## Reachability in Two-Dimensional Vector Addition Systems with States is PSPACE-complete

#### Michael Blondin

LSV. ENS Cachan & CNRS. France

DIRO, Université de Montréal, Canada

June 15, 2015

# Reachability in Two-Dimensional Vector Addition Systems with States is PSPACE-complete

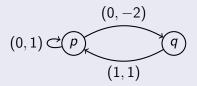
Michael Blondin<sup>12</sup>, Alain Finkel<sup>1</sup>, Stefan Göller<sup>1</sup>, Christoph Haase<sup>1</sup> & Pierre McKenzie<sup>12</sup>

<sup>1</sup>LSV, ENS Cachan & CNRS, France

<sup>2</sup>DIRO, Université de Montréal, Canada

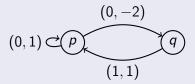
June 15, 2015

d-VASS:



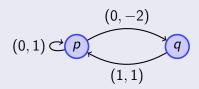
#### d-VASS:

 $d \geq 1$  (dimension)



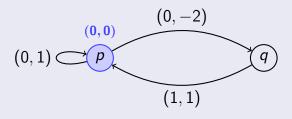
#### d-VASS:

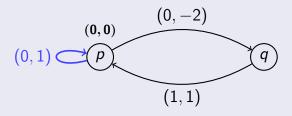
- $d \ge 1$  (dimension)
- Q finite set (states)

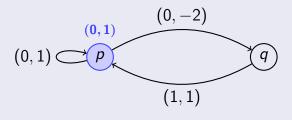


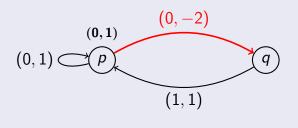
#### d-VASS:

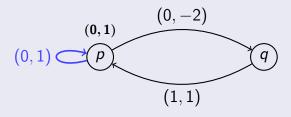
- $d \geq 1$  (dimension)
- Q finite set (states)
- $T \subseteq Q \times \mathbb{Z}^d \times Q$  finite (transitions) (0,-2) (0,1) Q (1,1)

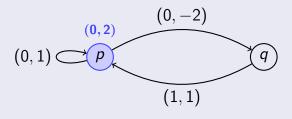


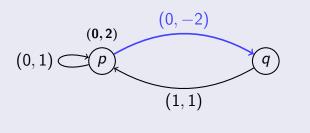


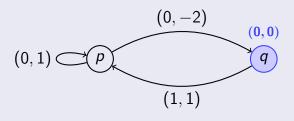


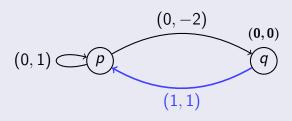


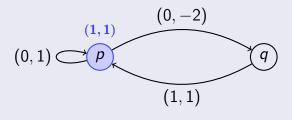


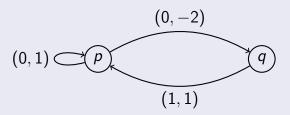




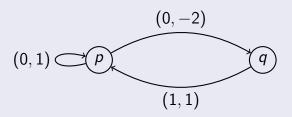




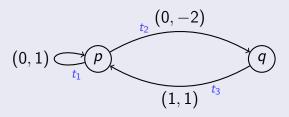




We write  $p(\mathbf{u}) \stackrel{*}{\to} q(\mathbf{v})$  if  $\exists$  run from  $p(\mathbf{u})$  to  $q(\mathbf{v})$ 



E.g. 
$$p(0,0) \xrightarrow{*} p(1,1)$$



E.g. 
$$p(0,0) \xrightarrow{t_1t_1t_2t_3} p(1,1)$$

### Reachability problem

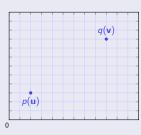
**Input:** *d*-VASS *V* 

$$(0,1)$$
  $\bigcirc$   $(0,-2)$   $(1,1)$ 

#### Reachability problem

**Input:** d-VASS V and  $p(\mathbf{u}), q(\mathbf{v}) \in Q \times \mathbb{N}^d$ 

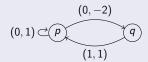
$$(0,1)$$
  $(0,-2)$   $(0,1)$ 

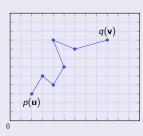


### Reachability problem

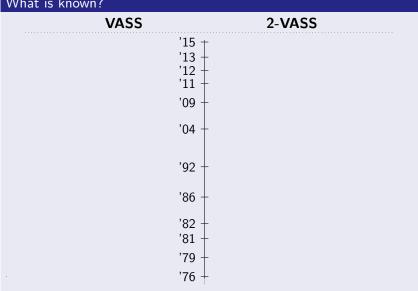
**Input:** d-VASS V and  $p(\mathbf{u}), q(\mathbf{v}) \in Q \times \mathbb{N}^d$ 

Question:  $p(\mathbf{u}) \stackrel{*}{\rightarrow} q(\mathbf{v})$ ?

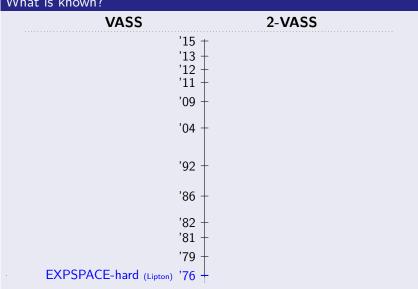


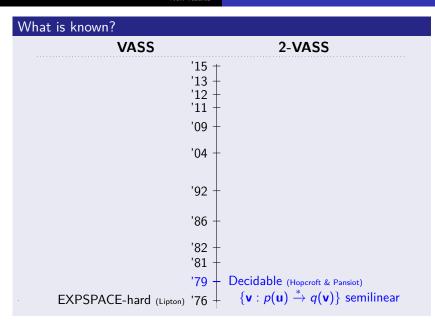


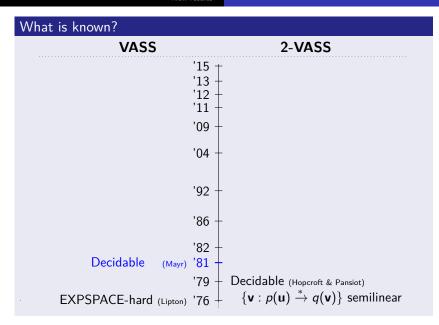
## What is known?

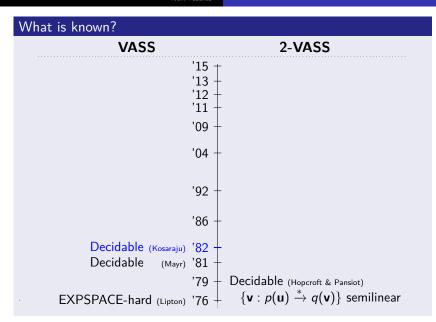


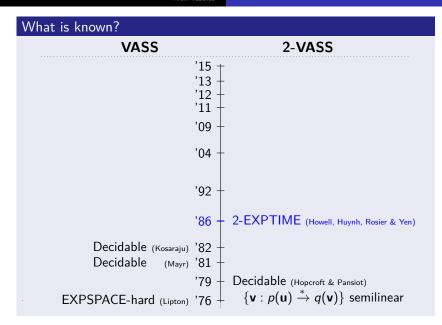


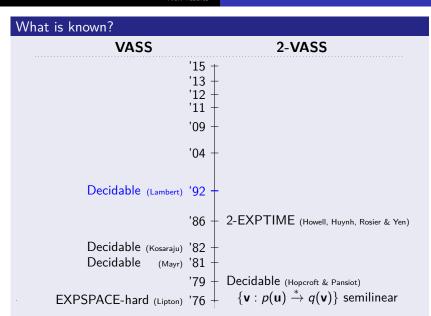


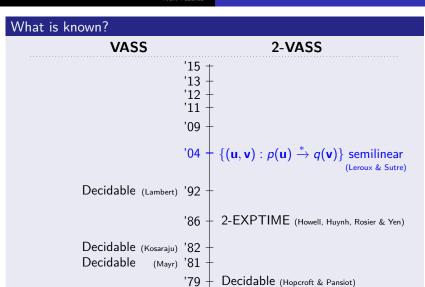






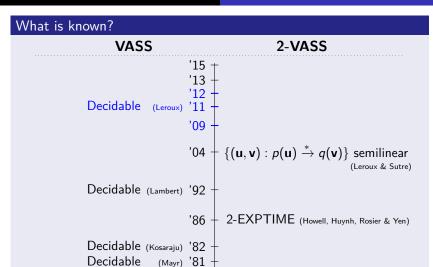




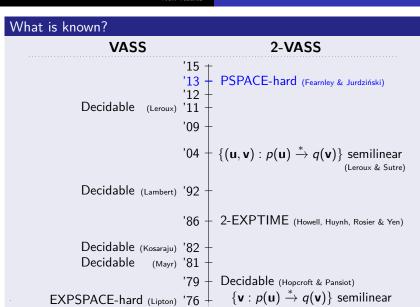


EXPSPACE-hard (Lipton) '76  $\downarrow$  { $\mathbf{v}: p(\mathbf{u}) \stackrel{*}{\to} q(\mathbf{v})$ } semilinear

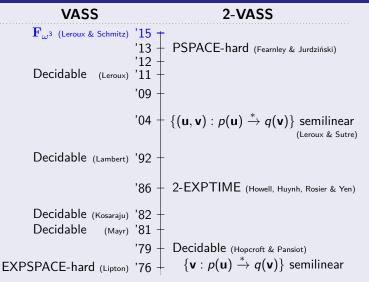
'79 + Decidable (Hopcroft & Pansiot)



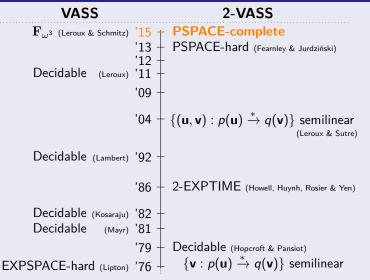
EXPSPACE-hard (Lipton) '76  $\downarrow$  { $\mathbf{v}: p(\mathbf{u}) \stackrel{*}{\to} q(\mathbf{v})$ } semilinear



#### What is known?



#### What is known?



#### Theorem

 $\exists c \ \forall 2\text{-VASS} \ V$ 

$$p(\mathbf{u}) \stackrel{*}{\to} q(\mathbf{v}) \implies p(\mathbf{u}) \stackrel{\pi}{\to} q(\mathbf{v}) \text{ s.t. } |\pi| \le c^{|V|}$$

#### Theorem

 $\exists c \ \forall 2\text{-VASS} \ V$ 

$$p(\mathbf{u}) \stackrel{*}{\to} q(\mathbf{v}) \implies p(\mathbf{u}) \stackrel{\pi}{\to} q(\mathbf{v}) \text{ s.t. } |\pi| \leq c^{|V|}$$

#### Corollary

Reachability for 2-VASS ∈ PSPACE

 $\exists c \ \forall 2\text{-VASS} \ V$ 

$$p(\mathbf{u}) \stackrel{*}{\to} q(\mathbf{v}) \implies p(\mathbf{u}) \stackrel{\pi}{\to} q(\mathbf{v}) \text{ s.t. } |\pi| \le c^{|V|}$$

#### Corollary

Exp. length runs  $\implies$  exp. intermediate counter values

 $\exists c \ \forall 2\text{-VASS} \ V$ 

$$p(\mathbf{u}) \stackrel{*}{\to} q(\mathbf{v}) \implies p(\mathbf{u}) \stackrel{\pi}{\to} q(\mathbf{v}) \text{ s.t. } |\pi| \le c^{|V|}$$

#### Corollary

Exp. length runs  $\implies$  exp. intermediate counter values  $\implies$  poly. size intermediate counter values

 $\exists c \ \forall 2\text{-VASS} \ V$ 

$$p(\mathbf{u}) \stackrel{*}{\to} q(\mathbf{v}) \implies p(\mathbf{u}) \stackrel{\pi}{\to} q(\mathbf{v}) \text{ s.t. } |\pi| \leq c^{|V|}$$

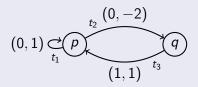
#### Corollary

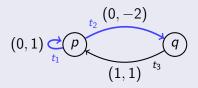
Exp. length runs  $\implies$  exp. intermediate counter values  $\implies$  poly. size intermediate counter values  $\implies$  guess run on the fly

 $\exists c \ \forall 2\text{-VASS} \ V$ 

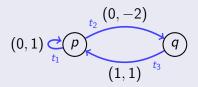
$$p(\mathbf{u}) \stackrel{*}{\to} q(\mathbf{v}) \implies p(\mathbf{u}) \stackrel{\pi}{\to} q(\mathbf{v}) \text{ s.t. } |\pi| \leq c^{|V|}$$

How to prove this theorem?

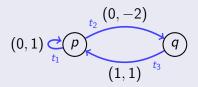




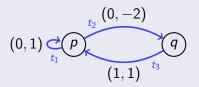
$$t_1^*t_2$$



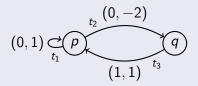
$$t_1^*t_2 t_3 t_1^*t_2$$



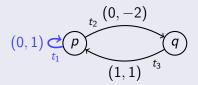
$$t_1^*t_2 t_3t_1^*t_2 t_3t_1^*t_2$$



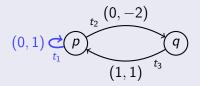
$$t_1^*t_2 t_3t_1^*t_2 t_3t_1^*t_2 \cdots t_3t_1^*t_2$$



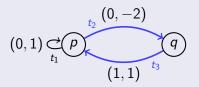
$$t_1^*t_2 t_3t_1^*t_2 t_3t_1^*t_2 \cdots t_3t_1^*t_2$$



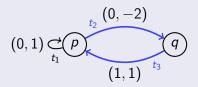
$$t_1^*t_2 t_3t_1^*t_2 t_3t_1^*t_2 \cdots t_3t_1^*t_2$$



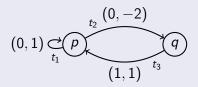
$$t_1^*t_2 t_3 t_2 t_3 t_2 \cdots t_3 t_2$$



$$t_1^*t_2$$
  $t_3$   $t_2$   $t_3$   $t_2$   $\cdots$   $t_3$   $t_2$ 



$$t_1^*t_2(t_3 t_2)^*$$



$$t_1^*t_2(t_3 t_2)^*$$

$$\exists S = \bigcup_{\mathsf{finite}} \alpha_0 \beta_1^* \alpha_1 \cdots \beta_k^* \alpha_k$$

$$\exists S = \bigcup_{\text{finite}} \underbrace{\alpha_0 \beta_1^* \alpha_1 \cdots \beta_k^* \alpha_k}_{\text{linear path scheme}}$$

$$\exists S = \bigcup_{\text{finite}} \alpha_0 {\beta_1}^* \alpha_1 \cdots {\beta_k}^* \alpha_k \text{ such that }$$

$$p(\mathbf{u}) \stackrel{*}{\to} q(\mathbf{v}) \implies p(\mathbf{u}) \stackrel{\pi \in S}{\longrightarrow} q(\mathbf{v})$$

$$\exists S = \bigcup_{\text{finite}} \alpha_0 \beta_1^* \alpha_1 \cdots \beta_k^* \alpha_k$$
 such that

$$p(\mathbf{u}) \stackrel{*}{\to} q(\mathbf{v}) \implies p(\mathbf{u}) \stackrel{\pi \in S}{\longrightarrow} q(\mathbf{v})$$

## <u>Small</u> linear forms in 2-VASS (B., Finkel, Göller, Haase & McKenzie LICS'15)

$$|\alpha_i|, |\beta_i| \leq (|Q| + ||T||)^{O(1)}$$

$$\exists S = \bigcup_{\text{finite}} \alpha_0 {\beta_1}^* \alpha_1 \cdots {\beta_k}^* \alpha_k$$
 such that

$$p(\mathbf{u}) \stackrel{*}{\to} q(\mathbf{v}) \implies p(\mathbf{u}) \stackrel{\pi \in S}{\longrightarrow} q(\mathbf{v})$$

## <u>Small</u> linear forms in 2-VASS (B., Finkel, Göller, Haase & McKenzie LICS'15)

- $|\alpha_i|, |\beta_i| \le (|Q| + ||T||)^{O(1)}$
- $k \in O(|Q|^2)$

$$\exists S = \bigcup_{\text{finite}} \alpha_0 \beta_1^* \alpha_1 \cdots \beta_k^* \alpha_k$$
 such that

$$p(\mathbf{u}) \stackrel{*}{\to} q(\mathbf{v}) \implies p(\mathbf{u}) \stackrel{\pi \in S}{\longrightarrow} q(\mathbf{v})$$

#### <u>Small</u> linear forms in 2-VASS (B., Finkel, Göller, Haase & McKenzie LICS'15)

- $|\alpha_i|, |\beta_i| \le (|Q| + ||T||)^{O(1)}$
- $k \in O(|Q|^2)$
- \*-exponents  $\leq (|Q| + ||T|| + ||\mathbf{u}|| + ||\mathbf{v}||)^{O(1)}$

$$\exists S = \bigcup_{\text{finite}} \alpha_0 \beta_1^* \alpha_1 \cdots \beta_k^* \alpha_k$$
 such that

$$p(\mathbf{u}) \stackrel{*}{\to} q(\mathbf{v}) \implies p(\mathbf{u}) \stackrel{\pi \in S}{\longrightarrow} q(\mathbf{v})$$

#### Small linear forms in 2-VASS (B., Finkel, Göller, Haase & McKenzie LICS'15)

- $|\alpha_i|, |\beta_i| \le \text{exponential}$
- lacksquare  $k \in polynomial$
- \*-exponents ≤ exponential

## Open questions

Alternative proof allowing implementation?

#### Open questions

- Alternative proof allowing implementation?
- 2-VASS, unary encoding: NL-hard and ∈ NP. NL-complete?

#### Open questions

- Alternative proof allowing implementation?
- 2-VASS, unary encoding: NL-hard and  $\in$  NP. NL-complete?
- 3-VASS: PSPACE-hard and  $\in \mathbf{F}_{\omega^3}$ . Better bounds?

Vector addition systems Reachability problem New results

# Thank you! Merci!