
The complexity of soundness in workflow nets
Michael Blondin

Université de Sherbrooke
Sherbrooke, Canada

michael.blondin@usherbrooke.ca

Filip Mazowiecki
Max Planck Institute for Software

Systems
Saarbrücken, Germany
filipm@mpi-sws.org

Philip Offtermatt
Max Planck Institute for Software

Systems
Saarbrücken, Germany
Université de Sherbrooke

Sherbrooke, Canada
philip.offtermatt@usherbrooke.ca

Abstract
Workflow nets are a popular variant of Petri nets that allow
for the algorithmic formal analysis of business processes. The
central decision problems concerning workflow nets deal
with soundness, where the initial and final configurations are
specified. Intuitively, soundness states that from every reach-
able configuration one can reach the final configuration. We
settle the widely open complexity of the three main variants
of soundness: classical, structural and generalised soundness.
The first two are EXPSPACE-complete, and, surprisingly, the
latter is PSPACE-complete, thus computationally simpler.

CCS Concepts • Software and its engineering→ Petri
nets; • Theory of computation → Computational com-
plexity and cryptography;

Keywords Workflow nets, Petri nets, soundness, gener-
alised soundness, structural soundness, complexity
ACM Reference Format:
Michael Blondin, Filip Mazowiecki, and Philip Offtermatt. 2022.
The complexity of soundness in workflow nets. In 37th Annual
ACM/IEEE Symposium on Logic in Computer Science (LICS) (LICS
’22), August 2–5, 2022, Haifa, Israel, Jennifer B. Sartor, Theo D’Hondt,
and Wolfgang De Meuter (Eds.). ACM, New York, NY, USA, Arti-
cle 39, 14 pages. https://doi.org/10.1145/3531130.3533341

1 Introduction
Workflow nets are a formalism that allows for the modeling
of business processes. Specifically, they allow to formally
represent workflow procedures in Workflow Management
Systems (WFMSs) (see e.g. [23, Section 4], where Figure 6
shows a workflow net for the processing of complaints; and
[22, Section 3] for details on modeling procedures). Such a
mathematical representation enables the algorithmic formal
analysis of their behaviour. This is particularly relevant for

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
LICS ’22, August 2–5, 2022, Haifa, Israel
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9351-5/22/08.
https://doi.org/10.1145/3531130.3533341

large organisations that seek to manage the workflow of com-
plex business processes. Such challenges have received, and
continue to receive, intense academic attention, e.g. through
the foundations track of the Business Process Management
Conference (BPM), and via a discipline coined as process
mining and pioneered prolifically by Wil van der Aalst.1
In particular, many tools, such as those integrated in the
ProM framework [26], can extract events from logs, e.g. of
enterprise resource planning (ERP) systems, fromwhich they
synthesize workflow nets (and other models) to be formally
analyzed (see [24] for a book on the topic).

More formally, workflow nets form a subset of (standard)
Petri nets. They consist of places that can contain resources
(called tokens) which can be consumed and produced via
transitions in a nondeterministic and concurrent fashion.
Two designated places, namely the initial place i and the final
place f, respectively model the initialisation and termination
of a business process. No token can be produced in the initial
place, and no token can be consumed from the final place.

A central property studied since the inception of workflow
nets is 1-soundness [22, 23]. Informally, quoting [22], it states
that “For any case, the procedure will terminate eventually [...]”.
More formally, from the configuration with a single token in
the initial place i, every reachable configuration can reach
the configuration with a single token in the final place f.
For readers familiar with computation temporal logic (CTL),
1-soundness can be loosely rephrased as i |= ∀G∃F f. More
generally, k-soundness states the same but for k tokens, i.e.
(k · i) |= ∀G∃F (k · f).
Classical soundness. Several variants of soundness have
been considered in the literature (see [25] for a survey). The
best-known is classical soundness. It states that a workflow
net is 1-sound and that each transition is meaningful, i.e.
each transition can be fired in at least one execution (often
called quasi-liveness). It is well-known that deciding classi-
cal soundness amounts to checking boundedness and live-
ness of a slightly modified net. In particular, this means that
classical soundness is decidable since boundedness and live-
ness are decidable problems. However, to the best of our
knowledge, the (exact) complexity of classical soundness
remains widely open. It has been suggested that classical

1See http://www.processmining.org.

https://doi.org/10.1145/3531130.3533341
https://doi.org/10.1145/3531130.3533341
http://www.processmining.org

LICS ’22, August 2–5, 2022, Haifa, Israel Michael Blondin, Filip Mazowiecki, and Philip Offtermatt

soundness is EXPSPACE-hard. For example, the author of [9]
mentions that “IO-soundness is decidable but also EXPSPACE-
hard ([21])”, yet [21] merely states the following:

[...] [I]t may be intractable to decide soundness.
(For arbitrary [workflow]-nets liveness and bound-
edness are decidable but also EXPSPACE-hard [...]).

Further, [23, p. 38] suggests that intractability follows from
the fact that “deciding liveness and boundedness is EXPSPACE-
hard”, which is attributed to [5]. However, the latter only
mentions liveness to be EXPSPACE-hard (which was known
prior to [5]).

The confusion arises from the fact that boundedness and
liveness are independently EXPSPACE-hard problems, which
suggests that classical soundness must naturally be at least
as hard. However, this needs not be the case. For example, for
a well-studied subclass of Petri nets, called free-choice nets,
testing simultaneously boundedness and liveness has lower
complexity than testing both properties independently2 [10].
Moreover, since liveness is equivalent to the Petri net reacha-
bility problem [13], the only known upper bound is not even
primitive recursive [15]. As a first contribution, we show
that classical soundness and k-soundness are in fact both
EXPSPACE-hard and in EXPSPACE, and hence EXPSPACE-
complete. The upper bound is derived with a fortiori surpris-
ingly little effort by invoking known results on coverability
and so-called cyclicity. The hardness result is obtained by a
careful reduction from the reachability problem for reversible
Petri nets [4, 17]. There, we exploit subtle known results in
a technically challenging way.

Generalised and structural soundness. Among the vari-
ants of soundness catalogued by the survey of van der Aalst
et al. [25], generalised soundness [28, Def. 3] is the only fun-
damentally distinct property (in particular, see [25, Fig. 7]).
It asks whether a given workflow net is k-sound for all k ≥ 1.
Generalised soundness, unlike classical soundness, preserves
nice properties like composition [28]. The existential coun-
terpart of generalised soundness, where “for all” is replaced
by “for some”, is known as structural soundness [1].

It is a priori not clear whether generalised and structural
soundness are decidable, as the approach for deciding other
types of soundness reasons about k-soundness for a given
or fixed number k . Nonetheless, both problems have been
shown decidable [7, 29]. The two algorithms, and a subse-
quent one [27], rely on Petri net reachability, which has very
recently been shown Ackermann-complete [8, 14, 15].

As for classical soundness, the computational complexity
of generalised and structural soundness remains open. In
fact, we are not aware of any complexity result. In this work,
we prove that generalised and structural soundness have
2For free-choice nets: Boundedness is EXPSPACE-complete since any Petri
net can trivially be made free-choice while preserving its reachability set
up to projection; liveness is coNP-complete [10, Thm. 4.28]; and testing
liveness and boundedness can be done in polynomial time [10, Cor. 6.18].

much lower complexity than Petri net reachability: they are
respectively PSPACE-complete and EXPSPACE-complete. In
particular, the fact that generalised soundness is simpler
than classical soundness is arguably surprising: positive in-
stances of both problems require the given workflow net to
be bounded, but for generalised soundness, one can avoid
explicitly checking this EXPSPACE-complete property.

To derive the PSPACE membership, we introduce the no-
tion of strong soundnesswhich is defined in terms of a relaxed
reachability relation (sometimes known as Z-reachability or
pseudo-reachability, e.g., see [2]). Through results on inte-
ger linear programming and exploiting Steinitz Lemma on
reordering vectors [20], we prove that k-unsoundness of a
workflow net must occur for a “small” number k . Further-
more, we show that it suffices towitness such ak for so-called
Z-bounded nonredundant nets, with Z-boundedness being
a more restrictive property than (standard) boundedness.
By building upon these results, we establish the EXPSPACE
membership of structural soundness, and, in fact, effectively
characterise the set of sound numbers of workflow nets,
which settles the open problem of [7].

The hardness results for PSPACE and EXPSPACE are re-
spectively obtained via reductions from the reachability prob-
lem for conservative Petri nets [18], and from 1-soundness.

Contribution and organisation. In summary, we settle,
after around two decades, the exact computational complex-
ity of the central decision problems for workflow nets. This
is achieved in the rest of this work, organised as follows. In
Section 2, we introduce general notation, Petri nets, work-
flow nets and soundness. In Section 3, we prove that classical
soundness is EXPSPACE-complete. In Section 4, we provide
bounds on vector reachability, which in turn allows us to
prove PSPACE-completeness of generalised soundness (Sec-
tion 5), and EXPSPACE-completeness of structural soundness
(Section 6). In Section 7, we leverage the previous results to
give a characterisation of numbers k for which a workflow
net is k-sound. Finally, we conclude in Section 8. Due to
space constraints, some proofs are deferred to an appendix.

2 Preliminaries
We denote naturals and integers with the usual font: n ∈ N
and z ∈ Z. Given i, j ∈ Z, we write [i ..j] for {i, i + 1, . . . , j}.
We use the bold font for vectors and matrices, e.g. a =
(a1, . . . ,an) ∈ Z

n and A ∈ Zm×n . Given n ∈ N, we write
nd = (n, . . . ,n) ∈ Nd . We omit the dimension d when it is
clear from the context, e.g. 0 denotes the null vector.Wewrite
a[i] = ai and A[i, j] for matrix entries where i ∈ [1..m] and
j ∈ [1..n]. Wewritex ≤ y ifx[i] ≤ y[i] holds for all i ∈ [1..n].
We write x < y if at least one inequality is strict. Given a
vector a ∈ Zn or a matrix A ∈ Zm×n , we define the norms
∥a∥ B max1≤i≤n |a[i]| and ∥A∥ B max1≤j≤m,1≤i≤n |A[j, i]|.

The complexity of soundness in workflow nets LICS ’22, August 2–5, 2022, Haifa, Israel

2.1 Petri nets
A Petri net is a triple N = (P ,T , F) such that:
• P and T are disjoint finite sets whose elements are
respectively called places and transitions,
• F : ((P ×T) ∪ (T × P)) → N is the flow function.

A marking is a vectorm : P → N wherem[p] indicates
how many tokens are contained in place p. Informally, F [p, t]
and F [t ,p] respectively correspond to the amount of tokens
to be consumed from and produced in place p. Let •t , t• ∈ Np
respectively denote the vectors such that •t[p] B F [p, t] and
t•[p] B F [t ,p]. Let ∆(t) B t• − •t denote the effect of t . We
say that a transition t ∈ T is enabled inm ifm ≥ •t . If t is
enabled inm, then t may be fired, which leads to the marking
m′ Bm+∆(t). The latter is denoted bym −→t m′, or simply
bym −→ m′ whenever we do not care about the transition
that led to m′. We use a standard notation for markings,
listing only nonzero values, e.g. if P = {p1,p2},m[p1] = 2
andm[p2] = 0, thenm = {p1 : 2}.

A run is a sequence of transitions ρ = t1 · · · tn ∈ T
∗. A run

is enabled in a markingm0 if there is a sequence of markings
m1, . . . ,mn such thatmi −→

ti+1 mi+1 for all 0 ≤ i < n. If it is
the case, then we denote this bym0 −→

ρ mn , orm0 −→
∗ mn if

ρ is not important. Given ℓ ∈ N, we say that ρ is ℓ-bounded if
∥mi ∥ ≤ ℓ for all 0 ≤ i ≤ n. The support of a run is the set of
transitions occurring in it, denoted supp(ρ) B {t1, . . . , tn}.
We introduce a semantics where transitions can always

be fired, and hence where markings may become negative.
Formally, a Z-marking is a vector m : P → Z. We write
m −→t

Z m
′ (or simplym −→Z m

′) ifm′ = m + ∆(t). Given a
run ρ, we define in the obvious way −→ρ

Z and −→
∗
Z. Note that

markings are Z-markings (with the domain restricted to N).
The definition of Z-markings is mostly needed to use −→∗Z.

We define the absolute value and norm of a Petri net
N = (P ,T , F) by |N | B |P |+ |T | and ∥N ∥ B ∥F ∥+1, where
F is seen as a vector over (P ×T)∪ (T ×P). The size of a Petri
net is defined as size(N) B |N | ·(1+log∥N ∥). For some com-
plexity problems, we will be given a Petri net and some mark-
ings, e.g.m andm′. By the size of the input, we understand
size(N ,m,m′) B size(N) + log(∥m∥ + 1) + log(∥m′∥ + 1).
A transition t is said to be quasi-live from marking m

if there exists a marking m′ such that m −→∗ m′ and t is
enabled inm′. A transition t is said to be live fromm if t is
quasi-live from allm′ such thatm −→∗ m′. We say that a Petri
net N is quasi-live (resp. live) fromm if each transition t of
N is quasi-live (resp. live) fromm. Informally, quasi-liveness
states that no transition is useless, and liveness states that
transitions can always eventually be fired.
Example 2.1. Consider the Petri net Nmiddle = (P ,T , F)
illustrated in the middle of Figure 1. Places P = {i,q1,q2, f}
and transitions T = {t1, t2, t3, t4} are depicted respectively
as circles and squares. The flow function F is depicted by
arcs, where weight 1 is omitted and arcs with weight 0 are
not drawn, e.g. F (i, t1) = 1, F (t1, i) = 0, F (t4, f) = 2 and

F (f, t4) = 0. In particular, transitions t1, t2 and t3 are quasi-
live from marking {i : 1} since

{i : 1} −→t1 {q1 : 1} −→t2 {q2 : 1} −→t3 {q1 : 1}.

However, as no other marking is reachable, transition t4 is
not quasi-live. Note that t2 and t3 are both live from {i : 1},
while t1 is not live since it can only be fired once.

2.2 Workflow nets and soundness
A workflow net N is a Petri net that satisfies the following:
• there is a dedicated initial place i with t•[i] = 0 for
every transition t (cannot produce tokens in i);
• there is a dedicated final place f , i with •t[f] = 0 for
every transition t (cannot consume tokens from f);
• each place and transition lies on at least one path from
i to f in the underlying graph ofN , i.e. the graph (V ,E)
where V B P ∪T and (u,v) ∈ E iff F [u,v] > 0.

Given k ∈ N, we say that N is k-sound iff for all m,
{i : k} −→∗ m impliesm −→∗ {f : k}, i.e. starting from k tokens
in the initial place, it is always possible to move the k tokens
into the final place. We say that N is:
• classically sound iff N is 1-sound and quasi-live from
{i : 1};
• generalised sound iff N is k-sound for all k ≥ 0;
• structurally sound iff N is k-sound for some k > 0.

Example 2.2. Consider the workflow netsNleft,Nmiddle and
Nright depicted respectively in Figure 1.

Workflow netsNleft andNmiddle are not 1-sound since their
only transition that can mark place f is not quasi-live from
{i : 1}, namely s2 and t4. In particular, this means that both
workflow nets are neither classically sound, nor generalized
sound. Workflow netNright is 1-sound, and in fact classically
sound, as shown by the reachability graph of Figure 2.
In particular, this means that Nright is structurally sound.

Workflow netNleft is not structurally sound as no matter the
marking {i : k} from which it starts, there is no way to empty
place p1 once it is marked. Workflow net Nmiddle is 2-sound,
and hence structurally sound. Indeed, from {i : 2}, the two
tokens must enter {q1,q2} from which they can escape via
{q1 : 1,q2 : 1} by firing t4, reaching marking {f : 2}.
Workflow net Nright is not 2-sound, and hence not gen-

eralised sound. Indeed, we have {i : 2} −→u1u2u4 {r2 : 2, f : 1}
and no transition is enabled in the latter marking.

To gain some intuition on why soundness in workflow
nets is in general easier than reachability in Petri nets, let us
end this section by proving a simple property which lets us
conclude k-unsoundness from strict coverability of the final
marking {f : k}.

Lemma 2.3. Let N = (P ,T , F) be a workflow net and let
k ∈ N. If {i : k} −→∗ {f : k} +m for some markingm > 0, then
N is not k-sound.

LICS ’22, August 2–5, 2022, Haifa, Israel Michael Blondin, Filip Mazowiecki, and Philip Offtermatt

i p1 fs1 s2

2

i q1

q2

t1

t2t3

ft4

2
i

r3

r1

r2

f

u2

u1

u6

u5

u4u3

Figure 1. Three workflow nets, each marked with {i : 1}.

{i : 1}

{r1 : 1, r2 : 1} {r1 : 1, r3 : 1} {r2 : 1, r3 : 1}

{f : 1}

u1 u2u3

u5 u6
u4

Figure 2. Markings reachable from {i : 1} in Nright.

In the proof of Lemma 2.3 we rely on two properties of
workflow nets: that there are no outgoing edges from f;
and that from a nonzero marking one cannot reach a zero
marking (since all nodes are on a path from i to f).

Proof of Lemma 2.3. By definition, each transition lies on a
path from i to f. In particular, this means t• , 0 for all t ∈ T .
So {f : k} +m ̸−→∗ {f : k}, and thus N is not k-sound. □

3 Classical soundness
As mentioned in the introduction, classical soundness is
decidable, but its complexity has not yet been established.
Let us recall why decidability holds. We say that a Petri net
N is bounded from markingm if there exists b ∈ N such
thatm −→∗ m′ impliesm′ ≤ b. Otherwise, N is unbounded
fromm. It is well-known that unboundedness holds iff there
exist markingsm′ < m′′ such thatm −→∗ m′ −→∗ m′′. The
short-circuit net Nsc of a workflow netN isN extended with
a transition tsc such that F [f, tsc] = F [tsc , i] = 1 (and 0 for
other entries relating to tsc). Informally, the short-circuit net
allows restoring the system upon completion, i.e. by moving
a token from f to i.
For example, the left side of Figure 3 illustrates a short-

circuit net Nsc . By inspecting the graph of markings reach-
able from {i : 1} inNsc , we see thatNsc is live and bounded,
i.e. it is always possible to (re)fire any transition, and each
place is bounded by b B 1 token. It turns out that liveness
and boundedness characterize classical soundness:

Proposition 3.1 ([22, Lemma 8]). A workflow net N is clas-
sically sound iff Nsc is live and bounded from {i : 1}.

i

r3

r1

r2

f

u2

u1

u6

u5

u4u3

tsc

{i : 1}

{r1 : 1, r2 : 1} {r1 : 1, r3 : 1} {r2 : 1, r3 : 1}

{f : 1}

u1 u2u3

u5 u6
u4

tsc

Figure 3. Left: Short-circuit net of the rightmost workflow
net from Figure 1. Right: Its markings reachable from {i : 1}.

Decidability of classical soundness follows from Theo-
rem 3.1. Indeed, boundedness can be tested in EXPSPACE [19],
and liveness is decidable since it reduces to reachability [13,
Thm 5.1] which is decidable [16]. However, the liveness prob-
lem is hard for the reachability problem [13, Thm 5.2], which
was recently shown Ackermann-complete [8, 14, 15]. In this
section, we first give a slightly different characterization
not involving liveness which yields EXPSPACE membership.
Then, we show that classical soundness is EXPSPACE-hard,
and hence EXPSPACE-complete, via a reduction from the
reachability problem for so-called reversible Petri nets.

3.1 EXPSPACE membership
Let us reformulate the characterization of Theorem 3.1 so
that it deals with another property than liveness, namely
“cyclicity”. We say that a Petri net is cyclic from a marking
m if for any markingm′,m −→∗ m′ impliesm′ −→∗ m, i.e. it
is always possible to go back tom. For example, the short-
circuit net Nsc , illustrated on the left of Figure 3, is cyclic
since each marking reachable from {i : 1} can reach {f : 1},
which in turn can reach {i : 1}.

Rather than directly considering classical soundness, we
first consider 1-soundness. The characterization of Theo-
rem 3.1 can be adapted to this problem as follows:

Proposition 3.2. A workflow net N is 1-sound iff Nsc is
bounded and transition tsc is live from {i : 1}.

The complexity of soundness in workflow nets LICS ’22, August 2–5, 2022, Haifa, Israel

Proof. Let N = (P ,T , F).
⇒) For the sake of contradiction, suppose that Nsc is un-

bounded. There exist markingsm <m′ such that {i : i} −→π

m −→π ′ m′ in Nsc . Let us assume, without loss of generality,
that no marking repeats along the run. There are two cases
to consider: either ππ ′ contains tsc , or not.

Let us argue that the first case cannot hold. For the sake of
contradiction, assume it does. Let σtsc be the shortest prefix
of ππ ′ such that {i : 1} −→σ {f : 1}+n −→tsc {i : 1}+n inNsc .
Note that by minimality, {i : 1} −→σ {f : 1} +n holds inN . If
n = 0, then we obtain a contradiction as no marking repeats.
Otherwise N is unsound by Theorem 2.3, which contradicts
1-soundness.

Thus, ππ ′ only contains transitions from T , which means
we can reason about N (rather than Nsc). By 1-soundness,
we have {i : 1} −→∗ m −→∗ {f : 1} in N . Since {i : 1} −→∗ m′ in
N , altogether this yields

{i : 1} −→∗ m′ =m + (m′ −m) −→∗ {f : 1} + (m′ −m).

By 1-soundness, this means that (m′ −m) −→∗ 0, which is
impossible. Consequently, Nsc is bounded from {i : 1}.

It remains to argue that tsc is live from {i : 1}. Let {i : 1} −→ρ

m in Nsc , where no marking repeats. We can assume that
tsc does not appear in ρ as it would mean that {i : 1} is re-
peated. Hence, {i : 1} −→ρ m inNsc . By 1-soundness, we have
m −→∗ {f : 1}, from which tsc is enabled as desired.
⇐) Let {i : 1} −→∗ m in N (and so in Nsc). Since tsc is live

from {i : 1}, we havem −→∗ {f : 1} + n for some n ∈ NP . If
n > 0, then we obtain {i : 1} −→∗ {f : 1} + n −→tsc {i : 1} + n
which violates boundedness. Thus, n = 0, and hencem −→∗
{f : 1} as desired. □

From the previous proposition, we prove the following.

Lemma 3.3. A workflow netN = (P ,T , F) is 1-sound iffNsc
is bounded and cyclic from {i : 1}, and some transition t ∈ T
satisfies •t = {i : 1}.

Proof. ⇒) Let N be 1-sound. Since {i : 1} −→∗ {f : 1} and
i , f, some t ∈ T satisfies •t = {i : 1}. By Theorem 3.2, from
{i : 1},Nsc is bounded and tsc is live. It remains to show that
Nsc is cyclic. Let {i : 1} −→∗ m. By liveness of tsc , there is a
markingm′ such thatm −→∗ m′ andm′ enables tsc . Note that
•tsc = {f : 1}. Ifm′ > {f : 1}, that is,m′ = {f : 1} + n with
n > 0, then we obtain {i : 1} −→∗ {f : 1} + n −→tsc {i : 1} + n,
and hence boundedness is violated. Thus, by boundedness
and liveness of tsc ,m −→∗ m′ = {f : 1} −→tsc {i : 1}, which
proves cyclicity.
⇐) Assume Nsc is bounded and cyclic from {i : 1}, and

that some t ∈ T is as described. By Theorem 3.2, it suffices
to show that tsc is live from {i : 1}. Letm ∈ NP be such that
{i : 1} −→∗ m in Nsc . We either havem = {i : 1} orm[i] = 0,
as otherwise Nsc is unbounded. Ifm = {i : 1}, we can fire t
and obtain a marking where i is empty. Thus, assume w.l.o.g.
thatm[i] = 0. By cyclicity, we havem −→π {i : 1} for some π .

Since tsc is the only transition that produces tokens in place
i, transition tsc must appear in π . Hence, tsc is live. □

Since classical soundness amounts to quasi-liveness and
1-soundness, we obtain the following corollary.

Corollary 3.4. A workflow netN is classically sound iffNsc
is quasi-live, bounded and cyclic from {i : 1}.

Theorem 3.5. Both 1-soundness and classical soundness are
in EXPSPACE.

Proof. Checking whether a transition t satisfies •t = {i : 1}
can be carried in polynomial time. The other properties
of Theorem 3.3 for 1-soundness, namely boundedness and
cyclicity, belong to EXPSPACE [3, 19].

For quasi-liveness, we proceed as follows. The coverability
problem asks whether given a Petri net and two markings
m,m′, there exists a markingm′′ ≥m′ such thatm −→∗ m′′.
This problem belongs to EXPSPACE [19]. Recall that quasi-
liveness askswhether for each transition t ∈ T∪{tsc }, it is the
case that {i : 1} −→∗ m for some somemarkingm that enables
t , i.e. such thatm ≥ •t . The latter is a coverability question.
Hence, quasi-liveness amounts to |T |+1 coverability queries,
which can be checked in EXPSPACE. □

We further show that the previous result can be extended
to k-soundness through the following lemma.

Lemma 3.6. Given a workflow net N and k > 0, one can
compute, in polynomial time, a workflow netN ′ with ∥N ′∥ =
∥N ∥ + log(k) such that, for all c > 0, N is ck-sound iff N ′ is
c-sound.

Proof. Let N = (P ,T , F). We define N ′ B (P ′,T ′, F ′) that
rescales everything by k . Formally, we add two new places
that are the new initial and final places P ′ B P ∪ {i′, f ′}. We
denote by i and f the previous initial and final places. We
add two new transitions ti and tf defined by:

•ti[i′] = 1 and •ti[p] = 0 for p , i′,

t•i [i] = k and t•i [p] = 0 for p , i,
•tf[f] = k and •tf[p] = 0 for p , f,

t•f [f
′] = 1 and t•f [p] = 0 for p , f ′.

It is straightforward that N ′ satisfies the lemma. □

Corollary 3.7. The k-soundness problem is in EXPSPACE.

Proof. It suffices to invoke Theorem 3.6 with c = 1, and test 1-
soundness of the resultingworkflow net via Theorem 3.5. □

3.2 EXPSPACE-hardness
Let us now establish EXPSPACE-hardness of classical sound-
ness. We will need the forthcoming lemma that essentially
states that so-called reversible Petri nets can count up to (or
down from) a doubly exponential number. Formally, we say
that a Petri net N = (P ,T , F) is reversible if each transition
of N has an inverse, i.e. for every t ∈ T , there exists t−1 ∈ T

LICS ’22, August 2–5, 2022, Haifa, Israel Michael Blondin, Filip Mazowiecki, and Philip Offtermatt

such that •(t−1) = t• and (t−1)• = •t . Note that for reversible
Petri nets, it is the case thatm −→∗ m′ if and only ifm′ −→∗ m.
To emphasise this, we will sometimes writem ←→∗ m′.

Lemma 3.8 ([17, Lemma 3]). Let N be a reversible Petri net
and letm andm′ be two markings. Let n B size(N ,m,m′).
There exists cn ∈ 22

O(n)
such that ifm −→∗ m′ thenm −→ρ m′

for a cn-bounded run ρ.

Lemma 3.9 ([17, reformulation of Lemma 6 and Lemma 8]).
Let n ∈ N and cn ∈ 22

O(n)
. There exists a reversible Petri net

Nn = (Pn ,Tn , Fn)with four distinguished places s, c, f ,b ∈ Pn .
Let mn B {s : 1, c : 1} and m′n B { f : 1, c : 1,b : cn}. The
following holds for allm:

1. mn ←→
∗ m′n ;

2. mn ←→
∗ m andm[f] > 0 impliesm =m′n ;

3. m ←→∗ m′n andm[s] > 0 impliesm =mn ;
4. ifm <m′n andm[f] = 0 then no transition can be fired

fromm;
5. for all p ∈ Pn there existsmn ←→

∗ m s.t.m[p] > 0.
Furthermore, Nn is: of polynomial size in n; constructible in
polynomial time in n; and quasi-live both frommn andm′n .

Theorem3.10. The classical soundness and 1-soundness prob-
lems are EXPSPACE-hard.

Proof. We give a reduction from the reachability problem for
reversible Petri nets. This problem is known to be EXPSPACE-
complete [4, 17]. Let N = (P ,T , F) be a reversible Petri net,
and letm,m′ be two markings for which we would like to
know whetherm −→∗ m′ in N .

Let n B size(N ,m,m′), let cn be the value given by Theo-
rem 3.8 for n, and letNn = (Pn ,Tn , Fn) be the Petri net given
by Theorem 3.9 for cn .
We construct a workflow net N ′ = (P ′,T ′, F ′) such that
N ′ is classically sound if and only ifm −→∗ m′ inN . To avoid
any confusion, we will denote markings in N ′ by n, n′, etc.

The construction will ensure that
m −→∗ m′ in N iff N ′ is classically sound. (1)

Moreover, 1-soundness of N ′ will implym −→∗ m′, which
will prove that both classical soundness and 1-soundness are
EXPSPACE-hard.

Informally, we wish forN ′ to convert {i : 1} intom, simu-
late N , and convertm′ into {f : 1}. Here, the reversibility of
N is crucial to ensure soundness: “erroneous runs” should
still be able to reach {f : 1}. This approach is however ide-
alised sinceN ′ has no way to test whetherN has reachedm′.
By Theorem 3.8, we know thatm −→∗ m′ is witnessed by a
cn-bounded run. Hence, cn tokens per place suffice. Thus, we
add a dual place p for each place p ofN such that, in marking
n, p contains cn − n[p] tokens. This allows to implement a
form of equality test form′. Yet, this is again oversimplified
as it must be implemented with great care. Indeed, if N has
reachedm′′ >m′, then the gadget for equality test will con-
sume some tokens, but not all cn tokens from the dual places

(recall that producing and consuming cn cannot be achieved
atomically, but rather via Nn). Thus, a mechanism is needed
to restorem′′ and the budget, asm′′ −→∗ m′ could hold.
Formally, the set of places P ′ consists of: P ; its disjoint

copy P B {p | p ∈ P}; seven extra places

{i, f,pstart,pinProgress,pcover,psimple,pcanFire};

two disjoint copies of Pn (from Theorem 3.9), with one copy
of b removed. One of the copies will be marked with ♥ to
avoid any confusion, thus we write e.g. p♥ ∈ P♥n . The two
places b and b♥ are merged into a single place denoted b.

Before presenting the transitions, we would like to empha-
sise that, intuitively, place p ∈ P will contain a “budget” of
tokens that is an upper bound on howmany more tokens can
be present in p. Most of the time, for every marking n and
place p ∈ P , we will keep n[p] + n[p] = cn as an invariant.
In Figure 4, we present the most relevant parts of N ′.

Formally, the set of transitions is divided into four subsets
T ′ = T1 ∪T2 ∪T3 ∪T4. Transitions will be defined by giving
•t ′[p] and t ′•[p]. The values are zero on unmentioned places.

First, for every transition t ∈ T , we define t ′ ∈ T1 by:
• •t ′[p] B •t[p] and t ′•[p] B t•[p] for all p ∈ P ;
• •t ′[p] B t•[p] and t ′•[p] B •t[p] for all p ∈ P ;
• •t ′[pcanFire] = t ′•[pcanFire] B 1.

It is easy to see that since N is a reversible Petri net, for
every transition in T1, its reverse is also in T1. We will say
thatT1 is reversible. Notice that, for all t ′ ∈ T1 and p ∈ P , the
sum of tokens in p and p does not change under t ′.

Second, for every t ∈ Tn , we add t ′ ∈ T2 such that:
• •t ′[p] B •t[p] and t ′•[p] B t•[p] for all p ∈ Pn ;
• •t ′[p] B •t[b] and t ′•[p] B t•[b] for all p ∈ P .

Intuitively, places in P behave as b to initialise the budget of
cn tokens. Similarly, for every t♥ ∈ T ♥n , we add t ′ ∈ T3 such
that:
• •t ′[p♥] B •t[p♥] and t ′•[p♥] B t•[p♥] for all p♥ ∈ P♥n ;
• •t ′[p] B •t[b] and t ′•[p] B t•[b] for all p ∈ P .

Note that sinceNn is reversible, bothT2 andT3 are reversible.
The set T4 consists of the ten remaining transitions

{thard, tstart, tm , tm′, t
−1
m′, tisEmpty, treach, t

−1
reach, tsimple, tsimple2}.

Intuitively, the first two are needed to initialise places in P
with cn tokens; the next three transitions respectively addm,
−m′ andm′ to P ; the next three transitions transfer tokens
towards the final places; and the last two transitions are
needed for quasi-liveness. Formally,
• •thard[i] = t•hard[s] = t•hard[c] B 1;
• •tstart[f] =

•tstart[c] = t•start[pstart] B 1;
• t•m[p] =

•tm[p] Bm[p] for all p ∈ P ; and •tm[pstart] =
t•m[pinProgress] = t•m[pcanFire] B 1;
• •tm′[p] = t•m′[p] Bm′[p] for allp ∈ P ; •tm′[pinProgress] =
•tm[pcanFire] = t•m′[pcover] B 1; and t−1m′ is its reverse
transition;

The complexity of soundness in workflow nets LICS ’22, August 2–5, 2022, Haifa, Israel

tsimple
∥N ∥

∥N∥

∥N∥

∥N∥

tsimple2∥N ∥

∥N∥

∥N∥

∥N∥

i

pstart pinProgress pcover

f

p1

p1

p2

p2

psimple

thardT
∗
2 tstart

cn

cn

tm tm′

t−1m′

treachT
∗
3 tend

cn

cn

Figure 4. A workflow net N ′ which is classically sound iffm −→∗ m′ in the reversible Petri net N = (P ,T , F). In the example,
P = {p1,p2},m = (1, 0) andm′ = (0, 1). The original places are blue, their copies are green, and other new places are red. We
omit the transitions inT1 that originated fromT (recall that these transitions are modified to consume and produce tokens also
in green places), and we omit the place pcanFire (used only to allow transitions in T1 to fire). We only sketch transitions in T2
and T3 (and some other transitions), by writing the intuitive meaning of the gadgets that add/remove cn tokens (arcs of these
“transitions” are marked with a different color). The transition thard initiates the bottom part of N ′ (by filling the green places
with cn tokens) that checksm −→∗ m′. The transition tsimple initiates the top part of N ′. We denote arcs in the top part with
dotted gray color. This part is rather trivial and its only purpose is to ensure quasi-liveness of transitions in T1 (by filling blue
and green places with ∥N ∥ tokens).

• •treach[pcover] = t•reach[f
♥] = t•reach[c

♥] B 1; and t−1reach
is its reverse transition;
• •tend[s

♥] = •tend[c
♥] = t•end[f] B 1;

• •tsimple[i] = t•simple[psimple] = t•simple[pcanFire] B 1; and
t•simple[p] = t•simple[p] B ∥N ∥ for all p ∈ P ;
• •tsimple2[p] =

•tsimple2[p] B ∥N ∥ for all p ∈ P ; and
•tsimple2[psimple] =

•tsimple2[pcanFire] = t•simple2[f] B 1.

Recall that P ⊆ P ′ and thatm is a marking on P . To ease
the notation, we will assume thatm is a marking on P ′ (with
0 tokens in places from P ′ \ P).
We are ready to prove Equation 1. Notice that for every

reachable configuration {i : 1} −→ρ n the value n[pcanFire]
is always equal to n[psimple] or n[pinProgress] (depending on
whether the first transitions of ρ is tsimple or thard). For read-
ability, we omit the value of pcanFire in the markings of N ′.
⇐) Suppose that N ′ is 1-sound (we will not rely on N ′

being quasi-live). By Theorem 3.9 (1), we know that

{i : 1} −→thard {s : 1, c : 1} −→∗ { f : 1, c : 1,b : cn}+
∑
p∈P

{p : cn}.

Let us denote the last marking by n. Notice that

n −→tstarttm {pinProgress : 1,b : cn} +m +
∑
p∈P

{p : cn −m[p]}.

We denote the latter marking by n′. Since N ′ is 1-sound,
n′ −→ρ {f : 1} for some run ρ. This is possible if treach was
fired at least once in ρ. Letn1 −→

treach n2 be the last time treach
was fired in ρ. We claim that n2 = { f

♥ : 1, c♥ : 1,b : cn} +∑
p {p : cn}. Indeed, it has to be that

n2 −→
ρ′ {s♥ : 1, c♥ : 1} −→tend {f : 1},

where ρ ′ uses transition only from T3. By Theorem 3.9 (4),
this is possible only if n2 is as claimed. Let ρ ′′ be the prefix
of the run ρ fromn′ such that it ends inn1. Finally, ρ ′′, when
restricted to P , witnesses reachability form −→∗ m′.
⇒) Suppose thatm −→∗ m′. The proof of 1-soundness is

very technical and can be found in the appendix. In a nutshell,
recall that T1, T2 and T3 are reversible, and for tm′, treach ∈ T4
we include their reverse transitions. This allows us to revert
any configuration to a configuration from which it is easy
to define a run to {f : 1}.

To conclude this implication, we need to prove that N ′ is
quasi-live. Indeed, from the proof of 1-soundness it is easy

LICS ’22, August 2–5, 2022, Haifa, Israel Michael Blondin, Filip Mazowiecki, and Philip Offtermatt

to see thatm −→∗ m′ implies that all transitions are fireable,
with the possible exception of transitions from T1. However,

{i : 1} −→tsimple {psimple : 1} +
∑
p∈P

{p : ∥N ∥,p : ∥N ∥}.

From the latter configuration, any transition of T1 is fireable.
Finally, observe that N ′ is a workflow net. Indeed, by

taking tsimple we put tokens in P and P . Each place from
copies in Nn is on a path from i to f by Theorem 3.9 (5). The
remaining places are clearly on such a path by definition
(see Figure 4). □

4 Bounds on vector reachability
In this section, we present technical results that will be help-
ful to establish complexity bounds in the forthcoming sec-
tions. It is well-known that Petri nets are complex due to
their nonnegativity constraints. Namely, markings are over
N (not Z), which blocks transitions from being fired when-
ever the amount of tokens would drop below zero. By lifting
this restriction, i.e. allowing markings over Z, transitions
cannot be blocked and we obtain a provably simpler model
(e.g. see [12]). We recall known results that provide bounds
on reachability problems for vectors over Z. Based on these
results, we will derive useful bounds for the next sections.

4.1 Integer linear programs
Given positive natural numbers n,m > 0, let A ∈ Zm×n
be an integer matrix, b ∈ Zm an integer vector and x =
(x1, . . . ,xn)

T a vector of variables. We say thatG B A ·x ≥ b
is an (m×n)-ILP, that is, an integer linear program (ILP) with
m inequalities and n variables. The set of solutions of G is

JGK B {µ ∈ Zn | A · µ ≥ b},

and the set of natural solutions is JGK≥0 B JGK ∩ Nn . We
will only be interested in the natural solutions JGK≥0 but
sometimes we will need to refer to JGK. We shall assume that
these sets are equal, by implicitly adding a new inequality
for each variable specifying that it is greater or equal to 0.

Often it is convenient to write an equality constraint, e.g.
x − y = 0. This can be simulated by two inequalities, so we
will allow to define G both with equalities and inequalities.

We introduce some notation about semi-linear sets from [6]
to obtain bounds on the sizes of solutions to ILPs. A set of
vectors is called linear if it is of the form L(b, P) = {b +
λ1p1+ . . .+λkpk | λ1, . . . , λk ∈ N}, where b ∈ Zn is a vector
and P = {p1, . . . ,pk } ⊆ Zn is a finite set of vectors. A set is
called hybrid linear if it is of the form L(B, P) =

⋃
b ∈B L(b, P)

for a finite set of vectors B = {b1 . . . ,bℓ} ⊆ Zn .
The size of a finite set of vectors B and of an (m × n)-

ILP G are defined respectively as ∥B∥ B maxb ∈B ∥b∥ and
∥G∥ B ∥A∥ + ∥b∥ +m + n.
Lemma 4.1 ([30], presentation adapted from [6, Prop. 3]).
LetG be an (m×n)-ILP. It is the case that JGK =

⋃
i ∈I L(Bi , Pi),

wheremaxi ∈I ∥Bi ∥ ≤ ∥G∥
O(n logn).

For the forthcoming lemmas, recall that c = (c, . . . , c).

Lemma 4.2. Let G be an (m × n)-ILP. There exists a number
c ≤ ∥G∥O(n logn) such that for all µ ∈ JGK≥0, there is some
µ′ ∈ JGK≥0 such that µ′ ≤ µ and µ′ ≤ c .

Proof. Recall that we can assume JGK = JGK≥0. By Theo-
rem 4.1, JGK =

⋃
i ∈I L(Bi , Pi). We set c B maxi ∈I ∥Bi ∥. Let

µ ∈ JGK≥0. There exist i ∈ I andb ∈ Bi such that µ ∈ L(b, Pi).
Note that p ≥ 0 for all p ∈ Pi . Hence, we have b ∈ JGK≥0,
b ≤ µ and b ≤ c . Thus, we can set µ′ B b. □

Lemma 4.3. Let G = A · x ≥ b be an (m × n)-ILP, where
b ≥ 0. There exists c ≤ ∥G∥O((m+n) log(m+n)) such that the
following holds. For every µ ∈ JGK≥0, there exists ν ∈ JGK≥0
such that ν ≤ µ, ν ≤ c , and A · ν ≤ A · µ.

Proof. Let x1, . . . ,xn be the variables ofG . We define a (3m×
(m+n))-ILPG ′ by slightly modifyingG . For every inequality
in the original ILP G, we add one fresh variable. We denote
them y1, . . . ,ym . Now, recall that the inequalities in G are
of the form:

∑n
i=1 A[j, i] · xi ≥ b[j] for j ∈ [1..m]. The ILPG ′

is defined with the same inequalities, plusm new equalities
(recall that this requires 2m inequalities):

∑n
i=1 A[j, i] · xi −

yj = 0 for j ∈ [1..m].
Notice that, in solutions forG ′, the variablesyj are uniquely

determined by the valuation of x1, . . . ,xn . For convenience,
we will write µ[xi], µ′[yj]when referring to the components
of solutions. For every µ ∈ JGK≥0, there is a unique µ′ ∈ JG ′K
such that µ′[xi] = µ[xi] for all i ∈ [1..n]. Thus, since b ≥ 0,
we have JG ′K≥0 = {µ′ | µ ∈ JGK}. We define c as the con-
stant from Theorem 4.2 for G ′. Now, let µ ∈ JGK≥0 and let
µ′ ∈ JG ′K≥0 be its corresponding solution. By Theorem 4.2,
there exists ν ′ ∈ JG ′K≥0 such that ν ′ ≤ µ′ and ν ′ ≤ c .
We define ν ∈ JGK≥0 as the solution corresponding to ν ′.
It is clear that ν ≤ µ and ν ≤ c . For the remaining part,
fix j ∈ [1..m]. Recall that ν ′[yj] =

∑n
i=1 A[j, i] · ν

′[xi] and
µ′[yj] =

∑n
i=1 A[j, i] · µ

′[xi]. Thus,
n∑
i=1

A[j, i] · ν [xi] ≤
n∑
i=1

A[j, i] · µ[xi],

which concludes the proof. □

4.2 Steinitz Lemma
Let us recall the Steinitz Lemma [20] based on the presenta-
tion of [11].

Lemma 4.4. Let x1, . . . ,xn ∈ Rd be such that
∑n

i=1 xi = 0
and ∥xi ∥ ≤ 1 for all i . There exists a permutation π on [1..n]
such that i∑

j=1
xπ (j)

 ≤ d for all i ∈ [1..n].

The following formulation of the lemma, which is depicted
graphically in Figure 5, will be more convenient for us.

The complexity of soundness in workflow nets LICS ’22, August 2–5, 2022, Haifa, Israel

zx0

x1
x2

x3
x4 x5

x6
x7

x8

zx0

x5
x8

x7 x2

x3
x4 x6 x1

Figure 5. An example of Theorem 4.5 in dimension d = 2. The vectors x0, . . . ,xn form a path from 0 to z. The colored
background highlights points that are within some bounded distance from the line 0 to z (the bound depends on d and xi , but
not on z). In the right picture, the vectors are reordered so that they all fit within the bound. The additional constraints are
that: the first vector x0 remains first (π (0) = 0); and, in some way, the points are getting closer to z (0 ≤ c0 ≤ c1 ≤ . . . ≤ cn).

Lemma 4.5. Let x0,x1, . . . ,xn ∈ Zd , b B maxnj=0
x j, and

z B
∑n

j=0 x j . There exists a permutation π of [0..n] such that:
π (0) = 0; and there exist 0 ≤ c0 ≤ c1 ≤ . . . ≤ cn ≤ 1, where i∑

j=0
xπ (j) − ci · z

 ≤ b(d + 2) for all i ∈ [0..n].

5 Generalised soundness
A Petri netN is Z-bounded from a markingm if there exists
b ∈ N such thatm −→∗Z m

′ ≥ 0 impliesm′ ≤ b (i.e.we replace
−→∗ with−→∗Z in the definition of boundedness). Otherwise, we
say that N is Z-unbounded. Observe that being Z-bounded
does not mean that the set of reachable markings is bounded
by below, but only from above.
Let k ≥ 0. We say that N is strongly k-sound if for every

m ∈ NP such that {i : k} −→∗Z m, it holds thatm −→∗ {f : k}.
Note that every strongly k-sound net is also k-sound.
The aim of the next three subsections is to prove the fol-

lowing theorem.

Theorem 5.1. Generalised soundness is in PSPACE.

The proof has two parts. First, we prove that if there is a k
for which the net is not k-sound, then there is also such a k
bounded exponentially. Second, we prove that k-soundness
for exponentially bounded k can be verified in PSPACE.

5.1 Nonredundant workflow nets
Fix a workflow net N = (P ,T , F). We say that a place p ∈ P
is nonredundant if there exists k ∈ N such that {i : k} −→∗ m
andm[p] > 0. By removing a redundant place p from N ,
we mean removing p from P and all transitions t ∈ T such
that •t[p] > 0. With the remaining transitions restricted to
the domain P \ {p}, we obtain a new workflow net N ′ B
(P \ {p},T ′). It is clear that N is k-sound if and only if N ′
is k-sound for all k ∈ N. Thus, in particular, this procedure
preserves generalised soundness.

It will be convenient to assume that all places in the stud-
ied workflow nets are nonredundant. At first, it might seem

that this requires coverability checks for every place. How-
ever, since the number of initial tokens is arbitrary, finding
redundant places amounts to a simple polynomial-time satu-
ration procedure. More details can be found in [29, Thm. 8,
Def. 10, Sect. 3.2] (and in the appendix). We will call work-
flow nets without redundant places nonredundant workflow
nets3. To summarise we conclude the following.

Proposition 5.2. Given a workflow net N , one can identify
and remove all redundant places from it in polynomial time.
The resulting workflow net N ′ is nonredundant. Moreover, N
is k-sound if and only if N ′ is k-sound for all k ∈ N.

In the following lemma, intuitively, we show that the ini-
tial budget is small for nonredundant workflow nets.

Lemma 5.3. Let N = (P ,T , F) be a nonredundant workflow
net and let p ∈ P be a place. There exists k < (∥T ∥ + 2) |T | such
that {i : k} −→∗ m andm[p] > 0.

Proof. A transition t increases a place p ′ if ∆(t)[p ′] > 0. We
say that a run ρ increases p ′ if there exists t ∈ supp(ρ) that
increases p ′. For the proof of the lemma, we assume that
p , i, as otherwise it suffices to define k = 1.

We prove that for all run {i : k ′} −→ρ m′, there is a run π
such that: supp(π) = supp(ρ), and {i : k} −→π m for some
k < (∥T ∥ + 2)n andm, wherem[p ′] ≥ 1 for all places p ′ in-
creased by ρ. Note that, sinceN is a nonredundant workflow
net, if we exhibit such a run then we are done as there exists
ρ that increases p.

Let {i : k ′} −→ρ m′. The proof is by induction on n, where
supp(ρ) = {t1, . . . , tn}. Assume n = 1. The only transition
used by ρ is t1, which increases p. Recall that ∥T ∥ is the max-
imal number occurring on any arc ofN . Since workflow nets
start with tokens only in place i, wemust have {i : ∥T ∥} ≥ •π .
It suffices to define π B t1 and k B ∥T ∥ < (∥T ∥ + 2).

For the induction step, assume n > 1 and that the lemma
holds for n − 1. Let ρn−1 be the longest prefix of ρ such that
supp(ρn−1) = {t1, . . . , tn−1}. The induction hypothesis for
3The results in [29] deal with batch workflow nets, which are in particular
nonredundant workflow nets.

LICS ’22, August 2–5, 2022, Haifa, Israel Michael Blondin, Filip Mazowiecki, and Philip Offtermatt

ρn−1 yields kn−1 < (∥T ∥+2)n−1, and πn−1 with supp(πn−1) =
{t1, . . . , tn−1}. Let {i : kn−1} −→πn−1 mn−1. Note that supp(•tn)
⊆ supp(π •n−1) ∪ {i} since ρ is a run, where tn is fired. By
repeating ∥T ∥ + 1 times the run πn−1, we get
{i : (kn−1+ 1) · (∥T ∥+ 1)} −→∗ {i : ∥T ∥+ 1}+ (∥T ∥+ 1) ·mn−1.

To ease the notation, let n B {i : ∥T ∥ + 1} + (∥T ∥ + 1) ·mn .
By definition ofmn−1, it holds that n[p ′] ≥ ∥T ∥ + 1 for all
p ′ ∈ π •. Furthermore, we can fire tn fromn. Letn −→tn m. To
conclude, consider a place p ′ increased by ρ. If it is increased
by one of the transitions t1, . . . , tn−1, then after firing tn at
least one token was left in p ′. Otherwise, p ′ is increased by
tn . In both cases, we havem[p] ≥ 1. It remains to observe
that k = (kn−1 + 1) · (∥T ∥ + 1) < (∥T ∥ + 2)n . □

5.2 Relating soundness and strong soundness
We recall a result by van Hee et al. that establishes a connec-
tion between the reachability relations −→∗Z and −→

∗.

Lemma 5.4 (adaptation of [29, Lemma 12]). Let N be a
nonredundant, generalised sound workflow net, and letm be a
marking for which there exists k ≥ 0 satisfying {i : k} −→∗Z m.
There exists ℓ ≥ 0 such that {i : k + ℓ} −→∗ m + {f : ℓ}.

Note that Theorem 5.4 is an easy consequence of the defi-
nition of nonredundancy. Namely, it suffices to put “enough
budget” in each place so that the run under −→∗Z becomes a
run under −→∗. We restate the result to give a bound on ℓ, and
so that it does not need to assume N is generalised sound.

Lemma 5.5. Let N = (P ,T , F) be a nonredundant workflow
net. Let k andm ∈ NP be such that {i : k} −→∗Z m. There exist
ℓ ≤ (∥T ∥+2) |T | ·max(∥T ∥,k) · |P |(|P |+2) andm′ ∈ NP such
that {i : ℓ} −→∗ m′ and {i : ℓ + k} −→∗ m +m′.

Proof. Let ρ = t1t2 · · · tn be such that {i : k} −→ρ
Z m. Let us

define x0 B {i : k} and x j B ∆(tj) for all j ∈ [1..n]. By The-
orem 4.5, we can assume that the transitions tj are ordered
so that there exist c0, . . . , cn ≥ 0 where{i : k} + i∑

j=1
∆(tj) − cim

 ≤ max(∥T ∥,k) · (|P | + 2),

for all i ∈ [0..n]. Sincem ≥ 0, we get for all p ∈ P :(
{i : k} +

i∑
j=1

∆(tj)

)
[p] ≥ −max(∥T ∥,k) · (|P | + 2). (2)

By Theorem 5.3, there exists ℓp ≤ (∥T ∥+2) |T | such that for
every place p there is a run {i : ℓp } −→πp mp withmp [p] > 0.
Thus, to put max(∥T ∥,k) · (|P | + 2) tokens in all places, it
suffices to repeat max(∥T ∥,k) · (|P | + 2) times the run πp for
every p ∈ P . This requires ℓ ≤ (∥T ∥ + 2) |T | · max(∥T ∥,k) ·
|P |(|P |+2) tokens. Letm′ be themarking obtained afterwards.
By (2),m′ allows to fire ρ. Thus, we obtain {i : ℓ} −→∗ m′ and
{i : ℓ + k} −→∗ m +m′ as required. □

This lemma allows us to focus on −→∗Z instead of −→∗.

Lemma 5.6. Let N = (P ,T , F) be a nonredundant workflow
net. It is the case that N is generalised sound iff it is strongly
k-sound for all k ≥ 0. Moreover, if N is not strongly k-sound,
then there exists k ′ ≤ k+(∥T ∥+2) |T | ·max(∥T ∥,k)· |P |(|P |+2)
such that N is not k ′-sound.

Proof. The “if” implication is trivial. Indeed, if N is not k-
sound then it cannot be strongly k-sound.
To prove the “only if” implication, assume that N is not

strongly k-sound. We show that there exists k ′ such that
N is not k ′-sound. We will also prove the promised bound
on k ′. Since N is not strongly k-sound, there must be some
m ∈ NP and π such that {i : k} −→π

Z m andm ̸−→∗ {f : k}. By
Theorem 5.5, there exists ℓ ≤ (∥T ∥ + 2) |T | · max(∥T ∥,k) ·
|P |(|P | + 2) andm′ such that {i : ℓ} −→∗ m′ and {i : ℓ +k} −→∗
m +m′. If N is not ℓ-sound, then we are done. Otherwise,
if N is ℓ-sound, then it must hold that m′ −→∗ {f : ℓ}. So,
{i : ℓ+k} −→∗ m+m′ −→∗ m+{f : ℓ}. Recall thatm ̸−→∗ {f : k}.
Thus,m+ {f : ℓ} ̸−→∗ {f : ℓ+k}. We are done since this means
that N is not (ℓ + k)-sound. □

5.3 Strong unsoundness occurs for small numbers
In this section, we will show that if there exists some k such
thatN is not strongly k-sound, then k is at most exponential
in |N |. We define an ILP which is closely related to the
markings reachable from at least one initial number of tokens
in N . Essentially, the ILP will encode that there exists k > 0
andm ≥ 0 such that {i : k} −→∗Z m. This can be done since
only “firing counts” matter, i.e.m −→π

Z m
′ impliesm −→π ′

Z m′

for any permutation π ′ of π .
Let N = (P ,T , F) be a workflow net. We define ILPN B

A · x ≥ 0 as an ILP with |P | + |T | + 1 inequalities and |T | + 1
variables. The variables of ILP N are x B (κ,τ1, . . . ,τ |T |).
For ease of notation, we write τ = (τ1, . . . ,τ |T |). We assume
an implicit bijection between T and [1..|T |], i.e. for every
t ∈ T there is a unique i such that: τ [t] = τi . The matrix A is
defined by the following inequalities:

1. κ +
∑

t ∈T τ [t] · ∆(t)[i] ≥ 0,
2. κ ≥ 1,
3.

∑
t ∈T τ [t] · ∆(t)[p] ≥ 0 for all p ∈ P \ {i},

4. τi ≥ 0 for all i ∈ [1..|T |].

The first two inequalities concern the initial “budget” k of
tokens in i which is represented by κ. Intuitively, κ ≥ 1 has
to be at least as much as τ consumes from the initial place.
The last two inequalities guarantee that we obtain a marking
over NP and that the “firing count” is over NT .
Let µ : x → N be a solution to ILPN . We define

marking(µ) B {i : µ(κ)} +
|T |∑
t ∈T

µ(τj) · ∆(tj).

The following claim follows by definition of ILPN and −→∗Z.

The complexity of soundness in workflow nets LICS ’22, August 2–5, 2022, Haifa, Israel

Claim 5.7. Letm ∈ NP and k > 0. It holds that {i : k} −→∗Z m
iff there exists a solution µ to ILPN such that marking(µ) =m
and µ[κ] = k .

We conclude this part with the following bound.

Lemma 5.8. Let N be a nonredundant workflow net. If N is
strongly i-sound for all 1 ≤ i < k , and not strongly k-sound,
then k ≤ c , where c is the bound from Theorem 4.3 for ILPN .

Proof. For the sake of contradiction, assume that k > c is as
in the statement. SinceN is not stronglyk-sound, there exists
a markingm ∈ NP such that {i : k} −→∗Z m andm ̸−→∗ {f : k}.
By Theorem 5.7, there exists a solution µ to ILPN such that
marking(µ) =m and µ[κ] = k . By Theorem 4.3, there exists
a solution µ′ ≤ µ to ILPN such that µ′[κ] ≤ c < k = µ[κ]
and Aµ′ ≤ Aµ, where A is the underlying matrix of ILPN .
The latter inequality implies marking(µ′) ≤ marking(µ).

Consider the vector π B µ − µ′. We prove that π is a so-
lution to ILPN . Since µ′ ≤ µ we know that π is nonnegative.
The inequalities ofA are satisfied sinceAπ ≥ 0 ≡ Aµ ≥ Aµ′

and µ′[κ] ≤ c < µ[κ]. Thus, π is a solution to ILPN .
By Theorem 5.7, {i : µ′[κ]} −→∗Z marking(µ′) and {i : π [κ]} −→∗Z

marking(π). Recall that µ′[κ],π [κ] < µ[κ] = k . By assump-
tion, N is strongly µ′[κ]-sound and strongly π [κ]-sound.
Therefore, marking(µ′) −→∗ {f : µ′[κ]} and marking(π) −→∗
{f : π [κ]}. Since the function marking(·) is linear, we get

m = marking(µ) = marking(µ′) +marking(π).
This impliesm −→∗ {f : µ′[κ]} + {f : π [κ]} = {f : k}, which is
a contradiction. □

5.4 Reachability in Z-bounded nets is in PSPACE
Note that {i : 0} = {f : 0} = 0. We will use these notations
interchangeably depending on the emphasis.

Lemma 5.9. Let N = (P ,T , F) be a nonredundant workflow
net and k > 0. IfN is Z-unbounded from {i : k}, thenN is not
generalised sound.

Proof. SinceN isZ-unbounded from {i : k}, there existm,m′
and π such thatm < m′ and {i : k} −→∗Z m −→π

Z m′. Thus,
{i : 0} −→π

Z m
′−m > 0. For the sake of contradiction, assume

that N is generalised sound. It is strongly k-sound in partic-
ular for k = 0 by Theorem 5.6, so we havem′−m −→∗ {f : 0},
which contradicts the fact that t• , 0 for all t ∈ T . □

Lemma 5.10. Let N = (P ,T , F) be a workflow net. Letm ∈
NP be a marking such that ∥m∥ > max(∥T ∥,k)2 · (|P |+2) · |P |.
If {i : k} −→∗Z m then N is Z-unbounded.

Proof. Let {i : k} −→σ
Z m for some σ = t1t2 · · · tn . We use the

notation H·I for multisets, e.g. Ha,a,bI contains two occur-
rences of a and one of b. Without loss of generality, assume
that no submultiset of Ht1, t2, . . . , tnI sums to 0. Otherwise,
we can shorten σ by removing such a submultiset. Further
observe that since ∥m∥ > max(∥T ∥,k)2 · (|P | + 2) · |P |, we
know that n > max(∥T ∥,k) · (|P | + 2) · |P |.

By Theorem 4.5, we can assume that t1, t2, . . . , tn are or-
dered so that there exist 0 ≤ c0 ≤ c1 ≤ . . . ≤ cn , where{i : k} + i∑

j=1
∆(tj) − cim

 ≤ max(∥T ∥,k) · (|P | + 2),

for all i ∈ [0..n]. By the pigeonhole principle, there must
exist 0 ≤ i1 < i2 ≤ n such that

{i : k} +
i1∑
j=1

∆(tj) − ci1m = {i : k} +
i2∑
j=1

∆(tj) − ci2m.

This is equivalent to
i2∑

j=i1+1
∆(tj) = (ci2 − ci1)m.

Wehave (ci2−ci1)m ≥ 0 and, since no subset of Ht1, t2, . . . , tnI
sums to 0, we have a strict inequality. Let z B

∑i2
j=i1+1 ∆(tj).

We proved that {i : 0} −→∗Z z > 0, so N is Z-unbounded. □

We are ready to prove the PSPACE membership of gener-
alised soundness.

Proof of Theorem 5.1. Consider a workflow netN = (P ,T , F).
By Theorem 5.2, we can assume that N is a nonredundant
workflow net. By Theorem 5.6 and Theorem 5.8, to prove
generalised soundness it suffices to prove that it is k-sound
for all k ≤ ∥N∥poly(|N |).
By Theorem 5.9 and Theorem 5.10, if {i : k} −→∗ m (and

thus {i : k} −→∗Z m) and ∥m∥ ≥ Ck for some Ck = (∥N ∥ +

k)poly(|N |), then the net is unsound. Since we need to con-
sider only k ≤ ∥N∥poly(|N |), all constants Ck are bounded
exponentially and can be written in polynomial space.
Thus, to verify k-soundness we proceed as follows. First,

we check if a configuration m such that ∥m∥ ≥ Ck can
be reached. This can be easily performed in NPSPACE =
PSPACE as such a run would be witnessed by a sequence of
configurations, such that each configuration can be stored
in polynomial space. If such a configuration can be reached,
then the algorithm outputs no. Otherwise, for everym ∈ NP
such that ∥m∥ < Ck one needs to verify whether {i : k} −→∗Z
m impliesm −→∗ {f : k}. This can be done in coNPSPACE =
coPSPACE = PSPACE. □

5.5 PSPACE-hardness
A conservative Petri net is a Petri net N = (P ,T , F) such that
transitions preserve the number of tokens. That is, for all
m,m′ ∈ NP , it is the case thatm −→ m′ implies

∑
p∈P m[p] =∑

p∈P m
′[p]. The reachability problem for conservative Petri

nets asks whetherm −→∗ m′, given N , a source markingm
and a target markingm′.

Theorem 5.11. Generalised soundness is PSPACE-hard.

Proof. We give a reduction from reachability in conservative
Petri nets, which is known to be PSPACE-complete [18].

LICS ’22, August 2–5, 2022, Haifa, Israel Michael Blondin, Filip Mazowiecki, and Philip Offtermatt

LetN = (P ,T , F) be a conservative Petri net, and letm,m′
be the source and target markings. We define the constant
c B

∑
p∈P m[p] =

∑
p∈P m

′[p].
We construct a workflow net N ′ = (P ′,T ′, F ′) such that
N ′ is generalised sound if and only ifm −→∗ m′ in N . To
do so, we extend N with three new places P ′ B P ∪ {i, f, r }.
Places i and f serve as dedicated initial and final places, re-
spectively. Place r will be used to reset configurations. It
could be merged with i, if not for the restriction that, in a
workflow net, place i cannot have any incoming arc.

We define T ′ ⊇ T by keeping the existing transitions and
adding 3 + |P | new transitions. Namely:

1. transition ti defined by •ti B {i : 1}, and t•i B {r : c},
2. transition tm defined by •tm B {r : c}, and t•m Bm,
3. transition tm′ defined by •tm′ Bm′, and t•m′ B {f : 1},
4. transition tp defined by •tp B {p : 1}, and t•p B {r : 1}.
The first two transitions move a token from i and create

the markingm. The third transition consumesm′ and puts
a token into f. Transitions from the fourth group allow to
move tokens from any place in the original Petri net P to r .
See Figure 6 for a graphical presentation.

i r f

p2p1 p3

ti
c

tm
c

tm′
c

tp1tp2tp3

Figure 6. A workflow net N ′ which is generalised sound iff
m −→∗ m′ in the conservative Petri net N = (P ,T , F). Here,
P = {p1,p2,p3},m = {p1 : 1,p2 : 1},m′ = {p2 : 1,p3 : 1} and
c = 2. The original places are blue and the new places are
red. We omit the original transitions (from T) in the picture.

It remains to show that N ′ is correct. Suppose N ′ is gen-
eralised sound. It must also be 1-sound and in particular
{i : 1} −→∗ {f : 1}. Since N is conservative, it is easy to see
that tm can be fired only if there are no tokens in P . More-
over, a token can be transferred to f only using tm′ , which
consumesm′. Thus, we havem −→∗ m′ in N .
For the converse implication, suppose thatm −→∗ m′. Fix

some k and suppose {i : k} −→∗ v . Notice that the transitions
are defined in such a way that for every reachable configura-
tionv , the invariant ck = v[i] · c +

∑
p∈P∪{r }v[p] +v[f] · c

holds. Thus, by repeatedly firing transitions ti and tp , all
tokens but those in f can be moved to r , i.e.

v −→∗ {r : (k −v[f]) · c} + {f : v[f]}.
From there, to reach {f : k}, it suffices to repeat (k − v[f])
times the following: fire tm ; fire the run that witnessesm −→∗
m′; and fire tm′ . □

6 Structural soundness
In this section, we establish the EXPSPACE-completeness
of structural soundness. Recall that the latter asks whether,
given a workflow net, k-soundness holds for some k ≥ 1.

6.1 EXPSPACE membership
Theorem 6.1. Structural soundness is in EXPSPACE.

Let N = (P ,T , F) be a workflow net. We define an (|T | +
2|P | + 1) × (|T | + 1)-ILP, called ILPs

N
. The variables are the

same as for ILPN in subsection 5.2: (κ,τ1, . . . ,τn), with the
intuition that κ denotes the number of initial tokens and τi
the number of times the transitions are used. We will keep
the notation τ = (τ1, . . . ,τn) and the notation τ [t] for t ∈ T .
The inequalities are defined as follows:

1. {i : κ} +
∑

t ∈T τ [t] · ∆(t) = {f : κ} (expressed with 2|P |
inequalities);

2. τ ≥ 0 (|T | inequalities);
3. and κ > 0.

The first set of inequalities expresses that the effect of the
transitions yields the final marking. The second type ensures
that each transition is fired a nonnegative number of times.
Finally the last one ensures that the initial marking has at
least one token. The following is immediate.

Claim 6.2. There exists k > 0 such that {i : k} −→∗Z {f : k} if
and only if there exists a solution µ to ILPs

N
such that µ[κ] = k .

Lemma 6.3. Let N = (P ,T , F) be a nonredundant workflow
net that is k-sound, and i-unsound for all 1 ≤ i < k . It is the
case that k ≤ c+ (∥T ∥+2) |T | ·max(∥T ∥, c) · |P |(|P |+2), where
c is the bound given by Theorem 4.3 for ILPs

N
.

Proof. Towards a contradiction, suppose that k > c + (∥T ∥ +
2) |T | · max(∥T ∥, c) · |P |(|P | + 2). Consider ILPs

N
. Since N is

k-sound, there is a run {i : k} −→∗Z {f : k} and thus ILPs has a
solution µ. By Theorem 4.3, we can assume that µ ≤ c .

By Theorem 6.2, {i : µ[κ]} −→∗Z {f : µ[κ]}. By Theorem 5.5,
there exist ℓ ≤ (∥T ∥ + 2) |T | ·max(∥T ∥, µ[κ]) · |P |(|P |+ 2) and
m ∈ NP such that {i : ℓ} −→∗ m and {i : ℓ + µ[κ]} −→∗ m +
{f : µ[κ]}. Note that ℓ + µ[κ] < k . Let д B k − (ℓ + µ[κ]) > 0.
We have {i : k} = {i : ℓ+µ[κ]+д} −→∗ {i : д}+m+ {f : µ[κ]}.
Since N is k-sound, we have

{i : д} +m + {f : µ[κ]} −→∗ {f : ℓ + µ[κ] + д}.

Thus, since •t[f] = 0 for all t ∈ T , we have {i : д} +m −→∗
{f : ℓ + д}. Altogether, obtain

{i : ℓ + µ[κ] + д} −→∗ {i : µ[κ] + д} +m
−→∗ {i : µ[κ]} + {f : ℓ + д}.

Therefore, since N is k-sound, it must be µ[κ]-sound (recall
that tokens in f are never consumed). This contradicts the
fact that N is i-unsound for all 1 ≤ i < k . □

We may now prove Theorem 6.1.

The complexity of soundness in workflow nets LICS ’22, August 2–5, 2022, Haifa, Israel

Proof of Theorem 6.1. By Theorem 5.2, we can assume that
the inputN is a nonredundant workflownet. By Theorem 6.3,
it suffices to check ifN is k-sound for some value k bounded
by ∥N ∥poly |N | . First, we guess k , which can be written with
polynomially many bits. Then, we test k-soundness in EX-
PSPACE via Theorem 3.7. □

6.2 EXPSPACE-hardness
Theorem 6.4. Structural soundness is EXPSPACE-hard.

Proof. Let N be a workflow net. We construct a workflow
net N ′ which is structurally sound iff N is 1-sound. We
simply add a single new transition t to N with •t B {i : 2}
and t• B {f : 1}. We show that N ′ is k-unsound for every
k ≥ 2. Towards a contradiction, suppose it is k-sound for
some k ≥ 2.

Notice thatk cannot be even because {i : k} −→tk/2 {f : k/2}
and f has no outgoing arcs, and hence {f : k/2} ̸−→∗ {f : k}.
Thus, it is the case that k ≥ 3 is odd and {i : k} −→t ∗ {i : 1} +
{f : ⌊k/2⌋}. Since N ′ is k-sound, {i : 1} −→∗ {f : ⌈k/2⌉}. But
that implies {i : k} −→∗ {f : k · ⌈k/2⌉}. Note that k · ⌈k/2⌉ > k
ask ≥ 3, which yields a contradiction since f has no outgoing
arcs to get rid of the extra tokens.

To conclude, we observe that if the initial configuration in
N ′ is {i : 1}, then it behaves likeN would, since t will never
be enabled, i.e. it is not quasi-live. Thus, N ′ is structurally
sound if and only if N is 1-sound, and EXPSPACE-hardness
follows from Theorem 3.10. □

7 Characterizing the set of sound numbers
Given a workflow net N , we define the set Sound(N) B
{k ≥ 1 | N is k-sound}. That is, Sound(N) contains all the
numbers for which N is sound (except 0 which is trivial as
any workflow net is 0-sound). This section is dedicated to
providing and computing a representation of Sound(N).
First, let us state a simple fact about Sound(N).4

Lemma 7.1. The set Sound(N) is closed under subtraction
with positive results.

Proof. Let д,k ∈ Sound(N) be such that д > k . We show that
д − k ∈ Sound(N). Since k ∈ Sound(N), we have {i : д} =
{i : k + (д − k)} −→∗ {f : k} + {i : д − k}. Since N is д-sound,
it must also be (д − k)-sound. So, д − k ∈ Sound(N). □

Corollary 7.2. There exist p > 0 and k ∈ N ∪ {+∞} such
that Sound(N) = {i · p | 1 ≤ i < k}.

By the above, Sound(N) is characterized by p and k . We
thus say that a net is (k,p)-sound if and only if Sound(N) =
{i · p | 1 ≤ i < k}. Note that k = 0 implies Sound(N) = ∅.
Further, k = +∞ if and only if Sound(N) is infinite. Finally,
a workflow net is generalised sound iff it is (1,+∞)-sound;
and it is structurally sound iff there exist p,k ≥ 1 such that
4A similar observation was made, but not explicitly stated, in [7, Lemma
2.2 and 2.3].

it is (k,p)-sound. We show that k and p can be computed.
This will rely on insights from the prior sections about the
smallest numbers for which a net is unsound or sound.

Theorem 7.3. Given a workflow net N , the numbers p and
k that characterize Sound(N) are bounded by ∥N ∥poly O(|N |),
and hence can be represented with polynomially many bits.
Given N , p ′ and k ′, the problem of deciding whether N is
(k ′,p ′)-sound is in EXPSPACE. Moreover, the algorithm com-
putes p and k such that N is (k,p)-sound.

Proof. Consider a workflow net N . By Theorem 5.2, we
can assume that N is nonredundant. We will compute for
which p and k the net N is (k,p)-sound. By Theorem 6.3, if
Sound(N) , ∅, then there exists G ≤ ∥N∥poly |N | such that
N is ℓ-sound for some ℓ ≤ G. By Theorem 3.7, it is possible
to check 1-soundness, 2-soundness, . . . , G-soundness in EX-
PSPACE. Thus, in EXPSPACE, we can identify the smallest p
such that N is p-sound.

It remains to compute k . Using Theorem 3.6, we construct
a net N ′ which is c-sound if and only if N is cp-sound for
all c > 0. Thus, the smallest number c for which N ′ is not
c-sound is the smallest c such that N is not cp-sound. By
Theorem 5.8, if Sound(N ′) , N \ {0} then there exists G ′ ≤
∥N∥poly O(|N |) such that N ′ is c-unsound for some c ≤ G ′.
Thus, it suffices to check 1-soundness, 2-soundness, . . . , G ′-
soundness to identify whether k = +∞, or to compute the
largest k ∈ N such that N is pk-sound. By Theorem 3.7, k
can be computed in exponential space. □

8 Conclusion
In this work, we settled, after around two decades, the com-
plexity of the main decision problems concerning workflow
nets: k-soundness, classical soundness, structural soundness,
and generalised soundness. The first three are EXPSPACE-
complete, while the latter is PSPACE-complete and hence
surprisingly simpler. We have further characterised the set
of sound numbers of workflow nets: they have a specific
shape that can be computed with exponential space.
As further work, we intend to study extensions of these

problems in the context of Petri nets. For example, a natural
extension of generalised soundness asks, given markingsm
andm′, whether for every k ∈ N, every marking reachable
from k ·m can reach k ·m′. Contrary to workflow nets, a Petri
net that satisfies this property needs not to be bounded.

References
[1] Kamel Barkaoui and Laure Petrucci. 1998. Structural analysis of work-

flow nets with shared resources. In Proc. Workflow Management: Net-
based Concepts, Models, Techniques and Tools (WFM), Vol. 98/7. 82–95.

[2] Michael Blondin. 2020. The ABCs of Petri net reachability relax-
ations. ACM SIGLOG News 7, 3 (2020). https://doi.org/10.1145/3436980.
3436984

[3] Zakaria Bouziane and Alain Finkel. 1997. Cyclic Petri net reachability
sets are semi-linear effectively constructible. In Second International
Workshop on Verification of Infinite State Systems (INFINITY) (Electronic

https://doi.org/10.1145/3436980.3436984
https://doi.org/10.1145/3436980.3436984

LICS ’22, August 2–5, 2022, Haifa, Israel Michael Blondin, Filip Mazowiecki, and Philip Offtermatt

Notes in Theoretical Computer Science), Vol. 9. 15–24. https://doi.org/
10.1016/S1571-0661(05)80423-2

[4] E. Cardoza, Richard J. Lipton, and Albert R. Meyer. 1976. Exponential
Space Complete Problems for Petri Nets and Commutative Semigroups:
Preliminary Report. In Proc. 8th Annual ACM Symposium on Theory of
Computing (STOC). 50–54. https://doi.org/10.1145/800113.803630

[5] Allan Cheng, Javier Esparza, and Jens Palsberg. 1993. Complexity
Results for 1-safe Nets. In Proc. 13th Conference on Foundations of Soft-
ware Technology and Theoretical Computer Science (FSTTCS), Vol. 761.
326–337. https://doi.org/10.1007/3-540-57529-4_66

[6] Dmitry Chistikov and Christoph Haase. 2016. The Taming of the
Semi-Linear Set. In Proc. 43rd International Colloquium on Automata,
Languages, and Programming (ICALP), Vol. 55. 128:1–128:13. https:
//doi.org/10.4230/LIPIcs.ICALP.2016.128

[7] Ferucio Laurenţiu Ţiplea and Dan Cristian Marinescu. 2005. Structural
soundness of workflow nets is decidable. Inform. Process. Lett. 96, 2
(2005), 54–58. https://doi.org/10.1016/j.ipl.2005.06.002

[8] Wojciech Czerwinski and Lukasz Orlikowski. 2021. Reachability in
Vector Addition Systems is Ackermann-complete. In Proc. 62nd Annual
IEEE Symposium on Foundations of Computer Science (FOCS). to appear.

[9] Wil Van der Aalst. 1999. Interorganizational Workflows: An Approach
Based on Message Sequence Charts and Petri Nets. Systems Analysis,
Modelling, Simulation 34, 3 (1999), 335–367.

[10] Jörg Desel and Javier Esparza. 1995. Free Choice Petri Nets. Cambridge
University Press. https://doi.org/10.1017/CBO9780511526558

[11] Friedrich Eisenbrand and Robert Weismantel. 2019. Proximity results
and faster algorithms for integer programming using the Steinitz
lemma. ACM Transactions on Algorithms (TALG) 16, 5 (2019), 5:1–5:14.
https://doi.org/10.1145/3340322

[12] Christoph Haase and Simon Halfon. 2014. Integer Vector Addition
Systems with States. In Proc. 8th International Workshop on Reachabil-
ity Problems (RP) 2014, Vol. 8762. 112–124. https://doi.org/10.1007/
978-3-319-11439-2_9

[13] Michel Henri Théodore Hack. 1976. Decidability questions for Petri
Nets. Ph.D. Dissertation. Massachusetts Institute of Technology.

[14] Jérôme Leroux. 2021. The Reachability Problem for Petri Nets is
Not Primitive Recursive. In Proc. 62nd Annual IEEE Symposium on
Foundations of Computer Science (FOCS). to appear.

[15] Jérôme Leroux and Sylvain Schmitz. 2019. Reachability in Vector
Addition Systems is Primitive-Recursive in Fixed Dimension. In Proc.
34th Symposium on Logic in Computer Science (LICS).

[16] ErnstW.Mayr. 1981. An Algorithm for the General Petri Net Reachabil-
ity Problem. In Proc. 13th Symposium on Theory of Computing (STOC).
238–246. https://doi.org/10.1145/800076.802477

[17] Ernst W Mayr and Albert R Meyer. 1982. The complexity of the
word problems for commutative semigroups and polynomial ideals.
Advances in Mathematics 46, 3 (1982), 305–329. https://doi.org/10.
1016/0001-8708(82)90048-2

[18] Ernst W. Mayr and Jeremias Weihmann. 2014. A Framework for
Classical Petri Net Problems: Conservative Petri Nets as an Application.
In Proc. 35th International Conference on Application and Theory of Petri
Nets and Concurrency (PETRI NETS). 314–333. https://doi.org/10.1007/
978-3-319-07734-5_17

[19] Charles Rackoff. 1978. The Covering and Boundedness Problems
for Vector Addition Systems. Theoretical Computer Science 6 (1978),
223–231. https://doi.org/10.1016/0304-3975(78)90036-1

[20] Ernst Steinitz. 1913. Bedingt konvergente Reihen und konvexe Systeme.
(1913).

[21] Wil MP Van der Aalst. 1996. Structural characterizations of sound
workflow nets. Computing science reports 96, 23 (1996), 18–22.

[22] Wil M. P. van der Aalst. 1997. Verification of Workflow Nets. In Proc.
18th International Conference on Application and Theory of Petri Nets
(ICATPN), Vol. 1248. 407–426. https://doi.org/10.1007/3-540-63139-9_
48

[23] Wil M. P. van der Aalst. 1998. The Application of Petri Nets to Work-
flow Management. Journal of Circuits, Systems, and Computers 8, 1
(1998), 21–66. https://doi.org/10.1142/S0218126698000043

[24] Wil M. P. van der Aalst and Christian Stahl. 2011. Modeling Business
Processes - A Petri Net-Oriented Approach. MIT Press.

[25] Wil M. P. van der Aalst, Kees M. van Hee, Arthur H. M. ter Hofstede,
Natalia Sidorova, H.M.W. Verbeek,Marc Voorhoeve, andMoe Thandar
Wynn. 2011. Soundness of workflow nets: classification, decidability,
and analysis. Formal Aspects of Computing 23, 3 (2011), 333–363.
https://doi.org/10.1007/s00165-010-0161-4

[26] Boudewijn F. van Dongen, Ana Karla A. de Medeiros, H. M. W. Ver-
beek, A. J. M. M. Weijters, and Wil M. P. van der Aalst. 2005. The
ProM Framework: A New Era in Process Mining Tool Support. In Proc.
26th International Conference on Applications and Theory of Petri Nets
(ICATPN), Vol. 3536. 444–454. https://doi.org/10.1007/11494744_25

[27] Kees M. van Hee, Olivia Oanea, Natalia Sidorova, and Marc Voorho-
eve. 2006. Verifying Generalized Soundness of Workflow Nets. In
Proc. 6th International Andrei Ershov Memorial Conference on Perspec-
tives of Systems Informatics (PSI). 235–247. https://doi.org/10.1007/
978-3-540-70881-0_21

[28] Kees M. van Hee, Natalia Sidorova, and Marc Voorhoeve. 2003. Sound-
ness and Separability of Workflow Nets in the Stepwise Refine-
ment Approach. In Proc. 24th International Conference on Applica-
tions and Theory of Petri Nets 2003 (ICATPN), Vol. 2679. 337–356.
https://doi.org/10.1007/3-540-44919-1_22

[29] Kees M. van Hee, Natalia Sidorova, and Marc Voorhoeve. 2004. Gener-
alised Soundness of Workflow Nets Is Decidable. In Proc. 25th Interna-
tional Conference on Applications and Theory of Petri Nets (ICATPN).
197–215. https://doi.org/10.1007/978-3-540-27793-4_12

[30] Joachim von zur Gathen and Malte Sieveking. 1978. A Bound on
Solutions of Linear Integer Equalities and Inequalities. Proc. Amer.
Math. Soc. 72, 1 (1978), 155–158.

https://doi.org/10.1016/S1571-0661(05)80423-2
https://doi.org/10.1016/S1571-0661(05)80423-2
https://doi.org/10.1145/800113.803630
https://doi.org/10.1007/3-540-57529-4_66
https://doi.org/10.4230/LIPIcs.ICALP.2016.128
https://doi.org/10.4230/LIPIcs.ICALP.2016.128
https://doi.org/10.1016/j.ipl.2005.06.002
https://doi.org/10.1017/CBO9780511526558
https://doi.org/10.1145/3340322
https://doi.org/10.1007/978-3-319-11439-2_9
https://doi.org/10.1007/978-3-319-11439-2_9
https://doi.org/10.1145/800076.802477
https://doi.org/10.1016/0001-8708(82)90048-2
https://doi.org/10.1016/0001-8708(82)90048-2
https://doi.org/10.1007/978-3-319-07734-5_17
https://doi.org/10.1007/978-3-319-07734-5_17
https://doi.org/10.1016/0304-3975(78)90036-1
https://doi.org/10.1007/3-540-63139-9_48
https://doi.org/10.1007/3-540-63139-9_48
https://doi.org/10.1142/S0218126698000043
https://doi.org/10.1007/s00165-010-0161-4
https://doi.org/10.1007/11494744_25
https://doi.org/10.1007/978-3-540-70881-0_21
https://doi.org/10.1007/978-3-540-70881-0_21
https://doi.org/10.1007/3-540-44919-1_22
https://doi.org/10.1007/978-3-540-27793-4_12

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Petri nets
	2.2 Workflow nets and soundness

	3 Classical soundness
	3.1 EXPSPACE membership
	3.2 EXPSPACE-hardness

	4 Bounds on vector reachability
	4.1 Integer linear programs
	4.2 Steinitz Lemma

	5 Generalised soundness
	5.1 Nonredundant workflow nets
	5.2 Relating soundness and strong soundness
	5.3 Strong unsoundness occurs for small numbers
	5.4 Reachability in Z-bounded nets is in PSPACE
	5.5 PSPACE-hardness

	6 Structural soundness
	6.1 EXPSPACE membership
	6.2 EXPSPACE-hardness

	7 Characterizing the set of sound numbers
	8 Conclusion
	References

