Formal Analysis of Population Protocols

Michael Blondin

Joint work with Javier Esparza, Stefan Jaax,

Antonin Kucera and Philipp J. Meyer
Technical
University
of Munich

Population protocols: distributed computing
model for massive networks of passively mobile
finite-state agents

1/10

- D 7 G c0

=T = = 8 e 70 e %
G i % %

I 8 (p o°O
% %

= . . . % & o0
Population protocols: distributed computing 000 &

model for massive networks of passively mobile 8 gzo

finite-state agents

Can model e.g. networks of passively mobile sensors and
chemical reaction networks

1/10

Population protocols: distributed computing %00 o &
model for massive networks of passively mobile
finite-state agents

Can model e.g. networks of passively mobile sensors and
chemical reaction networks

Protocols compute predicates of the form : N — {0,1}

e.g. if ¢ is unary, then ¢(n) is computed by n agents

1/10

~ [Eﬁ o NG 00 §0,00 o0 Peog 00 00 o0 0O
= - 5 -
~ & °p oo
% %
= . o . % & o0
Population protocols: distributed computing 000 &
model for massive networks of passively mobile 8 gzo

finite-state agents

This talk: overview of recent advances on the formal
analysis of population protocols

1/10

Population protocols Angluin et al. PODC'04

< anonymous mobile agents with very few resources

- agents change states via random pairwise interactions

each agent has opinion true/false

« computes by stabilizing agents to some opinion

2/10

Population protocols Angluin et al. PODC'04

« anonymous mobile agents with very few resources

- agents change states via random pairwise interactions

each agent has opinion true/false

« computes by stabilizing agents to some opinion

119 %9q

2/10

Population protocols Angluin et al. PODC'04

< anonymous mobile agents with very few resources

- agents change states via random pairwise interactions

each agent has opinion true/false

« computes by stabilizing agents to some opinion

1149%

2/10

Population protocols Angluin et al. PODC'04

< anonymous mobile agents with very few resources

- agents change states via random pairwise interactions

each agent has opinion true/false

« computes by stabilizing agents to some opinion

R LA L)

2/10

Population protocols Angluin et al. PODC'04

< anonymous mobile agents with very few resources

- agents change states via random pairwise interactions

each agent has opinion true/false

« computes by stabilizing agents to some opinion

19444

2/10

Population protocols Angluin et al. PODC'04

< anonymous mobile agents with very few resources

- agents change states via random pairwise interactions

each agent has opinion true/false

« computes by stabilizing agents to some opinion

11444

2/10

Population protocols Angluin et al. PODC'04

< anonymous mobile agents with very few resources

- agents change states via random pairwise interactions

each agent has opinion true/false

« computes by stabilizing agents to some opinion

11444

2/10

Population protocols Angluin et al. PODC'04

< anonymous mobile agents with very few resources

- agents change states via random pairwise interactions

each agent has opinion true/false

« computes by stabilizing agents to some opinion

"4 @i@*@i@

2/10

Population protocols Angluin et al. PODC'04

< anonymous mobile agents with very few resources

- agents change states via random pairwise interactions

each agent has opinion true/false

« computes by stabilizing agents to some opinion

EREREY

2/10

Population protocols Angluin et al. PODC'04

< anonymous mobile agents with very few resources

- agents change states via random pairwise interactions

each agent has opinion true/false

- computes by stabilizing agents to some opinion

Aty

2/10

Population protocols Angluin et al. PODC'04

< anonymous mobile agents with very few resources

- agents change states via random pairwise interactions

each agent has opinion true/false

« computes by stabilizing agents to some opinion
Ley g Ley =g L]
oo oo 2
. . _ 0%
1] 1] Q.

AL

2/10

Example: majority protocol

At least as many blue birds than red birds?

1
v

1
4

Example: majority protocol

At least as many blue birds than red birds?

Protocol:

- Two large birds of
different colors
become small and
blue

+ Large birds convert
small birds to their
color

1
v

1
4

Example: majority protocol

At least as many blue birds than red birds?

Protocol:

- Two large birds of
different colors
become small and
blue

+ Large birds convert
small birds to their
color

1

Example: majority protocol

At least as many blue birds than red birds?

Protocol:

- Two large birds of
different colors
become small and
blue

+ Large birds convert
small birds to their
color

1 1

3/10

Example: majority protocol

At least as many blue birds than red birds?

Protocol:

- Two large birds of
different colors
become small and
blue

+ Large birds convert
small birds to their
color

Example: majority protocol

At least as many blue birds than red birds?

Protocol:

- Two large birds of
different colors
become small and
blue

+ Large birds convert
small birds to their
color

1 1

3/10

Example: majority protocol

At least as many blue birds than red birds?

Protocol:

- Two large birds of
different colors
become small and
blue

+ Large birds convert
small birds to their
color

1 %4
T 91

3/10

Example: majority protocol

At least as many blue birds than red birds?

Protocol:

- Two large birds of
different colors
become small and
blue

+ Large birds convert
small birds to their
color

1 1

3/10

Example: majority protocol

At least as many blue birds than red birds?

Protocol:

- Two large birds of
different colors
become small and
blue

+ Large birds convert
small birds to their
color

Example: majority protocol

At least as many blue birds than red birds?

Protocol:

- Two large birds of
different colors
become small and
blue

+ Large birds convert
small birds to their
color

8

1

1

1

3/10

Example: majority protocol

At least as many blue birds than red birds?

Protocol:

- Two large birds of
different colors
become small and
blue

+ Large birds convert
small birds to their
color

R

]

R
R

R

3/10

Example: majority protocol

At least as many blue birds than red birds?

Protocol:

- Two large birds of

different colors

become small and

blue ‘(
+ Large birds convert

small birds to their
color

+ To break ties: small
blue birds convert

small red birds 3/10

Example: threshold protocol

Are there at least 4 sick birds?

1
9

{
i
4/10

Example: threshold protocol

Are there at least 4 sick birds?

1
44

Protocol:

« Each bird isin a
state of {0,1,2,3, 4}

- Sick birds initially in
state 1and healthy
birds in state 0

* (m,n)— (m+n,0)
ifm+n<a

= (m,n) — (4,4)
ifm+n>4

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

« Each bird isin a
state of {0,1,2,3, 4}

- Sick birds initially in
state 1and healthy
birds in state 0

* (m,n)— (m+n,0)
ifm+n<a

« (m,n) — (4,4)

ifm+n>a4 410

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

« Each bird isin a
state of {0,1,2,3, 4}

- Sick birds initially in
state 1and healthy
birds in state 0

~
~

8
%

()

* (m,n)— (m+n,0)
ifm+n<a

= (m,n) — (4,4)
ifm+n>4

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

« Each bird isin a
state of {0,1,2,3, 4}

- Sick birds initially in
state 1and healthy
birds in state 0

* (m,n)— (m+n,0)
ifm+n<a

= (m,n) — (4,4)
ifm+n>4

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

« Each bird isin a
state of {0,1,2,3, 4}

- Sick birds initially in
state 1and healthy
birds in state 0

~
~

8
%

()

* (m,n)— (m+n,0)
ifm+n<a

= (m,n) — (4,4)
ifm+n>4

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

« Each bird isin a
state of {0,1,2,3, 4}

- Sick birds initially in
state 1and healthy
birds in state 0

* (m,n)— (m+n,0)
ifm+n<a

= (m,n) — (4,4)
ifm+n>4

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

(0]

« Each bird isin a

state of {0,1,2,3, 4}
- Sick birds initially in

state 1and healthy

birds in state 0

~
~

()

* (m,n)— (m+n,0)
ifm+n<a

= (m,n) — (4,4)
ifm+n>4

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

« Each bird isin a
state of {0,1,2,3, 4}

- Sick birds initially in
state 1and healthy
birds in state 0

* (m,n)— (m+n,0)
ifm+n<a

« (m,n) — (4,4)

ifm+n>a4 410

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

(0]

« Each bird isin a
state of {0,1,2,3, 4}

- Sick birds initially in
state 1and healthy
birds in state 0

~
~

1
4

* (m,n)— (m+n,0)
ifm+n<a

= (m,n) — (4,4)
ifm+n>4

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

« Each bird isin a
state of {0,1,2,3, 4}

- Sick birds initially in
state 1and healthy
birds in state 0

* (m,n)— (m+n,0)
ifm+n<a

« (m,n) — (4,4)

ifm+n>a4 410

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

(0]

« Each bird isin a
state of {0,1,2,3, 4}

- Sick birds initially in
state 1and healthy
birds in state 0

i
~

1
4

* (m,n)— (m+n,0)
ifm+n<a

= (m,n) — (4,4)
ifm+n>4

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

« Each bird isin a
state of {0,1,2,3, 4}

- Sick birds initially in
state 1and healthy
birds in state 0

* (m,n)— (m+n,0)
ifm+n<a

= (m,n) — (4,4)
ifm+n>4

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

(0]

« Each bird isin a
state of {0,1,2,3, 4}

- Sick birds initially in
state 1and healthy
birds in state 0

i
i
4/10

1
4

* (m,n)— (m+n,0)
ifm+n<a

= (m,n) — (4,4)
ifm+n>4

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

« Each bird isin a
state of {0,1,2,3, 4}

- Sick birds initially in
state 1and healthy
birds in state 0

* (m,n)— (m+n,0)
ifm+n<a

= (m,n) — (4,4)
ifm+n>4

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

« Each bird isin a
state of {0,1,2,3, 4}

- Sick birds initially in
state 1and healthy
birds in state 0

i
i
4/10

1
4

* (m,n)— (m+n,0)
ifm+n<a

= (m,n) — (4,4)
ifm+n>4

Example: threshold protocol

Are there at least 4 sick birds?

Protocol: E

« Each bird isin a @
state of {0,1,2,3, 4}

@

i@

- Sick birds initially in
state 1and healthy
birds in state 0

* (m,n)— (m+n,0)
ifm+n<a

= (m,n) — (4,4)
ifm+n>4

4/10

Demonstration

Population protocols: formal model

- States: finite set Q

+ Opinions: 0:Q—{0,1}
- Initial states: ICQ

- Transitions: TCQ*x Q@

Qi1

5/10

Population protocols: formal model

- States:

- Opinions:

- Initial states:

« Transitions:

)

L]

finite set Q
0:Q— {0,1}
ICQ

TCQ*x Q@

&

TN

5/10

Population protocols: formal model

- States:
- Opinions:

- Initial states:

« Transitions:

finite set Q
0:Q—{0,1}
I CQ

TCQ*x Q@

5/10

Population protocols: formal model

- States: finite set Q

- Opinions: 0:Q—{0,1}
- Initial states: IcQ

- Transitions: TCQ*x@

ii—ﬂli ii*ii
11497414 ii—’ii

5/10

Population protocols: computations

Interaction graph:

Agent 1 Agent 2

Agent 3 Agent 4

5/10

Population protocols: computations

Reachability graph:
Q
14444
Q Q 1

LU 44| 4444

Laad N Ladad N Leddd

5/10

Population protocols: computations

Underlying Markov chain:
(pairs of agents are picked uniformly at random)

Qe
14444
Lo 4 8
Q" QY & + Q°
1 5.5, 00y AL S C VY AL K ¥ UY
1 2
2 10 2 10 2
10 A 0 6) 10
N7 ()jo N7 njo N7 ()jo
Laawe { Ledae) aaad

Slo
-
o

5/10

Population protocols: computations

A run is an infinite path:

(l%
11444
£, b ol s
(110 10 ()«10 10 . N (110
14444 44444 L4444
(\T’ NP
2 10 2 10 2
10 L3 10 5 10 e
~N (llo h ()JO ~N NO
Lidad [Vddad) Ldddd
10 70

5/10

Population protocols: computations

A protocol computes a predicate o: N' — {0,1}

if runs reach common stable consensus
with probability 1

5/10

Population protocols: computations

A protocol computes a predicate o: N' — {0,1}

if runs reach common stable consensus
with probability 1

Expressive power Angluin, Aspnes, Eisenstat PODC'06

Population protocols compute precisely predicates
definable in Presburger arithmetic, i.e. FO(N, +, <)

5/10

Population protocols: computations

Other variants considered:

° Approximate protocols e.g. Angluin, Aspnes, Eisenstat DISC'07
+ Protocols with leaders Angluin, Aspnes, Eisenstat Dist. Comput.08
+ Protocols with failures Delporte-Gallet et al. DCOSS'06
« Trustful protocols Bournez, Lefevre, Rabie DISC'13
+ Mediated protocols, etc. Michail, Chatzigiannakis, Spirakis TCS"11
Expressive power Angluin, Aspnes, Eisenstat PODC'06

Population protocols compute precisely predicates
definable in Presburger arithmetic, i.e. FO(N, +, <)

5/10

Formal analysis of protocols

Protocols can become complex, even for B 2 R:

Fast and Exact Majority in Population Protocols

*
Dan Alistarh Rati Gelashvili Milan Vojnovi¢
Microsoft Research MIT Microsoft Research

1 weight(z) = { || it € StrongStates or a € WeakStates;
weWhtl®) =\ 1 ifz € IntermediateStates.
§ _[1 ifze{+0,14,...,11,3,5,...,m}
2 sgn(@) ‘{ ~1 otherwise.
3 walue(z) = sgn() - weight(z)
/* Functions for rounding state interactions */

4 ¢(z) = -1, ife = —1;1; if & = 1;, otherwise
5 Ry (k) = &(k if k odd integer, k — 1 if k even)
6 Ri(k) = 6(k if k odd integer, k + 1 if k even)
—1j41 ifa = —1; for some index j < d
7 Shift-to-Zero(w) = { 1j+1 ifa = 1; for some index j < d
z otherwise.

+0 if sgn(a) > 0

8 Swn'm—va(T):{ —0 oherwise.

9 procedure update(z, y)
10 if (weight(z) > 0 and weight(y) > 1) or (weight(y) > 0 and weight(x) > 1) then

11 o R, value (x);»uuhu(y)) and ' « Ry (ﬂulm(.}:);unlm(y)

12 else if weight(z) - weight(y) = 0 and value(z) + value(y) > 0 then

13 if weight(z) # 0 then z' « Shift-to-Zero(z) and y' « Sign-to-Zero(x)

14 else y' « Shift-to-Zero(y) and a’ < Sign-to-Zero(y)

15 elseif (¢ € {—14,+14} and weight(y) = 1 and sgn(z) # sgn(y)) or

16 (y € {~14,+14} and weight(z) = 1 and sgn(y) # sgn(z)) then

17 2’ + —0 and y + +0

18 else 6 / 10

19 ' < Shift-to-Zero(x) and y' « Shift-to-Zero(y)

Formal analysis of protocols

Protocols can become complex, even for B 2 R:

Fast and Exact Majority in Population Protocols

*
Dan Alistarh Rati Gelashvili Milan Vojnovi¢
Microsoft Research MIT Microsoft Research

1 weight(z) = || if = € StrongStates or « € WeakStates;
weght(®) =1 1" if 2 € IntermediateStates.

A ‘,g"(m):{ 1_l ;{H:rii(szn. la,...,11,3,5,...,m}; HOW +O Verﬂ.C\,

3 value(z) = sgn() - weight(x)
/* Functions for rounding state interactions */

4 ¢(z) 1L ifz 1:1 if z = 1; =, otherwise C—O f‘f‘ec‘#’\ess

5 Ry (k) —1if k even)
6 Ry(k) = o(k if k odd integer, k + 1 if k even)

—1j41 ifa = —1; for some index j < d . ?
7 Shift-to-Zero(x) = { 1,41 ifa = 1; for some index j < d +

CAR avTomaT Ica 7 .

+0 if sgn(a) > 0

8 Swn'tO—Z"m(T):{ —0 oherwise.

9 procedure update(z,)
10 if (weight(z) > 0 and weight(y) > 1) or (weight(y) > 0 and weight(x) > 1) then

11 o R, value (x);»mxhu(y)) and ' « Ry ()uxlm(.}:);uulm(y)

12 else if weight(z) - weight(y) = 0 and value(z) + value(y) > 0 then

13 if weight(z) # 0 then ' < Shift-to-Zero(z) and y' < Sign-to-Zero(x)

14 else y « Shift-to-Zero(y) and a’ < Sign-to-Zero(y)

15 elseif (¢ € {—14,+14} and weight(y) = 1 and sgn(z) # sgn(y)) or

16 (y € {~14,+14} and weight(z) = 1 and sgn(y) # sgn(z)) then

17 2’ < =0 and y « +0

18 else 6 / 10

19 ' < Shift-to-Zero(x) and y' « Shift-to-Zero(y)

Formal analysis of protocols

Convergence speed may vary wildly,
challenging to establish bounds

107 | 1
105 1

10° - = B 7

expected number of steps
to stable consensus

10" | 2
172 3 45 6 7 8 91011213 14
number of agents initially in state R

6/10

Formal analysis of protocols

Convergence speed may vary wildly,
challenging to establish bounds

107 [

10° |-

103 |-

10" |5

expected number of steps
to stable consensus

172 3 45 6 7 8 91011213 14
number of agents initially in state R

How to derive «symP'»"o-/'ic bounds
c\U'/'OMa‘)LiCaIIy.? 6/10

Formal analysis of protocols

Number of states corresponds to amount of memory,
relevant to keep it minimal for embedded systems

- B 2 Rrequires at least 4 states (Mertzios et al. ICALP'14)

« X 2 Crequires at most ¢ + 1 states

6/10

Formal analysis of protocols

Number of states corresponds to amount of memory,
relevant to keep it minimal for embedded systems

- B 2 Rrequires at least 4 states (Mertzios et al. ICALP'14)

« X 2 Crequires at most ¢ + 1 states

Whet is the state complexi‘r"y

of conmon Preéic«'»‘es.?

6/10

Formal analysis of protocols

1. Automatic verification of correctness

* Decidability Esparza, Ganty, Leroux, Majumdar CONCUR'15, FSTTCS'16
* Towards efficient verification B., Esparza, Jaax, Meyer PODC'17
* Complete tool B., Esparza, Jaax CAV'18

2. Automatic analysis of convergence speed

* First proced ure B., Esparza, KuCera (submitted to CONCUR’18)

3. State complexity of protocols w.r.t. predicates

* Study of linear inequalities B., Esparza, Jaax STACS'18

6/10

Formal analysis of protocols

1. Automatic verification of correctness

° Decidability Esparza, Ganty, Leroux, Majumdar CONCUR'15, FSTTCS'16
* Towards efficient verification B., Esparza, Jaax, Meyer PODC'17
* Com plete tool B., Esparza, Jaax CAV'18

2. Automatic analysis of convergence speed

* First pI’OCGdU re B., Esparza, Kucera (submitted to CONCUR"18)

3. State complexity of protocols w.r.t. predicates

* Study of linear inequalities B., Esparza, Jaax STACS'18

6/10

Verification: state of the art

Existing verification tools:

- PAT: model checker with global fairness
(Sun, Liu, Song Dong and Pang CAV'09)

- bp-ver: graph exploration
(Chatzigiannakis, Michail and Spirakis SS5'10)

- Conversion to counter machines + PRISM/Spin
(Clément, Delporte-Gallet, Fauconnier and Sighireanu ICDCS"11)

7/10

Verification: state of the art

Existing verification tools:

- PAT: model checker with global fairness
(Sun, Liu, Song Dong and Pang CAV'09)

- bp-ver: graph exploration
(Chatzigiannakis, Michail and Spirakis SS5'10)

- Conversion to counter machines + PRISM/Spin
(Clément, Delporte-Gallet, Fauconnier and Sighireanu ICDCS"11)

Only for PoPula‘/'ions of -QXecI size.’

7/10

Verification: state of the art

Sometimes possible to verify all sizes:

- Verification with the interactive theorem prover Coq
(Deng and Monin TASE'09)

7/10

Verification: state of the art

Sometimes possible to verify all sizes:

- Verification with the interactive theorem prover Coq
(Deng and Monin TASE'09)

NO+ aU'('OMa‘{’ic!

7/10

Verification: state of the art

Sometimes possible to verify all sizes:

- Verification with the interactive theorem prover Coq
(Deng and Monin TASE'09)

C.L.auenée: ver‘i-@}iﬂé aU‘fOMa‘/‘ic«“y

a_” sizes

7/10

Verification: our approach PODC'17

Testing whether a protocol computes ¢
amounts to testing:

-3C,D: CDA
Cis initial A
D is bottom A
opinion(D) # ¢(C)

7/10

Verification: our approach PODC'17

Testing whether a protocol computes ¢
amounts to testing:

-3C,D: C—=DA
Cis initial A
D is bottom A
opinion(D) # ¢(C)

As c‘if@cul‘f' as verification

7/10

Verification: our approach PODC'17

Testing whether a protocol computes ¢
amounts to testing:

-3C,D: C-->DA
Cis initial A
D is bottom A
opinion(D) # ¢(C)

Qelaxecl wi+L. Pr‘esburéer-c:’e@nable

Over‘appr‘oximd-ion

7/10

Verification: our approach PODC'17

Testing whether a protocol computes ¢
amounts to testing:

-3C,D: C-->DA
Cis initial A
D is bottom A
opinion(D) # ¢(C)

Dicticult +o express

7/10

Verification: our approach PODC'17

Testing whether a protocol computes ¢
amounts to testing:

-3C,D: C-->DA
Cis initial A
D is terminal A
opinion(D) # ¢(C)

Mos+ Prow‘oa:ls are '/'ef‘mina‘/'iné.l

7/10

Verification: our approach PODC'17

Testing whether a protocol computes ¢
amounts to testing:

-3C,D: C--»DA
Cis initial A
D is terminal A
opinion(D) # ¢(C)

TeS‘l"able w.-/'L. an SMT solver

7/10

Verification: our approach PODC'17

Testing whether a protocol computes ¢
amounts to testing:

-3C,D: C-“sDA
Cis initial A
D is terminal A
opinion(D) # (C)
PPO'/‘OCOI 1Ler‘mina+ion tested I>~7
s+r~uc+ur~al a’\al7$is + SMT so,viné

7/10

Analysis of termination time submitted to CONCUR'18

Random variable Steps:

assigns to each run o the smallest k s.t. o} in stable consensus

Maximal expected termination time
We are interested in time: N — N where

time(n) = max{E[Steps] : Cis initial and |C| = n}

8/10

Analysis of termination time submitted to CONCUR'18

Our approach:

- Most protocols are naturally designed in stages
- Construct these stages automatically

- Derive upper bounds on time(n)
from stages structure

8/10

Analysis of termination time submitted to CONCUR'18

B.R — b,b

B,r — B,b (BVRIA A —g
9#{BR}

Rb — R,r o) O(n*log n)
' ’ 0(1)
b,r — bb f—/ L \
D(B/\/\ﬁq> D(R/\/\ﬁq) O(-BV -R) A b A =b!

q#8 a#R

O(n?logn)

O(exp(n))

O(-BA-RAbA-T) OB A-RAbA-I) O(-BARA-bAT)

8/10

Analysis of termination time submitted to CONCUR'18

- Prototype implemented in @ pgthon”" + Microsoft Z3
« Can report: O(1),0(n?),0(n?logn), O(n%), O(poly(n)) or O(exp(n))

- Tested on various protocols from the literature

8/10

Peregrine: a tool for population protocols CAV'18

Peregrine: »Haskell + Microsoft Z3 + JavaScript

peregrine.model.in.tum.de

Design of protocols

Manual and automatic simulation

Statistics of properties such as termination time

Automatic verification of correctness

* More to come!

9/10

Demonstration

Population protocols can be formally analyzed
automatically:

- Verification of correctness
- Analysis of expected termination time

* Tool support!

Ongoing investigation of state complexity

10/10

Conclusion: future work (seeking for PhD students/Postdocs)

ERC Advanced Grant —
PaVeS: Parameterized Verification and Synthesis

+ Goal: Develop proof and synthesis techniques for
distributed algorithms working correctly for an
arbitrary number of processes

« PI: Javier Esparza (esparza@in.tum.de), TU Munich
- Start of the project: Sept. 1, 2018

- Start of the PhDs/Postdocs: flexible, from Sept. 1, 2018
to about Sept. 1, 2019

10/10

Thank you!

Vielen Dank!

