On the Analysis of Population Protocols

Michael Blondin

Technical
University
of Munich

Population protocols: distributed computing
model for massive networks of passively mobile
finite-state agents

1/13

- D 7 G c0

=T = = 8 e 70 e %
G m QD %

I 8 (p o°O
% %

= . o . % & o0
Population protocols: distributed computing 000 &

model for massive networks of passively mobile 8 gzo

finite-state agents

Can model e.g. networks of passively mobile sensors and
chemical reaction networks

1/13

Population protocols: distributed computing %00 o &
model for massive networks of passively mobile
finite-state agents

Can model e.g. networks of passively mobile sensors and
chemical reaction networks

Protocols compute predicates of the form : N — {0,1}

e.g. if ¢ is unary, then ¢(n) is computed by n agents

1/13

~ [Eﬁ o ~7 00 §0,00 o0 Peog 00 00 o0 0O
= . o 8
pu =) %o & OOOQDOO %
~ & °p oo
; o %
= . . . g & o0
Population protocols: distributed computing 000 &
model for massive networks of passively mobile 8 gzo

finite-state agents

This talk:

« Automatic verification and testing

+ Study of the minimal size of protocols

1/13

Population protocols Angluin et al. PODC'04

< anonymous mobile agents with very few resources

- agents change states via random pairwise interactions

each agent has opinion true/false

« computes by stabilizing agents to some opinion

2/13

Population protocols Angluin et al. PODC'04

« anonymous mobile agents with very few resources

- agents change states via random pairwise interactions

each agent has opinion true/false

« computes by stabilizing agents to some opinion

119 %9q

2/13

Population protocols Angluin et al. PODC'04

< anonymous mobile agents with very few resources

- agents change states via random pairwise interactions

each agent has opinion true/false

« computes by stabilizing agents to some opinion

1149%

2/13

Population protocols Angluin et al. PODC'04

< anonymous mobile agents with very few resources

- agents change states via random pairwise interactions

each agent has opinion true/false

« computes by stabilizing agents to some opinion

R LA L)

2/13

Population protocols Angluin et al. PODC'04

< anonymous mobile agents with very few resources

- agents change states via random pairwise interactions

each agent has opinion true/false

« computes by stabilizing agents to some opinion

19444

2/13

Population protocols Angluin et al. PODC'04

< anonymous mobile agents with very few resources

- agents change states via random pairwise interactions

each agent has opinion true/false

« computes by stabilizing agents to some opinion

11444

2/13

Population protocols Angluin et al. PODC'04

< anonymous mobile agents with very few resources

- agents change states via random pairwise interactions

each agent has opinion true/false

« computes by stabilizing agents to some opinion

11444

2/13

Population protocols Angluin et al. PODC'04

< anonymous mobile agents with very few resources

- agents change states via random pairwise interactions

each agent has opinion true/false

« computes by stabilizing agents to some opinion

"4 @i@*@i@

2/13

Population protocols Angluin et al. PODC'04

< anonymous mobile agents with very few resources

- agents change states via random pairwise interactions

each agent has opinion true/false

« computes by stabilizing agents to some opinion

EREREY

2/13

Population protocols Angluin et al. PODC'04

< anonymous mobile agents with very few resources

- agents change states via random pairwise interactions

each agent has opinion true/false

- computes by stabilizing agents to some opinion

Aty

2/13

Population protocols Angluin et al. PODC'04

< anonymous mobile agents with very few resources

- agents change states via random pairwise interactions

each agent has opinion true/false

« computes by stabilizing agents to some opinion
Ley g Ley =g L]
oo oo 2
. . _ 0%
1] 1] Q.

AL

2/13

Example: majority protocol

More blue birds than red birds?

1
1

14
1

3/13

Example: majority protocol

More blue birds than red birds?
Protocol:

« Two large birds of
different colors
become small

- Large birds convert
small birds to their
color

14
1

3/13

Example: majority protocol

More blue birds than red birds?

Protocol:

« Two large birds of
different colors
become small

- Large birds convert
small birds to their
color

3/13

Example: majority protocol

More blue birds than red birds?

Protocol:

« Two large birds of
different colors
become small

- Large birds convert
small birds to their
color

1 1

3/13

Example: majority protocol

More blue birds than red birds?

Protocol:

« Two large birds of
different colors
become small

- Large birds convert
small birds to their
color

1

1

3/13

Example: majority protocol

More blue birds than red birds?

Protocol:

« Two large birds of
different colors
become small

- Large birds convert
small birds to their
color

1 1

3/13

Example: majority protocol

More blue birds than red birds?

Protocol:

« Two large birds of
different colors
become small

- Large birds convert
small birds to their
color

1

3/13

Example: majority protocol

More blue birds than red birds?

Protocol:

« Two large birds of
different colors
become small

- Large birds convert
small birds to their
color

1 1

3/13

Example: majority protocol

More blue birds than red birds?

Protocol:

« Two large birds of
different colors
become small

- Large birds convert
small birds to their
color

1

1

3/13

Example: majority protocol

More blue birds than red birds?

Protocol:

« Two large birds of
different colors
become small

- Large birds convert
small birds to their
color

1

1

1

1

3/13

Example: majority protocol
More blue birds than red birds?

Protocol:

« Two large birds of
different colors
become small

- Large birds convert
small birds to their
color

1 1

3/13

Example: majority protocol

More blue birds than red birds?

Protocol:

« Two large birds of
different colors
become small

- Large birds convert
small birds to their
color

1

1

1

1

3/13

Example: majority protocol

More blue birds than red birds?

Protocol:

« Two large birds of
different colors
become small

- Large birds convert
small birds to their
color

1

1

Ky

3/13

Example: majority protocol

More blue birds than red birds?

Protocol:

« Two large birds of
different colors
become small

- Large birds convert
small birds to their
color

1

1

1

1

3/13

Example: majority protocol

More blue birds than red birds?
Protocol: lﬁ ‘/ lﬁ |
« Two large birds of :I
different colors i
become small
- Large birds convert lﬁ |
small birds to their
color

3/13

Example: threshold protocol

Are there at least 4 sick birds?

1
9

{
i
4/13

Example: threshold protocol

Are there at least 4 sick birds?

1
44

Protocol:

« Each bird isin a
state of {0,1,2,3, 4}

- Sick birds initially in
state 1 and healthy
birds in state 0

* (m,n)— (m+n,0)
ifm+n<a

= (m,n) — (4,4)
ifm+n>4

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

« Each bird isin a
state of {0,1,2,3, 4}

- Sick birds initially in
state 1 and healthy
birds in state 0

* (m,n)— (m+n,0)
ifm+n<a

« (m,n) — (4,4)

ifm+n>a4 4/13

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

« Each bird isin a
state of {0,1,2,3, 4}

- Sick birds initially in
state 1 and healthy
birds in state 0

~
~

8
%

()

* (m,n)— (m+n,0)
ifm+n<a

= (m,n) — (4,4)
ifm+n>4

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

« Each bird isin a
state of {0,1,2,3, 4}

- Sick birds initially in
state 1 and healthy
birds in state 0

* (m,n)— (m+n,0)
ifm+n<a

= (m,n) — (4,4)
ifm+n>4

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

« Each bird isin a
state of {0,1,2,3, 4}

- Sick birds initially in
state 1 and healthy
birds in state 0

~
~

8
%

()

* (m,n)— (m+n,0)
ifm+n<a

= (m,n) — (4,4)
ifm+n>4

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

« Each bird isin a
state of {0,1,2,3, 4}

- Sick birds initially in
state 1 and healthy
birds in state 0

* (m,n)— (m+n,0)
ifm+n<a

= (m,n) — (4,4)
ifm+n>4

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

(0]

« Each bird isin a

state of {0,1,2,3, 4}
- Sick birds initially in

state 1 and healthy

birds in state 0

~
~

()

* (m,n)— (m+n,0)
ifm+n<a

= (m,n) — (4,4)
ifm+n>4

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

« Each bird isin a
state of {0,1,2,3, 4}

- Sick birds initially in
state 1 and healthy
birds in state 0

* (m,n)— (m+n,0)
ifm+n<a

« (m,n) — (4,4)

ifm+n>a4 4/13

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

(0]

« Each bird isin a
state of {0,1,2,3, 4}

- Sick birds initially in
state 1 and healthy
birds in state 0

~
~

1
4

* (m,n)— (m+n,0)
ifm+n<a

= (m,n) — (4,4)
ifm+n>4

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

« Each bird isin a
state of {0,1,2,3, 4}

- Sick birds initially in
state 1 and healthy
birds in state 0

* (m,n)— (m+n,0)
ifm+n<a

« (m,n) — (4,4)

ifm+n>a4 4/13

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

(0]

« Each bird isin a
state of {0,1,2,3, 4}

- Sick birds initially in
state 1 and healthy
birds in state 0

i
~

1
4

* (m,n)— (m+n,0)
ifm+n<a

= (m,n) — (4,4)
ifm+n>4

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

« Each bird isin a
state of {0,1,2,3, 4}

- Sick birds initially in
state 1 and healthy
birds in state 0

* (m,n)— (m+n,0)
ifm+n<a

= (m,n) — (4,4)
ifm+n>4

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

(0]

« Each bird isin a
state of {0,1,2,3, 4}

- Sick birds initially in
state 1 and healthy
birds in state 0

i
i
4/13

1
4

* (m,n)— (m+n,0)
ifm+n<a

= (m,n) — (4,4)
ifm+n>4

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

« Each bird isin a
state of {0,1,2,3, 4}

- Sick birds initially in
state 1 and healthy
birds in state 0

* (m,n)— (m+n,0)
ifm+n<a

= (m,n) — (4,4)
ifm+n>4

Example: threshold protocol

Are there at least 4 sick birds?

Protocol:

« Each bird isin a
state of {0,1,2,3, 4}

- Sick birds initially in
state 1 and healthy
birds in state 0

i
i
4/13

1
4

* (m,n)— (m+n,0)
ifm+n<a

= (m,n) — (4,4)
ifm+n>4

Example: threshold protocol

Are there at least 4 sick birds?

Protocol: E

« Each bird isin a @
state of {0,1,2,3, 4}

@

i@

- Sick birds initially in
state 1 and healthy
birds in state 0

* (m,n)— (m+n,0)
ifm+n<a

= (m,n) — (4,4)
ifm+n>4

4/13

Demonstration

Population protocols: formal model

- States: finite set Q

+ Opinions: 0:Q—{0,1}
- Initial states: ICQ

- Transitions: TCQ*x Q@

Qi1

5/13

Population protocols: formal model

- States:

- Opinions:

- Initial states:

« Transitions:

)

L]

finite set Q
0:Q— {0,1}
ICQ

TCQ*x Q@

&

TN

5/13

Population protocols: formal model

- States:
- Opinions:

- Initial states:

« Transitions:

finite set Q
0:Q—{0,1}
I CQ

TCQ*x Q@

5/13

Population protocols: formal model

- States: finite set Q

- Opinions: 0:Q—{0,1}
- Initial states: IcQ

- Transitions: TCQ*x@

ii—ﬂli ii*ii
11497414 ii—’ii

5/13

Population protocols: formal model

Reachability graph:

L4444
it |t atas] tatas
#1111 > *hLu > #tlu N Liaddd

5/13

Population protocols: formal model

Executions must be fair:

11444

L

it it j—ltian

h 4 A4 4

Lidid Ladid L FYTYY

A~
N

Laddt

2
2
¥

5/13

Population protocols: formal model

Executions must be fair:

14444

N

it it e

N h 4 W

Lidad Liddd L EYTYY

A~
~

Ladit

W
h
h

5/13

Population protocols: formal model

A protocol computes a predicate f: N' — {0,1}
if fair executions reach common

5/13

Population protocols: formal model

A protocol computes a predicate f: N' — {0,1}
if fair executions reach common consensus

Expressive power Angluin, Aspnes, Eisenstat PODC'06
Population protocols compute precisely predicates
definable in Presburger arithmetic, i.e. FO(N, +, <)

5/13

Analysis of protocols

Protocols can become complex, even for B 2 R:

Fast and Exact Majority in Population Protocols

*
Dan Alistarh Rati Gelashvili Milan Vojnovi¢
Microsoft Research MIT Microsoft Research

2 e 7{ |z| if € StrongStates or x € WeakStates;
1 if € IntermediateStates.
§ _ [ifx € {+0,14,...,11,3,5,...,m}
2 sgn(@) ‘{ ~1 otherwise.
3 value(z) = sgn() - weight(x)
/* Functions for rounding state interactions */
4 ¢(x) = —1; ifx = —1;1y if z = 1; 2, otherwise
5 Ry (k) = &(k if k odd integer, k — 1 if k even)
6 Rp(k) = o(k if k odd integer, k+ 1 if k even)

—1j41 ifa = —1; for some index j < d
7 Shift-to-Zero(w) = { 1j+1 ifa = 1; for some index j < d
z otherwise.

+0 if sgn(a) > 0

8 Swn'm—va(T):{ —0 oherwise.

9 procedure update(z, y,
10 if (weight(z) > 0 and weight(y) > 1) or (weight(y) > 0 and weight(z) > 1) then
- o = Ry (el (x);»uuhu(y)) and yf « By (ﬂulm(.}:);unlm(y)
12 else if weight(z) - weight(y) = 0 and value(z) + value(y) > 0 then

13 if weight(z) # 0 then &' « Shift-to-Zero(z) and y' < Sign-to-Zero(x)

14 else y' « Shift-to-Zero(y) and a’ < Sign-to-Zero(y)

15 elseif (¢ € {—14,+14} and weight(y) = 1 and sgn(z) # sgn(y)) or

16 (y € {~14,+14} and weight(z) = 1 and sgn(y) # sgn(z)) then

17 2’ + —0 and y + +0

18 else 6 / 13

19 ' < Shift-to-Zero(x) and y' « Shift-to-Zero(y)

Analysis of protocols

Protocols can become complex, even for B 2 R:

Fast and Exact Majority in Population Protocols

*
Dan Alistarh Rati Gelashvili Milan Vojnovi¢
Microsoft Research MIT Microsoft Research

1 weight(z) = || if = € StrongStates or « € WeakStates;
weght(®) =1 1" if 2 € IntermediateStates.

A ‘,g"(m):{ 1_l ;{H:rii(szn. la,...,11,3,5,...,m}; HOW +O Verﬂ.C\,

3 value(z) = sgn() - weight(x)
/* Functions for rounding state interactions */

4 ¢(z) 1L ifz 1:1 if z = 1; =, otherwise C—O f‘f‘ec‘#’\ess

5 Ry (k) —1if k even)
6 Ry(k) = o(k if k odd integer, k + 1 if k even)

—1j41 ifa = —1; for some index j < d . ?
7 Shift-to-Zero(x) = { 1,41 ifa = 1; for some index j < d +

CAR avTomaT Ica 7 .

+0 if sgn(a) > 0

8 Swn'tO—Z"m(T):{ —0 oherwise.

9 procedure update(z,)
10 if (weight(z) > 0 and weight(y) > 1) or (weight(y) > 0 and weight(x) > 1) then

11 o R, value (x);»mxhu(y)) and ' « Ry ()uxlm(.}:);uulm(y)

12 else if weight(z) - weight(y) = 0 and value(z) + value(y) > 0 then

13 if weight(z) # 0 then ' < Shift-to-Zero(z) and y' < Sign-to-Zero(x)

14 else y « Shift-to-Zero(y) and a’ < Sign-to-Zero(y)

15 elseif (¢ € {—14,+14} and weight(y) = 1 and sgn(z) # sgn(y)) or

16 (y € {~14,+14} and weight(z) = 1 and sgn(y) # sgn(z)) then

17 2’ < =0 and y « +0

18 else 6 / 13

19 ' < Shift-to-Zero(x) and y' « Shift-to-Zero(y)

Analysis of protocols

Number of states corresponds to amount of memory,
relevant to keep it minimal for embedded systems

- B 2 Rrequires at least 4 states (Mertzios et al. ICALP'14)

« X 2 Crequires at most ¢ + 1 states

6/13

Analysis of protocols

Number of states corresponds to amount of memory,
relevant to keep it minimal for embedded systems

- B 2 Rrequires at least 4 states (Mertzios et al. ICALP'14)

« X 2 Crequires at most ¢ + 1 states

Whet is the state complexi‘r"y

of conmon Preéic«'»‘es.?

6/13

Analysis of protocols

Convergence speed may vary wildly,
challenging to establish bounds

102 0 AVC
i 3-state
10 1|0 4-state
D4-state tiebreaker
9
i 10t
]

1010

Average number of steps to conv
=5

6 8 10 12 14 16 18 20
Initial Amount of R’s

iﬁnn}]ﬂy[ﬂ]ﬂﬂ[{ﬂﬂﬂﬂiﬂh Uil

6/13

Analysis of protocols

Convergence speed may vary wildly,
challenging to establish bounds

1[0 AVC
i 3-state
10 1|0 4-state
D4-state tiebreaker
% 1016 1)
210“7 1 0 ' w ' o er\ve
§

7 aS\,MP'/‘O"’ic
i | bounds
iiimmﬂﬂmﬂlﬂ]]ﬂiﬂk Uilitonong | atomeatical 17?

0 2 4 6 8 10 12 14 16 18 20
Initial Amount of R’s

6/13

Analysis of protocols

1. Automatic verification of correctness

* PODC'17 with Javier, Stefan and Philipp
* Submission to CAV'18 with Javier and Stefan

* Interns: Philip Offtermatt and Amrita Suresh

2. State complexity of common predicates

* STACS’18 with Javier and Stefan

3. Automatic analysis of convergence speed

¢ Ongoing work with Javier and Antonin Kucera
6/13

Analysis of protocols

1. Automatic verification of correctness

* PODC'17 with Javier, Stefan and Philipp
* Submission to CAV'18 with Javier and Stefan

2. State complexity of common predicates

* STACS’18 with Javier and Stefan

L'— T—L.is +al/<

6/13

Verification: state of the art

Existing verification tools:

- PAT: model checker with global fairness
(Sun, Liu, Song Dong and Pang CAV'09)

- bp-ver: graph exploration
(Chatzigiannakis, Michail and Spirakis SS5'10)

- Conversion to counter machines + PRISM/Spin
(Clément, Delporte-Gallet, Fauconnier and Sighireanu ICDCS"11)

7/13

Verification: state of the art

Existing verification tools:

- PAT: model checker with global fairness
(Sun, Liu, Song Dong and Pang CAV'09)

- bp-ver: graph exploration
(Chatzigiannakis, Michail and Spirakis SS5'10)

- Conversion to counter machines + PRISM/Spin
(Clément, Delporte-Gallet, Fauconnier and Sighireanu ICDCS"11)

Only for PoPula‘/'ions of -QXecI size.’

7/13

Verification: state of the art

Sometimes possible to verify all sizes:

- Verification with the interactive theorem prover Coq
(Deng and Monin TASE'09)

7/13

Verification: state of the art

Sometimes possible to verify all sizes:

- Verification with the interactive theorem prover Coq
(Deng and Monin TASE'09)

NO+ aU'('OMa‘{’ic!

7/13

Verification: state of the art

Sometimes possible to verify all sizes:

- Verification with the interactive theorem prover Coq
(Deng and Monin TASE'09)

C.L.auenée: ver‘i-@}iﬂé aU‘fOMa‘/‘ic«“y

a” sizes

7/13

Verification: our approach PODC'17

Testing whether a protocol computes ¢
amounts to testing:

-3C,D: CDA
Cis initial A
D is in a BSCCA
opinion(D) # ¢(C)

7/13

Verification: our approach PODC'17

Testing whether a protocol computes ¢
amounts to testing:

-3C,D: C—=DA
Cis initial A
D isin a BSCCA
opinion(D) # ¢(C)

As c‘if@cul‘f' as verification

7/13

Verification: our approach PODC'17

Testing whether a protocol computes ¢
amounts to testing:

-3C,D: C-->DA
Cis initial A
D is in a BSCCA
opinion(D) # ¢(C)

Qelaxecl wi+L. Pr‘esburéer-c:’e@nable

0ver~aPPr-oxiMa+ion!
7/13

Verification: our approach PODC'17

Testing whether a protocol computes ¢
amounts to testing:

-3C,D: C-->DA
Cis initial A
D is in a BSCCA
opinion(D) # ¢(C)

Dicticult +o express

7/13

Verification: our approach PODC'17

Testing whether a protocol computes ¢
amounts to testing:

-3C,D: C-%5DA
Cis initial A
D is terminal A
opinion(D) # ¢(C)
BSCCs are of size |

for nost Pro+0cols./
7/13

Verification: our approach PODC'17

Testing whether a protocol computes ¢
amounts to testing:

-3C,D: C--»DA
Cis initial A
D is terminal A
opinion(D) # ¢(C)

TeS‘l"able w.-/'L. an SMT solver

7/13

Verification: our approach PODC'17

Testing whether a protocol computes ¢
amounts to testing:

-3C,D: C-->DA
Cis initial A
D is terminal A
opinion(D) # ¢(C)

But Low to know wihetler
a” BSC—CS ar e O; size ‘ ?

7/13

Silent protocols PODC'17

Protocol is silent if fair executions reach terminal configurations

BSCCs of size 1

8/13

Silent protocols PODC'17

Protocol is silent if fair executions reach terminal configurations
« Testing silentness is as hard as verification of correctness

« But most protocols satisfy a common design

|]
BSCCs of size 1

8/13

Common design: layered termination PODC'17

Partition T=T{UT,U---UT, s.t. for every i

« all executions restricted to T; terminate

« ifTyU---UT;_; disabled in Cand C Ir, D, then
T1U---UT;_4 also disabled in D

-T_1*, LENK e | Tn-

~

8/13

Common design: layered termination PODC'17

Partition T=T{UT,U---UT, s.t. for every i

« all executions restricted to T; terminate

« ifTyU---UT;_; disabled in Cand C Ir, D, then
T1U---UT;_4 also disabled in D

T Tn"

h 4
~

8/13

Common design: layered termination PODC'17

Partition T=T,UT,U---UT, s.t. for every i

« all executions restricted to T; terminate

« ifTyU---UT;_; disabled in Cand C Ir, D, then
T1U---UT;_4 also disabled in D

8/13

Common design: layered termination PODC'17

Partition T=T,UT,U---UT, s.t. for every i

« all executions restricted to T; terminate

« ifTyU---UT;_; disabled in Cand C Ir, D, then
T1U---UT;_4 also disabled in D

G S L

8/13

Common design: layered termination PODC'17

Partition T=T,UT,U---UT, s.t. for every i

« all executions restricted to T; terminate

« ifTyU---UT;_; disabled in Cand C Ir, D, then
T1U---UT;_4 also disabled in D

[S L B B L

8/13

Common design: layered termination PODC'17

T
BR—~>br
Rb—Rr
Br—Bb
br—bb

8/13

Common design: layered termination PODC'17

T
BR—~>br
Rb—Rr
Br—Bb
br—bb

Bad partition: not all executions over T, terminate

8/13

Common design: layered termination PODC'17

T
BR—~>br
Rb—Rr
Br—Bb
br—bb

Bad partition: not all executions over T, terminate

{B.B.R.R} — {B.b,r,R} — {B,b,b R} -
{B,b,r,R} — {B,b,b,R} — - -

8/13

Common design: layered termination PODC'17

T; §T2 §T3
BR—br i Rb—Rr

8/13

Common design: layered termination PODC'17

T; §T2 §T3
BRbr | Rb_Rr | 2r—Bb
] br—bb
#B > {R:
{B*, R*}

8/13

Common design: layered termination PODC'17

. X T, RE

i B B
BR—br i Rb—Rr r—Bb

br—bb

#B > #R:
{B*, R"} — {B", b* r}

8/13

Common design: layered termination PODC'17

. X T, X RE

i B B
BR—br i Rb—Rr r—Bb

br—bb

#B > #R:
{B*, R"} — {B", b* r}

8/13

Common design: layered termination PODC'17

. X T, X ET3 X

Br—Bb

BR—br i Rb—Rr
: br—bb

#B > #R:
{B*, R"} — {B", b* r-} — {B", b*}

8/13

Common design: layered termination PODC'17

T i T i Ts

i B B
BR—br i Rb—Rr r—Bb

br—bb

#B > #R:
{B*, R"} — {B", b*. r-} — {B", b*}

#R > #B:
{R", B}

8/13

Common design: layered termination PODC'17

. X T, RE

i B B
BR—br i Rb—Rr r—Bb

br—bb

#B > #R:
{B*, R"} — {B", b*. r-} — {B", b*}

HR > #B:
{R", B*} —— {R", r*, b*}

8/13

Common design: layered termination PODC'17

. X T, X RE

i B B
BR—br i Rb—Rr r—Bb

br—bb

#B > #R:
{B*, R"} — {B", b*. r-} — {B", b*}

H#R > #B:
{R", B*} —{R", r*, b’} — {R", r*}

8/13

Common design: layered termination PODC'17

. X T, X ET3 X

Br—Bb

BR—br i Rb—Rr
] br—bb
#B > #R:

{B*, R"} —— {B*, b*, r*} —— {B*, b*}

H#R > #B:
{R", B*} —{R", r*, b’} — {R", r*}

8/13

Common design: layered termination PODC'17

Theorem PODC'17
Deciding whether a protocol is strongly silent € NP

Proof sketch

Guess partition T=TUT, U --- U T, and test whether it is
correct by verifying

« Petri net structural termination

- Additional simple structural properties

8/13

Common design: layered termination PODC'17

Theorem PODC'17
Strongly silent protocols as expressive as general protocols

Proof sketch
* Protocols for
Q1X1+ ...+ anx, > b

aiX1 + ...+ apXp = b (mod m)

have layered termination partitions

« Conjunction and negation preserve layered termination
8/13

A new tool: Peregrine PODC'17 / CAV'18 submission

Peregrine: »Haskell + Z3 + JavaScript (front end)
gitlab.lrz.de/i7/peregrine

Protocol Predicate # states | # trans. | Time (secs.)
Majority [a] x>y 4 4 0.1
Broadcast [b] X1V -V Xp 2 1 0.1
Linearineq. [c] | > a;x; > 9 75 2148 2376
Modulo [c] > aix;=0mod 70 72 2555 3177
Threshold [d] X >50 51 1275 182
Threshold [b] X > 325 326 649 3471
Threshold [e] x> 107 37 155 19
[a] Draief et al. 2012 [c] Angluin et al. 2006 [e] Offtermatt 2017 (bachelor thesis)

[b] Clément et al. 2011 [d] Chatzigiannakis et al. 2010 0/13

Demonstration

Threshold state complexity: logarithmic bounds

Given: Presburger-definable predicate ¢

Question: Smallest number of states
necessary to compute ©?

10/13

Threshold state complexity: logarithmic bounds

Given: Presburger-definable predicate ¢

Question: Smallest number of states
necessary to compute ©?

D.'L‘chH- Pr‘oblem...
V\/L\a'/' abOU‘!L baSic. Pr‘eéic«'/'es.?

10/13

Threshold state complexity: logarithmic bounds

Given: ceN

Question: Smallest number of states
necessary to compute x > ¢?

10/13

Threshold state complexity: logarithmic bounds

Given: ceN Upper bound: ¢ +1

Question: Smallest number of states Lower bound: 2
necessary to compute x > ¢?

10/13

Threshold state complexity: logarithmic bounds

Given: ceN Upper bound: ¢ +1

Question: Smallest number of states Lower bound: 2
necessary to compute x > ¢?

Theorem STACS'18
Computable with O(log c) states, if c = 2".

Proof sketch

\.N \._\
N =
117
—~
Rl
o O
N— N

10/13

Threshold state complexity: logarithmic bounds

Given: ceN Upper bound: ¢ +1

Question: Smallest number of states Lower bound: 2
necessary to compute x > ¢?

Theorem STACS'18
Computable with O(log c) states,#e="72".

Proof sketch

\.N \._\
N =
117
—~
Rl
o O
N— N

10/13

Threshold state complexity: logarithmic bounds

Given: ceN Upper bound: O(logc)

Question: Smallest number of states Lower bound: 2
necessary to compute x > ¢?

10/13

Threshold state complexity: logarithmic bounds

Given: ceN Upper bound: O(log c)

Question: Smallest number of states Lower bound: 2
necessary to compute x > ¢?

Theorem STACS'18

Let Pg, P4, ... be protocols such that P, computes x > c.
There are infinitely many c s.t. Pc has > (log c)'/* states.

Proof sketch
Counting argument on # unary predicates vs. # protocols.

10/13

Threshold state complexity: logarithmic bounds

Given: ceN Upper bound: O(log c)

Question: Smallest number of states ~ Lower bound: O(log'* ¢)
\//

necessary to compute x > c? for inf, many ¢

10/13

Threshold state complexity: logarithmic bounds

Given: ceN Upper bound: O(log c)

Question: Smallest number of states Lower bound: O(log'/“c)
necessary to compute x > ¢? for inf. many ¢

Possib[e +o 30 below

,Oé c «Cor* Sonne c.?

10/13

Threshold state complexity: logarithmic bounds

Given: ceN Upper bound: O(log c)

Question: Smallest number of states Lower bound: O(log'/“c)
necessary to compute x > ¢? for inf. many ¢

Possible +o Je below

Iog c for sone 7

Yesl

10/13

Threshold state complexity: sublogarithmic bounds

Theorem STACS'18
There exist protocols Py, Py,...and numbers cp < ¢y < - - -
such that P; computes x > ¢; and has O(log log ¢;) states.

11/13

Threshold state complexity: sublogarithmic bounds

Theorem STACS'18

There exist protocols Py, Py,...and numbers cp < ¢y < - - -
such that P; computes x > ¢; and has O(log log ¢;) states.

Lemma Mayr and Meyer '82
For every c € N, there exists a reversible multiset rewriting
system R over alphabet X D {x,y,z, w} of size O(c) with
rewriting rules T C £=° x ¥=° such that

oyl SMandweM «— M={y,2 ,w

11/13

Threshold state complexity: sublogarithmic bounds

Theorem STACS'18

There exist protocols Py, Py,...and numbers cp < ¢y < - - -
such that P; computes x > ¢; and has O(log log ¢;) states.

Proof sketch

11/13

Threshold state complexity: sublogarithmic bounds

Theorem STACS'18
There exist protocols Py, Py,...and numbers cp < ¢y < - - -
such that P; computes x > ¢; and has O(log log ¢;) states.

Proof sketch

« R can be simulated by adding a padding symbol L

Rewriting system R \ 5-way population protocol
(e.f.9)— (h,i) | (efig, L, L)~ (h,i, L, L 1)
(e,f) — (g, h,i) (e.f, L, L, 1)~ (g,h,i, L, 1)

11/13

Threshold state complexity: sublogarithmic bounds

Theorem STACS'18

There exist protocols Py, Py,...and numbers cp < ¢y < - - -
such that P; computes x > ¢; and has O(log log ¢;) states.

Proof sketch

« R can be simulated by adding a padding symbol L

Each 5-way transition is converted to
a “gadget” of 2-way transitions

11/13

Threshold state complexity: sublogarithmic bounds

Theorem STACS'18

There exist protocols Py, Py,...and numbers cp < ¢y < - - -
such that P; computes x > ¢; and has O(log log ¢;) states.

Proof sketch

« R can be simulated by adding a padding symbol L

11/13

Threshold state complexity: sublogarithmic bounds

Theorem STACS'18

There exist protocols Py, Py,...and numbers cp < ¢y < - - -
such that P; computes x > ¢; and has O(log log ¢;) states.

Proof sketch

« R can be simulated by adding a padding symbol L

+ New rule: agents in state w can convert others to w

11/13

Threshold state complexity: sublogarithmic bounds

Theorem STACS'18

There exist protocols Py, Py,...and numbers cp < ¢y < - - -
such that P; computes x > ¢; and has O(log log ¢;) states.

Proof sketch

« R can be simulated by adding a padding symbol L
« New rule: agents in state w can convert others to w

+ Simulate R from {x,y, L, L, ..., L}

11/13

Threshold state complexity: sublogarithmic bounds

Theorem STACS'18

There exist protocols Py, Py,...and numbers cp < ¢y < - - -
such that P; computes x > ¢; and has O(log log ¢;) states.

Proof sketch

« R can be simulated by adding a padding symbol L
« New rule: agents in state w can convert others to w
+ Simulate R from {x,y, L, L, ..., L}

« {w,w,...,w} reachable <= initially > 2% agents in L

11/13

State complexity: beyond threshold

Let A e Z™*k let ¢ € Z™ and let n be the largest absolute
value of numbers occurring in A and c.

Observation
Classical protocol computing Ax + ¢ > 0 has O(n™) states.

12/13

State complexity: beyond threshold

Let A e Z™*k let ¢ € Z™ and let n be the largest absolute
value of numbers occurring in A and c.

Observation
Classical protocol computing Ax + ¢ > 0 has O(n™) states.

Theorem STACS'18
There exists a protocol that computes Ax + ¢ > 0 and has

« at most O((m + R) - log mn) states

« at most O(m - log mn) leaders

12/13

Peregrine:

« Graphical and command-line tool for designing,
simulating and verifiying population protocols

- Can verify silent protocols
Future work:

- Verification of non silent protocols (ongoing with Amrita)
« Convergence speed analysis (ongoing with Javier and Tony)
« Failure ratio analysis

+ LTL model checking

13/13

Peregrine:

+ Graphical and command-Lline tool for designing,
simulating and verifiying population protocols

« Can verify silent protocols
Future work:

- Verification of non silent protocols (ongoing with Amrita)
- Convergence speed analysis (ongoing with Javier and Tony)
- Failure ratio analysis

+ LTL model checking

13/13

State complexity:

« Complexity of x > ¢ can be decreased from O(c) to
O(log ¢) and sometimes O(log log ¢)

« Similar results for systems of linear inequalities
Future work:

+ Is O(log log log ¢) sometimes possible?
(not for the class of 1-aware protocols)

- State complexity of Presburger-definable predicates
« Study of the trade-off between size and speed

13/13

State complexity:

+ Complexity of x > ¢ can be decreased from O(c) to
O(log c¢) and sometimes O(log log ¢)

+ Similar results for systems of linear inequalities
Future work:

» Is O(log log log c) sometimes possible?

(not for the class of 1-aware protocols)
- State complexity of Presburger-definable predicates
- Study of the trade-off between size and speed

13/13

Thank you! Vielen Dank!

