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Preface

This document was written for a PhD Open lecture series taking place at the
University of Warsaw in 2022 from October 26 to 28. They were mostly as-
sembled from lecture notes of the course IGL752 (Université de Sherbrooke)
and some of my publications [BFHH17, BH17, Blo20, BHO21, BE22]. In some
parts, such as the vast majority of Chapters 2 and 3, large portions of these pa-
pers were copied verbatim. Consequently, these notes should only be used for
this teaching purpose!
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1

Petri nets

1.1 Formalism

Definition 1. A Petri net is a triple N = (P, T, F ) where

• P is a finite set (places);

• T is a finite set disjoint from P (transitions);

• F : ((P × T ) ∪ (T × P ))→ N (flow function).

Example.

The following Petri net is depicted in Figure 1.1:

P = {p, q}, T = {s, t},

F (p, s) = 1, F (p, t) = 0,

F (q, s) = 0, F (q, t) = 3,

F (s, p) = 0, F (t, p) = 4,

F (s, q) = 2, F (t, q) = 1.

1
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Figure 1.1: An example of a Petri net marked by (1, 1). Places and transi-
tions are respectively represented by circles and squares. Arcs represent
the flow function.

A marking is a vector m ∈ NP that associates an amount of tokens m(p) to
each place p. A transition t ∈ T is firable in m if m(p) ≥ F (p, t) for every place
p ∈ P . If t is firable, then

m t m′ where m′(p) := m(p)− F (p, t) + F (t, p) for all p ∈ P.

We write m m′ if there exists t ∈ T such that m t m′, and m ∗ m′ if
m = m′ or there exists a sequence of markings and transitions such that:

m = m0
t1 m1

t2 · · · tk mk = m′.

Example.

In the Petri net from Figure 1.1, we have (1, 1) ∗ (3, 3) since

(1, 1) s (0, 3) t (4, 1) s (3, 3).

The successors and predecessors of a marking m are respectively defined by:

Post∗(m) = {m′ ∈ NP : m ∗ m′},

Pre∗(m) = {m′ ∈ NP : m′ ∗ m}.

We write m ≥m′ if m(p) ≥m′(p) for every place p ∈ P .

Example.

We have (1, 2, 3) ≥ (1, 1, 0), but (1, 2, 3) ̸≥ (0, 1, 4).

1.2 Modeling systems

We provide examples from the literature that illustrate how Petri nets can model
systems that can be formally analyzed.
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1.2.1 Program synthesis

The authors of [FMW+17] and [GJJ+20] have recently employed the Petri net
reachability problem for automated program synthesis. In their setting, one is
given an API containing hundreds or thousands of functions, together with a
type signature and a number of test cases. The goal is to automatically synthe-
size a loop-free program using functions from the API that respects the specified
type signature and satisfies the given test cases.

java.awt.geom
new AffineTransformation()
Shape Shape.createTransformedShape(AffineTransformation)
String Point2D.ToString()
double Point2D.getX()
double Point2D.getY()
void AffineTransformation.setToRotation(double, double, double)
void AffineTransformation.invert()
Area Area.createTransformedArea(AffineTransformation)

Figure 1.2: A small sample of methods from library java.awt.geom.

Let us illustrate the approach with an example from [FMW+17]. Suppose
we have access to library java.awt.geom, and we wish to synthesize a function
rotate with type signature

Area rotate(Area object, Point2D point, double angle).

Naturally, the function should rotate the supplied Area around point by angle
degrees. We assume the java.awt.geom library is sufficient for this task in that
it contains the functions needed to synthesize the method. Figure 1.2 presents
an excerpt of functions contained in the API.

The authors of [FMW+17] suggest to view an API as a Petri net whose places
correspond to types and transitions correspond to API functions which, infor-
mally speaking, consume input types and produce an output type. Figure 1.3
illustrates the Petri net corresponding to the excerpt of API functions listed in
Figure 1.2. To synthesize the rotate function above, we start with tokens in
the places corresponding to the input parameters of our function.

AffineTrans

Shapedouble

Point2D AreaString

setToRotation
3

invert

createTransShape

ToString

GetXGetY createTransArea

new AffineTrans copyAffineTrans
2

copyArea2
copyShape

2

copydouble 2

copyPoint2D
2

copyString

2

Figure 1.3: A Petri net modelling the API of Figure 1.2.
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Thus, in Figure 1.3 we have one token in each of the places corresponding
to Area, Point2D and double. The goal is then to reach a marking with a single
token in the place corresponding to the return type. In our example, we aim
for one token in Area, and no token in any other place.

This corresponds to invoking a sequence of functions that “use up” all input
parameters, and finally return the correct type. To allow reuse of variables,
additional “copy” transitions are introduced for each place; they take one token
from a place and put two tokens back. If the target marking is reachable, then
the witnessing path corresponds to a partial sketch of a program.

For example, the path

copyPoint2D → GetY→ GetX→ new AffineTransformation→
copyAffineTransformation → setToRotation→ createTransformedArea

tells us which functions to apply, and in which order to apply them. Since Petri
nets do not store information about the identity of tokens, when we have mul-
tiple objects of the same type, we do not know which to supply as an argument
to which function. This can be figured out by a separate process involving SAT
solving (see [FMW+17] for more details).

As discussed in [FMW+17], finding short paths of the Petri net is a natural
goal. Indeed, since short programs are easier to test, there are fewer possibilities
for the arguments of each function, and it is easier for humans to verify that the
synthesized program has the desired functionality.

1.2.2 Concurrent program analysis

Perhaps most prominently, Petri nets have been used to model and analyze con-
current processes. Let us give a simple example illustrating how Petri nets can
be used in order to detect race conditions in concurrent programs. Consider
function fun() of Figure 1.4 in which s is a global shared Boolean variable. If
there is a single thread running fun(), then the condition of the if-statement
in Line 3 never evaluates to true and an error cannot occur. However, if there
are two independently interleaved threads running fun(), it is possible that one
thread reaches Line 3 whilst s is set to 1, which means an error could occur.

0 def fun():
1 s = 1
2 s = 0
3 if s == 1: raise Err()

Figure 1.4: Simple program with a potential race condition.

In more technical terms, we consider non-recursive Boolean programs in
which an unbounded number of identical programs run in parallel. The authors
of [GS92] showed that verifying safety properties of such concurrent programs
amounts to verifying some Petri net.
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loc1 loc2 loc3 Errfun()

s == 1 s == 0

Figure 1.5: The Petri net modeling the program of Figure 1.4. A token in place
loci represents a thread at program location i, and a token in place s == b
indicates that variable s has value b. Transition fun() spawns threads. A bidi-
rectional arc p ↔ t abbreviates two arcs: p → t and t → p. Colors are only
meant to help readability.

The Petri net obtained by applying the approach of [GS92] to the program
from Figure 1.4 is depicted in Figure 1.5. The places on the top of the Petri net
correspond to the program locations of Figure 1.4. Tokens in each of the places
on the top count the number of threads which are currently at the respective
program location, which is a form of counter abstraction. At any time, transition
fun() can add tokens to loc1, reflecting that a new thread executing fun()
can be spawned at any point in time arbitrarily often. The two places on the
bottom encode the state of the Boolean variable s which is updated whenever a
transition moves tokens from loc1 to loc2, or from loc2 to loc3. Determining
whether an error can occur then reduces to deciding whether at least one token
can be procued in place Err, i.e., whether there is an interleaving in which at
least one thread produces an error.

1.2.3 Further applications

The authors of [FKP14] show how proofs involving counting arguments, which
can, for instance, naturally prove properties of concurrent programs with re-
cursive procedures, can automatically be synthesized by a reduction to the so-
called Petri net reachability problem. The authors of [GM12] propose a model
for reasoning about finite-data asynchronous programs. They show that prov-
ing liveness properties of such programs in their model is inter-reducible with
the Petri net reachability problem.

In a broader context, it was shown that various verification problems for
population protocols, a formal model of sensor networks, reduce to the Petri
net reachability problem [EGLM17]. The authors of [DLV19] develop a method
that allows for verifying rich models of data-driven workflows by a reduction to
the so-called coverability problem for Petri nets. See also survey [Mur89] for
further classical application areas of Petri nets and their extensions.
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1.3 Verification

Let us define the aforementioned verification problems:

Reachability problem

Input: Petri net N = (P, T, F ) and markings m,m′ ∈ NP

Question: m ∗ m′?

Coverability problem

Input: Petri net N = (P, T, F ) and markings m,m′ ∈ NP

Question: is there m′′ ∈ NP such that m ∗ m′′ and m′′ ≥m′?

The above two problems are decidable; i.e. they can both be solved with an algo-
rithm. However, their complexity is prohibitive: non primitive recursive [ST77,
May81, Kos82, Lam92, Ler12, CLL+19, Ler21, CO21] and EXPSPACE-complete
[Lip76, Rac78], respectively. Nonetheless, they can both be solved in practice
(as we shall see).

In this chapter, we focus on the coverability problem. We say that a marking
m′ is coverable from a marking m if there exists a marking m′′ ∈ NP such that

m ∗ m′′ and m′′ ≥m′.

We say that m can cover m′ if m′ is coverable from m.

1.3.1 Coverability graphs

Let us consider the Petri net depicted in Figure 1.6. Let us determine whether
m = (1, 1) can cover a marking m′. We could attempt constructing Post∗(1, 1)
as a reachability graph, as depicted on the left hand-side of Figure 1.7. However,
this graph is infinite and it would a priori be impossible to determine at which
point we may stop constructing this graph.

p0
s

t

p1

3

Figure 1.6: Another example of a Petri net.

In order to overcome this problem, we introduce the notion of coverability
graphs. We extend N with a maximal element ω. More formally, we define the

https://en.wikipedia.org/wiki/Primitive_recursive_function
https://en.wikipedia.org/wiki/EXPSPACE
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(1, 1)

(0, 3) (2, 0)

(1, 2)

(0, 4) (2, 1)

(1, 3) (3, 0)

s t

t

s t

s t

(1, 1)

(0, 3) (2, 0)

(1, ω)

(0, ω) (ω, ω)

s t

t

s t

t
s, t

Figure 1.7: Reachability graph (left) and coverability graph (right) of the Petri
net from Figure 1.6 starting from marking (1, 1).

set Nω := N ∪ {ω} where

n+ ω := ω for every n ∈ Nω,

ω − n := ω for every n ∈ N,
ω > n for every n ∈ N.

An extended marking is a vector m ∈ NP
ω . The notions of transition firability

and firing are naturally extended to such markings.
Let us reconsider the reachability graph depicted on the left of Figure 1.7.

When we reach marking (1, 2), we observe that

(1, 1) st (1, 2) and (1, 2) ≥ (1, 1).

Iterating the sequence st, we may increase the second place arbitrarily. Thus,
we replace this marking by the extended marking (1, ω), which we call its ac-
celeration. The symbol “ω” does not indicate that all values are reachable, but
merely that the place can hold as many tokens as desired. Thus, when a mark-
ing is added, we can inspect its ancestors and proceed to such accelerations.
We obtain a finite graph that represents all coverable markings; e.g. see the one
depicted on the right hand-side of Figure 1.7.

The procedure to compute coverability graphs is described in Algorithm 1.
The following proposition explains how to determine whether a given marking
m′ is coverable, using a coverability graph:

Proposition 1. Let N = (P, T, F ) be a Petri net, and let m,m′ ∈ NP . Let G be
a coverability graph constructed by cover(N ,m). Marking m′ is coverable from
m iff G has a marking m′′ such that m′′ ≥m′.
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Algorithm 1: Algorithm to compute coverability graphs.
Input: Petri net N = (P, T, F ) and m ∈ NP

Output: Coverability graph from m

cover(N ,m):
V ← ∅ // Nodes
E ← ∅ // Arcs
W ← {m} // To process
whileW ̸= ∅

m′ ← remove fromW
add m′ to V
for t ∈ T firable from m′

m′′ ← marking such that m′ t m′′

accel(m′′)

if m′′ ̸∈ V then // Already processed?
add m′′ toW

add (m′,m′′) to E
return (V,E)

accel(x):
for each ancestor x′ of x in the graph (V,E)

if x′ ≤ x then
for p ∈ P

if x′(p) < x(p) then
x(p)← ω

Observe that the algorithm terminates on every input, and hence that cov-
erability graphs are finite:

Proposition 2. Algorithm 1 terminates.

Proof. In order to obtain a contradiction, suppose that there exists an input on
which the algorithm does not terminate. The algorithm constructs an infinite
graph G. Note that each node of G has at most |T | immediate successors; and
hence a finite amount of immediate successors. By Kőnig’s lemma, G has an
infinite simple path m0 m1 · · · .

For every i ∈ N, let

JmiK := {p ∈ P : mi(p) = ω}.

Since the path is infinite and P is finite, there exist indices i0 < i1 < · · · such
that Jmi0K = Jmi1K = · · · . Thus, by Dickson’s lemma, there exist j, k ∈ N
such that j < k and mij ≤ mik . Note that mij ̸= mik , as the path would
otherwise not be simple. So, mij (p) < mik(p) for at least one place p ∈ P . If
mik(p) = ω, then Jmij K ̸= JmikK, which is a contradiction. Hence, we have

https://en.wikipedia.org/wiki/Konig's_lemma
https://en.wikipedia.org/wiki/Dickson's_lemma
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mik(p) ∈ N. This means that mik should have been accelerated by its ancestor
mij , which is not the case since Jmij K = JmikK.
1.3.2 Backward algorithm

We study another algorithm that solves the coverability problem: the backward
algorithm. Rather than identifying markings coverable from a source marking,
this algorithm identifies markings that can cover a given target marking. The
backward algorithm relies on the representation and manipulation of so-called
upward-closed sets.

Let m ∈ NP be a marking. The upward closure if m is the set of markings
↑m := {m′ ∈ NP : m′ ≥m}. The upward closure of a set X ⊆ NP is the set:

↑X :=
∪

m∈X

↑m.

We say that X ⊆ NP if upward closed if ↑X = X.
The set of markings that can cover a given target marking is upward-closed:

Proposition 3. Let m′ ∈ NP . The set of markings that can cover m′ equals
↑Pre∗(↑m′).

Proof. ⊆) Let m be a marking that can cover m′. By definition of coverability,
there exists a marking m′′ such that m ∗ m′′ and m′′ ≥m′. Hence,

m ∈ Pre∗(m′′) (by definition of Pre∗)
⊆ Pre∗(↑m′) (since m′′ ∈ ↑m′)
⊆ ↑Pre∗(↑m′) (by the identity X ⊆ ↑X).

⊇) Let m ∈ ↑Pre∗(↑m′). There exist markings k and m′′ such that

m

≤

k ∗ m′′

≤

m′

Thus, by monotonicity, there exists a marking m′′′ such that m ∗ m′′′ and
m′′′ ≥ m′′ ≥ m′. Informally, “monotonicity” means that a larger budget of
tokens allows to fire (at least) as many transitions (see Exercise 1.6)). Thus, we
conclude that m can cover m′.

The backward algorithm seeks to compute a representation of ↑Pre∗(↑m′).
For example, consider the Petri net depicted in Figure 1.8 withm′ = (0, 2). The
backward algorithm begins with the set ↑m′, and then iteratively computes the
immediate predecessors of each of its marking, until stabilization:
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Iter. Predecessors under t1 Predecessors under t2 Current set

0 — —

1

2

3 set unchanged

p1

t1

t2
p2

4 5

2

2

Figure 1.8: A Petri net.

Since upward-closed sets are infinite, this procedure is not, a priori, effective.
To make it effective, we must be able to:

• represent upward-closed sets symbolically;

• compute immediate predecessors of all markings of a upward-closed set.
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The first requirement is made possible through bases. A basis of an upward
closed set X is a set B such that ↑B = X. A basis B is minimal if it is not the
case that there exist x,y ∈ B such that x ≥ y and x ̸= y. In other words, B is
minimal if all of its elements are incomparable. Figure 1.9 gives an example of
an upward closed set and of its minimal basis.

Figure 1.9: Illustration of an upward-closed set (circles). Its minimal basis
{(1, 2), (3, 1)} is represented with squares.

Proposition 4. Any upward-closed set X ⊆ NP has a minimal basis.

Thus, we manipulate finite bases as representatives of upward-closed sets.
In particular, it is possible to test membership in an upward-closed set repre-
sented by a basis B since:

m ∈ ↑B ⇐⇒ there exists k ∈ B such that m ≥ k.

For the second requirement, we compute, for each element of the basis and
each transition, the smallest marking that can cover it by firing this transition.
Formally, let t ∈ T be a transition and let m ∈ NP be a marking. The smallest
marking that can cover m by firing t is the marking mt such that

mt(p) := max(F (p, t),︸ ︷︷ ︸
“necessary budget”

m(p) + F (p, t)− F (t, p)︸ ︷︷ ︸
“backward firing”

) for all p ∈ P.

The full procedure is described in Algorithm 2. Let us reconsider the Petri
net illustrated in Figure 1.8 with m′ = (0, 2). This time, we execute the back-
ward algorithm by manipulating directly a basis:

Iter. Basis B Predecessors

0 {(0, 2)} (0, 2)t1 = (4, 4) (0, 2)t2 = (2, 1)

1 {(0, 2), (2, 1)} (2, 1)t1 = (4, 3) (2, 1)t2 = (3, 0)

2 {(0, 2), (2, 1), (3, 0)} (3, 0)t1 = (4, 2) (3, 0)t2 = (4, 0)

3 {(0, 2), (2, 1), (3, 0)} basis unchanged
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Algorithm 2: Backward algorithm.
Input: Petri net N = (P, T, F ) and m′ ∈ NP

Output: A minimal basis of ↑Pre∗(↑m′)

backward(N ,m′):
B′ ← {m′}
do

B ← B′ // Current basis
for m ∈ B

for t ∈ T
add mt to B′

minimize(B′) // Remove redundant markings
while B′ ̸= B

return B
minimize(X):

for x ∈ X
for y ∈ X

if x ≤ y ∧ x ̸= y then remove y from X

Proposition 5. Algorithm 2 terminates.

Proof. For the sake of contradiction, assume that the algorithm does not termi-
nate on some input. Let G = (V,E) be the directed graph such that:

• V ⊆ NP contains node m iff m ever appears in set B;

• E has an edge from m to m′ iff m ≥m′.

We make the following observations:

• G has infinitely many nodes. Indeed, each iteration of the do loop creates
a new marking that was not part of B.

• Every node of G can be reached from at least one node of in-degree zero.
Indeed, assume that there exists an infinite simple pathm0 ←−m1 ←− · · · .
By Dickson’s lemma, there exist i, j ∈ N such that i < j and mi < mj .
By definition of E, we have mj ≥mi, which is a contradiction.

• G has finitely many nodes of in-degree zero. Indeed, let Z = [z0, z1, . . .]
be such nodes. IfZ is infinite, then by Dickson’s lemma, there exist i, j ∈ N
such that zi ≤ zj . Thus, G has an edge from zj to zi, which contradicts
the fact that zi has in-degree zero.

We conclude that G must have a node m0 of in-degree zero that can reach
infinitely many nodes. By Kőnig’s lemma, there exists an infinite simple path
m0 m1 · · · . By Dickson’s lemma, there exist i, j ∈ N such that i < j and
mi <mj . By definition of E, we have mi ≥mj , which is a contradiction.

https://en.wikipedia.org/wiki/Dickson's_lemma
https://en.wikipedia.org/wiki/Dickson's_lemma
https://en.wikipedia.org/wiki/Konig's_lemma
https://en.wikipedia.org/wiki/Dickson's_lemma
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Proposition 6 ([BG11]). In the worst case, the do loop of Algorithm 2 is iterated
O(22poly(n)

) times, and basis B has size |B| ∈ O(22poly(n)
).
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1.4 Exercices

1.1) Consider the following program with a global Boolean variable x: ?

x = false

while ?:
spawn proc()

proc():
p0: if ¬x: x = true else: goto p0
p1: while ¬x: pass
p2: // code

a) Model the program as a Petri net.
b) Formalize this property: “several processes can reach line p2”.

1.2) Consider the following program with a global Boolean variable x: ?
x = false

while ?:
spawn proc2()

proc2():
p0: if ¬x: x = true else: goto p0
p1: while ¬x: pass
p2: x = ¬x

a) Model the program as a Petri net.
b) Formalize this property: “the programmay terminate with x = true”.

1.3) Compute a coverability graph of this Petri net from (1, 0, 0, 0): ?

p1

p2

p3

p4

t1

t2

t3

t4
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1.4) Execute the backward algorithm on this Petri net from (0, 1, 1): ?

t1
p2

t3

p1
t2 p3

1.5) Show that the order inwhichwe construct a coverability graphmay change ?
its size. Consider this Petri net:

t1

p1

t2

p2
t3

1.6) Prove the monotonicity property, i.e. m t m′ and k ≥ m implies the ?
existence of k′ ≥m′ such that k t k′.

1.7) Consider an n bit integer variable x that can be incremented.

a) Model x with 8 places for n = 3, and then generalize.
b) Model x with 6 places for n = 3, and then generalize.
c) Model the test “x == 0”.
d) Assuming that x is signed and represented under two’s complement,

model the test “x > 0”.

1.8) Show that the coverability problem reduces to the reachability problem.
In other words, explain how to decide the coverability problem given an
algorithm that solves the reachability problem.

1.9) Show that these problems are both equivalent to the reachability problem:
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Zero reachability problem

Input: Petri net N = (P, T, F ) and marking m ∈ NP

Question: m ∗ 0?

Zero place reachability problem

Input: Petri net N = (P, T, F ), marking m ∈ NP and p ∈ P
Question: ∃m′ ∈ NP : m ∗ m′ and m′(p) = 0?

1.10) Show that this problem is equivalent to the coverability problem:
Transition firability

Input: Petri net N = (P, T, F ), marking m ∈ NP and t ∈ T

Question: ∃m′,m′′ ∈ NP : m ∗ m′ and m′ t m′′?

1.11) Suppose the codomain of flow functions was {0, 1} rather than N. How
could we emulate values from N?

1.12) A reset Petri net is a Petri net that can also use reset arcs. A reset arc from
a place p to a transition t empties place p upon firing transition t. Show
that coverability graphs do not allow to solve the coverability problem for
resets Petri nets, i.e. the coverability graph of a marked reset Petri net does
not necessarily contain a correct representation of coverable markings.

Remark.

The backward algorithm works for reset Petri nets.
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Relaxations

In the previous chapter, we covered two algorithms to solve the coverability
problem, but none to solve the reachability problem. In this chapter, we intro-
duce reachability relaxations that can, in particular, be used to prove unreach-
ability.

2.1 Pseudo-reachability

Recall that the reachability problem has nonelementary complexity: solving it
requires Ackermannian time. This may be surprising to someone not accus-
tomed to Petri nets, as reachability may appear to boil down to solving an inte-
ger linear program. However, this is not the case: the difficulty lies in the firing
(nonnegativity) constraints.

Nonetheless, this holds for deciding pseudo-reachability, i.e.whetheru ∗ v
holds, where is defined like but without any firing constraint, and so
where places may temporarily hold negative numbers of tokens. Indeed, the
order in which transitions are fired becomes irrelevant, and hence it suffices to
solve the following system of linear Diophantine equations, which is known as
the marking equation:

∃x ∈ NT : v − u =
∑
t∈T

∆(t) · x(t),

where ∆(t) ∈ NP is such that ∆(t)(p) := F (t, p)− F (p, t) for every p ∈ P .
Solving the marking equation amounts to checking the feasibility of an in-

teger linear program, which is well-known to be NP-complete. While it may
be considered intractable by some, this complexity pales in comparison to the
ACKERMANN-complteness of reachability.

17
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Observation.

If m ∗ m′, then m ∗ m′. Thus, if m ̸ ∗ m′, then m ̸ ∗ m′.

Pseudo-reachability turns out to be relevant in practice. Indeed, by the
above observation, we can (attempt to) prove that a marking representing an
error state cannot be attained, by showing that it is not pseudo-reachable. For
example, using only the marking equation, [ELM+14] could verify some safety
properties to be satisfied by 84 concurrent systems out of 115 instances arising
from mutual exclusion algorithms, communication protocols, multi-threaded C
programs with shared-memory, Erlang programs, and systems modeling mes-
sage provenance analysis of a bug-tracking system and a medical messaging
system.1

2.2 Continuous reachability

Using pseudo-reachability to approximate reachability comes at a great price:
control over the order in which transitions can be fired is entirely lost. An al-
ternative avenue consists in preserving (nonnegative) firing constraints, but re-
laxing the discreteness of markings: We allow the firing constraints and effects
of transitions to be scaled by any factor λ ∈ (0, 1], provided the number of to-
kens remains nonnegative. Hence, in this setting, places may contain “pieces of
tokens” (which could be seen as liquid).

Formally, we write u λt v iff u(p) ≥ λ · F (p, t) for every incoming place
p ∈ P of t, and v = u + λ ·∆(t). Note that we use a double arrow tip for this
relaxation, while dotted lines specified pseudo-reachability (we will use shortly

for a combination of both). This gives rise to the continuous reachability
relation where sequences are drawn from

T † := ((0, 1]× T )∗ instead of T ∗ ∼= ({1} × T )∗.

Example.

Consider the Petri net depicted in Figure 3.1. We have:

(3, 1, 0) 1s (2, 2, 0)
2
3 t (2, 0, 2/3).

Note that neither s nor t is firable in the last above marking since place
p2 is empty.

1They could verify 96 instances by combining the marking equation with a more sophisticated
SAT/SMT-based approach.
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p1
s

p2
t p3

2
3

Figure 2.1: Example of a Petri net marked with (3, 1, 0).

Remark.

Petri nets equipped with continuous reachability are perhaps more com-
monly known as continuous Petri nets. The latter were introduced by [DA87,
DA10] to model, e.g., physical systems depending on continuous vari-
ables.

Observation.

If m ∗ m′, then m ∗ m′. Thus, if m ̸ ∗ m′, then m ̸ ∗ m′.

The continuous relaxation also incurs a cost. For example, if places count the
number of threads at some location of a replicated concurrent program, then a
thread may now split in half, which surely cannot happen in reality. Yet, some
ratios are preserved between places, and we cannot obtain negative amounts
as with pseudo-reachability. Moreover, continuous reachability turns out to be
easier than the latter: it is P-complete.

2.2.1 Characterization of continuous reachability

This precise complexity has been established by [FH15] who described a poly-
nomial time algorithm exploiting their following characterization:

Theorem 1. We have u ∗ v iff there exist u′,v′ ∈ RP
≥0 and σ, σ, σ ∈ T † s.t.

all three sequences use exactly the same transitions (possibly organized differently)
and

u σ v, u
σ

u′, v′ σ
v.

By “organized differently,” we mean that transitions appearing in σ, σ and
σ may be ordered differently, with distinct scaling factors, and with varying
numbers of occurrences, i.e. what matters is whether a transition appears at
least once or not at all.

Theorem 1 states that continuous reachability amounts to continuous pseudo-
reachability — which relaxes both nonnegativity and discreteness — provided
there exist sequences σ and σ that witness forward and backward firability
(regardless of the markings reached).
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Continuous pseudo-reachability. Let us give some insights on why Theo-
rem 1 involves three sequences. A natural question is whether continuous reach-
ability simply amounts to continuous pseudo-reachability, i.e.:

u ∗ v
?⇐⇒ u ∗ v.

Of course, the implication from left to right holds as continuous pseudo-reachability
is less restrictive, but what about the one from right to left?

c = 1 c = 2 c = 3 c = 4

· · ·

c = 20

Figure 2.2: Illustration ofc(st), where (1, 2) st (5, 1) with∆(s) = (3,−4)
and ∆(t) = (1, 3). The x-axis and y-axis each indicate the tokens count of a
place, and each point depicts a (continuous) marking.

Let u σ v. Consider the sequence

c(σ) :=

repeated c times︷ ︸︸ ︷
(1/c)σ · · · (1/c)σ,

where (1/c)σ corresponds to σ in which all transitions are multiplied by 1/c.
Note thatc(σ) globally consumes and produces the same amount of tokens as
σ, as each transition is scaled down by 1/c and copy/pasted c times. Figure 2.2
depicts an example of this transformation where σ = st with ∆(s) = (3,−4)
and ∆(t) = (1, 3). In this example, we have

(1, 2) σ (5, 1), but not (1, 2) σ (5, 1),

as a place drops below zero (see the y-axis for c = 1 in Figure 2.2). However,
we do have

(1, 2)
3(σ)

(5, 1).

Therefore, if c tends to infinity, then c(σ) becomes a “straight line” with
the same initial and target markings (see Figure 2.2 up to c = 20). Hence, we
informally have

u
∞(σ)

v.

Of course, we cannot set c =∞ as the sequence must remain finite. But, c = 3
suffices in our example, and it is tempting to conclude that we can always pick
c large enough.

Unfortunately, this is not always the case. Consider the example depicted in
Figure 2.3 which is a slight modification of our previous example where we go
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from (1, 1) to (5, 0) rather than from (1, 2) to (5, 1). There, no matter the value
of c, the second place (y-axis) will always be negative at some point, although
increasingly closer to zero. This is due to the fact that we are trying to reach
zero from below.

c = 1 c = 2 c = 3 c = 4

· · ·

c = 20

Figure 2.3: Illustration of c(st) as in Figure 2.2, but starting from marking
(1, 1) rather than (1, 2).

It can be shown that we can find c ∈ N such that x τ y implies x c(τ)
y,

if:

1. x(p) > 0 for each place p from which τ ever consumes tokens;

2. y(p) > 0 for each place p in which τ ever produces tokens.

These conditions are the reason behind sequences σ and σ appearing in The-
orem 1.

Proof sketch of Theorem 1. With these insights inmind, let us provide a proof
sketch of the implication going from right to left in Theorem 1. We must turn
markings u and v into markings satisfying (1) and (2). Pictorially, we have:

u v

u′ v′

σ

σ σ

By rescaling a sequence x
τ = λ1t1λ2t2 · · ·λntn y with exponentially

smaller factors, we can “saturate” the target marking. More precisely, consider
the following sequence for some suitable constant d ∈ N:

x
(τ) := (λ1/d)t1(λ2/d

2)t2 · · · (λn/d
n)tn

y′.

This operation, denoted (·), yields a marking y′ with as many nonempty
places as possible.

By rescaling globally with a small factor λ ∈ (0, 1], we can further obtain a
vector y′′ arbitrarily close to x, as “almost nothing” is fired. The same idea also
applies backwards, i.e. going from a target marking y to some small saturated
marking x′′. Thus, using the same notation informally for both directions, we
obtain:
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u v

u′′ v′′

σ

λ · (σ)︸ ︷︷ ︸
σ′


σ′
︷ ︸︸ ︷

λ · (σ)

Recall that σ, σ and σ all use the exact same set of transitions. This is
also the case for σ′

 and σ′
, as operation (·) only changes scaling factors, not

transitions. Hence, markings u′′ and v′′ now both satisfy (1) and (2).
Moreover, u′′ σ v′′ almost holds as these markings are respectively very

close to u and v. Fortunately, we can bridge this tiny gap. Indeed, since λ was
picked sufficiently small and since all three sequences share the same transi-
tions, we can “subtract” both σ′

 and σ′
 from σ, which corresponds to decreas-

ing scaling factors occurring within σ.

Thus, we are done since u
σ′
 c(σ − σ′

 − σ′
) σ

′


v holds for some c ∈ N:

u v

u′′ v′′

σ

σ′


σ′


c(σ − σ′
 − σ′

)

In essence, the algorithm of [FH15] identifies sequence σ in polynomial time
via linear programming, while σ and σ are obtained by a graph saturation
procedure. As the three sequences must use the same transitions, they progres-
sively refine candidate transitions until a greatest fixed point is reached.

2.2.2 From continuous reachability to logic

While the algorithm of [FH15] for continuous reachability can theoretically run
in polynomial time, it relies on solving several linear programs: between a lin-
ear and quadratic number depending on the implementation. Moreover, it is
risky to use a numerical procedure, such as most industrial implementations
of the simplex algorithm. Indeed, floating-point errors could technically lead
to erroneous outcomes, wrongly concluding unreachability. This is not par-
ticularly desirable in the context of verification where unreachability typically
corresponds to the absence of errors.

The second issue can be addressed by using an exact implementation of
the simplex algorithm (e.g. [ACDE07]) or an SMT solver supporting linear real
arithmetic (e.g. [dMB08, BCD+11]), i.e.FO⟨R,+, <⟩ (whose validity problem is
decidable, and NP-complete for the existential fragment). However, there exists
an alternative approach which relies on a single call to an SMT solver [BFHH17].
The idea consists in translating the continuous reachability relation into an exis-
tentially quantified formula from linear real arithmetic, based on the conditions
of Theorem 1:

ψ ∗ (u,v) = ∃x ∈ RT
≥0 : φmark-eq(u,x,v) ∧ φ(u,x) ∧ φ(x,v).
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Here, x represents sequence σ of Theorem 1 in the sense that x(t) indicates the
sum of all scaling factors across occurrences of transition t in σ, and formula
φmark-eq(u,x,v) is the marking equation over R≥0:

φmark-eq(u,x,v) :=

(
v − u =

∑
t∈T

∆(t) · x(t)

)
.

Formulas φ(u,x) and φ(x,v) check for the existence of firing sequences
σ and σ of Theorem 1 with respect to transitions {t ∈ T : x(t) > 0}. By
adapting a construction of [VSS05], these two formulas can be made of linear
size, which yields an overall formula ψ ∗ of linear size. The idea is to number
each node v ∈ P ∪ T with a number z(v) that corresponds to the iteration at
which the graph saturation procedure for φ and φ would mark them (where
0 stands for “undiscovered”), e.g.:

φ(u,x) := ∃z ∈ RP∪T
≥0 :

∧
t∈T

(x(t) > 0)→

(z(t) > 0) ∧
∧

p entering t

(0 < z(p) < z(t))

 ∧
∧
p∈P

(z(p) > 0)→

(u(p) > 0) ∨
∨

t entering p

((x(t) > 0) ∧ (z(t) < z(p)))

 .
Experimental results show that solving ψ ∗ allows to efficiently verify safety

of concurrent systems in practice [BFHH17]. Moreover, solving ψ ∗ works well
as a pruning method within a complete procedure such as the backward algo-
rithm [ACJT00], which fits within the more general framework of combining
forward invariant generation with backward reachability analysis [GLS18].

A natural question arising from this approach is whether the full power of
existential linear arithmetic is needed. As it turns out, it is not the case: con-
tinuous reachability is characterized by a fragment of linear arithmetic which
admits a polynomial time decision procedure [BH17]. This fragment L is a syn-
tactic restriction where variables are quantified over R≥0, and where a formula
is a conjunction of convex semi-linear Horn clauses, which are of the form:

(a · x ≻ b) ∨
∨

1≤i≤m

∧
1≤j≤ni

x(j) > 0,

where each a(ℓ) ∈ R, b ∈ R and ≻ ∈ {=,≥, >}.
Clauses of the form “a · x = b” and “x(ℓ) > 0 ∨

∨
1≤i≤m

∧
1≤j≤ni

x(j) >
0” can respectively implement φmark-eq (immediate) and φ ∧ φ (much less
obvious).

Observe that clauses of the form “a · x ≻ b” correspond to constraints of
linear programs. Moreover, L can express the family

{¬(y0 > 0) ∨ y1 > 0 ∨ · · · ∨ yk > 0}k>0

which cannot be defined by any convex polytope. Hence, in terms of expres-
siveness, L strictly lies in between linear programs and linear arithmetic.
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2.3 Exercices

2.1) Consider the following Petri net: ?

p1
t1

p2

t3

t2
p4

p3
t4

2

2

Say whether msrc
∗ mtgt and msrc

∗ mtgt for:

a) msrc := (2, 0, 0, 0) and mtgt := (0, 0, 0, 1).
b) msrc := (2, 0, 0, 0) and mtgt := (0, 0, 1, 0).
c) msrc := (2, 0, 0, 0) and mtgt := (1, 0, 1, 0).

2.2) What happens if we omit σ from the characterization of Theorem 1?

2.3) Show that ∗ and ∗ are incomparable. ?

2.4) Let N = (P, T, F ) be a Petri net. For every p ∈ P , let •p := {t ∈ T :
F (t, p) > 0} and p• := {t ∈ T : F (p, t) > 0}. For every Q ⊆ P , let

•Q :=
∪
p∈Q

•p and Q• :=
∪
p∈Q

p•.

A siphon is a subset of places Q such that •Q ⊆ Q•.

a) LetQ ⊆ P be a siphon. Given amarkingm, letm(Q) :=
∑

q∈Q m(q).
Show that if m(Q) = 0 and m m′, then m′(Q) = 0.

b) Show that siphons are closed under union.
c) Show that, for every marking m, there exists a maximal siphon Q

(w.r.t. inclusion) such that m(Q) = 0.
d) Let S ⊆ P and let m be a marking. Let NS be the (sub)Petri net

induced by S, i.e. transitions from S are removed from N . Show
that the following statements are equivalent:

i. There existm′ and a weighted sequence σ such thatm σ m′

and σ uses exactly the transitions from S.
ii. It is the case that m(Q) > 0 for every siphon Q of NS .

e) Explain how to algorithmically test 2.4)(d)i using 2.4)(d)ii.
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2.5) Explain how to decide coverability under ∗ and ∗ . Try to do so with-
out modifying the given Petri net.

2.6) The structural cyclicity problem asks whether m +
m for all markings ?

of a given Petri net, where “+” stands for any nonempty sequence. This
problem can be solved in polynomial time. Why?

2.7) Given two Petri nets N and N ′ over the same set of places P , and two
markings msrc,m

′
src ∈ RP

≥0, it is possible to decide whether

{m ∈ RP
≥0 : msrc

∗ m in N} ⊆ {m ∈ RP
≥0 : m′

src
∗ m in N ′}.

Why?

2.8) Relaxations can be used within the backward algorithm in order to decide
the coverability problem more efficiently (in practice). Why?



3

Directed reachability

In the previous chapter, we introduced some relaxations that can help to witness
unreachability. In this chapter, we will see that these same relaxations can be
used to witness reachability.

3.1 Weighted graphs

A (labeled directed) graph is a triple G = (V,E,A), where V is a set of nodes, A
is a finite set of elements called actions, and E ⊆ V × A× V is the set of edges
labeled by actions. We say that G has finite out-degree if the set of outgoing
edges {(w, a, w′) ∈ E : w = v} is finite for every v ∈ V . Similarly, it has finite
in-degree if the set of ingoing edges is finite for every v ∈ V . If G has both finite
out- and in-degree, then we say that G is locally finite.

A path π is a finite sequence of nodes (vi)1≤i≤n and actions (ai)1≤i<n such
that (vi, ai, vi+1) ∈ E for all 1 ≤ i < n. We say that π is a path from v to w (or a
v-w path) if v = v1 and w = vn, and its label is a1a2 · · · an−1, where ε denotes
the empty sequence.

A weighted graph is a tuple G = (V,E,A, µ) where (V,E,A) is a graph with
a weight function µ : E → R>0. The weight of path π is the weight of its edges,
i.e. µ(π) :=

∑
1≤i<n µ(vi, ai, vi+1). A shortest path from v to w is a v-w path

π minimizing µ(π). We define distG : V × V → R≥0 ∪ {∞} as the distance
function where distG(v, w) is the weight of a shortest path from v to w, with
distG(v, w) :=∞ if there is none.

We assume throughout this chapter that weighted graphs have a minimal
weight, i.e. that min{µ(e) : e ∈ E} exists. For graphs with finite out-degree, this
ensures that if a path exists between two nodes, then a shortest one exists.1
This mild assumption always holds in our setting.

1Otherwise, there could be increasingly better paths, e.g. of weights 1, 1/2, 1/4, . . ..

26
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3.2 Directed search algorithms

The approach of this chapter relies on classical pathfinding procedures guided
by node selection strategies. Their generic scheme is described in Algorithm 3.
Its termination with a value d ̸= ∞ indicates that the weighted graph G = (V,
E,A, µ) has a path from s to t of weight d, whereas termination with d = ∞
signals that distG(s, t) =∞.

Algorithm 3: Directed search algorithm.
1 g ← [s 7→ 0, v 7→ ∞ : v ̸= s]
2 C ← {s}
3 while C ̸= ∅
4 v ← argminv∈C S(g, v)
5 if v = t then return g(t)
6 for (v, a, w) ∈ E
7 if g(v) + µ(v, a, w) < g(w) then
8 g(w)← g(v) + µ(v, a, w)
9 C ← C ∪ {w}

10 C ← C \ {v}
11 return∞

Algorithm 3 maintains a set of frontier nodes C and a mapping g : V →
R≥0 ∪{∞} such that g(w) is the weight of the best known path from s to w, i.e.
it satisfies this invariant:

if g(v) ̸=∞, then g(v) is the weight of a path from s to v in G
whose nodes were all expanded, except possibly v. (∗)

In Line 4, a selection strategy S determines which node v to expand next. Starting
from Line 6, a successor w of v is added to the frontier if its distance improves.

Let h : V → R≥0∪{∞} estimate the distance from all nodes to a target t ∈ V .
The selection strategies sending (g, v) respectively to g(v), g(v) + h(v) or h(v)
yield the classical Dijkstra’s, A∗ and greedy best-first search (GBFS) algorithms.

When instantiating S with Dijkstra’s selection strategy, a return value d ̸=∞
is guaranteed to equal distG(s, t). This is not true for A∗ and GBFS. However,
if h fulfills the following consistency properties, then A∗ also has this guarantee:
h(t) = 0 and h(v) ≤ µ(v, a, w)+h(w) for every (v, a, w) ∈ E (see, e.g., [RN09]).

In the setting of infinite graphs, unlike GBFS, A∗ and Dijkstra’s selection
strategies guarantee termination if distG(s, t) ̸= ∞. Yet, we introduce un-
bounded heuristics for which termination is also guaranteed for GBFS. Note
that these guarantees would vanish in the presence of zero weights.

3.2.1 Guarantees on GBFS

An infinite path π is a sequence of nodes (vi)i∈N and actions (ai)i∈N such that
(vi, ai, vi+1) ∈ E for all i ∈ N. We say that π is bounded w.r.t. h if its nodes are
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pairwise distinct and there exists b ∈ R≥0 with h(vi) ≤ b for all i ≥ 0. We say
that h is unbounded if it admits no bounded sequence. The following lemma
enables to prove termination of GFBS in the presence of unbounded heuristics.

Lemma 1. If G is locally finite and h is unbounded, then the following holds:

1. The set of paths of weight at most c ∈ R≥0 starting from node s is finite.

2. LetW ⊆ V . The set distG(W, t) := {distG(w, t) : w ∈W} has a minimum.

3. No node is expanded infinitely often by Algorithm 3.

Proof. Let d := min{µ(e) : e ∈ E}.

1. Any path of weight at most c traverses at most k := ⌈c/d⌉ edges. Since
the graph has finite out-degree, the number of paths from s using at most
k edges is finite.

2. Suppose the claim false. We have distG(v0, t) > distG(v1, t) > · · · for
some v0, v1, . . . ∈ W . Let k := ⌈distG(v0, t)/d⌉. Let V≤k be the set of
nodes that can reach t by traversing at most k edges. Since G has finite
in-degree, V≤k is finite. Moreover, any node v ∈ V \ V≤k is such that
distG(v, t) > k · d ≥ distG(v0, t). Hence, {v0, v1, . . .} ⊆ V≤k is finite,
which is a contradiction.

3. For the sake of contradiction, assume a node v is expanded infinitely of-
ten. Each time node v is expanded, it is removed from C. Hence, it is
reinserted infinitely often in C. Moreover, each time this happens, value
g(v) is decreased. Let q0, q1, . . . ∈ R≥0 denote these increasingly smaller
values. By (∗), there is a path πi from s to v of weight qi in G. By (1),
{πi : i ∈ N} is finite as the weight of these paths is at most q0. This
contradicts q0 > q1 > · · · .

Theorem 2. Algorithm 3 with the greedy best-first search selection strategy always
finds reachable targets for locally finite graphs and unbounded heuristics.

Proof. Assume distG(s, t) ̸=∞. For the sake of contradiction, suppose t is never
expanded. Let Ki be the subgraph of G induced by nodes expanded at least
once within the first i iterations of thewhile loop. In particular,K1 is the graph
made only of node s. Let K = K1 ∪ K2 ∪ · · · . By Lemma 1 (3), no node
is expanded infinitely often, hence K is infinite. Moreover, K has finite out-
degree, and each node of K is reachable from s in K by (∗). Thus, by König’s
lemma, K contains an infinite path v0, v1, . . . ∈ V of pairwise distinct nodes.

Let w be a node ofK minimizing distG(w, t). Such a node is well-defined by
Lemma 1 (2). We have distG(w, t) ̸= ∞ as t is reachable from s and the latter
belongs to K1 ⊆ K. By minimality of w ̸= t, there exists an edge (w, a, w′) of
G such that distG(w′, t) < distG(w, t) and w′ does not appear in K. Note that
w′ is added to C at some point, but is never expanded as it would otherwise
belong to K. Let i be the smallest index such that w belongs to Ki.
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Since h is unbounded, there exists j such that h(vj) > h(w′) and vj is ex-
panded after iteration i of the while loop. This is a contradiction as w′ would
have been expanded instead of vj .

3.3 Directed reachability

In this section, we explain how to instantiate Algorithm 3 for finding short(est)
firing sequences witnessing reachability in (weighted) Petri nets. Since Di-
jkstra’s selection strategy does not require any heuristic, we focus on A∗ and
greedy best-first search which require consistent and unbounded heuristics.

3.3.1 Distance under-approximations

A weighted Petri net is a tuple N = (P, T, F, µ) such that (P, T, F ) is a Petri net
and µ : T → R>0 is a weight function assigning weights to transitions. A distance
under-approximation of such a weighted Petri net is a function d : NP × NP →
R≥0 ∪ {∞} such that for all m,m′,m′′ ∈ NP :

• d(m,m′) ≤ distN (m,m′),

• d(m,m′′) ≤ d(m,m′) + d(m′,m′′) (triangle inequality), and

• d is effective, i.e. there is an algorithm that evaluates d on all inputs.

We naturally obtain a heuristic from d for a directed search towards marking
mtgt. Indeed, let h : NP → R≥0 ∪ {∞} be defined by h(m) := d(m,mtgt). The
following proposition — whose proof is deferred to Exercise 3.2) — shows that
h is a suitable heuristic for A∗:

Proposition 7. Mapping h is a consistent heuristic.

3.3.2 From relaxations to distance under-approximations

To unify all three relaxations , and from Chapter 2, we sometimes
use the notation G where G = Z stands for , G = R≥0 stands for ,
and G = R stands for .

We write m δt
G m′ to emphasize the scaling factor δ, where δ = 1 when-

ever G = Z.
Let dG : NP×NP → R≥0∪{∞} be defined as dG(m,m′) :=∞ ifm ̸ ∗ G m′,

and otherwise:

dG(m,m′) := min

{
n∑

i=1

δi · µ(ti) : m
δ1t1 · · · δntn

G m′

}
.

In words, dG(m,m′) is the weight of a shortest path fromm tom′ in the graph
induced by the relaxed step relation G, where weights are scaled accordingly.

We now show that any dG, which we call theG-distance, is a distance under-
approximation, and first show effectiveness of all dG.
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Proposition 8. The functions dZ, dR, dR≥0
are effective.

Proof. By the marking equation, we have:

dG(m,m′) = min

{∑
t∈T

µ(t) · σ(t) : σ ∈ GT
≥0,m

′ = m+
∑
t∈T

σ(t) ·∆(t)

}
.

Therefore, dR(m,m′) (resp. dZ(m,m′)) are computable by (resp. integer) lin-
ear programming, which is is complete for P (resp. NP), in its variant where
one must check whether the minimal solution is at most some bound.

Let us now prove the case of dR≥0
. As discussed in Section 2.2.2, ∗ can be

expressed in the existential fragment of linear real arithmetic, i.e. FO⟨R,+, <⟩,
the first-order theory of the reals with addition and order. More precisely,
there exists a linear-time computable formula ψ ∈ ∃ FO⟨R,+, <⟩ such that
ψ(m,x,m′) holds iff

there exists a sequence σ ∈ T † s.t. m σ m′ and σ = x.

Let Φ(m,m′, ℓ) := ∃x ∈ RT
≥0 : ψ(m,x,m′) ∧ ℓ =

∑
t∈T µ(t) · x(t). Formula

Φ ∈ ∃ FO⟨R,+, <⟩ can be constructed in linear time and is such thatΦ(m,m′, ℓ)
holds for m,m′ ∈ RP

≥0 and ℓ ∈ R≥0 iff ℓ = dR≥0
(m,m′). Thus, dR≥0

is com-
putable as an instance of a decidable optimizationmodulo theories problem.

Altogether, we conclude that dG is a distance under-approximation. Further-
more, we can show that dG yields unbounded heuristics, which, by Theorem 2,
ensure termination of GBFS on reachable instances:

Theorem 3. Let G ∈ {Z,R,R≥0}, then dG is a distance under-approximation.
Moreover, the heuristics arising from it are unbounded.

Proof. The first was part of the statement was fully shown in the main text. Let
us prove the second part more formally. Let N = (P, T, F, µ) be a weighted
Petri net, let mtgt be a target marking, and let hG be the heuristic obtained
from dG for mtgt. Note that hR(m) ≤ hG(m) for every marking m and every
G ∈ {Z,R,R≥0}. Hence, if hR is unbounded, so are all three heuristics. Thus,
it suffices to prove the case G = R.

For the sake of contradiction, suppose hR is not unbounded. There exists
b ∈ R≥0 and an infinite sequence of pairwise distinct markings m0,m1, . . . ∈
NP with hR(mi) ≤ b for every i ≥ 0. Let xi ∈ RT

≥0 be a solution to the marking
equation over R≥0 that yields hR(mi), i.e. such that hR(mi) =

∑
t∈T µ(t) ·xi(t)

is minimized subject to

mtgt = mi +
∑
t∈T

xi(t) ·∆(t). (3.1)

By Dickson’s lemma, there exist indices i0 < i1 < · · · such that mi0 ≤
mi1 ≤ · · · . Since these markings are pairwise distinct, we may assume w.l.o.g.
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the existence of a place p ∈ P such that mi0(p) <mi1(p) < · · · (otherwise, we
could extract such a subsequence).

Let us define the following constants:

c := min {µ(t) : t ∈ T} and d :=
b · |T | ·max {|∆(t)(p)| : t ∈ T}

c
.

Let j ≥ 0 be such that mtgt(p)−mij (p) < −d. Such an index j exists as p takes
arbitrarily large values along our infinite sequence. By (3.1), we have:∑

t∈T

xij (t) ·∆(t)(p) = mtgt(p)−mij (p) < −d.

So, there exists s ∈ T such that ∆(s)(p) < 0 and xij (s) > b/c. Indeed, if it was
not the case, it would be impossible to obtain a negative value smaller than −d.

We are done since we obtain the following contradiction:

hR(mij ) =
∑
t∈T

µ(t) · xij (t) (by definition)

≥ µ(s) · xij (s) (by µ(t) > 0 and xij (t) ≥ 0 for each t ∈ T )
> µ(s) · (b/c) (by µ(s) > 0 and xij (s) > b/c)
≥ µ(s) · (b/µ(s)) (by µ(s) ≥ c)
= b

≥ hR(mij ) (by boundedness).

3.3.3 Directed reachability using distance under-approximations

Wehave all the ingredients to use Algorithm 3 for answering reachability queries.
A distance under-approximation scheme is a mapping D that associates a dis-

tance under-approximation D(N ) to each weighted Petri net N . Let hD(N ),mtgt

be the heuristic obtained from D(N ) for marking mtgt. By instantiating Algo-
rithm 3 with this heuristic, we can search for a short(est) firing sequence wit-
nessing that mtgt is reachable. Of course, constructing the reachability graph
of N would be at least as difficult as answering this query, or impossible if it is
infinite. Hence, we provide GN(N ) symbolically through N and let Algorithm 3
explore it on-the-fly by progressively firing its transitions.

For each G ∈ {Z,R,R≥0}, the function DG mapping a weighted Petri net
N to its G-distance dG is a distance under-approximation scheme with consis-
tent and unbounded heuristics by Proposition 7, Theorem 2 and Theorem 3.
Although Algorithm 3 is geared towards finding paths, it can prove non-reacha-
bility even for infinite reachability graphs. Indeed, at some point, every candi-
date marking m ∈ C may be such that hD(N ),mtgt(m) = ∞, which halts with
∞. There is no guarantee that this happens, but, as reported e.g. by [ELM+14,
BFHH17], theG-distance for domainsG ∈ {Z,R,R≥0} does well for witnessing
non-reachability in practice, often from the very first marking msrc.
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Example.

We illustrate the approach with a toy example and DR, i.e. the scheme
based on . Consider the Petri netN illustrated on the left of Figure 3.1
marked withmsrc := (0, 0). Suppose we wish to determine whethermsrc
can reach marking mtgt := (0, 1) in N .

t1
p1

t2
p2

t3

(0, 0)(1, 0)

(2, 0) (1, 1)

(3, 0) (2, 1) (0, 1) (1, 2)

1

2

3

1

4 2

0

∞

t1

t3
t1

t3
t2

t1

t3

t2 t1

t3
t3 t1

t2

Figure 3.1: Left: A Petri net N . Right: Search of Algorithm 3 over the
graph GN(N ) from (0, 0) to (0, 1), where each number in a box next to
a marking is its heuristic value. Only the colored region is expanded.

We consider the case where Algorithm 3 follows a greedy best-first
search, but the markings would be expanded in the same way with A∗.

Since∆(t2) = (0, 1), the heuristic considers thatmsrc can reachmtgt
in a single step using transition t2 (it is unaware of the guard). Marking
(1, 0) is expanded and its heuristic value increases to 2 as the marking
equation considers that both t2 and t3 must be fired (in some unknown
order).

Markings (2, 0) and (1, 1) are both discovered with respective heuris-
tic values 3 and 1. The latter is more promising, so it is expanded and
target (0, 1) is discovered. Since its heuristic value is 0, it is immediately
expanded and the correct distance distN (msrc,mtgt) = 3 is returned.

Note that, in this example, the only markings expanded are precisely
those occurring on the shortest path.
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3.4 Exercices

3.1) Execute A∗ on this Petri net to decide whether (1, 1) can reach (3, 0): ?

p0
s

t

p1

3

3.2) Let d be a distance under-approximation and let h : NP → R≥0 ∪ {∞} be ?
defined by h(m) := d(m,mtgt). Show that h is a consistent heuristic.

3.3) Given an example of a marked Petri net and a consistent heuristic where
greedy best-first search never finds the reachable target marking.

3.4) Explain how to use Algorithm 3 for Petri net coverability rather than Petri ?
net reachability.

3.5) Give a Petri net N = (P, F, T ) and markings msrc,mtgt ∈ NP such that ?

msrc
∗ mtgt,

and where A∗and GBFS (correctly) conclude that msrc ̸ ∗ mtgt using the
heuristic based on .

3.6) Give a Petri net N = (P, F, T ) and markings msrc,mtgt ∈ NP such that ?

msrc
∗ mtgt,

and where A∗and GBFS (correctly) conclude that msrc ̸ ∗ mtgt using the
heuristic based on .
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Chapter 1

1.1)

a)
p0 p1 p2

¬x x

b) ∃m′ such that(
1 0 0 0

1 0

)
*−−−−−→m′ and m′ ≥

(
0 0 0 2

0 0

)
.

1.2)

a)

p0 p1 p2

¬x x

b) (
1 0 0 0

1 0

)
*−−−−−→

(
0 0 0 0

0 1

)
.

1.3)

1, 0, 0, 0

0, 1, 0, 0 0, 0, 1, 1

1, 0, 0, ω

0, 1, 0, ω 0, 0, 1, ω

t2 t3

t1
t2

t4

t3

t1
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1.4)

Iter. Basis B Predecessors

0 {(0, 1, 1)}
(0, 1, 1)t1 = (0, 1, 1)
(0, 1, 1)t2 = (1, 2, 0)
(0, 1, 1)t3 = (0, 0, 2)

1 {(0, 1, 1), (1, 2, 0), (0, 0, 2)}
(1, 2, 0)t1 = (0, 2, 0) (0, 0, 2)t1 = (0, 1, 2)
(1, 2, 0)t2 = (2, 3, 0) (0, 0, 2)t2 = (1, 1, 1)
(1, 2, 0)t3 = (1, 1, 1) (0, 0, 2)t3 = (0, 0, 3)

2 {(0, 1, 1), (0, 2, 0), (0, 0, 2)}
(0, 2, 0)t1 = (0, 2, 0)
(0, 2, 0)t2 = (1, 3, 0)
(0, 2, 0)t3 = (0, 1, 1)

3 {(0, 1, 1), (0, 2, 0), (0, 0, 2)} basis unchanged

1.5) A depth-first firing of t2, t3 and t1 leads to five nodes. The firing of t2, t1
and t3 leads to four nodes.

1.6) Since k ≥ m, there exists d ∈ NP such that k = m + d. We have
k(p) ≥ m(p) ≥ F (p, t) for each place p, and hence t is firable in k. Let
k′ := m′ + d. We have:

k = (m+ d) t (m′ + d) = k′ ≥m′.
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Chapter 2

2.1) For msrc
∗ mtgt:

a) Yes via t2t4.
b) Yes via t1t3.
c) No.

The marking equation amounts to:
2
0
0
0

+


−1 −2 −1 0
1 0 −1 0
0 1 1 −1
0 0 0 1



t1
t2
t3
t4

 =


1
0
1
0


By summing the first two equations and dividing by −2, we get t2 +
t3 = 1/2. As the sum of two integers cannot be rational, there is no
integral solution to the marking equation.

For msrc
∗ mtgt:

a) Yes:

(2, 0, 0, 0)
(1/2)t1 (1/2)t3 (1/2)t4 (1/2)t2 (1/2)t4

(0, 0, 0, 1).

b) No, since the maximal backward firing set is empty.
c) No.

The maximal forward firing set is X := {t1, t2, t3, t4}. The maximal
backward firing set is Y := {t1, t3}. Since X ∩ Y = {t1, t3}, we must
check the marking equation with support at most {t1, t3}:

2− t1 − t3 = 1,

0 + t1 − t3 = 0,

0 + t3 = 1,

0 = 0.

From the second and third equations, we get t1 = t3 = 1. Using the
first equation, we obtain the contradiction 0 = 1.

2.3)

• In this Petri net, we have (1, 0) ∗ (0, 2) and (1, 0) ̸ ∗ (0, 2):

p1
t

p2

2 4
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• In this Petri net, we have (1, 0, 0) ̸ ∗ (0, 0, 1) and (1, 0, 0) ∗ (0, 0, 1):

p1
t

p3

p2

2.6) This has been shown in [DL15] with a dedicated algorithm. Yet, the result
can be recast in the logical framework of continuous reachability.

First, note that 0 +
0 iff m

+
m for every marking m. Moreover,

0
+

0 ⇐⇒ 0
+

0,

and the latter amounts to this formula from L:

∃x ∈ RT
≥0 : φmark-eq(0,x,0) ∧ φ(0,x) ∧ φ(x,0) ∧

∨
t∈T

x(t) > 0.
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Chapter 3

3.1)

(1, 1)

(0, 3) (2, 0)

(1, 2)

(0, 4) (2, 1)

(1, 3) (3, 0)

4

4 4

4

4

4

∞

∞

s t

t

s t

s t

3.2) Let m,m′ ∈ NP and t ∈ T be such that m t m′. We have:

h(m) = d(m,mtgt) (by def. of h)
≤ d(m,m′) + d(m′,mtgt) (by the triangle inequality)
≤ distN (m,m′) + d(m′,mtgt) (by distance under-approx.)
≤ µ(t) + d(m′,mtgt) (since m t m′)
= µ(t) + h(m′) (by def. of h).

Moreover, h(mtgt) = d(mtgt,mtgt) ≤ distN (mtgt,mtgt) = 0, where the
last equality follows from the fact that weights are positive.

3.4) Algorithm 3 can be adapted to search for somemarking from a given target
set X ⊆ NP . The idea consists simply in using a heuristic hX : NP →
R≥0 ∪ {∞} estimating the weight of a shortest path to any target:

hX(m) := min{hD(N ),mtgt(m) : mtgt ∈ X}.

This is convenient for partial reachability instances occurring in practice,
i.e.

X :=
{
mtgt ∈ NP : mtgt(p) ∼p c(p)

}
where c ∈ NP and each ∼p∈ {=,≥}.

This includes the case of coverability where each ∼p is ≥.

3.5) Let N be the Petri net below. Let msrc := (1, 0) and mtgt := (0, 2).
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p1

t1

t2

p2

2

GBFS constructs this graph:

(1, 0)

(1, 2)(0, 1)

3/2

∞∞

t1t2

3.6) Let N be the Petri net below. Let msrc := (0, 0) and mtgt := (1, 2).

p1

t1

t2

p2

2

2

GBFS constructs this graph:

(0, 0) (1, 1) (2, 2)

2 1 ∞
t1 t1
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