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Continuous vector addition systems with states (CVASS)

m What is a continuous VASS?
m Not defined in the literature

m Two possible definitions
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for t € 7" do . .
solve 7v v > 0AV[] > 0ACrerv=m-m, B Reachability in CPN € P
if 3v then nbsol < nbsol + 1; sol < sol + v
end
1

if nbsol = 0 then return false else sol < ——sol

t1 = np.array(range(0, n2)) | ﬁ pgthon with NumPy

b_eq = np.array(m - m0)

while tl.size != 0:
= tl.size
nbsol, sol = 0, np.zeros(l, dtype=Fraction)
A_eq = incident (subnet(net, t1))

for t in ti:
objective_vector = [objective(t, x) for x in range(0, 1)]
result = solve_gsopt(objective_vector, A_eq, b_eq, t)
if result is not None:

nbsol +=
sol += result
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if 3v then nbsol < nbsol + 1; sol < sol + v
end
if nbsol = 0 then return false else sol + ﬁsol
tl = np.array(range(0, n2)) | ﬁ pgthon with NumPy
b_eq = np.array(m - m0)
CiEHo Gl =08 m 299 lines of code
nbsol, sol = 0, np.zeros(l, dtype=Fraction) i
A_eq = incident (subnet(net, t1)) (215 code + 84 docstrlng)

for t in ti:
objective_vector = [objective(t, x) for x in range(0, 1)]

result = solve_qsopt(objective_vector, A_eq, b_eq, t)
if result is not None:

nbsol +=
sol += result
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Overview
Details of implementation

Polynomial time algorithm (Fraca & Haddad PN'13)

Algorithm 2: Decision algorithm for reachability

Reachable((N, mg), m): status

Input: a CPN system (N, mo), a marking m

Output: the reachability status of m

Output: the Parikh image of a witness in the positive case
Data: nbsol: integer; v, sol: vectors; T": subset of transitions

1 if m = my then return (true,0)

2T« T

3 while 7' # () do

4 nbsol < 0; sol < 0

5 for t € T’ do

6 solve 37v v > 0AV[t] > 0ACpxrv=m —mg

7 if 3v then nbsol < nbsol + 1; sol < sol + v

8 end

9 if nbsol = 0 then return false else sol « ——sol
10 T’ + [sol]
11 T’ + T' NmaxFS(Nyr, mo[*T'°])
12 T' + T' NmaxFS(N,', m[*T'*]) /* deleted for lim-reachability */
13 if 7" = [sol] then return (true,sol)

end
return false
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Input: a CPN system (N, mo), a marking m

Output: the reachability status of m

Output: the Parikh image of a witness in the positive case
Data: nbsol: integer; v, sol: vectors; T": subset of transitions

1|if m = my then return (true,0)
2|T' T ;
s|while 7 £ 8 do Relatively easy
4 nbsol < 0; sol + 0 with Numpy
5 for t € T’ do
6 | | solved?vv>0AvV[t]>0ACpyrv=m—mg
7 | if 3v then nbsol - nbsol + 1; sol + sol +v
8 end
9 if nbsol = 0 then return false else sol « ——sol
10 T’ + [sol]
11 T+ T' NmaxFS(Nyr, mo[*T'°])
12 T' + T' NmaxFS(N,', m[*T'*]) /* deleted for lim-reachability */
13 if 7" = [sol] then return (true,sol)
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return false
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2T« T
3 while 7' # () do
4 nbsol < 0; sol < 0
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System of linear inequalities

6 | 3x € R¥ such that x > 0, x; > 0 and Ax = b?

Without this condition, could simply use simplex
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Handling the strict inequality

Solve
Maximize X
Subject to Ax=b, x>0
m If x; >0, return x
m If x; =0, return "no solution"
m If no solution, return "no solution"
m If unbounded, continue
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Details of implementation

Handling the strict inequality

Solve
Minimize X
Subject to Ax=b, x>0, x; >1

return x
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Overview
Details of implementation

Simplex implementations

m Usually in floating-point arithmetic
m Error-prone, even worse with 2| T|? resolutions

m Interested in non reachability, no certificate to verify answer

Current solution

QSopt-Exact: exact solver from

Exact solutions to linear programming problems
David L. Applegate ® William Cook ” Sanjeeb Dash ¢ Daniel G. Espinoza &*
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Conclusion

Open questions

m Floating-point solver + testing certificates (Farkas' lemma,
reconstruct simplex tableaux in Q)

m Reachability in CVASS with “unique states”?

m Any use for CVASS with “unique states”?
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m Next modules
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Thank you! Merci! Danke!



