Reachability in Two-Dimensional Vector Addition Systems with States is PSPACE-complete

Michael Blondin

LSV. ENS Cachan & CNRS. France

DIRO, Université de Montréal, Canada

June 15, 2015

Reachability in Two-Dimensional Vector Addition Systems with States is PSPACE-complete

Michael Blondin¹², Alain Finkel¹, Stefan Göller¹, Christoph Haase¹ & Pierre McKenzie¹²

¹LSV, ENS Cachan & CNRS, France

²DIRO, Université de Montréal, Canada

June 15, 2015

d-VASS:

d-VASS:

 $d \geq 1$ (dimension)

d-VASS:

- $d \ge 1$ (dimension)
- Q finite set (states)

d-VASS:

- $d \geq 1$ (dimension)
- Q finite set (states)
- $T \subseteq Q \times \mathbb{Z}^d \times Q$ finite (transitions) (0,-2) (0,1) Q (1,1)

We write $p(\mathbf{u}) \stackrel{*}{\to} q(\mathbf{v})$ if \exists run from $p(\mathbf{u})$ to $q(\mathbf{v})$

E.g.
$$p(0,0) \xrightarrow{*} p(1,1)$$

E.g.
$$p(0,0) \xrightarrow{t_1t_1t_2t_3} p(1,1)$$

Reachability problem

Input: *d*-VASS *V*

$$(0,1)$$
 \bigcirc $(0,-2)$ $(1,1)$

Reachability problem

Input: d-VASS V and $p(\mathbf{u}), q(\mathbf{v}) \in Q \times \mathbb{N}^d$

$$(0,1)$$
 $(0,-2)$ $(0,1)$

Reachability problem

Input: d-VASS V and $p(\mathbf{u}), q(\mathbf{v}) \in Q \times \mathbb{N}^d$

Question: $p(\mathbf{u}) \stackrel{*}{\rightarrow} q(\mathbf{v})$?

What is known?

EXPSPACE-hard (Lipton) '76 \downarrow { $\mathbf{v}: p(\mathbf{u}) \stackrel{*}{\to} q(\mathbf{v})$ } semilinear

'79 + Decidable (Hopcroft & Pansiot)

EXPSPACE-hard (Lipton) '76 \downarrow { $\mathbf{v}: p(\mathbf{u}) \stackrel{*}{\to} q(\mathbf{v})$ } semilinear

What is known?

What is known?

Theorem

 $\exists c \ \forall 2\text{-VASS} \ V$

$$p(\mathbf{u}) \stackrel{*}{\to} q(\mathbf{v}) \implies p(\mathbf{u}) \stackrel{\pi}{\to} q(\mathbf{v}) \text{ s.t. } |\pi| \le c^{|V|}$$

Theorem

 $\exists c \ \forall 2\text{-VASS} \ V$

$$p(\mathbf{u}) \stackrel{*}{\to} q(\mathbf{v}) \implies p(\mathbf{u}) \stackrel{\pi}{\to} q(\mathbf{v}) \text{ s.t. } |\pi| \leq c^{|V|}$$

Corollary

Reachability for 2-VASS ∈ PSPACE

 $\exists c \ \forall 2\text{-VASS} \ V$

$$p(\mathbf{u}) \stackrel{*}{\to} q(\mathbf{v}) \implies p(\mathbf{u}) \stackrel{\pi}{\to} q(\mathbf{v}) \text{ s.t. } |\pi| \le c^{|V|}$$

Corollary

Exp. length runs \implies exp. intermediate counter values

 $\exists c \ \forall 2\text{-VASS} \ V$

$$p(\mathbf{u}) \stackrel{*}{\to} q(\mathbf{v}) \implies p(\mathbf{u}) \stackrel{\pi}{\to} q(\mathbf{v}) \text{ s.t. } |\pi| \le c^{|V|}$$

Corollary

Exp. length runs \implies exp. intermediate counter values \implies poly. size intermediate counter values

 $\exists c \ \forall 2\text{-VASS} \ V$

$$p(\mathbf{u}) \stackrel{*}{\to} q(\mathbf{v}) \implies p(\mathbf{u}) \stackrel{\pi}{\to} q(\mathbf{v}) \text{ s.t. } |\pi| \leq c^{|V|}$$

Corollary

Exp. length runs \implies exp. intermediate counter values \implies poly. size intermediate counter values \implies guess run on the fly

 $\exists c \ \forall 2\text{-VASS} \ V$

$$p(\mathbf{u}) \stackrel{*}{\to} q(\mathbf{v}) \implies p(\mathbf{u}) \stackrel{\pi}{\to} q(\mathbf{v}) \text{ s.t. } |\pi| \leq c^{|V|}$$

How to prove this theorem?

$$t_1^*t_2$$

$$t_1^*t_2 t_3 t_1^*t_2$$

$$t_1^*t_2 t_3t_1^*t_2 t_3t_1^*t_2$$

$$t_1^*t_2 t_3t_1^*t_2 t_3t_1^*t_2 \cdots t_3t_1^*t_2$$

$$t_1^*t_2 t_3t_1^*t_2 t_3t_1^*t_2 \cdots t_3t_1^*t_2$$

$$t_1^*t_2 t_3t_1^*t_2 t_3t_1^*t_2 \cdots t_3t_1^*t_2$$

$$t_1^*t_2 t_3 t_2 t_3 t_2 \cdots t_3 t_2$$

$$t_1^*t_2$$
 t_3 t_2 t_3 t_2 \cdots t_3 t_2

$$t_1^*t_2(t_3 t_2)^*$$

$$t_1^*t_2(t_3 t_2)^*$$

$$\exists S = \bigcup_{\mathsf{finite}} \alpha_0 \beta_1^* \alpha_1 \cdots \beta_k^* \alpha_k$$

$$\exists S = \bigcup_{\text{finite}} \underbrace{\alpha_0 \beta_1^* \alpha_1 \cdots \beta_k^* \alpha_k}_{\text{linear path scheme}}$$

$$\exists S = \bigcup_{\text{finite}} \alpha_0 {\beta_1}^* \alpha_1 \cdots {\beta_k}^* \alpha_k \text{ such that }$$

$$p(\mathbf{u}) \stackrel{*}{\to} q(\mathbf{v}) \implies p(\mathbf{u}) \stackrel{\pi \in S}{\longrightarrow} q(\mathbf{v})$$

$$\exists S = \bigcup_{\text{finite}} \alpha_0 \beta_1^* \alpha_1 \cdots \beta_k^* \alpha_k$$
 such that

$$p(\mathbf{u}) \stackrel{*}{\to} q(\mathbf{v}) \implies p(\mathbf{u}) \stackrel{\pi \in S}{\longrightarrow} q(\mathbf{v})$$

<u>Small</u> linear forms in 2-VASS (B., Finkel, Göller, Haase & McKenzie LICS'15)

$$|\alpha_i|, |\beta_i| \leq (|Q| + ||T||)^{O(1)}$$

$$\exists S = \bigcup_{\text{finite}} \alpha_0 {\beta_1}^* \alpha_1 \cdots {\beta_k}^* \alpha_k$$
 such that

$$p(\mathbf{u}) \stackrel{*}{\to} q(\mathbf{v}) \implies p(\mathbf{u}) \stackrel{\pi \in S}{\longrightarrow} q(\mathbf{v})$$

<u>Small</u> linear forms in 2-VASS (B., Finkel, Göller, Haase & McKenzie LICS'15)

- $|\alpha_i|, |\beta_i| \le (|Q| + ||T||)^{O(1)}$
- $k \in O(|Q|^2)$

$$\exists S = \bigcup_{\text{finite}} \alpha_0 \beta_1^* \alpha_1 \cdots \beta_k^* \alpha_k$$
 such that

$$p(\mathbf{u}) \stackrel{*}{\to} q(\mathbf{v}) \implies p(\mathbf{u}) \stackrel{\pi \in S}{\longrightarrow} q(\mathbf{v})$$

<u>Small</u> linear forms in 2-VASS (B., Finkel, Göller, Haase & McKenzie LICS'15)

- $|\alpha_i|, |\beta_i| \le (|Q| + ||T||)^{O(1)}$
- $k \in O(|Q|^2)$
- *-exponents $\leq (|Q| + ||T|| + ||\mathbf{u}|| + ||\mathbf{v}||)^{O(1)}$

$$\exists S = \bigcup_{\text{finite}} \alpha_0 \beta_1^* \alpha_1 \cdots \beta_k^* \alpha_k$$
 such that

$$p(\mathbf{u}) \stackrel{*}{\to} q(\mathbf{v}) \implies p(\mathbf{u}) \stackrel{\pi \in S}{\longrightarrow} q(\mathbf{v})$$

Small linear forms in 2-VASS (B., Finkel, Göller, Haase & McKenzie LICS'15)

- $|\alpha_i|, |\beta_i| \le \text{exponential}$
- lacksquare $k \in polynomial$
- *-exponents ≤ exponential

Open questions

Alternative proof allowing implementation?

Open questions

- Alternative proof allowing implementation?
- 2-VASS, unary encoding: NL-hard and ∈ NP. NL-complete?

Open questions

- Alternative proof allowing implementation?
- 2-VASS, unary encoding: NL-hard and \in NP. NL-complete?
- 3-VASS: PSPACE-hard and $\in \mathbf{F}_{\omega^3}$. Better bounds?

Vector addition systems Reachability problem New results

Thank you! Merci!