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Population protocols: distributed computing
model for massive networks of passively mobile
finite-state agents
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Model e.g. networks of passively mobile sensors and
chemical reaction networks

Protocols compute predicates of the form : N9 — {0,1}

e.g. ¢(m,n) is computed by m + n agents
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Population protocols Angluin et al. PODC'04

< anonymous mobile agents with very few resources

- agents change states via random pairwise interactions

each agent has opinion true/false

« computes by stabilizing agents to some opinion
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Example: threshold protocol

Are there at least 4 sick birds?
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Protocol:

- Each agentin a
state of {0,1,2,3, 4}

* (m,n)— (M+n,0)
ifm+n<éb

« (m,n) — (4,4)
ifm+n>a4
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Example: threshold protocol

Are there at least 4 sick birds?

Protocol: [:::]
- Each agentin a

state of {0,1,2,3, 4}
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Population protocols: formal model

- States:
- Opinions:
- Initial states:

« Transitions:

finite set Q
0: Q — {false, true}
IcQ

TCQ*x Q@

Qi1
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Population protocols: formal model

- States: finite set Q

+ Opinions: 0: Q — {false, true}
- Initial states: IcQ

- Transitions: TCQx@

LR 90
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Population protocols: interactions

All agents can interact pairwise
(complete topology)

Agent 1 Agent 2

Agent 3 Agent 4
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Population protocols: computations

Underlying Markov chain:

-Sl44444
6 g3 2
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Population protocols: computations

A protocol computes a predicate f: N' — {0,1}

if runs reach
with probability 1
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Population protocols: computations

A protocol computes a predicate f: N' — {0,1}

if runs reach common stable consensus
with probability 1

Expressive power Angluin, Aspnes, Eisenstat PODC'06

Population protocols compute precisely predicates
definable in Presburger arithmetic, i.e. FO(N, +, <)
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Verifying correctness

Protocols can become complex, even for B 2 R:

Fast and Exact Majority in Population Protocols

*
Dan Alistarh Rati Gelashvili Milan Vojnovi¢
Microsoft Research MIT Microsoft Research

2 e 7{ |z|  if € StrongStates or x € WeakStates;
1 if € IntermediateStates.
§ _ [ ifx € {+0,14,...,11,3,5,...,m}
2 sgn(@) ‘{ ~1 otherwise.
3 value(z) = sgn() - weight(x)
/* Functions for rounding state interactions */
4 ¢(x) = —1; ifx = —1;1y if z = 1; 2, otherwise
5 Ry (k) = &(k if k odd integer, k — 1 if k even)
6 Rp(k) = o(k if k odd integer, k+ 1 if k even)

—1j41  ifa = —1; for some index j < d
7 Shift-to-Zero(w) = { 1j+1  ifa = 1; for some index j < d
z otherwise.

+0 if sgn(a) > 0

8 Swn'm—va(T):{ —0  oherwise.

9 procedure update(z, y,
10 if (weight(z) > 0 and weight(y) > 1) or (weight(y) > 0 and weight(z) > 1) then
- o = Ry (el (x);»uuhu(y)) and yf « By (ﬂulm(.}:);unlm(y)
12 else if weight(z) - weight(y) = 0 and value(z) + value(y) > 0 then

13 if weight(z) # 0 then &' « Shift-to-Zero(z) and y' < Sign-to-Zero(x)

14 else y' « Shift-to-Zero(y) and a’ < Sign-to-Zero(y)

15 elseif (¢ € {—14,+14} and weight(y) = 1 and sgn(z) # sgn(y)) or

16 (y € {~14,+14} and weight(z) = 1 and sgn(y) # sgn(z)) then

17 2’ + —0 and y + +0

18 else 6 / 14

19 ' < Shift-to-Zero(x) and y' « Shift-to-Zero(y)
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Verifying correctness

Testing whether a protocol computes ¢
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-3C,D: C= DA
Cis initial A
D isin a BSCC A
opinion(D) # ¢(C)
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Theorem Esparza et al. CONCUR’15

Verification is decidable
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Silent protocols

Protocol is silent if fair executions reach terminal configurations

BSCCs of size 1
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Silent protocols

Protocol is silent if fair executions reach terminal configurations
« Testing silentness is as hard as verification of correctness

« But most protocols satisfy a common design

| ]
BSCCs of size 1
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Silent protocols: layered termination

Partition T=T{UT,U---UT, s.t. for every i

« all executions restricted to T; terminate

« ifTyU---UT;_; disabled in Cand C Ir, D, then
T1U---UT;_4 also disabled in D

-T_1*, LENK e | Tn-

~
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Bad partition: not all executions over T, terminate

{B,B,R,R} — {B,b,b,R} — {B,b,r,R} —
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Silent protocols: layered termination

Theorem
Deciding whether a protocol is strongly silent € NP

Proof sketch

Guess partition T=TUT, U --- U T, and test whether it is
correct by verifying

» Petri net structural termination

- Additional simple structural properties
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Peregrine: a tool for population protocols CAV'18, PODC'17

Peregrine: »Haskell + Microsoft Z3 + JavaScript

peregrine.model.in.tum.de

Design of protocols

Manual and automatic simulation

Statistics of properties such as termination time

Automatic verification of correctness

* More to come!
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peregrine.model.in.tum.de

Peregrine: a tool for population protocols CAV'18, PODC'17

Protocol Predicate # states | #trans. | Time (secs.)
Majority [a] x>y 4 4 0.1
Broadcast [b] | X; V-V Xy 2 1 0.1
Lin. ineq.[lcd | > aix; >9 75 2148 2376
Modulo [c] > a;x; =0 mod 70 72 2555 3177
Threshold [d] | x > 50 51 1275 182
Threshold [b] | x > 325 326 649 3471
Threshold [e] | x > 107 37 155 19
[a] Draief et al. 2012 [c] Angluin et al. 2006 [e] Offtermatt 2017

[b] Clément et al. 2011  [d] Chatzigiannakis et al. 2010
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Peregrine: a tool for population protocols CAV'18, PODC'17

For example, if population size = 1000:

PRISM takes 1 hour to verify a single configuration
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Demonstration



Expected termination time

B.R — bb
B,r — B,b
R,b — Rr
b,r — bb

Cor‘r‘ec'HV cOMPU‘!LeS Pr‘ec'ic«‘l(’e #B 2 #R
IDU'IL L-OW -CaS'(’.?
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Expected termination time

B.R — b,b
B.,r — B.b
R,b — Rr
b,r — bb

Cor-r‘ec'Hy comPu+es Preéic«'{'e #B 2 #R
bt Low Faust?

Natural to look for fast protocols

Bounds on expected termination time useful since generally
not possible to know whether a protocol has stabilized 9/14



Expected termination time

B.R — b,b
B.,r — B,b
R,b — Rr
b,r — bb

Cor-r‘ec'{‘ly COMPU+€S Pr‘eéic«'{'e #B 2 #R
bt Low Eust?

Theorem Angluin et al. PODC'04
Every Presburger-definable predicate is computable by
a protocol with expected termination time € O(n?log n)
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Expected termination time

B,R
B, r
R.b

b,r

£ & L&

b,b
B,b
R,r
b.b Sinulations sbow tlat i+ is slow
’ when R Leas sliéLnL maj'ori+7:
SR zgigigtration

100000 {B: 7, R: 8}
B 7 {B: 3, R: 12}
B 27 {B: 4, R: 11}
100000 {B: 7, R: 8}

[ ] 3 {B: 13, R: 2} 94



Expected termination time

Tt X,y — X, x forx,ye{b,r,t}

£ & L&

AH‘er-na:/'ive Pr“O'/'OC.O[
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Expected termination time

BR — Tt X,y — X, x forx,ye{b,r,t}

BT — B,b

RT — Rr Is i+ -Cc\S‘{'er‘.?
|_>

AH’er‘ncﬂLive Pr‘o'o‘ocol
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Expected termination time

BR — Tt X,y — X, x forx,ye{b,r,t}

BT — B,b

RT — Rt Is it CaS'/’ef‘-?
TT — T,t Yes, EO(‘ size lS

)

10/

expected number
of stepsto  10*
stable consensus

o D
12 3 4 5 6 7 8 91011121314
number of agents initially in state R 9/14




Expected termination time

X,y — X x forx,ye{b,rt}

BR — Tt
BT — B,b
RT — R
TT — Tt

)

expected number
of steps to
stable consensus

Ob'/'aineé usiné PQ’SM

10/

10*

101

Clement et al. ICDCS'L L, Offtermeatt 1 7

1 2 3 4 5 6 7 8 91011121314
number of agents initially in state R
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Expected termination time

BR — Tt X,y — X, x forx,ye{b,r,t}
BT — B,b
RT — Rr ouf‘QOaI: aﬂa’y?_e +ine
T.T — Tt ﬁor a“ sizes
| |
107 | )
expected number
of stepsto  10*| 1
stable consensus e E = § = E E : _—
10155555555555115

1234567 89101121314
number of agents initially in state R 9/14



Expected termination time: a simple temporal logic

C = Outy

CEenY
CEOp
CEOp

O(q) = bforeveryCE=q

CEe

CEenCEY

Pc({o € Runs(C) : oj = ¢ foreveryi} =1

Pc({o € Runs(C) : o; = ¢ forsomei} =1
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Expected termination time: a simple temporal logic

I

11

C(q) >1

C(q)

O(q) =bforeveryCkEq

1

C It %)
CEpACEY
Pc({o € Runs(C) : oj = ¢ foreveryi} =1

Pc({o € Runs(C) : o; = ¢ forsomei} =1

10/14



Expected termination time: a simple temporal logic

CFq = g =1

CEq! <~ ((q)=1

CEOut, <= 0(q)=DbforeveryCkEq

CE-y — Clop

CEenyYy <<= CEeACEY

CE Dy < Pc({o € Runs(C) : o; = foreveryi} =1
CE Oy <= Pc({o € Runs(C) : o; = ¢ forsomei} =1

10/14



Expected termination time: formal definition

Random variable Steps:

assigns to each run o the smallest kR s.t. o, |= ¢, otherwise oo
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Expected termination time: formal definition

Random variable Steps:

assigns to each run o the smallest k s.t. o = ¢, otherwise oo

Maximal expected termination time
We are interested in time: N — N where

time(n) = max{Ec[Stepsqoyz, v oout,] - C is initial and |C| = n}
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Expected termination time: formal definition

Random variable Steps:

assigns to each run o the smallest k s.t. o = ¢, otherwise oo

Maximal expected termination time
We are interested in time: N — N where

time(n) =

10/14



Stage graphs

Our approach:

- Most protocols are naturally designed in stages
- Construct these stages automatically

- Derive bounds on expected termination time
from stages structure

11/14



Stage graphs

A stage graph is a directed acyclic graph (S, —) such that

- every node S € S is associated to a formula s
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Stage graphs

A stage graph is a directed acyclic graph (S, —) such that
- every node S € S is associated to a formula s
- for every C € Init, there exists S € S such that C = ¢s
* CE=OVsops foreverySe Sand C = s

* C = ps implies C = OOuty Vv OOut, for every bottom S € S

@‘@ e

11/14



Stage graphs

time(n) is bounded by the maximal expected number of steps to
move from a stage to a successor

@ @ 11/14



Stage graphs

time(n) is bounded by the maximal expected number of steps to
move from a stage to a successor

For example, time(n) € O(n?logn) if:

11/14



A procedure for computing stage graphs

B.R — Tt SO:(BVR)/\/\ﬁq
ag{BR}

B,T — B,b

R, T — R

TT —» Tt

Xy — XX
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A procedure for computing stage graphs

B.R — Tt SO:(BVR)/\/\ﬁq
a¢{B.R}
o

B,T — B,b (M (9(1).1
RT — Rr

S, 0O BA/\ﬁq S,: 0 R/\/\ﬁq
1o re S0(aA)  so(rep)
Xy — XX
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A procedure for computing stage graphs

BR — Tt So: BVR)A A g
a#{B.R}
o@

B,T — B,b (M 0(1)1
RT — Rr

S: 0 BA/\ﬁq S,: 0 R/\/\ﬁq
1o re S0(aA)  so(rep)
Xy — XX

TP&ﬂS-COf‘Ma‘/’iO’\ ér‘*aPL,

@ @
ONONO
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A procedure for computing stage graphs
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A procedure for computing stage graphs
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A procedure for computing stage graphs

BR — Tt So: BVR)A A g
ag{BR}
o

B,T — B,b (M (9(1).1
RT — Rr

S, 0O BA/\ﬁq S,: 0 R/\/\ﬁq
[T,T — T,t] ( b ) ( o )
Xy — XX

Oy OyO
T

12/14



A procedure for computing stage graphs
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RT — Rr
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A procedure for computing stage graphs

( )

BR — Tt So: BVR)A A g
ag{BR}
o

B,T — B,b ™ om|
RT — Rr

S: 0 B/\/\ﬁq S,: 0 R/\/\ﬁq
LT,T — T,tJ ( b ) ( o )
Xy — XX

12/14




A procedure for computing stage graphs
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A procedure for computing stage graphs
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A procedure for computing stage graphs
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RT — Rr
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Xy — XX
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@ (BAb)V(RAT)V (TAL)
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A procedure for computing stage graphs
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A procedure for computing stage graphs

BR — Tt So: BVR)A A g
ag{BR}
on

B,T — Bb () O(%
RT — Rr

S:0|BA N —q S;:O(RA A g
1o re S0(aA)  so(rep)
Xy — XX

S3: O[(-BV =R) A (-BV =T) A (-RV =T) A (=T V T!)] A

C(b)+C(r) 5 (BAb)V(RAT)V(TAL))

n
; 2.C(T)-i

IA

EC[Stepsﬂb/\ﬂr] O(n? log n)
2|og

n 2

n

. _ | B
— 56.D<T./\t/\/\ q)

qZ{T.t}
< a-n*-logn 12/14
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A procedure for computing stage graphs
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A procedure for computing stage graphs

BR — Tt So: BVR)A A g
ag{BR}
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B,T — B,b 4 om|
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A procedure for computing stage graphs

®: propositional formula describing current configurations

set of permanently present/absent states

T
T: setof permanently disabled transitions

~
----e
L4

Successors computed by enriching
7 through trap/siphon-like analysis and
T and ¢ from transformation graph 12/
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Experimental results CONCUR'18

- Prototype implemented in @ pgthon”" + Microsoft Z3
« Can report: O(1),0(n?),0(n?logn), O(n%), O(poly(n)) or O(exp(n))

- Tested on various protocols from the literature

13/14



Experimental results

Protocol q Protocol q
Stages | Bound | Time Stages | Bound | Time
o params. [1Q]] |7 8 o [params. [ Q[ [ 1] | ¢
x V...V, [b] | 2 1 5 | n?logn 0.1 Threshold [b]: x > ¢
x> ylal 6 10 23 n’logn | 0.9 c=5 6] o9 54 n3 25
x>yld 4 3] 9 |nlogn| 02| |c=7 8| 13| 198| 3 113
x>yld 4 4 11 exp(n) | 03 c=10 11| 19| 1542| nd 83.9
Threshold [a]: x > ¢ c=13 14 | 25| 12294 n’ 816.4
c=5 6 21 26 n3 0.8 c=15 16 | 29 — — 1/0
c=15 16 | 136 66| n’ 121 Average-and-conquer [d]: x>y  (param. m, d)
c=25 26| 351| 106 | n? 580 | [m—3d=1] 6] 21 41 nflogn | 20
— 3
E=H 36| 666 | 146| n° 2223 | | _34_2| 8| 36| 1948 |nlogn | 987
c=45 46 1081 186 n® 495.3 m=5.d=1 8| 36 1870 n3 80.1
S=6B s6]15% | -] - 0| |m=sd=2|10] 55 ol 7/0
Logarithmic threshold: x > c Remainder [al: 3>,;_, i - X; = 0 (mod )
c=7 6 14 34 n? 1.9
3 10 3 130 5 o1 c=5 71 25 225 | n?logn | 12.5
< 1;7 wl ol si " soa| |67 9| 42| 1351 |n2logn| 889
€= 1023 20 | 119 | 4008 " a7 | |€=9 11| 63| 7035 | n2logn | 544.0
€= " ' c=10 12| 75 =| = 7/0
¢ = 4095 24 167 = = T/0 n n o
Linear inequalities [a]
—X1+X<0| 12| 57 21 n? 3.0
[a] Angluin et al. 2006 [b] Clément et al. 2011 “xi4+x <1 20155 131 n3 30.3
[c] Draief et al. 2012 [d] Alistarh et al. 2015 —X1+X <2 | 28301 — — T/0
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Population protocols analyzable automatically:

- Formal verification of correctness
- Bounds on expected termination time

- Tool support

1414



Conclusion: future work

- Combining verification and expected
termination time analysis?

- Asymptotic lower bounds on
expected termination time?

- Interesting class of protocols with
decidable quantitative model checking?
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Thank you!

Merci!



