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model for massive networks of passively mobile
finite-state agents

Can model e.g. networks of passively mobile sensors and
chemical reaction networks

Protocols compute predicates of the form : N — {0,1}

e.g. if ¢ is unary, then ¢(n) is computed by n agents
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This talk:

« Automatic verification and testing

+ Study of the minimal size of protocols
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Population protocols Angluin et al. PODC'04

< anonymous mobile agents with very few resources

- agents change states via random pairwise interactions

each agent has opinion true/false

« computes by stabilizing agents to some opinion
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Example: majority protocol

More blue birds than red birds?
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Example: majority protocol

More blue birds than red birds?
Protocol: lﬁ ‘/ lﬁ |
« Two large birds of :I
different colors i
become small
- Large birds convert lﬁ |
small birds to their
color
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Example: threshold protocol

Are there at least 4 sick birds?

Protocol: E

« Each bird isin a @
state of {0,1,2,3, 4}

@

i@

- Sick birds initially in
state 1 and healthy
birds in state 0
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Population protocols: formal model

- States: finite set Q

+ Opinions: 0:Q—{0,1}
- Initial states: ICQ

- Transitions: TCQ*x Q@
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Population protocols: formal model

Reachability graph:
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Population protocols: formal model

Executions must be fair:
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Population protocols: formal model

A protocol computes a predicate f: N' — {0,1}
if fair executions reach common
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Population protocols: formal model

A protocol computes a predicate f: N' — {0,1}
if fair executions reach common consensus

Expressive power Angluin, Aspnes, Eisenstat PODC'06
Population protocols compute precisely predicates
definable in Presburger arithmetic, i.e. FO(N, +, <)
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Analysis of protocols

Protocols can become complex, even for B 2 R:

Fast and Exact Majority in Population Protocols

*
Dan Alistarh Rati Gelashvili Milan Vojnovi¢
Microsoft Research MIT Microsoft Research

2 e 7{ |z|  if € StrongStates or x € WeakStates;
1 if € IntermediateStates.
§ _ [ ifx € {+0,14,...,11,3,5,...,m}
2 sgn(@) ‘{ ~1 otherwise.
3 value(z) = sgn() - weight(x)
/* Functions for rounding state interactions */
4 ¢(x) = —1; ifx = —1;1y if z = 1; 2, otherwise
5 Ry (k) = &(k if k odd integer, k — 1 if k even)
6 Rp(k) = o(k if k odd integer, k+ 1 if k even)

—1j41  ifa = —1; for some index j < d
7 Shift-to-Zero(w) = { 1j+1  ifa = 1; for some index j < d
z otherwise.

+0 if sgn(a) > 0

8 Swn'm—va(T):{ —0  oherwise.

9 procedure update(z, y,
10 if (weight(z) > 0 and weight(y) > 1) or (weight(y) > 0 and weight(z) > 1) then
- o = Ry (el (x);»uuhu(y)) and yf « By (ﬂulm(.}:);unlm(y)
12 else if weight(z) - weight(y) = 0 and value(z) + value(y) > 0 then

13 if weight(z) # 0 then &' « Shift-to-Zero(z) and y' < Sign-to-Zero(x)

14 else y' « Shift-to-Zero(y) and a’ < Sign-to-Zero(y)

15 elseif (¢ € {—14,+14} and weight(y) = 1 and sgn(z) # sgn(y)) or

16 (y € {~14,+14} and weight(z) = 1 and sgn(y) # sgn(z)) then

17 2’ + —0 and y + +0

18 else 6 / 13

19 ' < Shift-to-Zero(x) and y' « Shift-to-Zero(y)
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Analysis of protocols

Number of states corresponds to amount of memory,
relevant to keep it minimal for embedded systems

- B 2 Rrequires at least 4 states (Mertzios et al. ICALP'14)

« X 2 Crequires at most ¢ + 1 states
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Analysis of protocols

Convergence speed may vary wildly,
challenging to establish bounds

102 0 AVC
i 3-state
10 1|0 4-state
D4-state tiebreaker
9
i 10t
]

1010

Average number of steps to conv
=5

6 8 10 12 14 16 18 20
Initial Amount of R’s
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Analysis of protocols

1. Automatic verification of correctness

* PODC'17 with Javier, Stefan and Philipp
* Submission to CAV'18 with Javier and Stefan

* Interns: Philip Offtermatt and Amrita Suresh

2. State complexity of common predicates

* STACS’18 with Javier and Stefan

3. Automatic analysis of convergence speed

¢ Ongoing work with Javier and Antonin Kucera
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Verification: state of the art

Existing verification tools:

- PAT: model checker with global fairness
(Sun, Liu, Song Dong and Pang CAV'09)

- bp-ver: graph exploration
(Chatzigiannakis, Michail and Spirakis SS5'10)

- Conversion to counter machines + PRISM/Spin
(Clément, Delporte-Gallet, Fauconnier and Sighireanu ICDCS"11)
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Verification: our approach PODC'17

Testing whether a protocol computes ¢
amounts to testing:

-3C,D: CDA
Cis initial A
D is in a BSCCA
opinion(D) # ¢(C)
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Silent protocols PODC'17

Protocol is silent if fair executions reach terminal configurations

BSCCs of size 1
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Silent protocols PODC'17

Protocol is silent if fair executions reach terminal configurations
« Testing silentness is as hard as verification of correctness

« But most protocols satisfy a common design

| ]
BSCCs of size 1
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Common design: layered termination PODC'17

Partition T=T{UT,U---UT, s.t. for every i

« all executions restricted to T; terminate

« ifTyU---UT;_; disabled in Cand C Ir, D, then
T1U---UT;_4 also disabled in D

-T_1*, LENK e | Tn-

~
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Common design: layered termination PODC'17

. X T, X ET3 X

Br—Bb

BR—br i Rb—Rr
] br—bb
#B > #R:

{B*, R"} —— {B*, b*, r*} —— {B*, b*}

H#R > #B:
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Common design: layered termination PODC'17

Theorem PODC'17
Deciding whether a protocol is strongly silent € NP

Proof sketch

Guess partition T=TUT, U --- U T, and test whether it is
correct by verifying

« Petri net structural termination

- Additional simple structural properties
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Common design: layered termination PODC'17

Theorem PODC'17
Strongly silent protocols as expressive as general protocols

Proof sketch
* Protocols for
Q1X1+ ...+ anx, > b

aiX1 + ...+ apXp = b (mod m)

have layered termination partitions

« Conjunction and negation preserve layered termination
8/13



A new tool: Peregrine PODC'17 / CAV'18 submission

Peregrine: »Haskell + Z3 + JavaScript (front end)
gitlab.lrz.de/i7/peregrine

Protocol Predicate # states | # trans. | Time (secs.)
Majority [a] x>y 4 4 0.1
Broadcast [b] X1V -V Xp 2 1 0.1
Linearineq. [c] | > a;x; > 9 75 2148 2376
Modulo [c] > aix;=0mod 70 72 2555 3177
Threshold [d] X >50 51 1275 182
Threshold [b] X > 325 326 649 3471
Threshold [e] x> 107 37 155 19
[a] Draief et al. 2012 [c] Angluin et al. 2006 [e] Offtermatt 2017 (bachelor thesis)

[b] Clément et al. 2011  [d] Chatzigiannakis et al. 2010 0/13
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Threshold state complexity: logarithmic bounds

Given: Presburger-definable predicate ¢

Question: Smallest number of states
necessary to compute ©?
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Threshold state complexity: logarithmic bounds

Given: ceN Upper bound: O(log c)

Question: Smallest number of states Lower bound: 2
necessary to compute x > ¢?

Theorem STACS'18

Let Pg, P4, ... be protocols such that P, computes x > c.
There are infinitely many c s.t. Pc has > (log c)'/* states.

Proof sketch
Counting argument on # unary predicates vs. # protocols.
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Threshold state complexity: logarithmic bounds

Given: ceN Upper bound: O(log c)

Question: Smallest number of states  Lower bound: O(log'/“c)
necessary to compute x > ¢? for inf. many ¢

Possible +o Je below

Iog c for sone 7
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Threshold state complexity: sublogarithmic bounds

Theorem STACS'18
There exist protocols Py, Py,...and numbers cp < ¢y < - - -
such that P; computes x > ¢; and has O(log log ¢;) states.
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Threshold state complexity: sublogarithmic bounds

Theorem STACS'18

There exist protocols Py, Py,...and numbers cp < ¢y < - - -
such that P; computes x > ¢; and has O(log log ¢;) states.

Lemma Mayr and Meyer '82
For every c € N, there exists a reversible multiset rewriting
system R over alphabet X D {x,y,z, w} of size O(c) with
rewriting rules T C £=° x ¥=° such that

oyl SMandweM «— M={y,2 ,w
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Threshold state complexity: sublogarithmic bounds

Theorem STACS'18
There exist protocols Py, Py,...and numbers cp < ¢y < - - -
such that P; computes x > ¢; and has O(log log ¢;) states.

Proof sketch

« R can be simulated by adding a padding symbol L

Rewriting system R \ 5-way population protocol
(e.f.9)— (h,i) | (efig, L, L)~ (h,i, L, L 1)
(e,f) — (g, h,i) (e.f, L, L, 1)~ (g,h,i, L, 1)
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Theorem STACS'18

There exist protocols Py, Py,...and numbers cp < ¢y < - - -
such that P; computes x > ¢; and has O(log log ¢;) states.

Proof sketch

« R can be simulated by adding a padding symbol L

Each 5-way transition is converted to
a “gadget” of 2-way transitions
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Threshold state complexity: sublogarithmic bounds

Theorem STACS'18

There exist protocols Py, Py,...and numbers cp < ¢y < - - -
such that P; computes x > ¢; and has O(log log ¢;) states.

Proof sketch

« R can be simulated by adding a padding symbol L
« New rule: agents in state w can convert others to w
+ Simulate R from {x,y, L, L, ..., L}

« {w,w,...,w} reachable <= initially > 2% agents in L

11/13



State complexity: beyond threshold

Let A e Z™*k let ¢ € Z™ and let n be the largest absolute
value of numbers occurring in A and c.

Observation
Classical protocol computing Ax + ¢ > 0 has O(n™) states.
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State complexity: beyond threshold

Let A e Z™*k let ¢ € Z™ and let n be the largest absolute
value of numbers occurring in A and c.

Observation
Classical protocol computing Ax + ¢ > 0 has O(n™) states.

Theorem STACS'18
There exists a protocol that computes Ax + ¢ > 0 and has

« at most O((m + R) - log mn) states

« at most O(m - log mn) leaders

12/13



Peregrine:

« Graphical and command-line tool for designing,
simulating and verifiying population protocols

- Can verify silent protocols
Future work:

- Verification of non silent protocols (ongoing with Amrita)
« Convergence speed analysis (ongoing with Javier and Tony)
« Failure ratio analysis

+ LTL model checking
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State complexity:

« Complexity of x > ¢ can be decreased from O(c) to
O(log ¢) and sometimes O(log log ¢)

« Similar results for systems of linear inequalities
Future work:

+ Is O(log log log ¢) sometimes possible?
(not for the class of 1-aware protocols)

- State complexity of Presburger-definable predicates
« Study of the trade-off between size and speed
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Thank you! Vielen Dank!



