# **Formal Analysis of Population Protocols**

## **Michael Blondin**

Joint work with Javier Esparza, Stefan Jaax,

Antonín Kučera and Philipp J. Meyer



# **Population protocols:** distributed computing model for massive networks of passively mobile finite-state agents

## Overview



Can model *e.g.* networks of passively mobile sensors and chemical reaction networks

## Overview



Can model *e.g.* networks of passively mobile sensors and chemical reaction networks

Protocols compute predicates of the form  $\varphi \colon \mathbb{N}^d \to \{0, 1\}$ e.g. if  $\varphi$  is unary, then  $\varphi(n)$  is computed by n agents

## Overview



**Population protocols:** distributed computing model for massive networks of passively mobile finite-state agents

**This talk:** overview of recent advances on the formal analysis of population protocols

- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion



- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion



- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion



- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion



- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion



- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion



- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion



- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

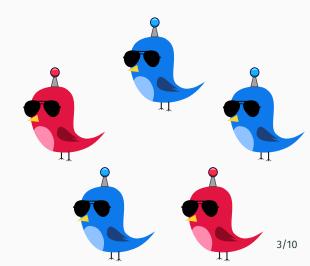


- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

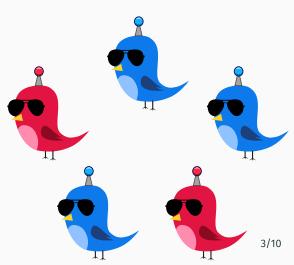


- anonymous mobile agents with very few resources
- agents change states via random pairwise interactions
- each agent has opinion true/false
- computes by stabilizing agents to some opinion

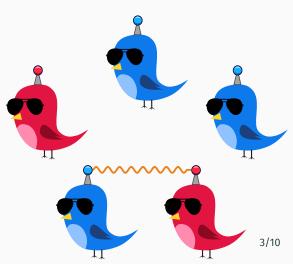




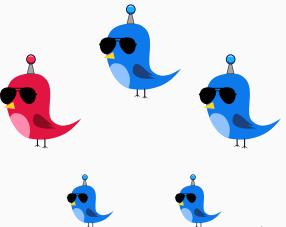
- Two large birds of different colors become small and blue
- Large birds convert small birds to their color



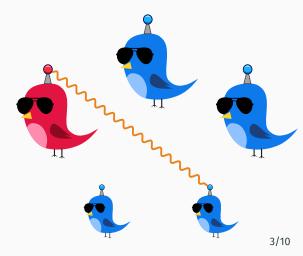
- Two large birds of different colors become small and blue
- Large birds convert small birds to their color



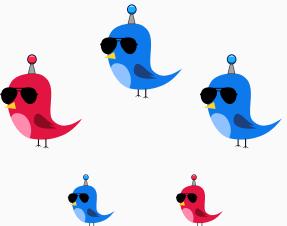
- Two large birds of different colors become small and blue
- Large birds convert small birds to their color



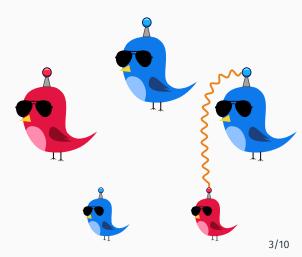
- Two large birds of different colors become small and blue
- Large birds convert small birds to their color



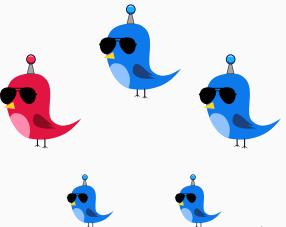
- Two large birds of different colors become small and blue
- Large birds convert small birds to their color



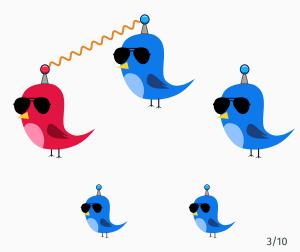
- Two large birds of different colors become small and blue
- Large birds convert small birds to their color



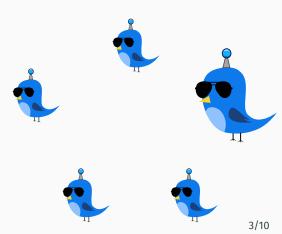
- Two large birds of different colors become small and blue
- Large birds convert small birds to their color



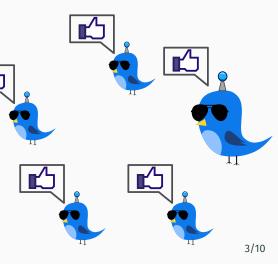
- Two large birds of different colors become small and blue
- Large birds convert small birds to their color



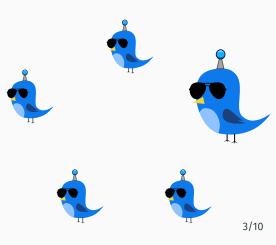
- Two large birds of different colors become small and blue
- Large birds convert small birds to their color



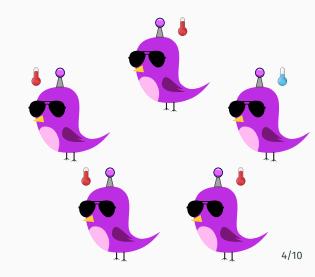
- Two large birds of different colors become small and blue
- Large birds convert small birds to their color



- Two large birds of different colors become small and blue
- Large birds convert small birds to their color
- **To break ties:** small blue birds convert small red birds

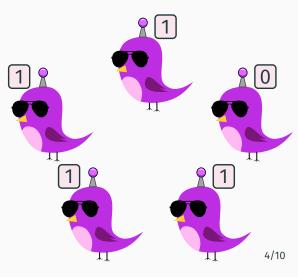


## Are there at least 4 sick birds?



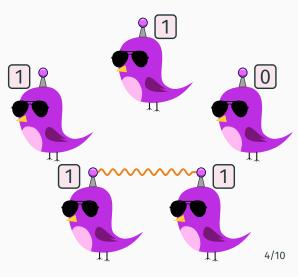
## Are there at least 4 sick birds?

- Each bird is in a state of {0, 1, 2, 3, 4}
- Sick birds initially in state 1 and healthy birds in state 0
- $(m,n) \mapsto (m+n,0)$ if m+n < 4
- $(m,n) \mapsto (4,4)$ if  $m+n \ge 4$



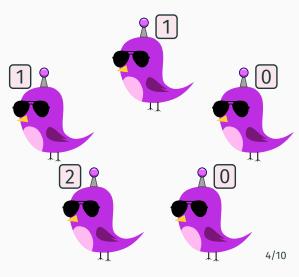
## Are there at least 4 sick birds?

- Each bird is in a state of {0, 1, 2, 3, 4}
- Sick birds initially in state 1 and healthy birds in state 0
- $(m,n) \mapsto (m+n,0)$ if m+n < 4
- $(m,n) \mapsto (4,4)$ if  $m+n \ge 4$



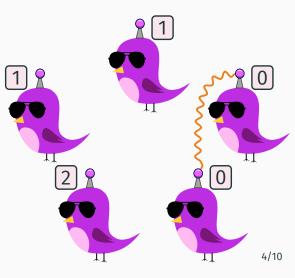
## Are there at least 4 sick birds?

- Each bird is in a state of {0, 1, 2, 3, 4}
- Sick birds initially in state 1 and healthy birds in state 0
- $(m,n) \mapsto (m+n,0)$ if m+n < 4
- $(m,n) \mapsto (4,4)$ if  $m+n \ge 4$



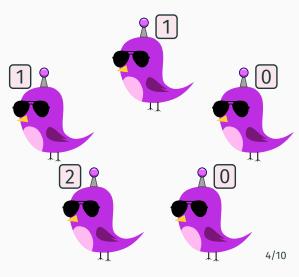
## Are there at least 4 sick birds?

- Each bird is in a state of {0, 1, 2, 3, 4}
- Sick birds initially in state 1 and healthy birds in state 0
- $(m,n) \mapsto (m+n,0)$ if m+n < 4
- $(m,n) \mapsto (4,4)$ if  $m+n \ge 4$



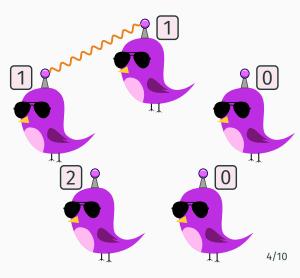
## Are there at least 4 sick birds?

- Each bird is in a state of {0, 1, 2, 3, 4}
- Sick birds initially in state 1 and healthy birds in state 0
- $(m,n) \mapsto (m+n,0)$ if m+n < 4
- $(m,n) \mapsto (4,4)$ if  $m+n \ge 4$



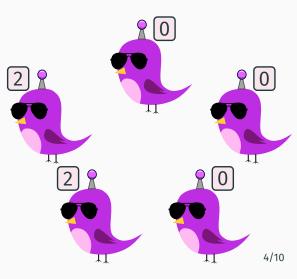
## Are there at least 4 sick birds?

- Each bird is in a state of {0, 1, 2, 3, 4}
- Sick birds initially in state 1 and healthy birds in state 0
- $(m,n) \mapsto (m+n,0)$ if m+n < 4
- $(m,n) \mapsto (4,4)$ if  $m+n \ge 4$



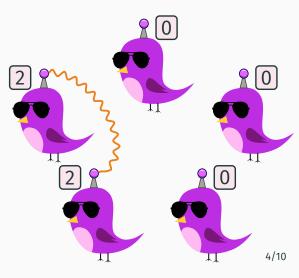
## Are there at least 4 sick birds?

- Each bird is in a state of {0, 1, 2, 3, 4}
- Sick birds initially in state 1 and healthy birds in state 0
- $(m,n) \mapsto (m+n,0)$ if m+n < 4
- $(m,n) \mapsto (4,4)$ if  $m+n \ge 4$



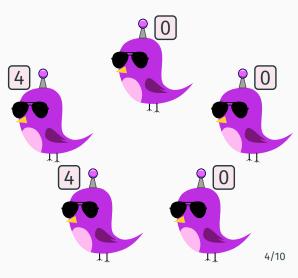
## Are there at least 4 sick birds?

- Each bird is in a state of {0, 1, 2, 3, 4}
- Sick birds initially in state 1 and healthy birds in state 0
- $(m,n) \mapsto (m+n,0)$ if m+n < 4
- $(m,n) \mapsto (4,4)$ if  $m+n \ge 4$



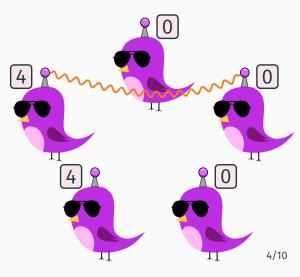
## Are there at least 4 sick birds?

- Each bird is in a state of {0, 1, 2, 3, 4}
- Sick birds initially in state 1 and healthy birds in state 0
- $(m,n) \mapsto (m+n,0)$ if m+n < 4
- $(m,n) \mapsto (4,4)$ if  $m+n \ge 4$



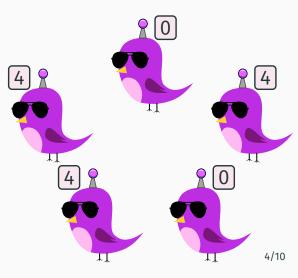
## Are there at least 4 sick birds?

- Each bird is in a state of {0, 1, 2, 3, 4}
- Sick birds initially in state 1 and healthy birds in state 0
- $(m,n) \mapsto (m+n,0)$ if m+n < 4
- $(m,n) \mapsto (4,4)$ if  $m+n \ge 4$



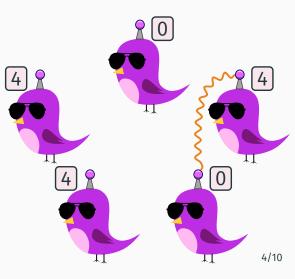
## Are there at least 4 sick birds?

- Each bird is in a state of {0, 1, 2, 3, 4}
- Sick birds initially in state 1 and healthy birds in state 0
- $(m,n) \mapsto (m+n,0)$ if m+n < 4
- $(m,n) \mapsto (4,4)$ if  $m+n \ge 4$



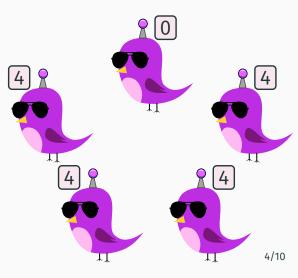
## Are there at least 4 sick birds?

- Each bird is in a state of {0, 1, 2, 3, 4}
- Sick birds initially in state 1 and healthy birds in state 0
- $(m,n) \mapsto (m+n,0)$ if m+n < 4
- $(m,n) \mapsto (4,4)$ if  $m+n \ge 4$



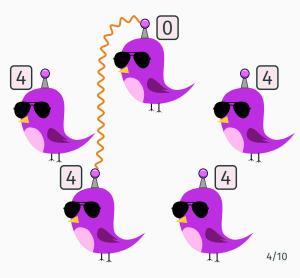
## Are there at least 4 sick birds?

- Each bird is in a state of {0, 1, 2, 3, 4}
- Sick birds initially in state 1 and healthy birds in state 0
- $(m,n) \mapsto (m+n,0)$ if m+n < 4
- $(m,n) \mapsto (4,4)$ if  $m+n \ge 4$



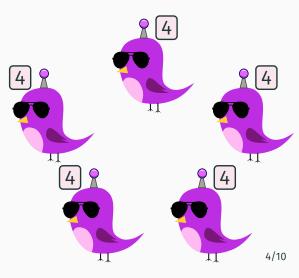
## Are there at least 4 sick birds?

- Each bird is in a state of {0, 1, 2, 3, 4}
- Sick birds initially in state 1 and healthy birds in state 0
- $(m,n) \mapsto (m+n,0)$ if m+n < 4
- $(m,n) \mapsto (4,4)$ if  $m+n \ge 4$



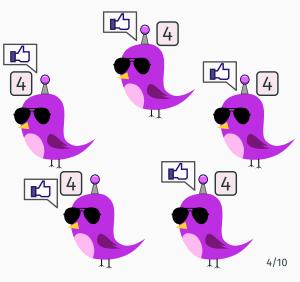
## Are there at least 4 sick birds?

- Each bird is in a state of {0, 1, 2, 3, 4}
- Sick birds initially in state 1 and healthy birds in state 0
- $(m,n) \mapsto (m+n,0)$ if m+n < 4
- $(m,n) \mapsto (4,4)$ if  $m+n \ge 4$



## Are there at least 4 sick birds?

- Each bird is in a state of {0, 1, 2, 3, 4}
- Sick birds initially in state 1 and healthy birds in state 0
- $(m,n) \mapsto (m+n,0)$ if m+n < 4
- $(m,n) \mapsto (4,4)$ if  $m+n \ge 4$



Demonstration

- States: finite set Q
- Opinions:  $O: Q \rightarrow \{0, 1\}$

 $I \subset Q$ 

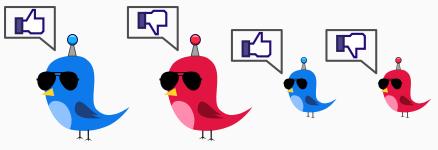
- Initial states:
- Transitions:  $T \subseteq Q^2 \times Q^2$



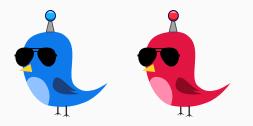
- *States*: finite set *Q*
- Opinions:
- Initial states:

 $\mathsf{O}:\mathsf{Q}\to\{\mathsf{0},\mathsf{1}\}$ 

- $I \subseteq Q$
- Transitions:  $T \subseteq Q^2 \times Q^2$



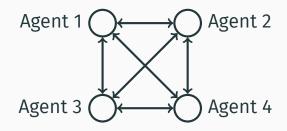
- *States*: finite set *Q*
- Opinions:  $O: Q \rightarrow \{0, 1\}$
- Initial states:
  - $: I \subseteq Q$
- Transitions:  $T \subseteq Q^2 \times Q^2$



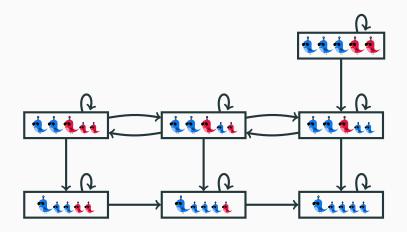
- *States*: finite set *Q*
- Opinions:  $O: Q \rightarrow \{0, 1\}$
- Initial states:
- $I \subseteq Q$
- Transitions:
- $T \subseteq Q^2 \times Q^2$



## Interaction graph:

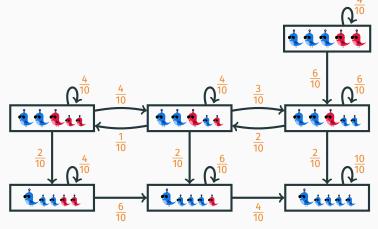


## Reachability graph:

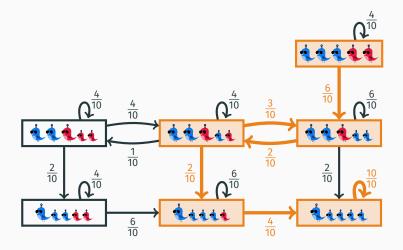


## **Underlying Markov chain:**

#### (pairs of agents are picked uniformly at random)



## A run is an infinite path:



## A protocol computes a predicate $\varphi \colon \mathbb{N}' \to \{0, 1\}$ if runs reach common stable consensus with probability 1



## A protocol computes a predicate $\varphi \colon \mathbb{N}' \to \{0, 1\}$ if runs reach common stable consensus with probability 1

#### **Expressive power**

Angluin, Aspnes, Eisenstat PODC'06

Population protocols compute precisely predicates definable in Presburger arithmetic, *i.e.*  $FO(\mathbb{N}, +, <)$ 

## Other variants considered:

- Approximate protocols
- Protocols with leaders
- Protocols with failures
- Trustful protocols
- Mediated protocols, etc.

*e.g.* Angluin, Aspnes, Eisenstat DISC'07 Angluin, Aspnes, Eisenstat Dist. Comput.'08 Delporte-Gallet *et al.* DCOSS'06 Bournez, Lefevre, Rabie DISC'13 Michail, Chatzigiannakis, Spirakis TCS'11

#### **Expressive power**

Angluin, Aspnes, Eisenstat PODC'06

Population protocols compute precisely predicates definable in Presburger arithmetic, *i.e.*  $FO(\mathbb{N}, +, <)$ 

#### Formal analysis of protocols

#### Protocols can become complex, even for $B \ge R$ :

#### Fast and Exact Majority in Population Protocols

Dan Alistarh Rati Gelashvili<sup>\*</sup> Microsoft Research MIT

Milan Vojnović Microsoft Research

 $\begin{array}{ll} 1 & weight(x) = \left\{ \begin{array}{ll} |x| & \text{if } x \in StrongStates \text{ or } x \in WeakStates; \\ 1 & \text{if } x \in IntermediateStates. \end{array} \right. \\ \begin{array}{ll} 2 & sgn(x) = \left\{ \begin{array}{ll} 1 & \text{if } x \in \{+0, 1_d, \dots, 11, 3, 5, \dots, m\}; \\ -1 & \text{otherwise.} \end{array} \right. \end{array}$ 3  $value(x) = san(x) \cdot weight(x)$ /\* Functions for rounding state interactions \*/ 4  $\phi(x) = -1_1$  if  $x = -1; 1_1$  if x = 1; x, otherwise 5  $R_1(k) = \phi(k \text{ if } k \text{ odd integer}, k-1 \text{ if } k \text{ even})$ 6 R<sub>↑</sub>(k) = φ(k if k odd integer, k+1 if k even)  $\begin{array}{l} \textbf{7} \hspace{0.5cm} Shift-to-Zero(x) = \left\{ \begin{array}{ll} -1_{j+1} & \text{if } x = -1_{j} \text{ for some index } j < d \\ 1_{j+1} & \text{if } x = -1_{j} \text{ for some index } j < d \\ x & \text{otherwise} \end{array} \right. \\ \textbf{8} \hspace{0.5cm} Sign-to-Zero(x) = \left\{ \begin{array}{ll} -0 & \text{if } sgn(x) > 0 \\ 0 & \text{otherwise.} \end{array} \right. \end{array}$ 9 procedure update $\langle x, y \rangle$ if (weight(x) > 0 and weight(y) > 1) or (weight(y) > 0 and weight(x) > 1) then 10  $x' \leftarrow R_{\downarrow}\left(\frac{value(x)+value(y)}{2}\right)$  and  $y' \leftarrow R_{\uparrow}\left(\frac{value(x)+value(y)}{2}\right)$ 11 12 else if  $weight(x) \cdot weight(y) = 0$  and value(x) + value(y) > 0 then 13 if  $weight(x) \neq 0$  then  $x' \leftarrow Shift-to-Zero(x)$  and  $y' \leftarrow Sign-to-Zero(x)$ 14 else  $y' \leftarrow Shift-to-Zero(y)$  and  $x' \leftarrow Sign-to-Zero(y)$ else if  $(x \in \{-1_d, +1_d\}$  and weight(y) = 1 and  $sgn(x) \neq sgn(y)$ ) or 15 16  $(y \in \{-1_d, +1_d\}$  and weight(x) = 1 and  $sgn(y) \neq sgn(x)$  then  $x' \leftarrow -0$  and  $y' \leftarrow +0$ 17 18 else 19  $x' \leftarrow Shift-to-Zero(x)$  and  $y' \leftarrow Shift-to-Zero(y)$ 

#### Formal analysis of protocols

#### Protocols can become complex, even for $B \ge R$ :

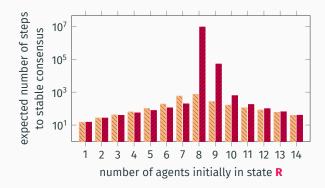
#### Fast and Exact Majority in Population Protocols

Dan Alistarh Microsoft Research Rati Gelashvili

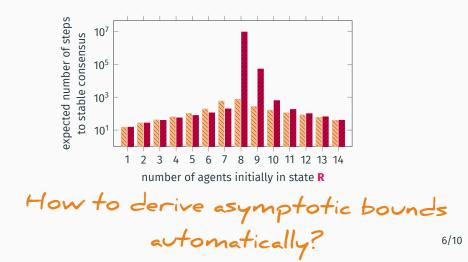
Milan Voinović Microsoft Research

 $\mathbf{1} \ \ weight(x) = \left\{ \begin{array}{ll} |x| & \text{ if } x \in StrongStates \text{ or } x \in WeakStates; \\ 1 & \text{ if } x \in IntermediateStates. \end{array} \right.$ How to verify **2**  $sgn(x) = \begin{cases} 1 & \text{if } x \in \{+0, 1_d, \dots, 1_1, 3, 5, \dots, m\}; \\ -1 & \text{otherwise.} \end{cases}$ correctness 3  $value(x) = san(x) \cdot weight(x)$ /\* Functions for rounding state interactions \*/ 4  $\phi(x) = -1_1$  if  $x = -1; 1_1$  if x = 1; x, otherwise 5  $R_1(k) = \phi(k \text{ if } k \text{ odd integer}, k-1 \text{ if } k \text{ even})$ 6  $R_{\uparrow}(k) = \phi(k \text{ if } k \text{ odd integer}, k+1 \text{ if } k \text{ even})$  $\begin{array}{l} \textbf{7} \hspace{0.5cm} Shift-to-Zero(x) = \left\{ \begin{array}{ll} -1_{j+1} & \text{if } x = -1_{j} \text{ for some index } j < d \\ 1_{j+1} & \text{if } x = 1_{j} \text{ for some index } j < d \\ x & \text{otherwise} \end{array} \right. \\ \textbf{8} \hspace{0.5cm} Sign-to-Zero(x) = \left\{ \begin{array}{ll} -0 & \text{if } sgn(x) > 0 \\ 0 & \text{otherwise.} \end{array} \right. \end{array}$ automatically? 9 procedure update $\langle x, y \rangle$ if (weight(x) > 0 and weight(y) > 1) or (weight(y) > 0 and weight(x) > 1) then 10  $x' \leftarrow R_{\downarrow}\left(\frac{value(x)+value(y)}{2}\right)$  and  $y' \leftarrow R_{\uparrow}\left(\frac{value(x)+value(y)}{2}\right)$ 11 12 else if  $weight(x) \cdot weight(y) = 0$  and value(x) + value(y) > 0 then 13 if  $weight(x) \neq 0$  then  $x' \leftarrow Shift-to-Zero(x)$  and  $y' \leftarrow Sign-to-Zero(x)$ 14 else  $y' \leftarrow Shift-to-Zero(y)$  and  $x' \leftarrow Sign-to-Zero(y)$ else if  $(x \in \{-1_d, +1_d\}$  and weight(y) = 1 and  $sgn(x) \neq sgn(y)$ ) or 15 16  $(y \in \{-1_d, +1_d\}$  and weight(x) = 1 and  $sgn(y) \neq sgn(x)$ ) then  $x' \leftarrow -0$  and  $y' \leftarrow +0$ 17 18 else 19  $x' \leftarrow Shift-to-Zero(x)$  and  $y' \leftarrow Shift-to-Zero(y)$ 

#### Convergence speed may vary wildly, challenging to establish bounds



#### Convergence speed may vary wildly, challenging to establish bounds



Number of states corresponds to amount of memory, relevant to keep it minimal for embedded systems

- B ≥ R requires at least 4 states (Mertzios et al. ICALP'14)
- X ≥ C requires at most c + 1 states

Number of states corresponds to amount of memory, relevant to keep it minimal for embedded systems

- **B 2 R** requires at least 4 states (Mertzios *et al.* ICALP'14)
- X ≥ C requires at most c + 1 states

What is the state complexity of common predicates?

#### Formal analysis of protocols

## 1. Automatic verification of correctness

- Decidability Esparza, Ganty, Leroux, Majumdar CONCUR'15, FSTTCS'16
- Towards efficient verification B., Esparza, Jaax, Meyer PODC'17
- Complete tool B., Esparza, Jaax CAV'18

## 2. Automatic analysis of convergence speed

• First procedure B., Esparza, Kučera (submitted to CONCUR'18)

## 3. State complexity of protocols w.r.t. predicates

• Study of linear inequalities

B., Esparza, Jaax STACS'18

#### Formal analysis of protocols

## 1. Automatic verification of correctness

- Decidability Esparza, Ganty, Leroux, Majumdar CONCUR'15, FSTTCS'16
- Towards efficient verification B., Esparza, Jaax, Meyer PODC'17
- Complete tool

, Espaiza, Jaax, Meyer Pobe I/

B., Esparza, Jaax CAV'18

## 2. Automatic analysis of convergence speed

• First procedure B., Esparza, Kučera (submitted to CONCUR'18)

## 3. State complexity of protocols w.r.t. predicates

• Study of linear inequalities

B., Esparza, Jaax STACS'18

### Existing verification tools:

- PAT: model checker with global fairness (Sun, Liu, Song Dong and Pang CAV'09)
- bp-ver: graph exploration

(Chatzigiannakis, Michail and Spirakis SSS'10)

• Conversion to counter machines + PRISM/Spin (Clément, Delporte-Gallet, Fauconnier and Sighireanu ICDCS'11)

### Existing verification tools:

- PAT: model checker with global fairness (Sun, Liu, Song Dong and Pang CAV'09)
- bp-ver: graph exploration

(Chatzigiannakis, Michail and Spirakis SSS'10)

• Conversion to counter machines + PRISM/Spin (Clément, Delporte-Gallet, Fauconnier and Sighireanu ICDCS'11)

Only for populations of fixed size!

#### Sometimes possible to verify all sizes:

• Verification with the interactive theorem prover Coq (Deng and Monin TASE'09)

#### Sometimes possible to verify all sizes:

• Verification with the interactive theorem prover Coq (Deng and Monin TASE'09)

Not automatic!

#### Sometimes possible to verify all sizes:

• Verification with the interactive theorem prover Coq (Deng and Monin TASE'09)

# Challenge: verifying automatically <u>all</u> sizes

## Testing whether a protocol computes $\varphi$ amounts to testing:

 $\neg \exists C, D: C \xrightarrow{*} D \land$ C is initial  $\land$ D is bottom  $\land$ opinion(D)  $\neq \varphi(C)$  **PODC'17** 

## Testing whether a protocol computes $\varphi$ amounts to testing:

## $\neg \exists C, D: C \xrightarrow{*} D \land$ C is initial $\land$ D is bottom $\land$ opinion(D) $\neq \varphi(C)$

## As difficult as verification

PODC'17

 $\neg \exists C, D: C \xrightarrow{*} D \land$ C is initial  $\land$ D is bottom  $\land$ opinion(D)  $\neq \varphi(C)$ 

### Relaxed with Presburger-definable overapproximation

### $\neg \exists C, D: C \xrightarrow{*} D \land$ C is initial $\land$ D is bottom $\land$ opinion(D) $\neq \varphi(C)$

### Difficult to express

### $\neg \exists C, D: C \xrightarrow{*} D \land$ C is initial $\land$ D is terminal $\land$ opinion(D) $\neq \varphi(C)$

Most protocols are terminating!

### $\neg \exists C, D: C \xrightarrow{*} D \land$ C is initial $\land$ D is terminal $\land$ opinion(D) $\neq \varphi(C)$

### Testable with an SMT solver

### $\neg \exists C, D: C \xrightarrow{*} D \land$ C is initial $\land$ D is terminal $\land$ opinion(D) $\neq \varphi(C)$

Protocol termination tested by structural analysis + SMT solving 7/10 Random variable *Steps*:

assigns to each run  $\sigma$  the smallest k s.t.  $\sigma_k$  in stable consensus

#### Maximal expected termination time

We are interested in  $\mathit{time} \colon \mathbb{N} \to \mathbb{N}$  where

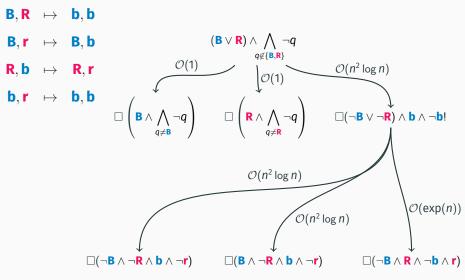
 $time(n) = \max\{\mathbb{E}_C[Steps] : C \text{ is initial and } |C| = n\}$ 

#### Our approach:

- Most protocols are naturally designed in stages
- Construct these stages automatically
- Derive upper bounds on time(n)

from stages structure

#### Analysis of termination time



8/10

- Can report:  $\mathcal{O}(1), \mathcal{O}(n^2), \mathcal{O}(n^2 \log n), \mathcal{O}(n^3), \mathcal{O}(\text{poly}(n)) \text{ or } \mathcal{O}(\exp(n))$
- Tested on various protocols from the literature

Peregrine: **>= Haskell** + Microsoft Z3 + JavaScript

peregrine.model.in.tum.de

- Design of protocols
- Manual and automatic simulation
- Statistics of properties such as termination time
- Automatic verification of correctness
- More to come!

CAV'18

Demonstration

# Population protocols can be formally analyzed automatically:

- Verification of correctness
- Analysis of expected termination time
- Tool support!

#### Ongoing investigation of state complexity

#### ERC Advanced Grant -

#### **PaVeS: Parameterized Verification and Synthesis**

- Goal: Develop proof and synthesis techniques for distributed algorithms working correctly for an arbitrary number of processes
- PI: Javier Esparza (esparza@in.tum.de), TU Munich
- Start of the project: Sept. 1, 2018
- Start of the PhDs/Postdocs: flexible, from Sept. 1, 2018 to about Sept. 1, 2019

## Thank you! Vielen Dank!