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(whose size is possibly exponential). For each item, say T ′, the algorithm would
check in polynomial time (1) whether T ′ belongs to FS(N−1,m) and (2) whether
the associated linear program v > 0 ∧ CP×T ′v = m −m0 admits a solution.
Guessing T ′ shows that the reachability problem belongs to NP.

Algorithm 2: Decision algorithm for reachability

Reachable(〈N ,m0〉,m): status
Input: a CPN system 〈N ,m0〉, a marking m
Output: the reachability status of m
Output: the Parikh image of a witness in the positive case
Data: nbsol: integer; v, sol: vectors; T ′: subset of transitions

1 if m = m0 then return (true,0)
2 T ′ ← T
3 while T ′ 6= ∅ do
4 nbsol← 0; sol← 0
5 for t ∈ T ′ do
6 solve ∃?v v ≥ 0 ∧ v[t] > 0 ∧CP×T ′v = m−m0

7 if ∃v then nbsol← nbsol + 1; sol← sol + v

8 end
9 if nbsol = 0 then return false else sol← 1

nbsol
sol

10 T ′ ← JsolK
11 T ′ ← T ′ ∩ maxFS(NT ′ ,m0[•T ′•])

12 T ′ ← T ′ ∩ maxFS(N−1
T ′ ,m[•T ′•]) /* deleted for lim-reachability */

13 if T ′ = JsolK then return (true,sol)

14 end
15 return false

In fact, we improve this upper bound with the help of Algorithm 2. When
m 6= m0, this algorithm maintains a subset of transitions T ′ which fulfills
J−→σ K ⊆ T ′ for any m0

σ−→ m (as will be proven in proposition 22). Initially
T ′ is set to T . Then lines 4-9 build a solution to the state equation restricted
to transitions of T ′ with a maximal support (if there is at least one). If there
is no solution then the algorithm returns false. Otherwise T ′ is successively re-
stricted to (1) the support of this maximal solution (line 10), (2) the maximal
firing set in maxFS(NT ′ ,m0[•T ′•]) (line 11) and, (3) the maximal firing set in
maxFS(N−1T ′ ,m[•T ′•]) (line 12). If the two last restrictions do not modify T ′ then
the algorithm returns true. If T ′ becomes empty then the algorithm returns false.

Omitting line 12, Algorithm 2 decides the lim-reachability problem.

Proposition 22 Algorithm 2 returns true iff m is reachable in 〈N ,m0〉.
Algorithm 2 without line 12 returns true iff m is lim-reachable in 〈N ,m0〉.

Proof. We only consider the non trivial case m 6= m0.
Soundness. Assume that the algorithm returns true at line 13.
By definition, vector sol which is a barycenter of solutions is also a solution

...

t1 = np.array(range(0, n2))
b_eq = np.array(m - m0)

while t1.size != 0:
l = t1.size
nbsol, sol = 0, np.zeros(l, dtype=Fraction)
A_eq = incident(subnet(net, t1))

for t in t1:
objective_vector = [objective(t, x) for x in range(0, l)]
result = solve_qsopt(objective_vector, A_eq, b_eq, t)

if result is not None:
nbsol += 1
sol += result

Fraca & Haddad PN’13

Reachability in CPN ∈ P

with NumPy

299 lines of code
(215 code + 84 docstring)
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(whose size is possibly exponential). For each item, say T ′, the algorithm would
check in polynomial time (1) whether T ′ belongs to FS(N−1,m) and (2) whether
the associated linear program v > 0 ∧ CP×T ′v = m −m0 admits a solution.
Guessing T ′ shows that the reachability problem belongs to NP.
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In fact, we improve this upper bound with the help of Algorithm 2. When
m 6= m0, this algorithm maintains a subset of transitions T ′ which fulfills
J−→σ K ⊆ T ′ for any m0

σ−→ m (as will be proven in proposition 22). Initially
T ′ is set to T . Then lines 4-9 build a solution to the state equation restricted
to transitions of T ′ with a maximal support (if there is at least one). If there
is no solution then the algorithm returns false. Otherwise T ′ is successively re-
stricted to (1) the support of this maximal solution (line 10), (2) the maximal
firing set in maxFS(NT ′ ,m0[•T ′•]) (line 11) and, (3) the maximal firing set in
maxFS(N−1T ′ ,m[•T ′•]) (line 12). If the two last restrictions do not modify T ′ then
the algorithm returns true. If T ′ becomes empty then the algorithm returns false.
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Proposition 22 Algorithm 2 returns true iff m is reachable in 〈N ,m0〉.
Algorithm 2 without line 12 returns true iff m is lim-reachable in 〈N ,m0〉.

Proof. We only consider the non trivial case m 6= m0.
Soundness. Assume that the algorithm returns true at line 13.
By definition, vector sol which is a barycenter of solutions is also a solution

Relatively easy
with NumPy
A bit trickier
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Guessing T ′ shows that the reachability problem belongs to NP.

Algorithm 2: Decision algorithm for reachability

Reachable(〈N ,m0〉,m): status
Input: a CPN system 〈N ,m0〉, a marking m
Output: the reachability status of m
Output: the Parikh image of a witness in the positive case
Data: nbsol: integer; v, sol: vectors; T ′: subset of transitions

1 if m = m0 then return (true,0)
2 T ′ ← T
3 while T ′ 6= ∅ do
4 nbsol← 0; sol← 0
5 for t ∈ T ′ do
6 solve ∃?v v ≥ 0 ∧ v[t] > 0 ∧CP×T ′v = m−m0

7 if ∃v then nbsol← nbsol + 1; sol← sol + v

8 end
9 if nbsol = 0 then return false else sol← 1

nbsol
sol

10 T ′ ← JsolK
11 T ′ ← T ′ ∩ maxFS(NT ′ ,m0[•T ′•])

12 T ′ ← T ′ ∩ maxFS(N−1
T ′ ,m[•T ′•]) /* deleted for lim-reachability */

13 if T ′ = JsolK then return (true,sol)

14 end
15 return false

In fact, we improve this upper bound with the help of Algorithm 2. When
m 6= m0, this algorithm maintains a subset of transitions T ′ which fulfills
J−→σ K ⊆ T ′ for any m0

σ−→ m (as will be proven in proposition 22). Initially
T ′ is set to T . Then lines 4-9 build a solution to the state equation restricted
to transitions of T ′ with a maximal support (if there is at least one). If there
is no solution then the algorithm returns false. Otherwise T ′ is successively re-
stricted to (1) the support of this maximal solution (line 10), (2) the maximal
firing set in maxFS(NT ′ ,m0[•T ′•]) (line 11) and, (3) the maximal firing set in
maxFS(N−1T ′ ,m[•T ′•]) (line 12). If the two last restrictions do not modify T ′ then
the algorithm returns true. If T ′ becomes empty then the algorithm returns false.

Omitting line 12, Algorithm 2 decides the lim-reachability problem.

Proposition 22 Algorithm 2 returns true iff m is reachable in 〈N ,m0〉.
Algorithm 2 without line 12 returns true iff m is lim-reachable in 〈N ,m0〉.

Proof. We only consider the non trivial case m 6= m0.
Soundness. Assume that the algorithm returns true at line 13.
By definition, vector sol which is a barycenter of solutions is also a solution

Relatively easy
with NumPy

A bit trickier
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1 Solve
Maximize xt
Subject to Ax = b, x ≥ 0

, xt ≥ 1
return x

2 If xt > 0, return x
If xt = 0, return “no solution”
If no solution, return “no solution”
If unbounded, continue
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3 Solve
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Subject to Ax = b, x ≥ 0, xt ≥ 1

return x
4 If xt > 0, return x
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If unbounded, continue

12 / 16



Motivation
Continuous VASS

Tool
Conclusion

Overview
Details of implementation

Handling the strict inequality

3 Solve
Minimize xt
Subject to Ax = b, x ≥ 0, xt ≥ 1

return x

4 If xt > 0, return x
If xt = 0, return “no solution”
If no solution, return “no solution”
If unbounded, continue

12 / 16



Motivation
Continuous VASS

Tool
Conclusion

Overview
Details of implementation

Simplex implementations

Usually in floating-point arithmetic

Error-prone, even worse with 2|T |2 resolutions
Interested in non reachability, no certificate to verify answer

Current solution
QSopt-Exact: exact solver from

Exact solutions to linear programming problems

David L. Applegate a William Cook b Sanjeeb Dash c Daniel G. Espinoza d,∗
aAT&T Labs - Research, 180 PARK AVE, P.O. BOX 971, Florham Park, NJ, 07932-0971, USA

bSchool of Industrial & Systems Engineering, Georgia Institute of Technology, 765 Ferst Drive NW., Atlanta, GA, 30332, USA
cIBM T. J. Watson Research Center, 1101 Kitchawan Road, Route 134, Yorktown Heights, N.Y. 10598, USA
dDepartamento de Ingenieŕıa Industrial, Universidad de Chile, Av. República 701, Santiago, 837-0439, Chile

Abstract

The use of floating-point calculations limits the accuracy of solutions obtained by standard LP software. We present
a simplex-based algorithm that returns exact rational solutions, taking advantage of the speed of floating-point
calculations and attempting to minimize the operations performed in rational arithmetic. Extensive computational
results are presented.

Key words: linear programming, simplex algorithm, rational arithmetic

1991 MSC: 90C05,
1991 MSC: 90C49

1. Introduction

Standard linear programming (LP) solvers can
report different “optimal” objective values for the
identical problem on different computer architec-
tures. This inconsistency is primarily due to the use
of floating-point numbers in LP software. Floating-
point computations can lead to nontrivial errors
in the context of LU factorization or Cholesky
factorization—operations used by most solvers.
Although good approximate solutions are satis-

factory in many LP applications, there are scenarios
that require exact values, such as when LP is used
to compute theoretical bounds for various problems.
Moreover, in some cases industrial customers re-
quest exact solutions (Zonghao Gu, personal com-
munication, 2005). This interest in accurate LP re-

∗ Corresponding author
Email addresses: david@research.att.com (David L.

Applegate), bico@isye.gatech.edu (William Cook),
sanjeebd@us.ibm.com (Sanjeeb Dash),

daespino@dii.uchile.cl (Daniel G. Espinoza).

sults has prompted recent studies by Gärtner [9],
Jansson [14], Dhiflaoui et al. [5] and Koch [16].

In this paper we present an implementation of
the simplex algorithm that provides exact solutions
to LP instances, while attempting to minimize
the arithmetic operations performed using rational
arithmetic. We report test results for benchmark LP
instances and for computations of exact solutions
for the subtour relaxation of the traveling salesman
problem (TSP) and exact solutions to small mixed-
integer programming (MIP) problems. Our code [3]
is available to the academic community.

2. A first approach

A natural method to obtain exact LP solutions
is to implement a solver that computes entirely in
rational arithmetic. To achieve this we began with
the source code for the QSopt [2] implementation of
the simplex algorithm, changed every floating-point
type to the rational type provided by the GNU-MP
(GMP) library [11], and changed every operation in

Preprint submitted to Operations Research Letters 22 March 2007
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