Automatic Analysis of Population Protocols

Michael Blondin

Joint work with Javier Esparza, Stefan Jaax, Antonin Kucera, Philipp J. Meyer

UNIVERSITE DE
SHERBROOKE

Population protocols: distributed computing
model for massive networks of passively mobile
finite-state agents

114

- - - 8% %% 00

G - P QOO%

- %do ™ q
G % é) o0

Population protocols: distributed computing o0 &

model for massive networks of passively mobile 8§ gzo%

finite-state agents

Model e.g. networks of passively mobile sensors and
chemical reaction networks

114

e . o . % & o0
Population protocols: distributed computing oo0 &

model for massive networks of passively mobile 8 220%
finite-state agents

Model e.g. networks of passively mobile sensors and
chemical reaction networks

Protocols compute predicates of the form : N9 — {0,1}

e.g. ¢(m,n) is computed by m + n agents

114

- - - 8% %% 00
@ - g %%

G & o0
Population protocols: distributed computing %00 o &
model for massive networks of passively mobile 8§ gzo%

finite-state agents

This talk: automatic verification and
expected termination time analysis

1/14

Population protocols Angluin et al. PODC'04

< anonymous mobile agents with very few resources

- agents change states via random pairwise interactions

each agent has opinion true/false

« computes by stabilizing agents to some opinion

2/14

Population protocols Angluin et al. PODC'04

« anonymous mobile agents with very few resources

- agents change states via random pairwise interactions

each agent has opinion true/false

« computes by stabilizing agents to some opinion

119 %9q

2/14

Population protocols Angluin et al. PODC'04

< anonymous mobile agents with very few resources

- agents change states via random pairwise interactions

each agent has opinion true/false

« computes by stabilizing agents to some opinion

1149%

2/14

Population protocols Angluin et al. PODC'04

< anonymous mobile agents with very few resources

- agents change states via random pairwise interactions

each agent has opinion true/false

« computes by stabilizing agents to some opinion

R LA L)

2/14

Population protocols Angluin et al. PODC'04

< anonymous mobile agents with very few resources

- agents change states via random pairwise interactions

each agent has opinion true/false

« computes by stabilizing agents to some opinion

19444

2/14

Population protocols Angluin et al. PODC'04

< anonymous mobile agents with very few resources

- agents change states via random pairwise interactions

each agent has opinion true/false

« computes by stabilizing agents to some opinion

11444

2/14

Population protocols Angluin et al. PODC'04

< anonymous mobile agents with very few resources

- agents change states via random pairwise interactions

each agent has opinion true/false

« computes by stabilizing agents to some opinion

11444

2/14

Population protocols Angluin et al. PODC'04

< anonymous mobile agents with very few resources

- agents change states via random pairwise interactions

each agent has opinion true/false

« computes by stabilizing agents to some opinion

"4 @i@*@i@

2/14

Population protocols Angluin et al. PODC'04

< anonymous mobile agents with very few resources

- agents change states via random pairwise interactions

each agent has opinion true/false

« computes by stabilizing agents to some opinion

EREREY

2/14

Population protocols Angluin et al. PODC'04

< anonymous mobile agents with very few resources

- agents change states via random pairwise interactions

each agent has opinion true/false

- computes by stabilizing agents to some opinion

Aty

2/14

Population protocols Angluin et al. PODC'04

< anonymous mobile agents with very few resources

- agents change states via random pairwise interactions

each agent has opinion true/false

« computes by stabilizing agents to some opinion
Ley g Ley =g L]
oo oo 2
. . _ 0%
1] 1] Q.

AL

2/14

Example: threshold protocol

Are there at least 4 sick birds?

1

1
L4

Example: threshold protocol

Are there at least 4 sick birds?

1
44

Protocol:

- Each agentin a
state of {0,1,2,3, 4}

* (m,n)— (M+n,0)
ifm+n<éb

« (m,n) — (4,4)
ifm+n>a4

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

- Each agentin a

state of {0,1,2,3, 4}

* (m,n)+— (m+n,0)
ifm+n<é

* (m,n) = (4 4)
ifm+n>4

Example: threshold protocol

Are there at least 4 sick birds?

114
L4

Protocol:

- Each agentin a
state of {0,1,2,3, 4}

* (m,n)— (M+n,0)
ifm+n<éb

« (m,n) — (4,4)
ifm+n>a4

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

- Each agentin a

state of {0,1,2,3, 4}

* (m,n)+— (m+n,0)
ifm+n<é

* (m,n) = (4 4)
ifm+n>4

Example: threshold protocol

Are there at least 4 sick birds?

114
L4

Protocol:

- Each agentin a
state of {0,1,2,3, 4}

* (m,n)— (M+n,0)
ifm+n<éb

« (m,n) — (4,4)
ifm+n>a4

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

- Each agentin a

state of {0,1,2,3, 4}

* (m,n)+— (m+n,0)
ifm+n<é

* (m,n) = (4 4)
ifm+n>4

Example: threshold protocol

Are there at least 4 sick birds?

114
L4

(0]

Protocol:

- Each agentin a
state of {0,1,2,3, 4}

* (m,n)+— (m+n,0)
ifm+n<é

* (m,n) = (4 4)
ifm+n>4

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

- Each agentin a
state of {0,1,2,3, 4}

* (m,n)+— (m+n,0)
ifm+n<é

* (m,n) = (4 4)
ifm+n>4

Example: threshold protocol

Are there at least 4 sick birds?
3/14

(0]

Protocol:

- Each agentin a
state of {0,1,2,3, 4}

* (m,n)+— (m+n,0)
ifm+n<é

* (m,n) = (4 4)
ifm+n>4

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

- Each agentin a
state of {0,1,2,3, 4}

* (m,n)+— (m+n,0)
ifm+n<é

* (m,n) = (4 4)
ifm+n>4

3/14

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

- Each agentin a 4
state of {0,1,2,3, 4}
* (m,n)+— (m+n,0)

ifm+n<é

4
44

* (m,n) = (4 4)
ifm+n>4

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

- Each agentin a
state of {0,1,2,3, 4}

* (m,n)+— (m+n,0)
ifm+n<é

* (m,n) = (4 4)
ifm+n>4

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

- Each agentin a 4
state of {0,1,2,3, 4}
* (m,n)+— (m+n,0)

ifm+n<é

4
44

* (m,n) = (4 4)
ifm+n>4

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

- Each agentin a
state of {0,1,2,3, 4}

* (m,n)+— (m+n,0)
ifm+n<é

* (m,n) = (4 4)
ifm+n>4

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

- Each agentin a 4
state of {0,1,2,3, 4}
* (m,n)+— (m+n,0)

ifm+n<é

4
44

* (m,n) = (4 4)
ifm+n>4

Example: threshold protocol

Are there at least 4 sick birds?

Protocol: [:::]
- Each agentin a

state of {0,1,2,3, 4}

2o @

@i
@i

* (m,n)+— (m+n,0)

ifm+n<a |I_f'_'l\

* (m,n) = (4 4)
ifm+n>4

Example: majority protocol

i blue agents 2 # red agents?

1
L 8

8
. 5

Example: majority protocol

i blue agents 2 # red agents?

Protocol:

 Two large agents
become small blue
agents

- Large agents convert
small agents to their
colour

1
L 8

8
. 5

Example: majority protocol

i blue agents 2 # red agents?

Protocol:

 Two large agents
become small blue
agents

- Large agents convert
small agents to their
colour

1

Example: majority protocol

i blue agents 2 # red agents?

Protocol:

 Two large agents
become small blue
agents

- Large agents convert
small agents to their
colour

1T 1

4[14

Example: majority protocol

i blue agents 2 # red agents?

Protocol:

 Two large agents
become small blue
agents

- Large agents convert
small agents to their
colour

4[14

Example: majority protocol

i blue agents 2 # red agents?

Protocol:

 Two large agents
become small blue
agents

- Large agents convert
small agents to their
colour

1T 1

4[14

Example: majority protocol

i blue agents 2 # red agents?

Protocol:

 Two large agents
become small blue
agents

- Large agents convert
small agents to their
colour

4[14

Example: majority protocol

i blue agents 2 # red agents?

Protocol:

 Two large agents
become small blue
agents

- Large agents convert
small agents to their
colour

1T 1

4[14

Example: majority protocol

i blue agents 2 # red agents?

Protocol:

 Two large agents
become small blue
agents

- Large agents convert
small agents to their
colour

4[14

Example: majority protocol

i blue agents 2 # red agents?

Protocol:

 Two large agents
become small blue
agents

- Large agents convert
small agents to their
colour

1

1

1

1

4[14

Example: majority protocol

i blue agents 2 # red agents?

Protocol:
 Two large agents i

become small blue
agents

- Large agents convert
small agents to their

colour i i

4[14

Example: majority protocol

i blue agents 2 # red agents?

Protocol:

 Two large agents
become small blue
agents

- Large agents convert
small agents to their
colour

1

1

1

1

4[14

Example: majority protocol

i blue agents 2 # red agents?

Protocol:

 Two large agents
become small blue
agents

- Large agents convert
small agents to their
colour

1

1

*

4[14

Example: majority protocol

i blue agents 2 # red agents?

Protocol:

 Two large agents
become small blue
agents

- Large agents convert
small agents to their
colour

1

1

1

1

4[14

Example: majority protocol

i blue agents 2 # red agents?

Protocol:
 Two large agents
become small blue
agents

- Large agents convert
small agents to their

colour ‘/ i

4[14

Example: majority protocol

i blue agents 2 # red agents?

Protocol:

 Two large agents
become small blue
agents

- Large agents convert
small agents to their
colour

1

1

1

1

4[14

Example: majority protocol

i blue agents 2 # red agents?

Protocol:
 Two large agents i«
become small blue
agents

- Large agents convert
small agents to their

colour i

4[14

Example: majority protocol

i blue agents 2 # red agents?

Protocol:

 Two large agents
become small blue
agents

- Large agents convert
small agents to their
colour

1

1

1

1

4[14

Example: majority protocol

i blue agents 2 # red agents?

Protocol: EI
 Two large agents l@ |
become small blue
agents
- Large agents convert .@
small agents to their :I

colour ‘/

4[14

Population protocols: formal model

- States:
- Opinions:
- Initial states:

« Transitions:

finite set Q
0: Q — {false, true}
IcQ

TCQ*x Q@

Qi1

5/14

Population protocols: formal model

- States:

- Opinions:

- Initial states:

« Transitions:

)

L]

finite set Q
O: Q— {false, true}
IcQ

TCQ*x Q@

&

TN

5/14

Population protocols: formal model

- States:
- Opinions:

- Initial states:

« Transitions:

finite set Q

0: Q — {false, true}
ICQ

TCQ*x Q@

5/14

Population protocols: formal model

- States: finite set Q

+ Opinions: 0: Q — {false, true}
- Initial states: IcQ

- Transitions: TCQx@

LR 90

5/14

Population protocols: interactions

All agents can interact pairwise
(complete topology)

Agent 1 Agent 2

Agent 3 Agent 4

5/14

Population protocols: interactions

2-C(p)-C .
n(zp)_ n(Q) ifp#aq
Plfire p,q+— p’,q inC] =
C(p) - (C .
(p)ng _(p) -
Agent 1 Agent 2
Agent 3 Agent 4

5/14

Population protocols: interactions

2-C(p) - C(q) .
. — ifp#q
Plfire p,g+— p’,q inC] =
Clp)-(Cp)—1) .
n?—n fp=q
Agent 1 Agent 2
Agent 3 Agent 4

5/14

Population protocols: interactions

2-C(p)-C .
n(zp)_n(Q) ifp#aq
Plfire p,g+— p’,q inC] =
Cp)-(Cp) =) .
Py R ifp=gq
P q

5/14

Population protocols: interactions

2-C(p)-C .
n(zp)_n(Q) ifp#aq
Plfire p,g+— p’,q inC] =
Cp)-(Cp) =) .
Py R ifp=gq
P q

5/14

Population protocols: interactions

Plfire p,q — p’,q"in (] =
¢(p) AEC_(p) -
P[C— (] = Z Plfire tin C]
t st CC/

5/14

Population protocols: computations

Underlying Markov chain:

-Sl44444
6 g3 2
10 10 10
¥ Z

Lided [P Ladee [P Laaae P Ladan [P Ladad
“ 3 2z ik

5/14

Population protocols: computations

A protocol computes a predicate f: N' — {0,1}

if runs reach
with probability 1

5/14

Population protocols: computations

A protocol computes a predicate f: N' — {0,1}

if runs reach common stable consensus
with probability 1

Expressive power Angluin, Aspnes, Eisenstat PODC'06

Population protocols compute precisely predicates
definable in Presburger arithmetic, i.e. FO(N, +, <)

5/14

Verifying correctness

Protocols can become complex, even for B 2 R:

Fast and Exact Majority in Population Protocols

*
Dan Alistarh Rati Gelashvili Milan Vojnovi¢
Microsoft Research MIT Microsoft Research

2 e 7{ |z| if € StrongStates or x € WeakStates;
1 if € IntermediateStates.
§ _ [ifx € {+0,14,...,11,3,5,...,m}
2 sgn(@) ‘{ ~1 otherwise.
3 value(z) = sgn() - weight(x)
/* Functions for rounding state interactions */
4 ¢(x) = —1; ifx = —1;1y if z = 1; 2, otherwise
5 Ry (k) = &(k if k odd integer, k — 1 if k even)
6 Rp(k) = o(k if k odd integer, k+ 1 if k even)

—1j41 ifa = —1; for some index j < d
7 Shift-to-Zero(w) = { 1j+1 ifa = 1; for some index j < d
z otherwise.

+0 if sgn(a) > 0

8 Swn'm—va(T):{ —0 oherwise.

9 procedure update(z, y,
10 if (weight(z) > 0 and weight(y) > 1) or (weight(y) > 0 and weight(z) > 1) then
- o = Ry (el (x);»uuhu(y)) and yf « By (ﬂulm(.}:);unlm(y)
12 else if weight(z) - weight(y) = 0 and value(z) + value(y) > 0 then

13 if weight(z) # 0 then &' « Shift-to-Zero(z) and y' < Sign-to-Zero(x)

14 else y' « Shift-to-Zero(y) and a’ < Sign-to-Zero(y)

15 elseif (¢ € {—14,+14} and weight(y) = 1 and sgn(z) # sgn(y)) or

16 (y € {~14,+14} and weight(z) = 1 and sgn(y) # sgn(z)) then

17 2’ + —0 and y + +0

18 else 6 / 14

19 ' < Shift-to-Zero(x) and y' « Shift-to-Zero(y)

Verifying correctness

Protocols can become complex, even for B 2 R:

Fast and Exact Majority in Population Protocols

*
Dan Alistarh Rati Gelashvili Milan Vojnovi¢
Microsoft Research MIT Microsoft Research

1 weight(z) = || if = € StrongStates or « € WeakStates;
weght(®) =1 1" if 2 € IntermediateStates.

A ‘,g"(m):{ 1_l ;{H:rii(szn. la,...,11,3,5,...,m}; HOW +O Verﬂ.C\,

3 value(z) = sgn() - weight(x)
/* Functions for rounding state interactions */

4 ¢(z) 1L ifz 1:1 if z = 1; =, otherwise C—O f‘f‘ec‘#’\ess

5 Ry (k) —1if k even)
6 Ry(k) = o(k if k odd integer, k + 1 if k even)

—1j41 ifa = —1; for some index j < d . ?
7 Shift-to-Zero(x) = { 1,41 ifa = 1; for some index j < d +

CAR avTomaT Ica 7 .

+0 if sgn(a) > 0

8 Swn'tO—Z"m(T):{ —0 oherwise.

9 procedure update(z,)
10 if (weight(z) > 0 and weight(y) > 1) or (weight(y) > 0 and weight(x) > 1) then

11 o R, value (x);»mxhu(y)) and ' « Ry ()uxlm(.}:);uulm(y)

12 else if weight(z) - weight(y) = 0 and value(z) + value(y) > 0 then

13 if weight(z) # 0 then ' < Shift-to-Zero(z) and y' < Sign-to-Zero(x)

14 else y « Shift-to-Zero(y) and a’ < Sign-to-Zero(y)

15 elseif (¢ € {—14,+14} and weight(y) = 1 and sgn(z) # sgn(y)) or

16 (y € {~14,+14} and weight(z) = 1 and sgn(y) # sgn(z)) then

17 2’ < =0 and y « +0

18 else 6 / 14

19 ' < Shift-to-Zero(x) and y' « Shift-to-Zero(y)

Verifying correctness

Testing whether a protocol computes ¢
amounts to testing:

-3C,D: C= DA
Cis initial A
D isin a BSCC A
opinion(D) # ¢(C)

6/14

Verifying correctness

Testing whether a protocol computes ¢
amounts to testing:

-3C,D: C= DA
Cis initial A
D isin a BSCC A
opinion(D) # ¢(C)
Theorem Esparza et al. CONCUR’15

Verification is decidable

6/14

Verifying correctness

Testing whether a protocol computes ¢
amounts to testing:

-3C,D: C=DA
Cis initial A
D isin a BSCC A
opinion(D) # ¢(C)

As cli-C-chl'bL es ver-ification

T OWER-Lard (Czerwinski et ol. STOC 1 9,
ESP;‘J‘L& ot ol. CONCUR L 5)

6/14

Verifying correctness

Testing whether a protocol computes ¢
amounts to testing:

-3C,D: C-“5DA
Cis initial A
D isina BSCC A
opinion(D) # ¢(C)

Qelakec‘ WI+L| Pr‘esbur‘éer‘-cleanable

Over‘aPPr‘OXl'Ma‘HO'\.l

6/14

Verifying correctness

Testing whether a protocol computes ¢
amounts to testing:

-3C,D: C->DA
Cis initial A
Disina BSCCA
opinion(D) # ¢(C)

Dicticult 4o express

6/14

Verifying correctness

Testing whether a protocol computes ¢
amounts to testing:

-3C,D: C->DA
Cis initial A
D is terminal A
opinion(D) # ¢(C)
BSCCs are of size |

for most Pr~0+ocols./

6/14

Verifying correctness

Testing whether a protocol computes ¢
amounts to testing:

-3C,D: C-“5D A
Cis initial A
D is terminal A
opinion(D) # ¢(C)

T osteble with an SMT solver

6/14

Verifying correctness

Testing whether a protocol computes ¢
amounts to testing:

—3C,D: C-“sDA
Cis initial A
D is terminal A
opinion(D) # ¢(C)
But Low to know wihetler
ol BSCCs are of size |7

6/14

Silent protocols

Protocol is silent if fair executions reach terminal configurations

BSCCs of size 1

7/14

Silent protocols

Protocol is silent if fair executions reach terminal configurations
« Testing silentness is as hard as verification of correctness

« But most protocols satisfy a common design

|]
BSCCs of size 1

7/14

Silent protocols: layered termination

Partition T=T{UT,U---UT, s.t. for every i

« all executions restricted to T; terminate

« ifTyU---UT;_; disabled in Cand C Ir, D, then
T1U---UT;_4 also disabled in D

-T_1*, LENK e | Tn-

~

7/14

Silent protocols: layered termination

Partition T=T{UT,U---UT, s.t. for every i

« all executions restricted to T; terminate

« ifTyU---UT;_; disabled in Cand C Ir, D, then
T1U---UT;_4 also disabled in D

T Tn"

h 4
~

7/14

Silent protocols: layered termination

Partition T=T,UT,U---UT, s.t. for every i

« all executions restricted to T; terminate

« ifTyU---UT;_; disabled in Cand C Ir, D, then
T1U---UT;_4 also disabled in D

7/14

Silent protocols: layered termination

Partition T=T,UT,U---UT, s.t. for every i

« all executions restricted to T; terminate

« ifTyU---UT;_; disabled in Cand C Ir, D, then
T1U---UT;_4 also disabled in D

G S L

7/14

Silent protocols: layered termination

Partition T=T,UT,U---UT, s.t. for every i

« all executions restricted to T; terminate

« ifTyU---UT;_; disabled in Cand C Ir, D, then
T1U---UT;_4 also disabled in D

[S L B B L

7/14

Silent protocols: layered termination

T
BR—bb
Br —-Bb
Rb— Rr
br -bb

7/14

Silent protocols: layered termination

T
BR—-bD
Br —-Bb
Rb— Rr
br —-bb

Bad partition: not all executions over T, terminate

7/14

Silent protocols: layered termination

T
BR—-bDb
Br —-Bb
Rb— Rr
br -bb

Bad partition: not all executions over T, terminate

{B,B,R,R} — {B,b,b,R} — {B,b,r,R} —
{B,b,b,R} — {B,b,r,R} — -

7/14

Silent protocols: layered termination

Ty T, T3

BR>bb | RbsRr i B5F—7Bb

br—bb

7/14

Silent protocols: layered termination

Ty T, T3

BR>bb | RbsRr i B5F—7Bb

br—bb

#B > #R:
{B*, R*}

7/14

Silent protocols: layered termination
n X i T,

BR>bb | RbsRr i B5F—7Bb

br—bb

#B > #R:

7/14

Silent protocols: layered termination
n X in X in

BR>bb | RbsRr i B5F—7Bb

br—bb

#B > #R:

7/14

Silent protocols: layered termination
T x i T, x i T3 x

BR>bb . Rb_—Rr i EBFr—BD
: br—bb

#B > #R:

7/14

Silent protocols: layered termination

Ty T, T3

BR>bb | RbsRr i B5F—7Bb

br—bb

#B > #R:

#R > #B:
{R*, B*}

7/14

Silent protocols: layered termination
n X i T,

BR>bb | RbsRr i B5F—7Bb

br—bb

#B > #R:

#R > #B:
{R*, B*} — {R", b*}

7/14

Silent protocols: layered termination
n X in X in

BR>bb | RbsRr i B5F—7Bb

br—bb

#B > #R:

#R > #B:
{R", B*'} —{R", b*} — {RT, r*}

7/14

Silent protocols: layered termination
T x i T, x i T3 x

BR>bb . Rb_—Rr i EBFr—BD
: br—bb

#B > #R:

#R > #B:
{R", B*'} —{R", b*} — {RT, r*}

7/14

Silent protocols: layered termination

Theorem
Deciding whether a protocol is strongly silent € NP

Proof sketch

Guess partition T=TUT, U --- U T, and test whether it is
correct by verifying

» Petri net structural termination

- Additional simple structural properties

7/14

Peregrine: a tool for population protocols CAV'18, PODC'17

Peregrine: »Haskell + Microsoft Z3 + JavaScript

peregrine.model.in.tum.de

Design of protocols

Manual and automatic simulation

Statistics of properties such as termination time

Automatic verification of correctness

* More to come!

8/14

peregrine.model.in.tum.de

Peregrine: a tool for population protocols CAV'18, PODC'17

Protocol Predicate # states | #trans. | Time (secs.)
Majority [a] x>y 4 4 0.1
Broadcast [b] | X; V-V Xy 2 1 0.1
Lin. ineq.[lcd | > aix; >9 75 2148 2376
Modulo [c] > a;x; =0 mod 70 72 2555 3177
Threshold [d] | x > 50 51 1275 182
Threshold [b] | x > 325 326 649 3471
Threshold [e] | x > 107 37 155 19
[a] Draief et al. 2012 [c] Angluin et al. 2006 [e] Offtermatt 2017

[b] Clément et al. 2011 [d] Chatzigiannakis et al. 2010

8/14

Peregrine: a tool for population protocols CAV'18, PODC'17

For example, if population size = 1000:

PRISM takes 1 hour to verify a single configuration

Protocol Predicate # states | #trans. | Time (secs.)
Majority [a] X>y 4 4 0.1
Broadcast [b] | X; V-V Xy 2 1 0.1
Lin. ineq.[lcd | > aix; >9 75 2148 2376
Modulo [c] > a;x; =0 mod 70 72 2555 3177
Threshold [d] | x > 50 51 1275 182
Threshold [b] | x > 325 326 649 3471
Threshold [e] | x > 107 37 155 19
[a] Draief et al. 2012 [c] Angluin et al. 2006 [e] Offtermatt 2017

[b] Clément et al. 2011 [d] Chatzigiannakis et al. 2010

8/14

Demonstration

Expected termination time

B.R — bb
B,r — B,b
R,b — Rr
b,r — bb

Cor‘r‘ec'HV cOMPU‘!LeS Pr‘ec'ic«‘l(’e #B 2 #R
IDU'IL L-OW -CaS'(’.?

9/14

Expected termination time

B.R — b,b
B.,r — B.b
R,b — Rr
b,r — bb

Cor-r‘ec'Hy comPu+es Preéic«'{'e #B 2 #R
bt Low Faust?

Natural to look for fast protocols

Bounds on expected termination time useful since generally
not possible to know whether a protocol has stabilized 9/14

Expected termination time

B.R — b,b
B.,r — B,b
R,b — Rr
b,r — bb

Cor-r‘ec'{‘ly COMPU+€S Pr‘eéic«'{'e #B 2 #R
bt Low Eust?

Theorem Angluin et al. PODC'04
Every Presburger-definable predicate is computable by
a protocol with expected termination time € O(n?log n)

9/14

Expected termination time

B,R
B, r
R.b

b,r

£ & L&

b,b
B,b
R,r
b.b Sinulations sbow tlat i+ is slow
’ when R Leas sliéLnL maj'ori+7:
SR zgigigtration

100000 {B: 7, R: 8}
B 7 {B: 3, R: 12}
B 27 {B: 4, R: 11}
100000 {B: 7, R: 8}

[] 3 {B: 13, R: 2} 94

Expected termination time

Tt X,y — X, x forx,ye{b,r,t}

£ & L&

AH‘er-na:/'ive Pr“O'/'OC.O[

9/14

Expected termination time

BR — Tt X,y — X, x forx,ye{b,r,t}

BT — B,b

RT — Rr Is i+ -Cc\S‘{'er‘.?
|_>

AH’er‘ncﬂLive Pr‘o'o‘ocol

9/14

Expected termination time

BR — Tt X,y — X, x forx,ye{b,r,t}

BT — B,b

RT — Rt Is it CaS'/’ef‘-?
TT — T,t Yes, EO(‘ size lS

)

10/

expected number
of stepsto 10*
stable consensus

o D
12 3 4 5 6 7 8 91011121314
number of agents initially in state R 9/14

Expected termination time

X,y — X x forx,ye{b,rt}

BR — Tt
BT — B,b
RT — R
TT — Tt

)

expected number
of steps to
stable consensus

Ob'/'aineé usiné PQ’SM

10/

10*

101

Clement et al. ICDCS'L L, Offtermeatt 1 7

1 2 3 4 5 6 7 8 91011121314
number of agents initially in state R

9/14

Expected termination time

BR — Tt X,y — X, x forx,ye{b,r,t}
BT — B,b
RT — Rr ouf‘QOaI: aﬂa’y?_e +ine
T.T — Tt ﬁor a“ sizes
| |
107 |)
expected number
of stepsto 10*| 1
stable consensus e E = § = E E : _—
10155555555555115

1234567 89101121314
number of agents initially in state R 9/14

Expected termination time: a simple temporal logic

C = Outy

CEenY
CEOp
CEOp

O(q) = bforeveryCE=q

CEe

CEenCEY

Pc({o € Runs(C) : oj = ¢ foreveryi} =1

Pc({o € Runs(C) : o; = ¢ forsomei} =1

10/14

Expected termination time: a simple temporal logic

I

11

C(q) >1

C(q)

O(q) =bforeveryCkEq

1

C It %)
CEpACEY
Pc({o € Runs(C) : oj = ¢ foreveryi} =1

Pc({o € Runs(C) : o; = ¢ forsomei} =1

10/14

Expected termination time: a simple temporal logic

CFq = g =1

CEq! <~ ((q)=1

CEOut, <= 0(q)=DbforeveryCkEq

CE-y — Clop

CEenyYy <<= CEeACEY

CE Dy < Pc({o € Runs(C) : o; = foreveryi} =1
CE Oy <= Pc({o € Runs(C) : o; = ¢ forsomei} =1

10/14

Expected termination time: formal definition

Random variable Steps:

assigns to each run o the smallest kR s.t. o, |= ¢, otherwise oo

10/14

Expected termination time: formal definition

Random variable Steps:

assigns to each run o the smallest k s.t. o = ¢, otherwise oo

Maximal expected termination time
We are interested in time: N — N where

time(n) = max{Ec[Stepsqoyz, v oout,] - C is initial and |C| = n}

10/14

Expected termination time: formal definition

Random variable Steps:

assigns to each run o the smallest k s.t. o = ¢, otherwise oo

Maximal expected termination time
We are interested in time: N — N where

time(n) = max{E¢[Steps | : Cisinitial and |C| = n}

10/14

Expected termination time: formal definition

Random variable Steps:

assigns to each run o the smallest k s.t. o = ¢, otherwise oo

Maximal expected termination time
We are interested in time: N — N where

time(n) = max{ : Cisinitial and |C| = n}

10/14

Expected termination time: formal definition

Random variable Steps:

assigns to each run o the smallest k s.t. o = ¢, otherwise oo

Maximal expected termination time
We are interested in time: N — N where

time(n) =

10/14

Stage graphs

Our approach:

- Most protocols are naturally designed in stages
- Construct these stages automatically

- Derive bounds on expected termination time
from stages structure

11/14

Stage graphs

A stage graph is a directed acyclic graph (S, —) such that

- every node S € S is associated to a formula s

@ @ 11/14

Stage graphs

A stage graph is a directed acyclic graph (S, —) such that
- every node S € S is associated to a formula s

- for every C € Init, there exists S € S such that C = ¢s

11/14

Stage graphs

A stage graph is a directed acyclic graph (S, —) such that
- every node S € S is associated to a formula s
- for every C € Init, there exists S € S such that C = ¢s

* CEOVsyo ps forevery S e Sand C = ¢s

11/14

Stage graphs

A stage graph is a directed acyclic graph (S, —) such that
- every node S € S is associated to a formula s
- for every C € Init, there exists S € S such that C = ¢s
* CE=OVsops foreverySe Sand C = s

* C = ps implies C = OOuty Vv OOut, for every bottom S € S

@‘@ e

11/14

Stage graphs

time(n) is bounded by the maximal expected number of steps to
move from a stage to a successor

@ @ 11/14

Stage graphs

time(n) is bounded by the maximal expected number of steps to
move from a stage to a successor

For example, time(n) € O(n?logn) if:

11/14

A procedure for computing stage graphs

B.R — Tt SO:(BVR)/\/\ﬁq
ag{BR}

B,T — B,b

R, T — R

TT —» Tt

Xy — XX

12/14

A procedure for computing stage graphs

B.R — Tt SO:(BVR)/\/\ﬁq
a¢{B.R}
o

B,T — B,b (M (9(1).1
RT — Rr

S, 0O BA/\ﬁq S,: 0 R/\/\ﬁq
1o re S0(aA) so(rep)
Xy — XX

12/14

A procedure for computing stage graphs

BR — Tt So: BVR)A A g
a#{B.R}
o@

B,T — B,b (M 0(1)1
RT — Rr

S: 0 BA/\ﬁq S,: 0 R/\/\ﬁq
1o re S0(aA) so(rep)
Xy — XX

TP&ﬂS-COf‘Ma‘/’iO’\ ér‘*aPL,

@ @
ONONO

12/14

A procedure for computing stage graphs

[B,R — T,t] So: BVR)A A g
ag{BR}
o

B,T — B,b (M 0(1)1
RT — Rr

S: 0 BA/\ﬁq S,: 0 R/\/\ﬁq
1o re S0(aA) so(rep)
Xy — XX

12/14

A procedure for computing stage graphs

BR — Tt So: BVR)A A g
q¢{B,R}
o

(BT = Bb| oo o0
RT — Rr

S, 0O BA/\ﬁq S,: 0 R/\/\ﬁq
1o re S0(aA) so(rep)
Xy — XX

12/14

A procedure for computing stage graphs

BR — Tt So: BVR)A A g
a#{B.R}
o@

B,T — B,b (M (9(1).1
[R,T — R,r

S, 0O BA/\ﬁq S,: 0 R/\/\ﬁq
o re S0 so(rep)
Xy — XX

12/14

A procedure for computing stage graphs

BR — Tt So: BVR)A A g
ag{BR}
o

B,T — B,b (M (9(1).1
RT — Rr

S, 0O BA/\ﬁq S,: 0 R/\/\ﬁq
[T,T — T,t] (b) (o)
Xy — XX

Oy OyO
T

12/14

A procedure for computing stage graphs

BR — Tt So: BVR)A A g
ag{BR}
o

B,T — B,b (M 0(1)1
RT — Rr

S: 0 BA/\ﬁq S,: 0 R/\/\ﬁq
rr oo re S0(eAe) so(rep)
[X,y — X,x]

12/14

A procedure for computing stage graphs

()

BR — Tt So: BVR)A A g
ag{BR}
o

B,T — B,b ™ om|
RT — Rr

S: 0 B/\/\ﬁq S,: 0 R/\/\ﬁq
LT,T — T,tJ (b) (o)
Xy — XX

12/14

A procedure for computing stage graphs

BR — Tt So: BVR)A A g
a#{B.R}
o@

B,T — Bb ™ om|
RT — Rr

S: 0 B/\/\ﬁq S,: 0 R/\/\ﬁq
LT,T — T,tJ (b) (o)
Xy — XX

S;: O[(-BV-R)A (-BV =T)A (-RV -T) A (=TVT!)] A
(BAb)V(RAT)V (TAL)

12/14

A procedure for computing stage graphs

B.R — Tt So: BVR)A A\ —q
a¢{B.R}
on

B,T — Bb () O(”l
RT — Rr

S:0|BA N —q S;:O(RA A g
1o re S0(aA) so(rep)
Xy — XX

S3: O[(-BV =R) A (-BV =T) A (-RV =T) A (=T V T!)] A

@ (BAD)V(RAF)V (TAL))

12/14

A procedure for computing stage graphs

BR — Tt So: BVR)A A g
a#{B.R}
o@

B,T — B,b ™ om|
RT — Rr

S: 0 B/\/\ﬁq S,: 0 R/\/\ﬁq
1o re S0(aA) so(rep)
Xy — XX

S3: O[(-BV =R) A (-BV =T) A (-RV =T) A (=T V T!)] A

@ (BAb)V(RAT)V (TAL)

wiill beconne Per‘m«ner\'HY c’isa\blecl

G'JMOS‘/' sur‘el
'

12/14

A procedure for computing stage graphs

BR — Tt So: BVR)A A g
ag{BR}
on

B,T — Bb () O(%
RT — Rr

S:0|BA N —q S;:O(RA A g
1o re S0(aA) so(rep)
Xy — XX

S3: O[(-BV-R) A (-BV-T)A(-RV -T) A (-TVT!)] A
O T
@ 56:D<T!/\t/\/\ﬁq)

qg{Tt}
12/14

A procedure for computing stage graphs

BR — Tt So: BVR)A A g
a¢{B.R}
o
B.T — B,b M Oml
RT — Rr
Si:O1BA /\ q S;:O|RA A\ g
1o re S0(aA) so(rep)
Xy — XX
S3: O[(-BV =R) A (-BV -T) A (-RV =T) A (-TVT!)] A
[COTRC I 1. ((BAb)V(RAT)V(TAL)
Ec[Steps_pr] < D 2 C) 0
i=1
n nz
< =
- = Ss:lj(T!/\t/\/\ﬁq)
qE{T,t}
S - n2 o |ogn 12/14

A procedure for computing stage graphs

BR — Tt So: BVR)A A g
ag{BR}
on

B,T — Bb () O(%
RT — Rr

S:0|BA N —q S;:O(RA A g
1o re S0(aA) so(rep)
Xy — XX

S3: O[(-BV =R) A (-BV =T) A (-RV =T) A (=T V T!)] A

C(b)+C(r) 5 (BAb)V(RAT)V(TAL))

n
; 2.C(T)-i

IA

EC[Stepsﬂb/\ﬂr] O(n? log n)
2|og

n 2

n

. _ | B
— 56.D<T./\t/\/\ q)

qZ{T.t}
< a-n*-logn 12/14

IA

A procedure for computing stage graphs

BR — Tt So: BVR)A A g
ag{BR}
on

B,T — Bb () O(%
RT — Rr

S:0|BA N —q S;:O(RA A g
1o re S0(aA) so(rep)
Xy — XX

S;: O[(-BV -R) A (=B V =T) A (-RV =T) A (=T V TI)] A
(BAb)V (RAF)V (TAL))

O(n?logn)

O(n?logn)

S.:O0(BAbA A —q 55:D(R/\r/\/\ﬁq) 56:D<T!/\t/\/\ﬁq)
q¢{B,b} qaZ{R,r} qg{Tt}
12/14

A procedure for computing stage graphs

BR — Tt So: BVR)A A g
ag{BR}
o

B,T — B,b 4 om|
RT — Rr o(n?)

S, 0O BA/\ﬁq S,: 0 R/\/\ﬁq
LT,T — T,tl (b) (o)
Xy — XX

S;: O[(-BV -R) A (=B V =T) A (-RV =T) A (=T V TI)] A
(BAb)V (RAF)V (TAL))

O(n?logn)

O(n?logn)

S.:O0(BAbA A —q Ss:D(R/\r/\/\ﬁq) 56:D<T!/\t/\/\ﬁq)
q¢{B,b} qaZ{R,r} qg{Tt}
12/14

A procedure for computing stage graphs

®: propositional formula describing current configurations

set of permanently present/absent states

T
T: setof permanently disabled transitions

~
----e
L4

Successors computed by enriching
7 through trap/siphon-like analysis and
T and ¢ from transformation graph 12/

A procedure for computing stage graphs

®: propositional formula describing current configurations

set of permanently present/absent states

.
T: setof permanently disabled transitions

~

L4

Successors computed by enriching
m through trap/siphon-like analysis and
7 and ¢ from transformation graph 12/

Experimental results CONCUR'18

- Prototype implemented in @ pgthon”" + Microsoft Z3
« Can report: O(1),0(n?),0(n?logn), O(n%), O(poly(n)) or O(exp(n))

- Tested on various protocols from the literature

13/14

Experimental results

Protocol q Protocol q
Stages | Bound | Time Stages | Bound | Time
o params. [1Q]] |7 8 o [params. [Q[[1] | ¢
x V...V, [b] | 2 1 5 | n?logn 0.1 Threshold [b]: x > ¢
x> ylal 6 10 23 n’logn | 0.9 c=5 6] o9 54 n3 25
x>yld 4 3] 9 |nlogn| 02| |c=7 8| 13| 198| 3 113
x>yld 4 4 11 exp(n) | 03 c=10 11| 19| 1542| nd 83.9
Threshold [a]: x > ¢ c=13 14 | 25| 12294 n’ 816.4
c=5 6 21 26 n3 0.8 c=15 16 | 29 — — 1/0
c=15 16 | 136 66| n’ 121 Average-and-conquer [d]: x>y (param. m, d)
c=25 26| 351| 106 | n? 580 | [m—3d=1] 6] 21 41 nflogn | 20
— 3
E=H 36| 666 | 146| n° 2223 | | _34_2| 8| 36| 1948 |nlogn | 987
c=45 46 1081 186 n® 495.3 m=5.d=1 8| 36 1870 n3 80.1
S=6B s6]15% | -] - 0| |m=sd=2|10] 55 ol 7/0
Logarithmic threshold: x > c Remainder [al: 3>,;_, i - X; = 0 (mod)
c=7 6 14 34 n? 1.9
3 10 3 130 5 o1 c=5 71 25 225 | n?logn | 12.5
< 1;7 wl ol si " soa| |67 9| 42| 1351 |n2logn| 889
€= 1023 20 | 119 | 4008 " a7 | |€=9 11| 63| 7035 | n2logn | 544.0
€= " ' c=10 12| 75 =| = 7/0
¢ = 4095 24 167 = = T/0 n n o
Linear inequalities [a]
—X1+X<0| 12| 57 21 n? 3.0
[a] Angluin et al. 2006 [b] Clément et al. 2011 “xi4+x <1 20155 131 n3 30.3
[c] Draief et al. 2012 [d] Alistarh et al. 2015 —X1+X <2 | 28301 — — T/0

13/14

Population protocols analyzable automatically:

- Formal verification of correctness
- Bounds on expected termination time

- Tool support

1414

Conclusion: future work

- Combining verification and expected
termination time analysis?

- Asymptotic lower bounds on
expected termination time?

- Interesting class of protocols with
decidable quantitative model checking?

1414

Thank you!

Merci!

