Reachability in continuous vector addition
systems: from theory to practice

Michael Blondin

DIRO, Université de Montréal, Canada

LSV, ENS Cachan & CNRS, France

May 13, 2015

Reachability in continuous vector addition
systems: from theory to practice

Vincent Antaki!, Michael Blondin'? & Pierre McKenziel?2

IDIRO, Université de Montréal, Canada

2LSV, ENS Cachan & CNRS, France

May 13, 2015

Motivation

Project

Continuous Petri nets

m Tool for reachability in VASS

2/16

Motivation

Project

Continuous Petri nets

m Tool for reachability in VASS

m Relaxations to decide non reachability

2/16

Motivation

Project

Continuous Petri nets

m Tool for reachability in VASS

m Relaxations to decide non reachability
m Coverability: EXPSPACE/PSPACE-complete

2/16

Motivation

Project

Continuous Petri nets

m Tool for reachability in VASS

m Relaxations to decide non reachability
m Coverability: EXPSPACE/PSPACE-complete
m 2-VASS: PSPACE-complete

2/16

Motivation

Project

Continuous Petri nets

m Tool for reachability in VASS

m Relaxations to decide non reachability
m Coverability: EXPSPACE/PSPACE-complete
m 2-VASS: PSPACE-complete
m 1-VASS, Z-VASS: NP-complete

2/16

Motivation

Project

Continuous Petri nets

m Tool for reachability in VASS

m Relaxations to decide non reachability

m Coverability: EXPSPACE/PSPACE-complete
m 2-VASS: PSPACE-complete
m 1-VASS, Z-VASS: NP-complete

m Continuous Petri nets: P-complete

2/16

Motivation

Project

Continuous Petri nets

m Tool for reachability in VASS

m Relaxations to decide non reachability

m Coverability: EXPSPACE/PSPACE-complete
m 2-VASS: PSPACE-complete
m 1-VASS, Z-VASS: NP-complete

m Continuous Petri nets: P-complete

2/16

Motivation
Project
Continuous Petri nets

Continous Petri nets (CPN)

Transitions fired by an amount a € R>g

&y 0

3/16

Motivation
Project
Continuous Petri nets

Continous Petri nets (CPN)

Transitions fired by an amount a € R>g

oSN I

3/16

Motivation
Project
Continuous Petri nets

Continous Petri nets (CPN)

Transitions fired by an amount a € R>g

F P

a =1,

3/16

Motivation
Project
Continuous Petri nets

Continous Petri nets (CPN)

Transitions fired by an amount a € R>g

3/16

Motivation
Project
Continuous Petri nets

Continous Petri nets (CPN)

Transitions fired by an amount a € R>g

S

a=1,s5,

N|=
B

(o¢)

3/16

Continuous VASS

th CPN

Continuous vector addition systems with states (CVASS)

m What is a continuous VASS?

4/16

Continuous VASS

th CPN

Continuous vector addition systems with states (CVASS)

m What is a continuous VASS?

m Not defined in the literature

4/16

Continuous VASS

th CPN

Continuous vector addition systems with states (CVASS)

m What is a continuous VASS?
m Not defined in the literature

m Two possible definitions

4/16

Unique states
Multiple sta
Equivalen ith CPN

Continuous VASS

VASS with “uni

-10

5/16

Unique states
Multiple state

Continuous VASS

CVASS with “unique states”

-10

5/16

Unique states
Multiple state

Continuous VASS

CVASS with “unique states”

1
15 -10

5/16

Unique states
Multiple state

Continuous VASS

CVASS with “unique states”

-10

5/16

Unique states
Multiple state

Continuous VASS

CVASS with “unique states”

1
15 -10

5/16

Unique states
Multiple state

Continuous VASS

CVASS with “unique states”

-10

5/16

Unique states
Multiple state

Continuous VASS

5/16

Unique states
Multiple sta

Continuous VASS
Equivalen ith CPN

VASS with “unique states”

5/16

Unique states
Multiple states
Equivalence with CPN

Continuous VASS

CVASS with “multiple states”

6/16

Unique states
Multiple states
Equivalence with CPN

Continuous VASS

CVASS with “multiple states”

pqr

(1,0,0,,0,1)

6/16

Unique states
Multiple states
Equivalence with CPN

Continuous VASS

CVASS with “multiple states”

pqr

1
(1,0,0,'0,1) 2%

6/16

Unique states
Multiple states
Equivalence with CPN

Continuous VASS

CVASS with “multiple states”

pqr

1
(1,0,0,'0,1) 2%

6/16

pqr
100,‘01)

6

16

Continuous VASS

Equivalence with CPN

CVASS with “multiple states” < CPN

Usual transformation, straightforward proof

7/16

Continuous VASS

Equivalence with CPN

CPN < CVASS with “multiple states”

Usual transformation, less straightforward proof

S
'3\ 1 —

t
to

8/16

Overview
Details of implementation

ur imple

T < T

while 7" do ’
e o m Fraca & Haddad PN'13

for t € 7" do
solve 37v v > 0AV[t] > 0ACpypv=m—mg
if 3v then nbsol < nbsol + 1; sol < sol + v
end
1

if nbsol = 0 then return false else sol < ——sol

9/16

Overview
Details of implementation

ur imple

T < T
hile T # () d
i el = Fraca & Haddad PN'13
for t € 7" do . .
solve 7v v > 0AV[] > 0ACrerv=m-m, B Reachability in CPN € P
if 3v then nbsol < nbsol + 1; sol < sol + v
end
if nbsol = 0 then return false else sol + ﬁsol

9/16

Overview
Details of implementation

ur imple

T < T

hile 77 # () d
L 0 m Fraca & Haddad PN'13
for t € 7" do . .
solve 7v v > 0AV[] > 0ACrerv=m-m, B Reachability in CPN € P
if 3v then nbsol < nbsol + 1; sol < sol + v
end
1

if nbsol = 0 then return false else sol < ——sol

t1 = np.array(range(0, n2)) | ﬁ pgthon with NumPy

b_eq = np.array(m - m0)

while tl.size != 0:
= tl.size
nbsol, sol = 0, np.zeros(l, dtype=Fraction)
A_eq = incident (subnet(net, t1))

for t in ti:
objective_vector = [objective(t, x) for x in range(0, 1)]
result = solve_gsopt(objective_vector, A_eq, b_eq, t)
if result is not None:

nbsol +=
sol += result

9/16

Overview
Details of implementation

r impl

T < T
hile 77 # () d
i el = Fraca & Haddad PN'13
for t € 7" do . .
solve 7v v > 0AV[] > 0ACrerv=m-m, B Reachability in CPN € P
if 3v then nbsol < nbsol + 1; sol < sol + v
end
if nbsol = 0 then return false else sol + ﬁsol
tl = np.array(range(0, n2)) | ﬁ pgthon with NumPy
b_eq = np.array(m - m0)
CiEHo Gl =08 m 299 lines of code
nbsol, sol = 0, np.zeros(l, dtype=Fraction) i
A_eq = incident (subnet(net, t1)) (215 code + 84 docstrlng)

for t in ti:
objective_vector = [objective(t, x) for x in range(0, 1)]

result = solve_qsopt(objective_vector, A_eq, b_eq, t)
if result is not None:

nbsol +=
sol += result

9/16

Overview
Details of implementation

Polynomial time algorithm (Fraca & Haddad PN'13)

Algorithm 2: Decision algorithm for reachability

Reachable((N, mg), m): status

Input: a CPN system (N, mo), a marking m

Output: the reachability status of m

Output: the Parikh image of a witness in the positive case
Data: nbsol: integer; v, sol: vectors; T": subset of transitions

1 if m = my then return (true,0)

2T« T

3 while 7' # () do

4 nbsol < 0; sol < 0

5 for t € T’ do

6 solve 37v v > 0AV[t] > 0ACpxrv=m —mg

7 if 3v then nbsol < nbsol + 1; sol < sol + v

8 end

9 if nbsol = 0 then return false else sol « ——sol
10 T’ + [sol]
11 T’ + T' NmaxFS(Nyr, mo[*T'°])
12 T' + T' NmaxFS(N,', m[*T'*]) /* deleted for lim-reachability */
13 if 7" = [sol] then return (true,sol)

end
return false

o
ZINS

10/16

Overview
Details of implementation

Polynomial time algorithm (Fraca & Haddad PN'13)

Algorithm 2: Decision algorithm for reachability

Reachable((N, mg), m): status

Input: a CPN system (N, mo), a marking m

Output: the reachability status of m

Output: the Parikh image of a witness in the positive case
Data: nbsol: integer; v, sol: vectors; T": subset of transitions

1|if m = my then return (true,0)
2|T' T ;
s|while 7 £ 8 do Relatively easy
4 nbsol < 0; sol + 0 with Numpy
5 for t € T’ do
6 | | solved?vv>0AvV[t]>0ACpyrv=m—mg
7 | if 3v then nbsol - nbsol + 1; sol + sol +v
8 end
9 if nbsol = 0 then return false else sol « ——sol
10 T’ + [sol]
11 T+ T' NmaxFS(Nyr, mo[*T'°])
12 T' + T' NmaxFS(N,', m[*T'*]) /* deleted for lim-reachability */
13 if 7" = [sol] then return (true,sol)

end
return false

o
CS

10/16

Overview
Details of implementation

Polynomial time algorithm (Fraca & Haddad PN'13)

Algorithm 2: Decision algorithm for reachability

Reachable((N, mg), m): status

Input: a CPN system (N, mo), a marking m

Output: the reachability status of m

Output: the Parikh image of a witness in the positive case
Data: nbsol: integer; v, sol: vectors; T": subset of transitions

1 if m = my then return (true,0)
2T« T
3 while 7' # () do
4 nbsol < 0; sol < 0
5 for t € T’ do
6 [solve 3?7v v > 0AV[t] >0ACpryrvv=m—mo]l A bit trickier
7 if 3v then nbsol < nbsol + 1; sol < sol + v
8 end
9 if nbsol = 0 then return false else sol « ——sol
10 T’ + [sol]
11 T’ + T' NmaxFS(Nyr, mo[*T'°])
12 T' + T' NmaxFS(N,', m[*T'*]) /* deleted for lim-reachability */
13 if 7" = [sol] then return (true,sol)

end
return false

o
ZINS

10/16

Overview
Details of implementation

System of linear inequalities

6 | 3x € R¥ such that x > 0, x; > 0 and Ax = b?

11/16

Overview
Details of implementation

System of linear inequalities

6 | 3x € R¥ such that x > 0, x; > 0 and Ax = b?

Without this condition, could simply use simplex

11/16

Overview
Details of implementation

Handling the strict inequality

Solve
Maximize X

Subject to Ax=b, x>0

12 /16

Overview
Details of implementation

Handling the strict inequality

Solve

Maximize X

Subject to Ax=b, x>0
m If x; >0, return x

12 /16

Overview
Details of implementation

Handling the strict inequality

Solve
Maximize X
Subject to Ax=b, x>0
m If x; >0, return x
m If x; =0, return "no solution"

12 /16

Overview
Details of implementation

the strict inequality

Solve
Maximize X
Subject to Ax=b, x>0
m If x; >0, return x
m If x; =0, return "no solution"

m If no solution, return "no solution"

12 /16

Overview
Details of implementation

Handling the strict inequality

Solve
Maximize X
Subject to Ax=b, x>0
m If x; >0, return x
m If x; =0, return "no solution"
m If no solution, return "no solution"
m If unbounded, continue

12 /16

Ovel
Details of implementation

Handling the strict inequality

Solve
Minimize X
Subject to Ax=b, x>0, x; > 1

12 /16

Overview
Details of implementation

Handling the strict inequality

Solve
Minimize X
Subject to Ax=b, x>0, x; >1

return x

12 /16

Overview
Details of implementation

Simplex implementatio

m Usually in floating-point arithmetic

13 /16

Overview
Details of implementation

Simplex implementatio

m Usually in floating-point arithmetic

m Error-prone, even worse with 2| T|? resolutions

13 /16

Overview
Details of implementation

Simplex implementati

m Usually in floating-point arithmetic

m Error-prone, even worse with 2| T|? resolutions

m Interested in non reachability, no certificate to verify answer

13 /16

Overview
Details of implementation

Simplex implementations

m Usually in floating-point arithmetic
m Error-prone, even worse with 2| T|? resolutions

m Interested in non reachability, no certificate to verify answer

Current solution

QSopt-Exact: exact solver from

Exact solutions to linear programming problems
David L. Applegate ® William Cook ” Sanjeeb Dash ¢ Daniel G. Espinoza &*

13 /16

Conclusion

Open questions

m Floating-point solver + testing certificates (Farkas' lemma,
reconstruct simplex tableaux in Q)

14 /16

Conclusion

Open questions

m Floating-point solver + testing certificates (Farkas' lemma,
reconstruct simplex tableaux in Q)

m Reachability in CVASS with “unique states”?

14 /16

Conclusion

Open questions

m Floating-point solver + testing certificates (Farkas' lemma,
reconstruct simplex tableaux in Q)

m Reachability in CVASS with “unique states”?

m Any use for CVASS with “unique states”?

14 /16

Conclusion

m Test other solvers

15/16

Conclusion

m Test other solvers

m Benchmarks

15/16

Conclusion

m Test other solvers
m Benchmarks

m Next modules

15/16

Thank you! Merci! Danke!

