
Formal Analysis of Population Protocols

Michael Blondin
Joint work with Javier Esparza, Stefan Jaax,

Antonín Kučera and Philipp J. Meyer



Overview

Population protocols: distributed computing
model for massive networks of passively mobile
finite-state agents

Can model e.g. networks of passively mobile sensors and
chemical reaction networks

Protocols compute predicates of the form φ : Nd → {0, 1}

e.g. if φ is unary, then φ(n) is computed by n agents

1/10



Overview

Population protocols: distributed computing
model for massive networks of passively mobile
finite-state agents

Can model e.g. networks of passively mobile sensors and
chemical reaction networks

Protocols compute predicates of the form φ : Nd → {0, 1}

e.g. if φ is unary, then φ(n) is computed by n agents

1/10



Overview

Population protocols: distributed computing
model for massive networks of passively mobile
finite-state agents

Can model e.g. networks of passively mobile sensors and
chemical reaction networks

Protocols compute predicates of the form φ : Nd → {0, 1}

e.g. if φ is unary, then φ(n) is computed by n agents

1/10



Overview

Population protocols: distributed computing
model for massive networks of passively mobile
finite-state agents

This talk: overview of recent advances on the formal
analysis of population protocols

Can model e.g. networks of passively mobile sensors and
chemical reaction networks

Protocols compute predicates of the form φ : Nd → {0, 1}

e.g. if φ is unary, then φ(n) is computed by n agents

1/10



Population protocols Angluin et al. PODC’04

• anonymous mobile agents with very few resources

• agents change states via random pairwise interactions

• each agent has opinion true/false

• computes by stabilizing agents to some opinion

2/10



Population protocols Angluin et al. PODC’04

• anonymous mobile agents with very few resources

• agents change states via random pairwise interactions

• each agent has opinion true/false

• computes by stabilizing agents to some opinion

2/10



Population protocols Angluin et al. PODC’04

• anonymous mobile agents with very few resources

• agents change states via random pairwise interactions

• each agent has opinion true/false

• computes by stabilizing agents to some opinion

2/10



Population protocols Angluin et al. PODC’04

• anonymous mobile agents with very few resources

• agents change states via random pairwise interactions

• each agent has opinion true/false

• computes by stabilizing agents to some opinion

2/10



Population protocols Angluin et al. PODC’04

• anonymous mobile agents with very few resources

• agents change states via random pairwise interactions

• each agent has opinion true/false

• computes by stabilizing agents to some opinion

2/10



Population protocols Angluin et al. PODC’04

• anonymous mobile agents with very few resources

• agents change states via random pairwise interactions

• each agent has opinion true/false

• computes by stabilizing agents to some opinion

2/10



Population protocols Angluin et al. PODC’04

• anonymous mobile agents with very few resources

• agents change states via random pairwise interactions

• each agent has opinion true/false

• computes by stabilizing agents to some opinion

2/10



Population protocols Angluin et al. PODC’04

• anonymous mobile agents with very few resources

• agents change states via random pairwise interactions

• each agent has opinion true/false

• computes by stabilizing agents to some opinion

2/10



Population protocols Angluin et al. PODC’04

• anonymous mobile agents with very few resources

• agents change states via random pairwise interactions

• each agent has opinion true/false

• computes by stabilizing agents to some opinion

2/10



Population protocols Angluin et al. PODC’04

• anonymous mobile agents with very few resources

• agents change states via random pairwise interactions

• each agent has opinion true/false

• computes by stabilizing agents to some opinion

2/10



Population protocols Angluin et al. PODC’04

• anonymous mobile agents with very few resources

• agents change states via random pairwise interactions

• each agent has opinion true/false

• computes by stabilizing agents to some opinion

2/10



Example: majority protocol

At least as many blue birds than red birds?

Protocol:

• Two large birds of
different colors
become small and
blue

• Large birds convert
small birds to their
color

• To break ties: small
blue birds convert
small red birds

3/10



Example: majority protocol

At least as many blue birds than red birds?

Protocol:

• Two large birds of
different colors
become small and
blue

• Large birds convert
small birds to their
color

• To break ties: small
blue birds convert
small red birds

3/10



Example: majority protocol

At least as many blue birds than red birds?

Protocol:

• Two large birds of
different colors
become small and
blue

• Large birds convert
small birds to their
color

• To break ties: small
blue birds convert
small red birds

3/10



Example: majority protocol

At least as many blue birds than red birds?

Protocol:

• Two large birds of
different colors
become small and
blue

• Large birds convert
small birds to their
color

• To break ties: small
blue birds convert
small red birds

3/10



Example: majority protocol

At least as many blue birds than red birds?

Protocol:

• Two large birds of
different colors
become small and
blue

• Large birds convert
small birds to their
color

• To break ties: small
blue birds convert
small red birds

3/10



Example: majority protocol

At least as many blue birds than red birds?

Protocol:

• Two large birds of
different colors
become small and
blue

• Large birds convert
small birds to their
color

• To break ties: small
blue birds convert
small red birds

3/10



Example: majority protocol

At least as many blue birds than red birds?

Protocol:

• Two large birds of
different colors
become small and
blue

• Large birds convert
small birds to their
color

• To break ties: small
blue birds convert
small red birds

3/10



Example: majority protocol

At least as many blue birds than red birds?

Protocol:

• Two large birds of
different colors
become small and
blue

• Large birds convert
small birds to their
color

• To break ties: small
blue birds convert
small red birds

3/10



Example: majority protocol

At least as many blue birds than red birds?

Protocol:

• Two large birds of
different colors
become small and
blue

• Large birds convert
small birds to their
color

• To break ties: small
blue birds convert
small red birds

3/10



Example: majority protocol

At least as many blue birds than red birds?

Protocol:

• Two large birds of
different colors
become small and
blue

• Large birds convert
small birds to their
color

• To break ties: small
blue birds convert
small red birds

3/10



Example: majority protocol

At least as many blue birds than red birds?

Protocol:

• Two large birds of
different colors
become small and
blue

• Large birds convert
small birds to their
color

• To break ties: small
blue birds convert
small red birds

3/10



Example: majority protocol

At least as many blue birds than red birds?

Protocol:

• Two large birds of
different colors
become small and
blue

• Large birds convert
small birds to their
color

• To break ties: small
blue birds convert
small red birds 3/10



Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

• Each bird is in a
state of {0, 1, 2, 3, 4}

• Sick birds initially in
state 1 and healthy
birds in state 0

• (m,n) 7→ (m+ n,0)
if m+ n < 4

• (m,n) 7→ (4, 4)
if m+ n ≥ 4

1

1

1

0

1

4/10



Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

• Each bird is in a
state of {0, 1, 2, 3, 4}

• Sick birds initially in
state 1 and healthy
birds in state 0

• (m,n) 7→ (m+ n,0)
if m+ n < 4

• (m,n) 7→ (4, 4)
if m+ n ≥ 4

1

1

1

0

1

4/10



Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

• Each bird is in a
state of {0, 1, 2, 3, 4}

• Sick birds initially in
state 1 and healthy
birds in state 0

• (m,n) 7→ (m+ n,0)
if m+ n < 4

• (m,n) 7→ (4, 4)
if m+ n ≥ 4

1

1

1

0

1

4/10



Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

• Each bird is in a
state of {0, 1, 2, 3, 4}

• Sick birds initially in
state 1 and healthy
birds in state 0

• (m,n) 7→ (m+ n,0)
if m+ n < 4

• (m,n) 7→ (4, 4)
if m+ n ≥ 4

2

1

1

0

0

4/10



Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

• Each bird is in a
state of {0, 1, 2, 3, 4}

• Sick birds initially in
state 1 and healthy
birds in state 0

• (m,n) 7→ (m+ n,0)
if m+ n < 4

• (m,n) 7→ (4, 4)
if m+ n ≥ 4

2

1

1

0

0

4/10



Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

• Each bird is in a
state of {0, 1, 2, 3, 4}

• Sick birds initially in
state 1 and healthy
birds in state 0

• (m,n) 7→ (m+ n,0)
if m+ n < 4

• (m,n) 7→ (4, 4)
if m+ n ≥ 4

2

1

1

0

0

4/10



Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

• Each bird is in a
state of {0, 1, 2, 3, 4}

• Sick birds initially in
state 1 and healthy
birds in state 0

• (m,n) 7→ (m+ n,0)
if m+ n < 4

• (m,n) 7→ (4, 4)
if m+ n ≥ 4

2

1

1

0

0

4/10



Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

• Each bird is in a
state of {0, 1, 2, 3, 4}

• Sick birds initially in
state 1 and healthy
birds in state 0

• (m,n) 7→ (m+ n,0)
if m+ n < 4

• (m,n) 7→ (4, 4)
if m+ n ≥ 4

2

2

0

0

0

4/10



Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

• Each bird is in a
state of {0, 1, 2, 3, 4}

• Sick birds initially in
state 1 and healthy
birds in state 0

• (m,n) 7→ (m+ n,0)
if m+ n < 4

• (m,n) 7→ (4, 4)
if m+ n ≥ 4

2

2

0

0

0

4/10



Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

• Each bird is in a
state of {0, 1, 2, 3, 4}

• Sick birds initially in
state 1 and healthy
birds in state 0

• (m,n) 7→ (m+ n,0)
if m+ n < 4

• (m,n) 7→ (4, 4)
if m+ n ≥ 4

4

4

0

0

0

4/10



Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

• Each bird is in a
state of {0, 1, 2, 3, 4}

• Sick birds initially in
state 1 and healthy
birds in state 0

• (m,n) 7→ (m+ n,0)
if m+ n < 4

• (m,n) 7→ (4, 4)
if m+ n ≥ 4

4

4

0

0

0

4/10



Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

• Each bird is in a
state of {0, 1, 2, 3, 4}

• Sick birds initially in
state 1 and healthy
birds in state 0

• (m,n) 7→ (m+ n,0)
if m+ n < 4

• (m,n) 7→ (4, 4)
if m+ n ≥ 4

4

4

0

4

0

4/10



Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

• Each bird is in a
state of {0, 1, 2, 3, 4}

• Sick birds initially in
state 1 and healthy
birds in state 0

• (m,n) 7→ (m+ n,0)
if m+ n < 4

• (m,n) 7→ (4, 4)
if m+ n ≥ 4

4

4

0

4

0

4/10



Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

• Each bird is in a
state of {0, 1, 2, 3, 4}

• Sick birds initially in
state 1 and healthy
birds in state 0

• (m,n) 7→ (m+ n,0)
if m+ n < 4

• (m,n) 7→ (4, 4)
if m+ n ≥ 4

4

4

0

4

4

4/10



Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

• Each bird is in a
state of {0, 1, 2, 3, 4}

• Sick birds initially in
state 1 and healthy
birds in state 0

• (m,n) 7→ (m+ n,0)
if m+ n < 4

• (m,n) 7→ (4, 4)
if m+ n ≥ 4

4

4

0

4

4

4/10



Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

• Each bird is in a
state of {0, 1, 2, 3, 4}

• Sick birds initially in
state 1 and healthy
birds in state 0

• (m,n) 7→ (m+ n,0)
if m+ n < 4

• (m,n) 7→ (4, 4)
if m+ n ≥ 4

4

4

4

4

4

4/10



Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

• Each bird is in a
state of {0, 1, 2, 3, 4}

• Sick birds initially in
state 1 and healthy
birds in state 0

• (m,n) 7→ (m+ n,0)
if m+ n < 4

• (m,n) 7→ (4, 4)
if m+ n ≥ 4

4

4

4

4

4

4/10



Demonstration

4/10



Population protocols: formal model

• States: finite set Q

• Opinions: O : Q → {0, 1}

• Initial states: I ⊆ Q

• Transitions: T ⊆ Q2 × Q2

5/10



Population protocols: formal model

• States: finite set Q

• Opinions: O : Q → {0, 1}

• Initial states: I ⊆ Q

• Transitions: T ⊆ Q2 × Q2

5/10



Population protocols: formal model

• States: finite set Q

• Opinions: O : Q → {0, 1}

• Initial states: I ⊆ Q

• Transitions: T ⊆ Q2 × Q2

5/10



Population protocols: formal model

• States: finite set Q

• Opinions: O : Q → {0, 1}

• Initial states: I ⊆ Q

• Transitions: T ⊆ Q2 × Q2

5/10



Population protocols: computations

Interaction graph:

Agent 1 Agent 2

Agent 3 Agent 4

5/10



Population protocols: computations

Reachability graph:

5/10



Population protocols: computations

Underlying Markov chain:
(pairs of agents are picked uniformly at random)

2
10

2
10

6
10

1
10

4
10

4
10

4
10

6
10

4
10

4
10

6
10

10
10

6
10

2
10

4
10

3
10

2
10

5/10



Population protocols: computations

A run is an infinite path:

2
10

2
10

6
10

1
10

4
10

4
10

4
10

6
10

4
10

4
10

6
10

10
10

6
10

2
10

4
10

3
10

2
10

5/10



Population protocols: computations

A protocol computes a predicate φ : NI → {0, 1}
if runs reach common stable consensus

with probability 1

Init0

0 0

Init1

1 1

Init2

1

. . .

5/10



Population protocols: computations

A protocol computes a predicate φ : NI → {0, 1}
if runs reach common stable consensus

with probability 1

Expressive power Angluin, Aspnes, Eisenstat PODC’06

Population protocols compute precisely predicates
definable in Presburger arithmetic, i.e. FO(N, +, <)

5/10



Population protocols: computations

Other variants considered:
• Approximate protocols e.g. Angluin, Aspnes, Eisenstat DISC’07

• Protocols with leaders Angluin, Aspnes, Eisenstat Dist. Comput.’08

• Protocols with failures Delporte-Gallet et al. DCOSS’06

• Trustful protocols Bournez, Lefevre, Rabie DISC’13

• Mediated protocols, etc. Michail, Chatzigiannakis, Spirakis TCS’11

Expressive power Angluin, Aspnes, Eisenstat PODC’06

Population protocols compute precisely predicates
definable in Presburger arithmetic, i.e. FO(N, +, <)

5/10



Formal analysis of protocols

Protocols can become complex, even forB ≥ R:

6/10



Formal analysis of protocols

Protocols can become complex, even forB ≥ R:

How to verify

correctness
automatically?

6/10



Formal analysis of protocols

Convergence speed may vary wildly,
challenging to establish bounds

1 2 3 4 5 6 7 8 9 10 11 12 13 14

101

103

105

107

number of agents initially in state R

ex
pe

ct
ed

nu
m
be

ro
fs

te
ps

to
st
ab

le
co

ns
en

su
s

6/10



Formal analysis of protocols

Convergence speed may vary wildly,
challenging to establish bounds

1 2 3 4 5 6 7 8 9 10 11 12 13 14

101

103

105

107

number of agents initially in state R

ex
pe

ct
ed

nu
m
be

ro
fs

te
ps

to
st
ab

le
co

ns
en

su
s

How to derive asymptotic bounds
automatically? 6/10



Formal analysis of protocols

Number of states corresponds to amount of memory,
relevant to keep it minimal for embedded systems

• B ≥ R requires at least 4 states (Mertzios et al. ICALP’14)

• X ≥ c requires at most c + 1 states

6/10



Formal analysis of protocols

Number of states corresponds to amount of memory,
relevant to keep it minimal for embedded systems

• B ≥ R requires at least 4 states (Mertzios et al. ICALP’14)

• X ≥ c requires at most c + 1 states

What is the state complexity

of common predicates?

6/10



Formal analysis of protocols

1. Automatic verification of correctness
• Decidability Esparza, Ganty, Leroux, Majumdar CONCUR’15, FSTTCS’16

• Towards efficient verification B., Esparza, Jaax, Meyer PODC’17

• Complete tool B., Esparza, Jaax CAV’18

2. Automatic analysis of convergence speed
• First procedure B., Esparza, Kučera (submitted to CONCUR’18)

3. State complexity of protocols w.r.t. predicates
• Study of linear inequalities B., Esparza, Jaax STACS’18

6/10



Formal analysis of protocols

1. Automatic verification of correctness
• Decidability Esparza, Ganty, Leroux, Majumdar CONCUR’15, FSTTCS’16

• Towards efficient verification B., Esparza, Jaax, Meyer PODC’17

• Complete tool B., Esparza, Jaax CAV’18

2. Automatic analysis of convergence speed
• First procedure B., Esparza, Kučera (submitted to CONCUR’18)

3. State complexity of protocols w.r.t. predicates
• Study of linear inequalities B., Esparza, Jaax STACS’18

6/10



Verification: state of the art

Existing verification tools:

• PAT: model checker with global fairness
(Sun, Liu, Song Dong and Pang CAV’09)

• bp-ver: graph exploration
(Chatzigiannakis, Michail and Spirakis SSS’10)

• Conversion to counter machines + PRISM/Spin
(Clément, Delporte-Gallet, Fauconnier and Sighireanu ICDCS’11)

Only for populations of fixed size!

Not automatic!
Challenge: verifying automatically

all sizes

7/10



Verification: state of the art

Existing verification tools:

• PAT: model checker with global fairness
(Sun, Liu, Song Dong and Pang CAV’09)

• bp-ver: graph exploration
(Chatzigiannakis, Michail and Spirakis SSS’10)

• Conversion to counter machines + PRISM/Spin
(Clément, Delporte-Gallet, Fauconnier and Sighireanu ICDCS’11)

Only for populations of fixed size!

Not automatic!
Challenge: verifying automatically

all sizes

7/10



Verification: state of the art

Sometimes possible to verify all sizes:

• Verification with the interactive theorem prover Coq
(Deng and Monin TASE’09)

• bp-ver: graph exploration
(Chatzigiannakis, Michail and Spirakis SSS’10)

• Conversion to counter machines + PRISM/Spin
(Clément, Delporte-Gallet, Fauconnier and Sighireanu ICDCS’11)

Only for populations of fixed size!

Not automatic!
Challenge: verifying automatically

all sizes

7/10



Verification: state of the art

Sometimes possible to verify all sizes:

• Verification with the interactive theorem prover Coq
(Deng and Monin TASE’09)

• bp-ver: graph exploration
(Chatzigiannakis, Michail and Spirakis SSS’10)

• Conversion to counter machines + PRISM/Spin
(Clément, Delporte-Gallet, Fauconnier and Sighireanu ICDCS’11)

Only for populations of fixed size!

Not automatic!

Challenge: verifying automatically
all sizes

7/10



Verification: state of the art

Sometimes possible to verify all sizes:

• Verification with the interactive theorem prover Coq
(Deng and Monin TASE’09)

• bp-ver: graph exploration
(Chatzigiannakis, Michail and Spirakis SSS’10)

• Conversion to counter machines + PRISM/Spin
(Clément, Delporte-Gallet, Fauconnier and Sighireanu ICDCS’11)

Only for populations of fixed size!

Not automatic!

Challenge: verifying automatically
all sizes

7/10



Verification: our approach PODC’17

Testing whether a protocol computes φ
amounts to testing:

¬∃C,D : C ∗−−→ D ∧
C is initial ∧
D is bottom ∧
opinion(D) ̸= φ(C)

7/10



Verification: our approach PODC’17

Testing whether a protocol computes φ
amounts to testing:

¬∃C,D : C ∗−−→ D ∧
C is initial ∧
D is bottom ∧
opinion(D) ̸= φ(C)

As difficult as verification
7/10



Verification: our approach PODC’17

Testing whether a protocol computes φ
amounts to testing:

¬∃C,D : C ∗99K D ∧
C is initial ∧
D is bottom ∧
opinion(D) ̸= φ(C)

Relaxed with Presburger-definable
overapproximation

7/10



Verification: our approach PODC’17

Testing whether a protocol computes φ
amounts to testing:

¬∃C,D : C ∗99K D ∧
C is initial ∧
D is bottom ∧
opinion(D) ̸= φ(C)

Difficult to express

7/10



Verification: our approach PODC’17

Testing whether a protocol computes φ
amounts to testing:

¬∃C,D : C ∗99K D ∧
C is initial ∧
D is terminal ∧
opinion(D) ̸= φ(C)

Most protocols are terminating!
7/10



Verification: our approach PODC’17

Testing whether a protocol computes φ
amounts to testing:

¬∃C,D : C ∗99K D ∧
C is initial ∧
D is terminal ∧
opinion(D) ̸= φ(C)

Testable with an SMT solver

7/10



Verification: our approach PODC’17

Testing whether a protocol computes φ
amounts to testing:

¬∃C,D : C ∗99K D ∧
C is initial ∧
D is terminal ∧
opinion(D) ̸= φ(C)

Protocol termination tested by
structural analysis + SMT solving

7/10



Analysis of termination time submitted to CONCUR’18

Random variable Steps:

assigns to each run σ the smallest k s.t. σk in stable consensus

Maximal expected termination time
We are interested in time : N → N where

time(n) = max{EC[Steps] : C is initial and |C| = n}

8/10



Analysis of termination time submitted to CONCUR’18

Our approach:

• Most protocols are naturally designed in stages

• Construct these stages automatically

• Derive upper bounds on time(n)
from stages structure

8/10



Analysis of termination time submitted to CONCUR’18

B,R 7→ b,b
B, r 7→ B,b
R,b 7→ R, r
b, r 7→ b,b

(B ∨ R) ∧
∧

q ̸∈{B,R}
¬q

□

B ∧
∧
q ̸=B

¬q

 □

R ∧
∧
q ̸=R

¬q

 □(¬B ∨ ¬R) ∧ b ∧ ¬b!

□(¬B ∧ ¬R ∧ b ∧ ¬r) □(B ∧ ¬R ∧ b ∧ ¬r) □(¬B ∧ R ∧ ¬b ∧ r)

O(1)
O(1)

O(n2 log n)

O(n2 log n)

O(n2 log n)
O(exp(n))

8/10



Analysis of termination time submitted to CONCUR’18

• Prototype implemented in + Microsoft Z3

• Can report: O(1),O(n2),O(n2 log n),O(n3),O(poly(n)) or O(exp(n))

• Tested on various protocols from the literature

8/10



Peregrine: a tool for population protocols CAV’18

Peregrine: + Microsoft Z3 + JavaScript

peregrine.model.in.tum.de

• Design of protocols

• Manual and automatic simulation

• Statistics of properties such as termination time

• Automatic verification of correctness

• More to come!
9/10



Demonstration

9/10



Conclusion: summary

Population protocols can be formally analyzed
automatically:

• Verification of correctness
• Analysis of expected termination time
• Tool support!

Ongoing investigation of state complexity

10/10



Conclusion: future work (seeking for PhD students/Postdocs)

ERC Advanced Grant —
PaVeS: Parameterized Verification and Synthesis

• Goal: Develop proof and synthesis techniques for
distributed algorithms working correctly for an
arbitrary number of processes

• PI: Javier Esparza (esparza@in.tum.de), TU Munich

• Start of the project: Sept. 1, 2018

• Start of the PhDs/Postdocs: flexible, from Sept. 1, 2018
to about Sept. 1, 2019

10/10



Thank you!
Vielen Dank!

10/10


