P}[C \to C'] = \sum_{t \text{ s.t. } C \xrightarrow{t} C'} \mathbb{P}[\text{fire } t \text{ in } C]$$

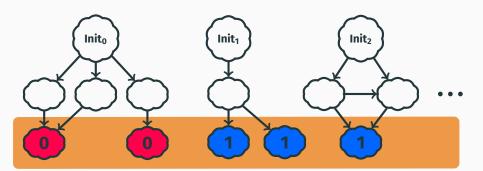
Population protocols: computations

Underlying Markov chain:



Population protocols: computations

A protocol computes a predicate $f: \mathbb{N}^I \to \{0, 1\}$ if runs reach common stable consensus with probability 1



Population protocols: computations

A protocol computes a predicate $f: \mathbb{N}^I \to \{0, 1\}$ if runs reach **common stable consensus** with probability 1

Expressive power

Angluin, Aspnes, Eisenstat PODC'06

Population protocols compute precisely predicates definable in Presburger arithmetic, *i.e.* $FO(\mathbb{N}, +, <)$

Protocols can become complex, even for $B \ge R$:

Fast and Exact Majority in Population Protocols

```
Rati Gelashvili*
          Dan Alistarh
                                                                                                                      Milan Voinović
      Microsoft Research
                                                                                                                    Microsoft Research
  1 \ \textit{weight}(x) = \left\{ \begin{array}{ll} |x| & \text{if } x \in \textit{StrongStates} \text{ or } x \in \textit{WeakStates}; \\ 1 & \text{if } x \in \textit{IntermediateStates}. \end{array} \right. 
 2 sgn(x) = \begin{cases} 1 & \text{if } x \in \{+0, 1_d, \dots, 1_1, 3, 5, \dots, m\}; \\ -1 & \text{otherwise.} \end{cases}
  3 value(x) = san(x) \cdot weight(x)
        /* Functions for rounding state interactions */
  4 \phi(x) = -1_1 if x = -1; 1_1 if x = 1; x, otherwise
 5 R_1(k) = \phi(k \text{ if } k \text{ odd integer}, k-1 \text{ if } k \text{ even})
 6 R<sub>↑</sub>(k) = φ(k if k odd integer, k+1 if k even)
 \begin{array}{ll} \textbf{7} \;\; Shift-to-Zero(x) = \left\{ \begin{array}{ll} -1_{j+1} & \text{if } x = -1_{j} \; \text{for some index } j < d \\ 1_{j+1} & \text{if } x = 1_{j} \; \text{for some index } j < d \\ x & \text{otherwise}. \end{array} \right. \\ \textbf{8} \;\; Sign-to-Zero(x) = \left\{ \begin{array}{ll} -0 & \text{if } sgn(x) > 0 \\ \text{otherwise}. \end{array} \right. \\ \end{array} 
  9 procedure update(x, y)
             if (weight(x) > 0 \text{ and } weight(y) > 1) or (weight(y) > 0 \text{ and } weight(x) > 1) then
                   x' \leftarrow R_{\downarrow} \left( \frac{value(x) + value(y)}{2} \right) and y' \leftarrow R_{\uparrow} \left( \frac{value(x) + value(y)}{2} \right)
11
12
             else if weight(x) \cdot weight(y) = 0 and value(x) + value(y) > 0 then
13
                   if weight(x) \neq 0 then x' \leftarrow Shift-to-Zero(x) and y' \leftarrow Sign-to-Zero(x)
14
                   else y' \leftarrow Shift-to-Zero(y) and x' \leftarrow Sign-to-Zero(y)
             else if (x \in \{-1_J, +1_J\}) and weight(y) = 1 and san(x) \neq san(y) or
15
16
                          (y \in \{-1_d, +1_d\}) and weight(x) = 1 and sgn(y) \neq sgn(x) then
                   x' \leftarrow -0 and y' \leftarrow +0
17
18
             else
19
                   x' \leftarrow Shift\text{-}to\text{-}Zero(x) \text{ and } y' \leftarrow Shift\text{-}to\text{-}Zero(y)
```

Protocols can become complex, even for $B \ge R$:

Fast and Exact Majority in Population Protocols

```
Rati Gelashvili
         Dan Alistarh
                                                                                                           Milan Voinović
     Microsoft Research
                                                                                                          Microsoft Research
 \mathbf{1} \ \ weight(x) = \left\{ \begin{array}{ll} |x| & \text{if } x \in StrongStates \text{ or } x \in WeakStates; \\ 1 & \text{if } x \in IntermediateStates. \end{array} \right.
                                                                                                              How to verify
 \mathbf{2} \ sgn(x) = \left\{ \begin{array}{ll} \mathbf{1} & \text{if } x \in \{+0,1_d,\ldots,1_1,3,5,\ldots,m\}; \\ -1 & \text{otherwise.} \end{array} \right.
                                                                                                                      correctness
  3 value(x) = san(x) \cdot weight(x)
       /* Functions for rounding state interactions */
  4 \phi(x) = -1_1 if x = -1; 1_1 if x = 1; x, otherwise
 5 R_1(k) = \phi(k \text{ if } k \text{ odd integer}, k-1 \text{ if } k \text{ even})
  6 R<sub>τ</sub>(k) = φ(k if k odd integer, k + 1 if k even)
 \begin{array}{ll} \textbf{7} \;\; Shift-to-Zero(x) = \left\{ \begin{array}{ll} -1_{j+1} & \text{if } x = -1_{j} \; \text{for some index } j < d \\ 1_{j+1} & \text{if } x = 1_{j} \; \text{for some index } j < d \\ x & \text{otherwise}. \end{array} \right. \\ \textbf{8} \;\; Sign-to-Zero(x) = \left\{ \begin{array}{ll} -0 & \text{if } sgn(x) > 0 \\ \text{otherwise}. \end{array} \right. \\ \end{array} 
                                                                                                                 automatically?
  9 procedure update(x, y)
            if (weight(x) > 0 \text{ and } weight(y) > 1) or (weight(y) > 0 \text{ and } weight(x) > 1) then
                 x' \leftarrow R_{\downarrow} \left( \frac{value(x) + value(y)}{2} \right) and y' \leftarrow R_{\uparrow} \left( \frac{value(x) + value(y)}{2} \right)
11
12
            else if weight(x) \cdot weight(y) = 0 and value(x) + value(y) > 0 then
13
                 if weight(x) \neq 0 then x' \leftarrow Shift-to-Zero(x) and y' \leftarrow Sign-to-Zero(x)
14
                 else y' \leftarrow Shift-to-Zero(y) and x' \leftarrow Sign-to-Zero(y)
            else if (x \in \{-1_J, +1_J\}) and weight(y) = 1 and san(x) \neq san(y) or
15
16
                        (y \in \{-1_d, +1_d\} \text{ and } weight(x) = 1 \text{ and } sgn(y) \neq sgn(x)) \text{ then}
                 x' \leftarrow -0 and y' \leftarrow +0
17
18
            else
19
                 x' \leftarrow Shift\text{-}to\text{-}Zero(x) \text{ and } y' \leftarrow Shift\text{-}to\text{-}Zero(y)
```

Testing whether a protocol computes φ amounts to testing:

$$\neg \exists C, D \colon C \xrightarrow{*} D \land$$

$$C \text{ is initial } \land$$

$$D \text{ is in a BSCC } \land$$

$$\text{opinion}(D) \neq \varphi(C)$$

Testing whether a protocol computes φ amounts to testing:

$$\neg \exists C, D \colon C \xrightarrow{*} D \land$$

$$C \text{ is initial } \land$$

$$D \text{ is in a BSCC } \land$$

$$\text{opinion}(D) \neq \varphi(C)$$

Theorem

Esparza et al. CONCUR'15

Verification is decidable

Testing whether a protocol computes φ amounts to testing:

$$\neg \exists C, D: \quad C \xrightarrow{*} D \land$$

$$C \text{ is initial } \land$$

$$D \text{ is in a BSCC } \land$$

$$\text{opinion}(D) \neq \varphi(C)$$

As difficult as verification

TOWER-Lard (Czerwinski et al. STOC'19, Esparza et al. CONCUR'15)

Testing whether a protocol computes φ amounts to testing:

$$\neg \exists C, D: C \xrightarrow{*} D \land$$

$$C \text{ is initial } \land$$

$$D \text{ is in a BSCC } \land$$

$$\text{opinion}(D) \neq \varphi(C)$$

Relaxed with Presburger-definable overapproximation!

Testing whether a protocol computes φ amounts to testing:

$$\neg \exists C, D: C \xrightarrow{*} D \land$$
 $C \text{ is initial } \land$
 $D \text{ is in a BSCC } \land$
 $opinion(D) \neq \varphi(C)$

Difficult to express

Verifying correctness

Testing whether a protocol computes φ amounts to testing:

$$\neg \exists C, D: C \xrightarrow{*} D \land$$

$$C \text{ is initial } \land$$

$$D \text{ is terminal } \land$$

$$\text{opinion}(D) \neq \varphi(C)$$

BSCCs are of size I for most protocols!

Verifying correctness

Testing whether a protocol computes φ amounts to testing:

$$\neg \exists C, D: C \xrightarrow{*} D \land$$

$$C \text{ is initial } \land$$

$$D \text{ is terminal } \land$$

$$\text{opinion}(D) \neq \varphi(C)$$

Testable with an SMT solver

Verifying correctness

Testing whether a protocol computes φ amounts to testing:

$$\neg \exists C, D: C \xrightarrow{*} D \land$$

$$C \text{ is initial } \land$$

$$D \text{ is terminal } \land$$

$$\text{opinion}(D) \neq \varphi(C)$$

But how to know whether all BSCCs are of size 1?

Silent protocols

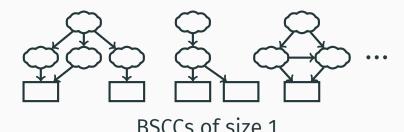
Protocol is silent if fair executions reach terminal configurations

7/14

Silent protocols

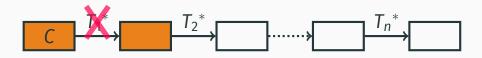
Protocol is silent if fair executions reach terminal configurations

- Testing silentness is as hard as verification of correctness
- But most protocols satisfy a common design

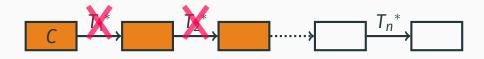


- all executions restricted to T_i terminate
- if $T_1 \cup \cdots \cup T_{i-1}$ disabled in C and $C \xrightarrow{T_i^*} D$, then $T_1 \cup \cdots \cup T_{i-1}$ also disabled in D

- all executions restricted to T_i terminate
- if $T_1 \cup \cdots \cup T_{i-1}$ disabled in C and $C \xrightarrow{T_i^*} D$, then $T_1 \cup \cdots \cup T_{i-1}$ also disabled in D

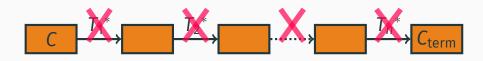


- all executions restricted to T_i terminate
- if $T_1 \cup \cdots \cup T_{i-1}$ disabled in C and $C \xrightarrow{T_i^*} D$, then $T_1 \cup \cdots \cup T_{i-1}$ also disabled in D



- all executions restricted to T_i terminate
- if $T_1 \cup \cdots \cup T_{i-1}$ disabled in C and $C \xrightarrow{T_i^*} D$, then $T_1 \cup \cdots \cup T_{i-1}$ also disabled in D

- all executions restricted to T_i terminate
- if $T_1 \cup \cdots \cup T_{i-1}$ disabled in C and $C \xrightarrow{T_i^*} D$, then $T_1 \cup \cdots \cup T_{i-1}$ also disabled in D



```
egin{aligned} egin{aligned\\ egin{aligned} egi
```

```
egin{aligned} egin{aligned\\ egin{aligned} egi
```

Bad partition: not all executions over T_1 terminate

$$egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egi$$

Bad partition: not all executions over T_1 terminate

$$\{m{B}, m{B}, m{R}, m{R}\}
ightarrow \{m{B}, m{b}, m{b}, m{R}\}
ightarrow \{m{B}, m{b}, m{r}, m{R}\}
ightarrow \{m{B}, m{b}, m{r}, m{R}\}
ightarrow \cdots$$

$$T_1$$
 $BR \rightarrow bb$
 $Rb \rightarrow Rr$
 T_3
 $Br \rightarrow Bb$
 $br \rightarrow bb$
 $\#B \geq \#R$:
 $\{B^*, R^*\}$

$$T_1$$
 X T_2 $B r \rightarrow B b$ $b r \rightarrow b b$

$$T_1$$
 X T_2 X $Br o Bb$ $br o bb$

#B \geq #R:

{B*, R*} $\xrightarrow{*}$ {B*, b*}

$$T_{1} \times BR \rightarrow bb \qquad T_{2} \times Rr \qquad Br \rightarrow Bb \\ br \rightarrow bb \\ \#B \geq \#R: \\ \{B^{*}, R^{*}\} \xrightarrow{*} \{B^{*}, b^{*}\} \xrightarrow{*} \{B^{*}, b^{*}\}$$

$$T_{1}$$

$$B R \rightarrow b b$$

$$R b \rightarrow R r$$

$$B r \rightarrow B b$$

$$b r \rightarrow b b$$

$$\# B \ge \# R:$$

$$\{B^{*}, R^{*}\} \xrightarrow{*} \{B^{*}, b^{*}\} \xrightarrow{*} \{B^{*}, b^{*}\}$$

$$\# R > \# B:$$

$$\{R^{+}, B^{*}\}$$

$$T_{1} \longrightarrow B R \rightarrow b b \qquad R b \rightarrow R r \qquad B r \rightarrow B b b r \rightarrow b b$$

$$\#B \geq \#R:$$

$$\{B^{*}, R^{*}\} \xrightarrow{*} \{B^{*}, b^{*}\} \xrightarrow{*} \{B^{*}, b^{*}\}$$

$$\#R > \#B:$$

$$\{R^{+}, B^{*}\} \xrightarrow{*} \{R^{+}, b^{*}\}$$

$$T_{1} \qquad \qquad \qquad T_{2} \qquad \qquad T_{3} \qquad \qquad B r \rightarrow B b \\ b r \rightarrow b b \qquad b r \rightarrow b b$$

$$\#B \geq \#R: \qquad \qquad \{B^{*}, R^{*}\} \xrightarrow{*} \{B^{*}, b^{*}\} \xrightarrow{*} \{B^{*}, b^{*}\}$$

$$\#R > \#B: \qquad \qquad \{R^{+}, B^{*}\} \xrightarrow{*} \{R^{+}, b^{*}\} \xrightarrow{*} \{R^{+}, r^{*}\}$$

Theorem

Deciding whether a protocol is strongly silent $\in \mathsf{NP}$

Proof sketch

Guess partition $T = T_1 \cup T_2 \cup \cdots \cup T_n$ and test whether it is correct by verifying

- · Petri net structural termination
- Additional simple structural properties

Peregrine: **>= Haskell** + Microsoft Z3 + JavaScript peregrine.model.in.tum.de

- Design of protocols
- · Manual and automatic simulation
- Statistics of properties such as termination time
- Automatic verification of correctness
- · More to come!

Protocol	Predicate	# states	# trans.	Time (secs.)
Majority [a]	$x \ge y$	4	4	0.1
Broadcast [b]	$X_1 \vee \cdots \vee X_n$	2	1	0.1
Lin. ineq. [c]	$\sum a_i x_i \geq 9$	75	2148	2376
Modulo [c]	$\sum a_i x_i = 0 \bmod 70$	72	2555	3177
Threshold [d]	$x \ge 50$	51	1275	182
Threshold [b]	<i>x</i> ≥ 325	326	649	3471
Threshold [e]	$x \ge 10^7$	37	155	19

[a] Draief et al. 2012 [b] Clément et al. 2011

[c] Angluin et al. 2006 [d] Chatzigiannakis et al. 2010

[e] Offtermatt 2017

For example, if population size = 1000:

PRISM takes 1 hour to verify a single configuration

rotocol	ocol Predicate	# states	# trans.	Time (secs.)
lajority [a]	rity [a] $x \geq y$	4	4	0.1
roadcast [b]	$dcast[b] x_1 \vee \cdots \vee x_n$	2	1	0.1
in. ineq. [c]	neq. [c] $\sum a_i x_i \geq 9$	75	2148	2376
lodulo [c]		72	2555	3177
hreshold [d]	shold $[a] \mid x \geq 50$	51	1275	182
hreshold [b]	shold [b] $x \ge 325$	326	649	3471
hreshold [e]	shold [e] $x \ge 10^7$	37	155	19
roadcast [b] in. ineq. [c] lodulo [c] hreshold [d] hreshold [b]	dcast [b] $x_1 \lor \cdots \lor x_n$ neq. [c] $\sum a_i x_i \ge 9$ ulo [c] $\sum a_i x_i = 0 \mod 70$ shold [d] $x \ge 50$ shold [b] $x \ge 325$	2 75 72 51 326	1 2148 2555 1275 649	0. 237 317 18 347

[a] Draief et al. 2012 [b] Clément et al. 2011 [c] Angluin et al. 2006 [d] Chatzigiannakis et al. 2010

[e] Offtermatt 2017


```
\begin{array}{cccc} \textbf{B}, \textbf{R} & \mapsto & \textbf{b}, \textbf{b} \\ \textbf{B}, \textbf{r} & \mapsto & \textbf{B}, \textbf{b} \\ \textbf{R}, \textbf{b} & \mapsto & \textbf{R}, \textbf{r} \\ \textbf{b}, \textbf{r} & \mapsto & \textbf{b}, \textbf{b} \end{array}
```

Correctly computes predicate #B ≥ #R ...but how fast?

```
\begin{array}{cccc} \textbf{B}, \textbf{R} & \mapsto & \textbf{b}, \textbf{b} \\ \textbf{B}, \textbf{r} & \mapsto & \textbf{B}, \textbf{b} \\ \textbf{R}, \textbf{b} & \mapsto & \textbf{R}, \textbf{r} \\ \textbf{b}, \textbf{r} & \mapsto & \textbf{b}, \textbf{b} \end{array}
```

- Natural to look for fast protocols
- Bounds on expected termination time useful since generally not possible to know whether a protocol has stabilized

```
\mathbf{B}, \mathbf{R} \mapsto \mathbf{b}, \mathbf{b}
```

$$\mathbf{B}, \mathbf{r} \mapsto \mathbf{B}, \mathbf{b}$$

$$\mathbf{R},\mathbf{b} \mapsto \mathbf{R},\mathbf{r}$$

$$\mathbf{b}, \mathbf{r} \mapsto \mathbf{b}, \mathbf{b}$$

Correctly computes predicate #B > #R ...but how fast?

Theorem

Angluin et al. PODC'04

Every Presburger-definable predicate is computable by a protocol with expected termination time $\in \mathcal{O}(n^2 \log n)$

```
\mathbf{B}, \mathbf{R} \mapsto \mathbf{b}, \mathbf{b}
\mathbf{B}, \mathbf{r} \mapsto \mathbf{B}, \mathbf{b}
\mathbf{R}, \mathbf{b} \mapsto \mathbf{R}, \mathbf{r}
\mathbf{b}, \mathbf{r} \mapsto \mathbf{b}, \mathbf{b}
```

Simulations show that it is slow when R has slight majority:

Initial

```
Steps configuration

100000 {B: 7, R: 8}

7 {B: 3, R: 12}

27 {B: 4, R: 11}

100000 {B: 7, R: 8}

3 {B: 13, R: 2}
```

$$\mathbf{B}, \mathbf{R} \mapsto \mathbf{T}, \mathbf{t} \qquad X, y \mapsto X, x \text{ for } x, y \in \{\mathbf{b}, \mathbf{r}, \mathbf{t}\}$$
 $\mathbf{B}, \mathbf{T} \mapsto \mathbf{B}, \mathbf{b}$
 $\mathbf{R}, \mathbf{T} \mapsto \mathbf{R}, \mathbf{r}$
 $\mathbf{T}, \mathbf{T} \mapsto \mathbf{T}, \mathbf{t}$
 $O(\mathbf{B}) = O(\mathbf{b}) = O(\mathbf{T}) = O(\mathbf{t}) = 1$
 $O(\mathbf{R}) = O(\mathbf{r}) = 0$
Alternative profocol

B, R
$$\mapsto$$
 T, t $X, y \mapsto X, x$ for $x, y \in \{b, r, t\}$
B, T \mapsto B, b
R, T \mapsto R, r
T, T \mapsto T, t

 $O(B) = O(b) = O(T) = O(t) = 1$
 $O(R) = O(r) = 0$

Alternative protocol

$$\begin{array}{cccc} \textbf{B}, \textbf{R} & \mapsto & \textbf{T}, \textbf{t} \\ \textbf{B}, \textbf{T} & \mapsto & \textbf{B}, \textbf{b} \\ \textbf{R}, \textbf{T} & \mapsto & \textbf{R}, \textbf{r} \end{array}$$

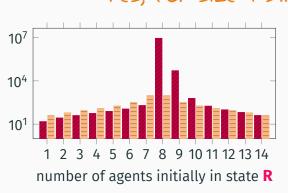
 $T, T \mapsto T, t$

expected number

expected number of steps to stable consensus X,y → X,x for x,y ∈ {b,r,t}

Is if faster?

Yes, for size 15...



 $\mathbf{B}, \mathbf{R} \mapsto \mathbf{T}, \mathbf{t}$

 $X, y \mapsto X, x \text{ for } x, y \in \{\mathbf{b}, \mathbf{r}, \mathbf{t}\}$

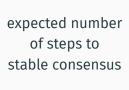
 $\mathbf{B}, \mathbf{T} \mapsto \mathbf{B}, \mathbf{b}$

Obtained using PRISM

 $\mathbf{R}, \mathbf{T} \mapsto \mathbf{R}, \mathbf{r}$

Clément et al. ICDCS'11, Offtermatt'17

 $T, T \mapsto T, t$





 $\mathbf{B}, \mathbf{R} \mapsto \mathbf{T}, \mathbf{t}$

 $\mathbf{B}, \mathbf{T} \mapsto \mathbf{B}, \mathbf{b}$

 $\mathbf{R},\mathbf{T} \mapsto \mathbf{R},\mathbf{r}$

 $T, T \mapsto T, t$

expected number of steps to stable consensus

 $X, y \mapsto X, x \text{ for } x, y \in \{b, r, t\}$ Our goal: analyze time for all sizes 10^{7} 10⁴ 2 3 4 5 6 7 8 9 10 11 12 13 14 number of agents initially in state R

Expected termination time: a simple temporal logic

$$C \models q \qquad \iff C(q) \ge 1$$

$$C \models q! \qquad \iff C(q) = 1$$

$$C \models Out_b \qquad \iff O(q) = b \text{ for every } C \models q$$

$$C \models \neg \varphi \qquad \iff C \not\models \varphi$$

$$C \models \varphi \land \psi \qquad \iff C \models \varphi \land C \models \psi$$

$$C \models \Box \varphi \qquad \iff \mathbb{P}_C(\{\sigma \in Runs(C) : \sigma_i \models \varphi \text{ for every } i\} = 1$$

$$C \models \Diamond \varphi \qquad \iff \mathbb{P}_C(\{\sigma \in Runs(C) : \sigma_i \models \varphi \text{ for some } i\} = 1$$

Expected termination time: a simple temporal logic

$$C \models q \qquad \iff C(q) \ge 1$$

$$C \models q! \qquad \iff C(q) = 1$$

$$C \models Out_b \qquad \iff O(q) = b \text{ for every } C \models q$$

$$C \models \neg \varphi \qquad \iff C \not\models \varphi$$

$$C \models \varphi \land \psi \qquad \iff C \models \varphi \land C \models \psi$$

$$C \models \Box \varphi \qquad \iff \mathbb{P}_C(\{\sigma \in Runs(C) : \sigma_i \models \varphi \text{ for every } i\} = 1$$

$$C \models \Diamond \varphi \qquad \iff \mathbb{P}_C(\{\sigma \in Runs(C) : \sigma_i \models \varphi \text{ for some } i\} = 1$$

Expected termination time: a simple temporal logic

$$C \models q \qquad \iff C(q) \ge 1$$

$$C \models q! \qquad \iff C(q) = 1$$

$$C \models Out_b \qquad \iff O(q) = b \text{ for every } C \models q$$

$$C \models \neg \varphi \qquad \iff C \not\models \varphi$$

$$C \models \varphi \land \psi \qquad \iff C \models \varphi \land C \models \psi$$

$$C \models \Box \varphi \qquad \iff \mathbb{P}_{C}(\{\sigma \in Runs(C) : \sigma_i \models \varphi \text{ for every } i\} = 1$$

$$C \models \Diamond \varphi \qquad \iff \mathbb{P}_{C}(\{\sigma \in Runs(C) : \sigma_i \models \varphi \text{ for some } i\} = 1$$

Random variable $Steps_{\varphi}$:

assigns to each run σ the smallest k s.t. $\sigma_k \models \varphi$, otherwise ∞

Random variable $Steps_{\varphi}$:

assigns to each run σ the smallest k s.t. $\sigma_k \models \varphi$, otherwise ∞

Maximal expected termination time

We are interested in $time: \mathbb{N} \to \mathbb{N}$ where

 $time(n) = \max\{\mathbb{E}_{C}[Steps_{\square Out_0 \ \lor \ \square Out_1}] : C \text{ is initial and } |C| = n\}$

Random variable $Steps_{\varphi}$:

assigns to each run σ the smallest k s.t. $\sigma_k \models \varphi$, otherwise ∞

Maximal expected termination time

We are interested in $\mathit{time} : \mathbb{N} \to \mathbb{N}$ where

 $time(n) = \max\{\mathbb{E}_{C}[Steps_{\square Out_{0} \vee \square Out_{1}}] : C \text{ is initial and } |C| = n\}$

Random variable $Steps_{\varphi}$:

assigns to each run σ the smallest k s.t. $\sigma_k \models \varphi$, otherwise ∞

Maximal expected termination time

We are interested in $\mathit{time} : \mathbb{N} \to \mathbb{N}$ where

 $time(n) = \max\{\mathbb{E}_{C}[Steps_{\square Out_0 \vee \square Out_1}] : C \text{ is initial and } |C| = n\}$

Random variable $Steps_{\varphi}$:

assigns to each run σ the smallest k s.t. $\sigma_k \models \varphi$, otherwise ∞

Maximal expected termination time

We are interested in $time: \mathbb{N} \to \mathbb{N}$ where

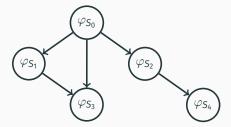
 $time(n) = \max\{\mathbb{E}_{C}[Steps_{\square Out_{0} \vee \square Out_{1}}] : C \text{ is initial and } |C| = n\}$

Our approach:

- Most protocols are naturally designed in stages
- Construct these stages automatically
- Derive bounds on expected termination time from stages structure

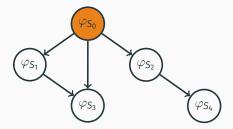
A stage graph is a directed acyclic graph $(\mathbb{S}, \rightarrow)$ such that

• every node $S \in \mathbb{S}$ is associated to a formula φ_S



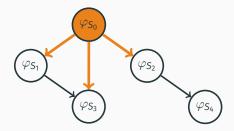
A stage graph is a directed acyclic graph $(\mathbb{S}, \rightarrow)$ such that

- every node $S \in \mathbb{S}$ is associated to a formula φ_S
- for every $C \in \text{Init}$, there exists $S \in \mathbb{S}$ such that $C \models \varphi_S$



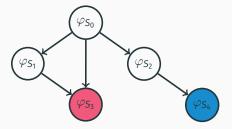
A stage graph is a directed acyclic graph $(\mathbb{S}, \rightarrow)$ such that

- every node $S \in \mathbb{S}$ is associated to a formula φ_S
- for every $\mathit{C} \in \mathrm{Init}$, there exists $\mathit{S} \in \mathbb{S}$ such that $\mathit{C} \models \varphi_{\mathit{S}}$
- $C \models \Diamond \bigvee_{S \rightarrow S'} \varphi_{S'}$ for every $S \in \mathbb{S}$ and $C \models \varphi_S$

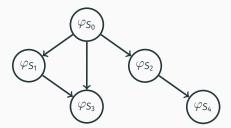


A stage graph is a directed acyclic graph $(\mathbb{S}, \rightarrow)$ such that

- every node $S \in \mathbb{S}$ is associated to a formula φ_S
- for every $C \in \text{Init}$, there exists $S \in \mathbb{S}$ such that $C \models \varphi_S$
- $C \models \Diamond \bigvee_{S \rightarrow S'} \varphi_{S'}$ for every $S \in \mathbb{S}$ and $C \models \varphi_S$
- $C \models \varphi_S$ implies $C \models \square Out_0 \lor \square Out_1$ for every bottom $S \in \mathbb{S}$

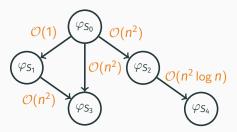


time(n) is bounded by the maximal expected number of steps to move from a stage to a successor



time(n) is bounded by the maximal expected number of steps to move from a stage to a successor

For example, $time(n) \in \mathcal{O}(n^2 \log n)$ if:



$$\begin{array}{cccc} \textbf{B}, \textbf{R} & \mapsto & \textbf{T}, \textbf{t} \\ \textbf{B}, \textbf{T} & \mapsto & \textbf{B}, \textbf{b} \\ \textbf{R}, \textbf{T} & \mapsto & \textbf{R}, \textbf{r} \\ \textbf{T}, \textbf{T} & \mapsto & \textbf{T}, \textbf{t} \end{array}$$

 $X, y \mapsto X, x$

$$S_0 \colon \left(\mathbf{B} \lor \mathbf{R} \right) \land \bigwedge_{q \notin \left\{ \mathbf{B}, \mathbf{R} \right\}} \neg q$$

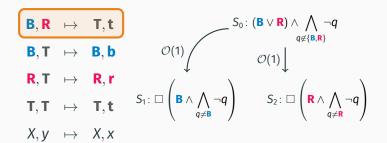
Transformation graph

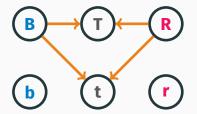
- B
- (T)

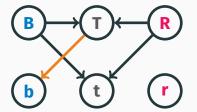
 $\left(\mathbf{R}\right)$

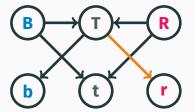
(b

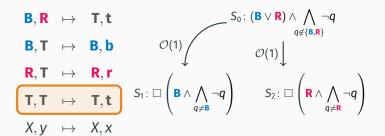
- (t)
- r

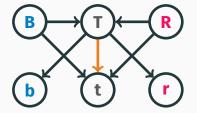


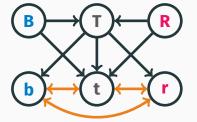


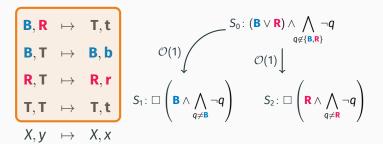




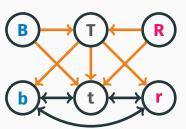


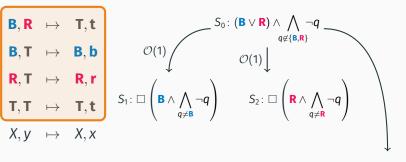


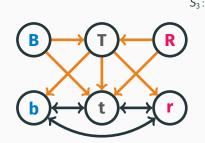




Will become permanently disabled almost surely





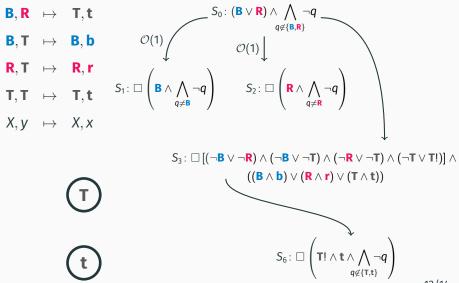


$$S_3 : \Box \left[\left(\neg \mathbf{B} \vee \neg \mathbf{R} \right) \wedge \left(\neg \mathbf{B} \vee \neg \mathbf{T} \right) \wedge \left(\neg \mathbf{R} \vee \neg \mathbf{T} \right) \wedge \left(\neg \mathbf{T} \vee \mathbf{T}! \right) \right] \wedge \\ \left(\left(\mathbf{B} \wedge \mathbf{b} \right) \vee \left(\mathbf{R} \wedge \mathbf{r} \right) \vee \left(\mathbf{T} \wedge \mathbf{t} \right) \right)$$

B, R
$$\mapsto$$
 T, t

B, T \mapsto B, b

 $O(1)$
 $O(1)$



$$\mathbb{E}_{C}[Steps_{\neg \mathbf{b} \wedge \neg \mathbf{r}}] \leq \sum_{i=1}^{C(\mathbf{b}) + C(\mathbf{r})} \frac{n^{2}}{2 \cdot C(\mathbf{T}) \cdot i}$$

$$\leq \sum_{i=1}^{n} \frac{n^{2}}{i}$$

$$\leq \alpha \cdot n^{2} \cdot \log n$$

 $S_6: \Box \left(\mathbf{T}! \wedge \mathbf{t} \wedge \bigwedge_{a \notin \{\mathbf{T},\mathbf{t}\}} \neg q \right)$

Φ: propositional formula describing current configurations

 π : set of permanently present/absent states

 \mathcal{T} : set of permanently disabled transitions

Successors computed by enriching π through trap/siphon-like analysis and

 ${\cal T}$ and Φ from transformation graph

Φ: propositional formula describing current configurations

 π : set of permanently present/absent states

 \mathcal{T} : set of permanently disabled transitions

Successors computed by enriching

 π through trap/siphon-like analysis and

 \mathcal{T} and Φ from transformation graph

- Prototype implemented in 🔁 python* + Microsoft Z3
- Can report: $\mathcal{O}(1), \mathcal{O}(n^2), \mathcal{O}(n^2 \log n), \mathcal{O}(n^3), \mathcal{O}(\operatorname{poly}(n))$ or $\mathcal{O}(\exp(n))$
- Tested on various protocols from the literature

Protocol			Stages	Bound	Time		
φ / params.	Q	T	Stages	Boullu	Tille		
$x_1 \vee \ldots \vee x_n [b]$	2	1	5	n ² log n	0.1		
$x \geq y[a]$	6	10	23	n ² log n	0.9		
$x \geq y[c]$	4	3	9	n ² log n	0.2		
$x \geq y[c]$	4	4	11	$\exp(n)$	0.3		
Threshold [a]: $x \ge c$							
c = 5	6	21	26	n ³	0.8		
c = 15	16	136	66	n ³	12.1		
c = 25	26	351	106	n ³	58.0		
c = 35	36	666	146	n ³	222.3		
c = 45	46	1081	186	n ³	495.3		
c = 55	56	1596	_	_	T/O		
Logarithmic threshold: $x \ge c$							
c = 7	6	14	34	n ³	1.9		
c = 31	10	34	130	n ³	6.1		
c = 127	14	62	514	n ³	39.4		
c = 1023	20	119	4098	n ³	395.7		
c = 4095	24	167	_	_	T/O		

[a] Angluin	et al.	2006
-------------	--------	------

[b] Clément et al. 2011

[d] Alistarh et al. 2015

Protocol		Ctagas	Bound	Time				
φ / params.	Q	T	Stages	Doullu	rime			
Threshold [b]: $x \ge c$								
c = 5	6	9	54	n ³	2.5			
c = 7	8	13	198	n ³	11.3			
c = 10	11	19	1542	n ³	83.9			
c = 13	14	25	12294	n ³	816.4			
c = 15	16	29	_	_	T/O			
Average-and-	Average-and-conquer [d]: $x \ge y$ (param. m , d)							
m = 3, d = 1	6	21	41	n ² log n	2.0			
m = 3, d = 2	8	36	1948	n ² log n	98.7			
m = 5, d = 1	8	36	1870	n ³	80.1			
m = 5, d = 2	10	55	_	_	T/O			
Remainder [a]: $\sum_{1 \le i < m} i \cdot x_i \equiv 0 \pmod{c}$								
c = 5	7	25	225	n ² log n	12.5			
c = 7	9	42	1351	n ² log n	88.9			
c = 9	11	63	7035	n ² log n	544.0			
c = 10	12	75	_	_	T/O			
Linear inequalities [a]								
$-x_1 + x_2 < 0$	12	57	21	n ³	3.0			
$-x_1 + x_2 < 1$	20	155	131	n ³	30.3			
$-x_1 + x_2 < 2$	28	301	_	_	T/O			

[[]c] Draief et al. 2012

Conclusion: summary

Population protocols analyzable automatically:

Formal verification of correctness

Bounds on expected termination time

Tool support

Conclusion: future work

 Combining verification and expected termination time analysis?

Asymptotic *lower* bounds on expected termination time?

 Interesting class of protocols with decidable quantitative model checking?

Thank you! Merci!