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Branching

A WSTS (X, —, <) is finitely branching if Post(x) is finite for
every x € X.

Some infinitely branching WSTS

m Inserting FIFO automata (Cécé, Finkel, lyer 1C'96),

] Inserting automata (Bouyer, Markey, Ouaknine, Schnoebelen, Worrell
FAC'12),

B w-Petri nets (Geeraerts, Heussner, Praveen & Raskin PN'13),
m Parametric WSTS.
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Strong termination
Input: (X, —,<) a WSTS, x € X.

Question: Jk bounding length of executions from xg?

Theorem (B., Finkel & McKenzie ICALP'14)

Strong termination is decidable for infinitely branching WSTS
under some assumptions.
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Issues with finite branching techniques

Some techniques for WSTS based on finite reachability trees;
impossible for infinite branching.

Some rely on upward closed sets; what about downward closed, in
particular with infinite branching?

A tool

Develop from the WSTS completion introduced by Finkel &
Goubault-Larrecq 2009.
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Theorem (Finkel & Goubault-Larrecq ICALP’09; Goubault-Larrecq '14)

D downward closed — D = U Ideals

finite

Corollary (B., Finkel & McKenzie ICALP'14)

Every downward closed set decomposes canonically as the union of
its maximal ideals.
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Theorem (B., Finkel & McKenzie ICALP’14)
Let S = (X, —s,<) be a WSTS, then S = (X, —3, C) such that

mSis finitely branching,
m S has (strong) monotony,

m Sis not always a WSTS (Jan&ar IPL'99).
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Relating executions of S and S

Let S = (X, —s,<) be a WSTS with strong monotony, then

mif x i>5 y, then for every ideal | D | x there exists an ideal
J 2 Ly such that | ¢ J,

mif / Lg J, then for every y € J there exists x € / such that

x Loy >y,
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Theorem (B., Finkel & McKenzie ICALP'14)

Strong termination is decidable for infinitely branching WSTS with
transitive monotony and such that S is a post-effective WSTS.

Post-effectiveness

Possible to compute cardinality of

PosttO OO0) = OO0 . 0O®0. 0®0. ...
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Theorem (B., Finkel & McKenzie ICALP'14)

Strong termination is decidable for infinitely branching WSTS with
transitive monotony and such that S is a post-effective WSTS.

Proof

m Executions bounded in S iff bounded in S.

"S5 finitely branching, can decide termination in S by Finkel &
Schnoebelen 2001.
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Applications Other problems

m Coverability is decidable for post-effective WSTS,

m Boundedness is decidable for post-effective WSTS with strict
monotony,

m Strong maintainability is decidable for WSTS with strong
monotony and such that S is a post-effective WSTS.

Further results for infinitely branching WSTS
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m - general class of infinitely branching WSTS with a
Karp-Miller procedure?

m Toward the algorithmics of complete WSTS.
m What else can we do with the WSTS completion?
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Conclusion

Thank you! Merci!
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