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Population protocols: distributed computing
model for massive networks of passively mobile
finite-state agents
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Population protocols: distributed computing %00 o &
model for massive networks of passively mobile
finite-state agents

Can model e.g. networks of passively mobile sensors and
chemical reaction networks

Protocols compute predicates of the form : N — {0,1}

e.g. if ¢ is unary, then ¢(n) is computed by n agents
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analysis of population protocols
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Population protocols Angluin et al. PODC'04

< anonymous mobile agents with very few resources

- agents change states via random pairwise interactions

each agent has opinion true/false

« computes by stabilizing agents to some opinion
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Example: majority protocol
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Example: majority protocol

At least as many blue birds than red birds?

Protocol:

- Two large birds of

different colors

become small and

blue ‘(
+ Large birds convert

small birds to their
color

+ To break ties: small
blue birds convert

small red birds 3/10




Example: threshold protocol

Are there at least 4 sick birds?
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Example: threshold protocol

Are there at least 4 sick birds?

Protocol: E

« Each bird isin a @
state of {0,1,2,3, 4}

@

i@

- Sick birds initially in
state 1and healthy
birds in state 0

* (m,n)— (m+n,0)
ifm+n<a

= (m,n) — (4,4)
ifm+n>4
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Population protocols: formal model

- States: finite set Q

+ Opinions: 0:Q—{0,1}
- Initial states: ICQ

- Transitions: TCQ*x Q@

Qi1
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Population protocols: formal model

- States: finite set Q

- Opinions: 0:Q—{0,1}
- Initial states: IcQ

- Transitions: TCQ*x@
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Population protocols: computations

Interaction graph:

Agent 1 Agent 2

Agent 3 Agent 4
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Population protocols: computations

Reachability graph:
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Population protocols: computations

Underlying Markov chain:
(pairs of agents are picked uniformly at random)
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Population protocols: computations

A run is an infinite path:
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Population protocols: computations

A protocol computes a predicate o: N' — {0,1}

if runs reach common stable consensus
with probability 1
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Population protocols: computations

Other variants considered:

° Approximate protocols e.g. Angluin, Aspnes, Eisenstat DISC'07
+ Protocols with leaders Angluin, Aspnes, Eisenstat Dist. Comput.08
+ Protocols with failures Delporte-Gallet et al. DCOSS'06
« Trustful protocols Bournez, Lefevre, Rabie DISC'13
+ Mediated protocols, etc. Michail, Chatzigiannakis, Spirakis TCS"11
Expressive power Angluin, Aspnes, Eisenstat PODC'06

Population protocols compute precisely predicates
definable in Presburger arithmetic, i.e. FO(N, +, <)

5/10



Formal analysis of protocols

Protocols can become complex, even for B 2 R:

Fast and Exact Majority in Population Protocols

*
Dan Alistarh Rati Gelashvili Milan Vojnovi¢
Microsoft Research MIT Microsoft Research

1 weight(z) = { || it € StrongStates or a € WeakStates;
weWhtl®) =\ 1 ifz € IntermediateStates.
§ _[ 1 ifze{+0,14,...,11,3,5,...,m}
2 sgn(@) ‘{ ~1 otherwise.
3 walue(z) = sgn() - weight(z)
/* Functions for rounding state interactions */

4 ¢(z) = -1, ife = —1;1; if & = 1;, otherwise
5 Ry (k) = &(k if k odd integer, k — 1 if k even)
6 Ri(k) = 6(k if k odd integer, k + 1 if k even)
—1j41  ifa = —1; for some index j < d
7 Shift-to-Zero(w) = { 1j+1  ifa = 1; for some index j < d
z otherwise.

+0 if sgn(a) > 0

8 Swn'm—va(T):{ —0  oherwise.

9 procedure update(z, y)
10 if (weight(z) > 0 and weight(y) > 1) or (weight(y) > 0 and weight(x) > 1) then

11 o R, value (x);»uuhu(y)) and ' « Ry (ﬂulm(.}:);unlm(y)

12 else if weight(z) - weight(y) = 0 and value(z) + value(y) > 0 then

13 if weight(z) # 0 then z' « Shift-to-Zero(z) and y' « Sign-to-Zero(x)

14 else y' « Shift-to-Zero(y) and a’ < Sign-to-Zero(y)

15 elseif (¢ € {—14,+14} and weight(y) = 1 and sgn(z) # sgn(y)) or

16 (y € {~14,+14} and weight(z) = 1 and sgn(y) # sgn(z)) then

17 2’ + —0 and y + +0

18 else 6 / 10

19 ' < Shift-to-Zero(x) and y' « Shift-to-Zero(y)
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Formal analysis of protocols

Convergence speed may vary wildly,
challenging to establish bounds
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expected number of steps
to stable consensus
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number of agents initially in state R
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Formal analysis of protocols

Number of states corresponds to amount of memory,
relevant to keep it minimal for embedded systems

- B 2 Rrequires at least 4 states (Mertzios et al. ICALP'14)

« X 2 Crequires at most ¢ + 1 states
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Formal analysis of protocols

1. Automatic verification of correctness

* Decidability Esparza, Ganty, Leroux, Majumdar CONCUR'15, FSTTCS'16
* Towards efficient verification B., Esparza, Jaax, Meyer PODC'17
* Complete tool B., Esparza, Jaax CAV'18

2. Automatic analysis of convergence speed

* First proced ure B., Esparza, KuCera (submitted to CONCUR’18)

3. State complexity of protocols w.r.t. predicates

* Study of linear inequalities B., Esparza, Jaax STACS'18
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Verification: state of the art

Existing verification tools:

- PAT: model checker with global fairness
(Sun, Liu, Song Dong and Pang CAV'09)

- bp-ver: graph exploration
(Chatzigiannakis, Michail and Spirakis SS5'10)

- Conversion to counter machines + PRISM/Spin
(Clément, Delporte-Gallet, Fauconnier and Sighireanu ICDCS"11)
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Verification: state of the art

Sometimes possible to verify all sizes:

- Verification with the interactive theorem prover Coq
(Deng and Monin TASE'09)
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Verification: our approach PODC'17

Testing whether a protocol computes ¢
amounts to testing:

-3C,D: CDA
Cis initial A
D is bottom A
opinion(D) # ¢(C)
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Analysis of termination time submitted to CONCUR'18

Random variable Steps:

assigns to each run o the smallest k s.t. o} in stable consensus

Maximal expected termination time
We are interested in time: N — N where

time(n) = max{E[Steps] : Cis initial and |C| = n}

8/10



Analysis of termination time submitted to CONCUR'18

Our approach:

- Most protocols are naturally designed in stages
- Construct these stages automatically

- Derive upper bounds on time(n)
from stages structure

8/10



Analysis of termination time submitted to CONCUR'18

B.R — b,b

B,r — B,b (BVRIA A —g
9#{BR}

Rb — R,r o) O(n*log n)
' ’ 0(1)
b,r — bb f—/ L \
D(B/\/\ﬁq> D(R/\/\ﬁq) O(-BV -R) A b A =b!

q#8 a#R

O(n?logn)

O(exp(n))

O(-BA-RAbA-T) OB A-RAbA-I) O(-BARA-bAT)
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Analysis of termination time submitted to CONCUR'18

- Prototype implemented in @ pgthon”" + Microsoft Z3
« Can report: O(1),0(n?),0(n?logn), O(n%), O(poly(n)) or O(exp(n))

- Tested on various protocols from the literature

8/10



Peregrine: a tool for population protocols CAV'18

Peregrine: »Haskell + Microsoft Z3 + JavaScript

peregrine.model.in.tum.de

Design of protocols

Manual and automatic simulation

Statistics of properties such as termination time

Automatic verification of correctness

* More to come!

9/10



Demonstration



Population protocols can be formally analyzed
automatically:

- Verification of correctness
- Analysis of expected termination time

* Tool support!

Ongoing investigation of state complexity

10/10



Conclusion: future work (seeking for PhD students/Postdocs)

ERC Advanced Grant —
PaVeS: Parameterized Verification and Synthesis

+ Goal: Develop proof and synthesis techniques for
distributed algorithms working correctly for an
arbitrary number of processes

« PI: Javier Esparza (esparza@in.tum.de), TU Munich
- Start of the project: Sept. 1, 2018

- Start of the PhDs/Postdocs: flexible, from Sept. 1, 2018
to about Sept. 1, 2019

10/10



Thank you!

Vielen Dank!



