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Petri nets form a widespread model of concurrency well suited for the verification
of systems with infinitely many configurations. Deciding configuration reachability
in Petri nets, which plays a central role in their formal analysis, suffers from a
nonelementary time complexity lower bound. We survey relaxations that alleviate
this tremendous complexity, both for classical Petri nets and for extensions with
affine transformations, branching rules and colored tokens.

1. INTRODUCTION
Petri nets are a widespread formalism to model and analyze concurrent systems with
possibly infinite configuration spaces over nonnegative counters, i.e. Nk. They offer a
great tradeoff between graphical modeling and amenability to algorithmic analysis.
In particular, they find applications ranging from program verification (e.g. [German
and Sistla 1992; Kaiser et al. 2014; Atig et al. 2011; Delzanno et al. 2002]) to the for-
mal analysis of chemical, biological and business processes (e.g. [Esparza et al. 2017;
Heiner et al. 2008; van der Aalst 1998]). One of the central questions in Petri net the-
ory consists in determining whether a given target configuration, typically an error of
a system, is reachable from an initial configuration. This reachability problem, which
we will shortly define formally, has been extensively studied over several decades. For
a long time, the computational complexity of the problem lay between EXPSPACE-
hardness [Lipton 1976] and decidability [Mayr 1981; Kosaraju 1982; Lambert 1992;
Leroux 2012]. However, it was recently narrowed down between TOWER-hardness [Cz-
erwiński et al. 2019], i.e. a tower of exponentials, and Ackermaniann time [Leroux and
Schmitz 2019].

Due to this colossal complexity, practical applications have avoided solving (exact)
reachability for Petri nets with infinitely many configurations.1 For example, the an-
nual Model Checking Contest focuses on bounded Petri nets.2 More generally, appli-
cations have often relied on subproblems (e.g. the coverability problem), structural re-
strictions (bounded configuration spaces, bounded reversals, acyclicity, flatness, etc.),
structural analysis (traps/siphons, place invariants, etc.) and approximations.

We report on a specific type of approximations, coined reachability relaxations, which
has renewed interest in the verification of infinite systems. Here, relaxations refer to
approximations based on enlarged configuration domains (e.g. Zk or Rk+), which share
a resemblance with relaxations in the field of mathematical optimization.

In the rest of this article, which could have perhaps been entitled “Dodging hard
problems with simpler ones,” we discuss the complexity of reachability relaxations for
Petri nets and three of their extensions (affine transformations, branching rules and
colored tokens), with a bias towards recent work of the author.

2. PETRI NETS
A Petri net is a bipartite weighted directed graph described by a triple N = (P, T,W )
where P and T are finite disjoint sets, whose elements are called places and transitions,
and where W : (P × T ∪ T × P ) → N assigns weights to arcs connecting places and
transitions. A marking of N is a vector from NP that indicates the number of tokens in
each of its places. Figure 1 depicts a (marked) Petri net.

1One exception being [Dixon and Lazić 2020] who implemented the algorithm of [Kosaraju 1982] this year.
2See https://mcc.lip6.fr/.
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Fig. 1. Example of a Petri net with P = {p, q, r}, T = {s, t}, W (p, s) = W (q, s) = W (t, r) = 1 (weight
omitted on arcs), W (s, q) = 2, W (q, t) = 3 and W (−,−) = 0 elsewhere (arcs with zero weight not shown).
The net is marked with [p : 3, q : 1].

A transition t is firable in some marking u if each ingoing place p of t contains at
least as many tokens as the arc weight from p to t, i.e. u(p) ≥ W (p, t). We call this
requirement the firing constraint of t. If it holds, then firing t consumes the respective
number of tokens from each place, and produces as many tokens as specified by arcs
from t, i.e. it leads from marking u to marking v defined as:

v := u+ [p : W (t, p)−W (p, t) | p ∈ P ]︸ ︷︷ ︸
the “effect” vector of t which we denote ∆(t)

.

We write such a firing as u t v. For example, for the Petri net of Figure 1, we have:

[p : 3, q : 1] s [p : 2, q : 2] s [p : 1, q : 3] t [p : 1, r : 1].

Note that neither s nor t is firable in the last above marking since place q is empty.
The notation naturally extends to sequences, which we write σ or simply ∗ , de-

pending on whether specifying the firing sequence σ ∈ T ∗ is relevant or not. This yields
a binary relation over markings, known as the reachability relation, which gives rise
to the central decision problem for Petri nets:

Reachability
GIVEN: a Petri net N , and markings u and v;
DETERMINE: whether u ∗ v.

3. REACHABILITY RELAXATIONS
3.1. Pseudo-reachability
Recall that the Petri net reachability problem has nonelementary complexity: solving it
requires a tower of exponentials of time and space [Czerwiński et al. 2019]. This may
be surprising to someone not accustomed to Petri nets, as reachability may appear
to boil down to solving an integer linear program. However, this is not the case: the
difficulty lies in the firing (nonnegativity) constraints.

Nonetheless, this holds for deciding pseudo-reachability, i.e. whether u ∗ v holds,
where is defined like but without any firing constraint, and consequently where
places may temporarily hold negative numbers of tokens. Indeed, the order in which
transitions are fired becomes irrelevant, and hence it suffices to solve the following
system of linear Diophantine equations, which is known as the marking equation:

∃x ∈ NT : v − u =
∑
t∈T

∆(t) · x(t).

Solving the marking equation simply amounts to checking the feasibility of an inte-
ger linear program, which is well-known to be NP-complete. While it may be consid-
ered intractable by some, this complexity pales in comparison to the TOWER-hardness
of reachability.
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Pseudo-reachability turns out to be relevant in practice. Indeed, to disprove that a
marking representing an error state cannot be attained, it suffices to show that it is not
pseudo-reachable. For example, using only the marking equation, [Esparza et al. 2014]
could verify some safety properties to be satisfied by 84 concurrent systems out of 115
instances arising from mutual exclusion algorithms, communication protocols, multi-
threaded C programs with shared-memory, ERLANG programs, and systems modeling
message provenance analysis of a bug-tracking system and a medical messaging sys-
tem.3

3.2. Continuous reachability
Using pseudo-reachability to approximate reachability comes at a great price: control
over the order in which transitions can be fired is entirely lost. An alternative avenue
consists in preserving (nonnegative) firing constraints, but relaxing the discreteness of
markings: We allow the firing constraints and effects of transitions to be scaled by any
factor λ ∈ (0, 1], provided the number of tokens remains nonnegative. Hence, in this
setting, places may contain “pieces of tokens” (which could be seen as liquid).

Formally, we write u λt v iff u(p) ≥ λ ·W (p, t) for every incoming place p ∈ P of
t, and v = u + λ ·∆(t). Note that we use a double arrow tip for this relaxation, while
dotted lines specified pseudo-reachability (we will use shortly for a combination
of both). This gives rise to the continuous reachability relation where sequences are
drawn from

T † := ((0, 1]× T )∗ instead of T ∗ ∼= ({1} × T )∗.
For example, for the Petri net depicted in Figure 1, we have:

[p : 3, q : 1] 1s [p : 2, q : 2]
2
3 t [p : 2, r : 2/3].

Note that neither s nor t is firable in the last above marking since place q is empty.
Petri nets equipped with continuous reachability are perhaps more commonly known

as continuous Petri nets. The latter were introduced by [David and Alla 1987; David
and Alla 2010] to model, e.g., physical systems depending on continuous variables.

This relaxation also incurs a cost. For example, if places count the number of threads
at some location of a replicated concurrent program, then a thread may now split in
half, which surely cannot happen in reality. Yet, some ratios are preserved between
places, and we cannot obtain negative amounts as with pseudo-reachability. Moreover,
continuous reachability turns out to be easier than the latter: it is P-complete.

This precise complexity has been established by [Fraca and Haddad 2015] who de-
scribed a polynomial time algorithm exploiting their following characterization:

THEOREM 3.1. We have u ∗ v iff there exist u′,v′ ∈ RP+ and σ, σ�, σý ∈ T † s.t. all
three sequences use exactly the same transitions (possibly organized differently) and

u σ v, u
σ�

u′, v′
σý

v.

By “organized differently,” we mean that transitions appearing in σ, σ� and σý may
be ordered differently, with distinct scaling factors, and with varying numbers of oc-
currences, i.e. what matters is whether a transition appears at least once or not at all.

Theorem 3.1 states that continuous reachability amounts to continuous pseudo-
reachability — which relaxes both nonnegativity and discreteness — provided there
exist sequences σ� and σý that witness forward and backward firability (regardless of
the markings reached).

3They could verify 96 instances by combining the marking equation with a more sophisticated approach.
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Fig. 2. Illustration of @c(st), where ∆(s) = (3,−4), ∆(t) = (1, 3) and (1, 2)
st

(5, 1). The x-axis and
y-axis each indicate the tokens count of a place, and each point depicts a (continuous) marking.

Let us give some insights on why Theorem 3.1 involves three sequences. A natural
question is whether continuous reachability simply amounts to continuous pseudo-
reachability, i.e.:

u ∗ v
?⇐⇒ u ∗ v.

Of course, the implication from left to right holds as continuous pseudo-reachability is
less restrictive, but what about the one from right to left?

Let u σ v. Consider the sequence @c(σ) :=

repeated c times︷ ︸︸ ︷
(1/c)σ · · · (1/c)σ, where (1/c)σ cor-

responds to σ in which all transitions are multiplied by 1/c. Note that @c(σ) globally
consumes and produces the same amount of tokens as σ, as each transition is scaled
down by 1/c and copy/pasted c times. Figure 2 depicts an example of this transforma-
tion where σ = st with ∆(s) = (3,−4) and ∆(t) = (1, 3). In this example, we have

(1, 2) σ (5, 1), but not (1, 2) σ (5, 1),

as a place drops below zero (see the y-axis for c = 1 in Figure 2). However, we do have

(1, 2)
@3(σ)

(5, 1).

Therefore, if c tends to infinity, then @c(σ) becomes a “straight line” with the same
initial and target markings (see Figure 2 up to c = 20). Hence, we informally have

u
@∞(σ)

v.

Of course, we cannot set c =∞ as the sequence must remain finite. But, c = 3 suffices
in our example, and it is tempting to conclude that we can always pick c large enough.

Unfortunately, this is not always the case. Consider the example depicted in Figure 3
which is a slight modification of our previous example where we go from (1, 1) to (5, 0)
rather than from (1, 2) to (5, 1). There, no matter the value of c, the second place (y-
axis) will always be negative at some point, although increasingly closer to zero. This
is due to the fact that we are attempting to reach zero from below.

c = 1 c = 2 c = 3 c = 4

· · ·

c = 20

Fig. 3. Illustration of @c(st) as in Figure 2, but starting from marking (1, 1) rather than (1, 2).
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It can be shown that we can find c ∈ N such that x τ y implies x
@c(τ)

y, if:

(a) x(p) > 0 for each place p from which τ ever consumes tokens;
(b) y(p) > 0 for each place p in which τ ever produces tokens.

These conditions are the reason behind sequences σ� and σý appearing in Theorem 3.1.
With these insights in mind, let us give a proof sketch of the implication going from

right to left in Theorem 3.1. We must turn markings u and v into markings satisfy-
ing (a) and (b). Pictorially, we have:

u v

u′ v′

σ

σ� σý

By rescaling a sequence x
τ = λ1t1λ2t2 · · ·λntn y with exponentially smaller fac-

tors, we can “saturate” the target marking. More precisely, consider the following se-
quence for some suitable constant d ∈ N:

x
�(τ) := (λ1/d)t1(λ2/d

2)t2 · · · (λn/d
n)tn

y′.

This operation, denoted �(·), yields a marking y′ with as many nonempty places as
possible. By rescaling globally with a small factor λ ∈ (0, 1], we can further obtain a
vector y′′ arbitrarily close to x, as “almost nothing” is fired. The same idea also applies
backwards, i.e. going from a target marking y to some small saturated marking x′′.
Thus, using the same notation informally for both directions, we obtain:

u v

u′′ v′′

σ

λ · �(σ�)︸ ︷︷ ︸
σ′
�

σ′
ý︷ ︸︸ ︷

λ · �(σý)

Recall that σ, σ� and σý all use the exact same set of transitions. This is also the case
for σ′� and σ′ý, as operation �(·) only changes scaling factors, not transitions. Hence,
markings u′′ and v′′ now both satisfy (a) and (b).

Moreover, u′′ σ v′′ almost holds as these markings are respectively very close to u
and v. Fortunately, we can bridge this tiny gap. Indeed, since λ was picked sufficiently
small and since all three sequences share the same transitions, we can “subtract” both
σ′� and σ′ý from σ, which corresponds to decreasing scaling factors occurring within σ.

Therefore, we are done since u
σ′
� @c(σ − σ′

� − σ
′
ý) σ

′
ý v holds for some c ∈ N:

u v

u′′ v′′

σ

σ′�
σ′ý

@c(σ − σ′� − σ′ý)

In essence, the algorithm of [Fraca and Haddad 2015] identifies sequence σ in poly-
nomial time via linear programming, while σ� and σý are obtained by a graph explo-
ration procedure. As the three sequences must use the same transitions, they progres-
sively refine candidate transitions until a greatest fixed point is reached.
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3.3. Continuous reachability in practice
While the algorithm of [Fraca and Haddad 2015] for continuous reachability can theo-
retically run in polynomial time, it relies on solving several linear programs: between
a linear and quadratic number depending on the implementation. Moreover, it is risky
to use a numerical procedure, such as most industrial implementations of the simplex
algorithm. Indeed, floating-point errors could technically lead to erroneous outcomes,
wrongly concluding unreachability. This is not particularly desirable in the context of
formal verification where unreachability typically corresponds to the absence of errors.

The second issue can be addressed by using an exact implementation of the simplex
algorithm (e.g. [Applegate et al. 2007]) or an SMT solver supporting linear real arith-
metic (e.g. [de Moura and Bjørner 2008; Barrett et al. 2011]). However, there exists
an alternative approach which relies on a single call to an SMT solver [Blondin et al.
2017]. The idea consists in translating the continuous reachability relation into an ex-
istentially quantified formula from linear real arithmetic, based on the conditions of
Theorem 3.1:

ψ ∗ (u,v) = ∃x ∈ RT+ : ϕmark-eq(u,x,v) ∧ ϕ�(u,x) ∧ ϕý(x,v).

Here, x represents sequence σ of Theorem 3.1 in the sense that x(t) indicates the sum
of all scaling factors across occurrences of transition t in σ, and ϕmark-eq(u,x,v) is the
marking equation over R+:

ϕmark-eq(u,x,v) :=

(
v − u =

∑
t∈T

∆(t) · x(t)

)
.

Formulas ϕ�(u,x) and ϕý(x,v) check for the existence of firing sequences σ� and σý

of Theorem 3.1 with respect to transitions {t ∈ T | x(t) > 0}. By adapting a construc-
tion of [Verma et al. 2005], these two formulas can be made of linear size, which yields
an overall formula ψ ∗ of linear size.

Experimental results show that solving ψ ∗ allows to efficiently verify safety of con-
current systems in practice [Blondin et al. 2017], using the simple observation that

¬ψ ∗ (winit,werror) implies ¬(winit
∗ werror).

Moreover, solving ψ ∗ works well as a pruning method within a complete procedure
such as the backward reachability algorithm [Abdulla et al. 2000], which fits within
the more general framework of combining forward invariant generation with backward
reachability analysis [Geffroy et al. 2018].

A natural question arising from this approach is whether the full power of existential
linear arithmetic is needed. As it turns out, it is not the case: continuous reachability
is characterized by a fragment of linear arithmetic which admits a polynomial time de-
cision procedure [Blondin and Haase 2017]. This fragment L is a syntactic restriction
where variables are quantified over R+, and where a formula is a conjunction of convex
semi-linear Horn clauses, which are of the form:

(a · x � b) ∨
∨

1≤i≤m

∧
1≤j≤ni

x(j) > 0 where each a(`) ∈ R, b ∈ R and � ∈ {=,≥, >}.

Clauses of the form “a · x = b” and “x(`) > 0 ∨
∨

1≤i≤m
∧

1≤j≤ni
x(j) > 0” can respec-

tively implement ϕmark-eq (immediate) and ϕ� ∧ ϕý (much less obvious).
Observe that clauses of the form “a · x � b” correspond to constraints of linear pro-

grams. Moreover, L can express the family {¬(y0 > 0) ∨ y1 > 0 ∨ · · · ∨ yk > 0}k>0 which
cannot be defined by any convex polytope. Hence, in terms of expressiveness, L strictly
lies in between linear programs and linear arithmetic.
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Unfortunately, the current formula of L for continuous reachability has quadratic
size rather than linear size, hence it has not yet been possible to harness its power in
practice. Nonetheless, it can be exploited to derive complexity bounds.

For example, structural cyclicity, which asks whether 0
+

0, where “+” stands for
any nonempty sequence, can be solved in polynomial time [Drewes and Leroux 2015].
This result can be recast in the logical framework of continuous reachability.

Indeed, it can be shown that 0
+

0 ⇐⇒ 0
+

0, and the latter amounts to this
formula from L:

∃x ∈ RT+ : ϕmark-eq(0,x,0) ∧ ϕ�(0,x) ∧ ϕý(x,0) ∧
∨
t∈T

x(t) > 0.

We will see another application of L in the forthcoming Section 4.3.

3.4. Pseudo-reachability with control-states
As discussed so far, continuous reachability keeps some information on the order in
which transition can be fired, whereas pseudo-reachability does not. However, there
are settings where the latter can preserve some information as well.

Indeed, the set of places of a Petri netN can often be viewed as a partition P = Q∪C
where exactly one token appears in Q in any reachable marking, due to a control graph
structure of N over Q. Figure 4 depicts such a Petri net with control-states.4 Such
structures arise naturally from modeling some types of concurrent systems, e.g. if each
place of Q represents a valuation from variables to a finite domain (such as Boolean
variables), and if C counts the number of threads at some program locations.

Since any marking has the form [q : 1] + v, where q ∈ Q and v ∈ NC , we can shorten
the notation to q(v). For example, Figure 4 (left) illustrates marking q1(c1 : 2, c2 : 1).

q1

t2

t1

q2

q3

t4

t3

c1

c2

2

3

q1

q2

q3t2

t1

t3

t4

t1

t4

t3

c1

c2

2

3

Fig. 4. Left: Petri net with control-states N . Right: underlying control graph N|Q and controlless net N|C .

The notion of pseudo-reachability can be refined for Petri nets with control-states:
only places from C are allowed to become negative. Alternatively, this can be seen as
synchronizing a control graph with a Petri net equipped with pseudo-reachability, or
as a variant of so-called blind multicounter machines [Greibach 1978]. It is well-known
that pseudo-reachability for Petri nets with control-states is NP-complete (e.g. [Haase
and Halfon 2014]). The NP-hardness of pseudo-reachability follows from a reduction
from a variant of the subset sum problem, while membership to NP results from this
characterization:

4Perhaps more commonly known as a vector addition systems with state (VASS) [Hopcroft and Pansiot 1979].
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THEOREM 3.2. It is the case that p(u) ∗ q(v) iff there exists x ∈ NT such that:

(a) the marking equation of N|C is satisfied by x; and
(b) N|Q has a Eulerian path from p to q if each edge t is replaced by x(t) parallel edges.

By Theorem 3.2 and a result of [Verma et al. 2005], the pseudo-reachability relation
of a Petri net with control-states translates into a linear-size Presburger formula:

ψ ∗ (p(u), q(v)) := ∃x ∈ NT : ϕmark-eq(u,x,v) ∧ ϕEuler(p,x, q).

Hence, the NP-completeness is overcome in practice using efficient SMT solvers, e.g. it
has been used by [Athanasiou et al. 2016] for unbounded-thread program verification.

It is worth noting that, beyond its practical relevance, pseudo-reachability plays a
role in theoretical results such as the decidability of Petri net reachability [Mayr 1981;
Kosaraju 1982] (see [Lasota 2018] for a modern presentation), and the flattening of
Petri nets with control-states and two places [Leroux and Sutre 2004]. In the specific
case where |C| is constant and arc weights are specified in unary, pseudo-reachability
with control-states becomes NL-complete [Blondin et al. 2015]; this has been used, e.g.,
in the context of path queries for graph databases [Michaliszyn et al. 2017].

3.5. Combining continuous reachability and control-states
Continuous reachability also extends to Petri nets with control-states, i.e. the contin-
uous relaxation applies only to places from C. This relation translates into a formula
of existential linear real arithmetic, which yields an NP-complete complexity [Blondin
and Haase 2017]. This can be obtained as follows:

— Cyclic pseudo-reachability, i.e. of the form q(u) σ q(v), allows to define operation
@c(σ) presented in Section 3.2. Indeed, since both endpoints of σ match, the sequence
can be scaled and repeated multiple times.

— It is possible to derive a formula for cyclic reachability, i.e. of the form q(u) σ q(v),
by carefully combining and adapting Theorem 3.1 and Theorem 3.2.

— Any path of the control graph must alternate between linearly many simple paths
and (potentially very long) cycles (see Figure 5). Hence, a linear number of formulas
can be “stitched together.”

p r1 r2 rn q
simple path simple path simple path

Fig. 5. Decomposition of a path σ that alternates between simple paths and cycles. The cycle from control-
state ri to itself corresponds to the first and last occurrences of ri in σ, hence n ≤ |Q|.

4. BEYOND STANDARD PETRI NETS
Petri nets have been extended in various ways in the literature to increase their model-
ing power. These extensions suffer from TOWER-hard to (possibly) undecidable reach-
ability problems. We discuss relaxations, as presented in the previous section, for Petri
nets extended with either affine transformations, branching rules, or colored tokens.
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4.1. Affine transformations
Firing transition t of a Petri net from a marking v adds ∆(t) to v. This corresponds
to applying the affine transformation I · v + ∆(t), where I is the identity matrix. The
model extends naturally to affine transformations of the form M(t) · v + ∆(t), where
M(t) ∈ ZP×P is a matrix associated to transition t (e.g. [Valk 1978]).

This encompasses operations encountered in the literature for modeling more com-
plex concurrent systems, such as:

operation description transformation
reset empties the contents of a place p p← 0

swap swaps the contents of two places p and q p↔ q

transfer empties the contents of a place q onto a place p p← p+ q; q ← 0

copy copies the contents of a place q to a place p p← q

doubling doubles the contents of a place p p← 2 · p

For example, resets were used for validating business processes [Wynn et al. 2009]
and generating program loop invariants [Silverman and Kincaid 2019], and transfers
were employed to verify multithreaded C and JAVA program skeletons with broadcast
communication primitives [Kaiser et al. 2014; Delzanno et al. 2002].

It is known that reachability is undecidable for Petri nets extended with affine trans-
formations. In particular, this holds for resets, transfers, copies and doubling, as they
can weakly simulate Minsky machines which are Turing-complete (e.g. [Araki and
Kasami 1976; Dufourd et al. 1998]). In fact, undecidability holds for any class of affine
transformations beyond permutations, such as swaps [Blondin and Raskin 2020].

Unfortunately, undecidability remains for continuous reachability, even for mild ex-
tensions such as resets. For example, resets allow to detect whether any transition of
a sequence is ever scaled by some factor λ < 1, which constrains markings to always
remain discrete. The idea is to add two places p and q, and to replace each transition t
by two transitions tp and tq implementing the following high-level description:5

tp := if p > 0 and t is firable, then fire t; p← 0; q ← q + 1,

tq := if q > 0 and t is firable, then fire t; q ← 0; p← p+ 1.

If the Petri net initially contains a token in p and none in q, then reachable markings
satisfy the invariant 0 < p+ q ≤ 1. Hence, transition t can be simulated by alternating
between tp and tq. Moreover, p+ q < 1 holds iff any of tp or tq is ever scaled by λ < 1.

Surprisingly, pseudo-reachability is sometimes decidable:

operation pseudo-reachability with control-states
reset NP-complete [Chistikov et al. 2018]
swap
transfer PSPACE-complete [Blondin et al. 2018; Blondin and Raskin 2020]
copy
doubling undecidable [Reichert 2015]

A trichotomy on the complexity of pseudo-reachability with control-states was es-
tablished this year: it is either NP-complete, PSPACE-complete or undecidable for any

5I was made aware of this construction a few years ago by Piotr Hofman.
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so-called class of affine transformations [Blondin and Raskin 2020]. Moreover, decid-
ability only holds for classes of matrices generating a finite monoid (under multiplica-
tion). When this finite monoid property holds, but there is no parameterization w.r.t. a
class of matrices, then the problem belongs to EXPSPACE [Bumpus et al. 2020].

Although most of these results are currently of theoretical nature, there is hope to
employ pseudo-reachability for practical purposes, e.g. for the case of transfers and its
relation to communication primitives. In fact, [Silverman and Kincaid 2019] recently
leveraged continuous pseudo-reachability with resets — whose decidability follows by
an adaptation of [Chistikov et al. 2018] — to generate program loop invariants.

4.2. Branching rules
Petri nets are sometimes extended with branching rules, i.e. a marking u can either be
updated by a standard (unary) transition t, or “split” by a binary transition t into a pair
of markings (vL,vR) such that u = vL + vR −∆(t). In this setting, computations are
trees rather than sequences, and the goal is to reach a root target marking from a set
of initial vectors allowed to appear at the leaves. This model, which essentially gener-
alizes tree automata, has ramifications in program verification [Bouajjani and Emmi
2013; Majumdar and Wang 2013], logic [de Groote et al. 2004; Bojańczyk et al. 2009],
computational linguistics [Schmitz 2010] and the formal study of cryptographic pro-
tocols [Verma and Goubault-Larrecq 2005]. The TOWER-hardness [Lazić and Schmitz
2015] of reachability was established prior to standard Petri nets, and its decidability
remains unknown to this day.

Given the titanic complexity and possible undecidability of reachability, relaxations
could be relevant for this model. Few results are known at the moment, but the author
and colleagues6 are currently investigating different relaxations. For example, pseudo-
reachability with control-states, so with branching of the form p(u) 7→ (qL(vL), qR(vR)),
belongs to NP. This follows by combining the marking equation with a Presburger for-
mula [Verma et al. 2005] for reachability in communication-free Petri nets [Hirshfeld
1993; Esparza 1997]. The latter allows to express the existence of an appropriate tree.

4.3. Colored tokens
Another extension of Petri nets consists in coloring tokens from a countable domain
D, such as { , , , . . .}, instead of the usual singleton { } (e.g. [Jensen 1996]). A colored
marking v associates to each place p ∈ P a finitely supported vector v(p) ∈ ND, instead
of a number from N. Such colors can represent, e.g., process identities. Reachability
for this model is undecidable even for limited update functions, e.g. if D is linearly or-
dered, tokens can be compared w.r.t. this order, and fresh colors can be spawned [Lazić
et al. 2008]. However, it remains unknown whether (un)decidability holds for so-called
unordered data Petri nets. In this model, arcs are labelled by weighted variables; and
a transition is fired by first assigning distinct colors to variables, and then consum-
ing/producing the corresponding number of tokens for each color (e.g., see Figure 6).

p t q
2x, y

2z

x

→ p t q
2x, y

2z

x

Fig. 6. An unordered data Petri net over D = { , , , . . .}. Firing t with valuation x := , y := and z :=
leads from colored marking [p : [ : 2, : 1], q : [ : 1, : 1]] to colored marking [q : [ : 2, : 1]] (left to right).

6Filip Mazowiecki and Philip Offtermatt.
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Note that it can help to see a colored marking v as a collection of standard markings
{v|H | H ∈ D}, e.g. v| = [p : 2, q : 1], v| = [p : 1, q : 1] and v| = 0 on the left of Figure 6.

Lately, [Hofman et al. 2017] have shown that pseudo-reachability for unordered data
Petri nets, the relaxation where colored markings have the form v : P → ZD rather
than v : P → ND, is NP-complete. Let us summarize their approach.

A data vector is a mapping x : D → ZP whose support JxK := {H ∈ D | x(H) 6= 0} is
finite. Intuitively, such a vector describes the effect ∆(t) of a transition t. For example,
for Figure 6, we could write:

∆(t) = [ : [p : −2, q : −1], : [p : −1], : [q : 2]] . (1)

However, the choice of colors in (1) is arbitrary as variables {x, y, z} could be instanti-
ated otherwise. Hence, ∆(t) should be seen as a representative of the infinite equiva-
lence class obtained by applying any color permutation to (1).

With this in mind, we say that data vector y is a permutation sum of a finite set of
data vectors V if there exist sequences of data vectors x1,x2, . . . ,xn ∈ V and permuta-
tions π1, π2, . . . , πn : D→ D such that:

y =
∑

1≤i≤n

xi ◦ πi.

The marking equation generalizes to unordered data Petri nets as follows:

u ∗ v ⇐⇒ ∃ a permutation sum y of {∆(t) | t ∈ T}︸ ︷︷ ︸
V

s.t.
∧

H∈JuK∪JvK∪JyK

v|H − u|H = y(H). (2)

In essence, [Hofman et al. 2017] show that the right-hand side of (2) can be written
as an integer linear program, by proving that:

(a) there is an integer linear program ϕ s.t. ϕ(y) holds iff y is a permutation sum of V ;
(b) if (2) holds, then it does for some y such that JyK is of polynomial size in

∑
x∈V |JxK|.

To prove the above, the authors introduce histograms as combinatorial objects that
characterize permutation sums. More precisely, a histogram of degree k is a matrix
H : D × D → N such that each row sums to at most k, each column sums to k, and H
has finitely many nonzero columns, i.e. JHKcol := {H ∈ D | H[–,H] 6= 0} is finite, and
consequently JHKrow := {H ∈ D | H[H,–] 6= 0} is also finite.

The crux of [Hofman et al. 2017] consists in proving the following:

THEOREM 4.1. Data vector y is a permutation sum of V iff there exist histograms
{Hx | x ∈ V, JHxKcol = JxK} s.t. y =

∑
x∈V Hx ·x and |JHxKrow| ≤ 2 · (|JyK|+

∑
z∈V |JzK|).

Note that the NP-complete result extends to pseudo-reachability with control-states.
Moreover, by exploiting some of these ideas, [Gupta et al. 2019] proved the P-complete-
ness of continuous reachability for unordered data Petri nets. More precisely, they:

(a) show that the number of colors for the marking equation is polynomially bounded;
(b) establish a characterization of ∗ reminiscent of Theorem 3.1;
(c) express (b) in the logic L of [Blondin and Haase 2017] presented in Section 3.3.

Interestingly, pseudo-reachability for the ordered data variant of [Lazić et al. 2008]
turns out to be much harder: it is equivalent to Petri net reachability.7 On the other
hand, continuous pseudo-reachability for ordered data Petri nets is solvable in polyno-
mial time [Hofman and Lasota 2018] just as in the unordered setting.

7Up to an exponential blow-up, but recall that Petri net reachability is TOWER-hard.
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