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Abstract. The problem of determining whether several finite automata
accept a common word is closely related to the well-studied membership
problem in transformation monoids. We review the complexity of the
intersection problem and raise the issue of limiting the number of final
states in the automata involved. In particular, we consider commutative
automata with at most two final states and we partially elucidate the
complexity of their intersection nonemptiness and related problems.

1 Introduction

Let [m] denote {1, 2, ...,m} and let PS be the point-spread problem for transfor-
mation monoids, which we define as follows:

Input: m > 0, g1, . . . , gk : [m] → [m] and S1, . . . , Sm ⊆ [m].
Question: ∃g ∈ 〈g1, . . . , gk〉 such that ig ∈ Si for every i ∈ [m]?

Here 〈g1, . . . , gk〉 denotes the monoid obtained by closing the set {idm, g1, . . . , gk}
under function composition and ig denotes the image of i under g.

The PS problem generalizes many problems found in the literature. For ex-
ample, it generalizes the (transformation monoid) membership problem [Koz77]
Memb, the pointset transporter problem [LM88] and the set transporter prob-
lem [LM88]. Moreover, it largely amounts to none other than the finite automata
nonemptiness intersection problem, AutoInt, defined as follows:

Input: finite automata A1, . . . , Ak on a common alphabet Σ.
Question: ∃w ∈ Σ∗ accepted by Ai for every i ∈ [k]?

As we note in Prop. 2.1, PS and AutoInt are indeed equivalent in terms of their
complexity, even when the monoid in the PS instances and the transition monoids
of the automata in the AutoInt instances are drawn from a fixed monoid variety.
We view PS as mildly more fundamental because it involves a single monoid.

Memb and AutoInt were shown to be PSPACE-complete by Kozen [Koz77].
Shortly afterwards, the connection with the graph isomorphism problem led to
an in-depth investigation of permutation group problems. In particular, Memb
was shown to belong to P for groups [FHL80], then to NC3 for abelian groups
[MC87, Mul87], to NC for nilpotent groups [LM88], solvable groups [LM88],
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groups with bounded non-abelian composition factors [Luk86], and finally all
groups [BLS87]. A similar complexity classification of Memb for group-free (or
aperiodic) monoids owes to [Koz77, Bea88a, BMT92], who show that Memb for
any fixed aperiodic monoid variety is either in AC0, in P, in NP, or in PSPACE
(and complete for that class with very few exceptions).

On the other hand, AutoInt has received less attention. This is (or might be)
due to the fact that it is equivalent to the membership problem when both are
intractable, but appears harder to solve than the membership problem when the
latter is efficiently solvable. For example, Beaudry [Bea88b] shows AutoInt for
abelian groups and AutoInt for idempotent commutative monoids to be NP-
complete. Beaudry points out that those two cases are examples where the
automata intersection problem seems strictly harder than the transformation
monoid membership problem (whose complexity is NC3 for abelian groups and
AC0 for idempotent commutative monoids). Moreover, early results from [Gal76]
show that the problem is NP-complete even when Σ is a singleton.

Nonetheless, interesting results arise from the study of AutoInt. For example,
the case where k is bounded by a function in the input length was studied in
[LR92]. When k ≤ g(n), it is proved that the problem is NSPACE(g(n) logn)-
complete under log-space reductions. This arguably provided the first natural
complete problems for NSPACE(logc n). Moreover, it was proved by Karakostas,
Lipton and Viglas that improving the best algorithms known solving AutoInt for
a constant number of automata would imply NL 	= P [KLV03].

More recently, the intersection problem was also studied for regular expres-
sions without binary + operators [Bal02], instead of finite automata. It is shown
to be PSPACE-complete for expressions of star height 2 and NP-complete for
star height (at most) 1. Finally, the parameterized complexity of a variant of the
problem, where Σc is considered instead of Σ∗, was examined in [War01]. Differ-
ent parameterizations of c, k and the size of the automata yield FPT, NP, W[1],
W[2] and W[t] complexities. More results on AutoInt are surveyed in [HK11].

1.1 Our Contribution

We propose PS as the right algebraic formulation of AutoInt. We observe that PS
generalizes known problems and we identify PS variants that are both efficiently
solvable and interesting. We obtain these variants by restricting the transition
monoids of the automata, or the number of generators (alphabet size), or by
bounding the size of the Si s (number of final states) to less than 3.

We then mainly investigate monoids that are abelian groups, but we also
consider groups, commutative monoids and idempotent monoids. In the case
of abelian groups, we revisit the equivalences with AGM (abelian permutation
group membership) and LCON (feasibility of linear congruences with tiny mod-
uli) [MC87], which have further been investigated recently in the context of
log-space counting classes [AV10]. Focussing on the cases involving one or two
final states complements Beaudry’s hardness proofs for the intersection prob-
lem [Bea88b], which require at least three final states. We obtain the partial
classification of PS for abelian groups given by Table 1 below.
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Table 1. Complexity of the point-spread problem for abelian groups

Maximum size of Si for every i ∈ [m]
1 2 3+

Single generator L-complete L-complete NP-complete

Elementary 2-groups ⊕L-complete ⊕L-complete NP-complete [Bea88b]

Elementary p-groups ModpL-complete ? (∈ NP) NP-complete [Bea88b]

General case NC3, FLModL/poly ? (∈ NP) NP-complete [Bea88b]

The first line of Table 1 gives the complexity of AutoInt for abelian groups
with |Σ| = 1, but it applies also to all automata over Σ = {a} and to a class
of abelian group automata which we will call tight abelian group automata. To
the best of our knowledge, Table 1 yields the first efficiently solvable variants
of the automata intersection problem. Moreover, it provides characterizations of
ModpL and thus allows the study of (some) log-space counting classes in terms of
automata. The case of two final states, although incomplete, is of special interest
since it appears to be efficiently solvable and generalizes group theory and linear
algebra problems.

We also introduce a generalization of AutoInt by adding ∪-clauses. More for-
mally, the problem is to determine whether ∩k

i=1∪k′
j=1Language(Ai,j) 	= ∅. When

k′ = 2 and each automaton possesses one final state, this generalizes the original
version of the problem with two final states. In the case of unary languages, we
are able to show this variant to be NL-complete and thus suggest this definition
to be the right generalization, in-between two and three final states, to avoid
complexity blow-ups.

Section 2 presents our notation, defines the relevant problems and relates PS
and AutoInt to some algebraic problems. Section 3 is devoted to the analysis of
the complexity of PS and AutoInt for abelian group automata subject to multiple
restrictions. A short Section 4 contains observations about the complexity of PS
and AutoInt in commutative monoids. Section 5 concludes and mentions open
problems.

2 Preliminaries

2.1 Basic Definitions and Notation

An automaton refers to a deterministic complete finite automaton. Formally, it is
a tuple (Ω,Σ, δ, α, F ) whereΩ is the set of states,Σ is an alphabet, δ : Ω×Σ → Ω
is the transition function, α ∈ Ω is the initial state and F ⊆ Ω is the set
of final states (accepting states). The language of an automaton A is denoted
Language(A). The number of occurrences of σ in a word w is denoted by |w|σ .
Throughout the paper, the automata always share the same alphabet and we
denote its size |Σ| by s.

The transition monoid M(A) of an automaton A is the monoid 〈{Tσ : σ ∈
Σ}〉 where Tσ(γ) = δ(γ, σ). For w = w1 · · ·w�, Tw = Tw�

◦· · ·◦Tw1 . When M(A)
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is a group, and thus a permutation group on Ω, every letter σ ∈ Σ has an order
ord(σ) that may be defined by the order of Tσ in M(A). However, we prefer
considering the automaton A′ obtained from removing the states not accessible
from the initial state of A. Therefore, we define ord(σ) as the order of Tσ in the
transitive permutation group M(A′). For an automaton A, we say that A is an
(abelian) group automaton if its transition monoid is an (abelian) group.

An abelian group automaton A will be said to be a tight abelian group automa-
ton if {v ∈ Zord(σ1) × · · · × Zord(σs) : σv1

1 · · ·σvs
s ∈ Language(A)} contains only

one element. We note that when Σ = {a}, the automata are directed cycles of
size ord(a), and thus accept only one word of size less than ord(a). Another fam-
ily fulfilling this criterion is the set of automata obtained by taking the cartesian
product of unary automata working on distinct letters.

Automata are encoded by their transition monoid. We assume any reasonable
encoding of monoids, described in terms of their generators, that allows basic
operations like composing two transformations and determining the image of a
point under a transformation in AC0. We use the notation ≤m

log for log-space

many-one reductions and ≤T
NC1 for NC1 Turing reductions. Equivalences are

defined analogously and denoted by ≡. See [MC87] for more details.
A function f is in GapL iff f is logspace many-one reducible to comput-

ing the integer determinant of a matrix [ABO99]. A language S is in ModkL
[BDHM92] iff there exists f ∈ #L such that x ∈ S ⇔ f(x) 	≡ 0 (mod k). A
language S is in ModL [AV10] iff there exists f ∈ GapL, g ∈ FL such that
for all strings x, g(x) = 0p

e

for some prime p and e ∈ N, and x ∈ S ⇔
f(x) ≡ 0 (mod |g(x)|). For every prime power pe, ModpeL ⊆ ModL ⊆ NC2,

and FLModL = FLGapL [AV10].
Let p be a prime. A finite group is a p-group iff its order is a power of p. An

abelian group is an abelian elementary p-group iff every non trivial element has
order p. A finite group is nilpotent iff it is the direct product of p-groups.

We use lcm for the least common multiple, gcd for the greatest common
divisor, n for the input length, and Zq for the integers mod q. We say that an
integer q is tiny if its value is smaller than the input length (i.e. |q| ≤ n).

2.2 Problems

We define and list the problems mentioned in this paper for ease of reference.
Here X is any family of finite monoids, such as all commutative monoids, or all
abelian groups, or all groups. In this paper, X will always be a pseudovariety,
i.e., a family of finite monoids closed under finite direct products and under
taking homomorphic images of submonoids; see [BMT92] for an argument that
such families are a rich and natural choice.

PSb(X) (Point-spread problem)

Input : m > 0, g1, . . . , gk : [m] → [m] such that 〈g1, . . . , gk〉 ∈ X ,
and S1, . . . , Sm ⊆ [m], such that |Si| ≤ b or |Si| = m for
every i ∈ [m].

Question: ∃g ∈ 〈g1, . . . , gk〉 such that ig ∈ Si for every i ∈ [m]?
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AutoIntb(X) (Automata nonemptiness intersection problem)

Input : finite automata A1, . . . , Ak on a common alphabet Σ, such
that M(Ai) ∈ X and Ai has at most b final states for every
i ∈ [k].

Question: ∃w ∈ Σ∗ accepted by Ai for every i ∈ [k]?

Memb(X) (Membership problem)

Input : m > 0, g1, . . . , gk : [m] → [m] such that 〈g1, . . . , gk〉 ∈ X ,
and g : [m] → [m].

Question: g ∈ 〈g1, . . . , gk〉?
PT(X) (Pointset transporter)

Input : m > 0, g1, . . . , gk : [m] → [m] such that 〈g1, . . . , gk〉 ∈ X ,
and b1, . . . , br ∈ [m] for some r ≤ m.

Question: ∃g ∈ 〈g1, . . . , gk〉 such that ig = bi for every i ∈ [r]?

ST(X) (Set transporter)

Input : m > 0, g1, . . . , gk : [m] → [m] such that 〈g1, . . . , gk〉 ∈ X ,
r ≤ m and B ⊆ [m].

Question: ∃g ∈ 〈g1, . . . , gk〉 such that {1g, 2g, . . . , rg} ⊆ B?

LCON (Linear congruences)

Input : B ∈ Z
k×l, b ∈ Z

k, and an integer q presented as a list of its
tiny factors pe11 , . . . , perr .

Question: ∃x ∈ Z
l satisfying Bx ≡ b (mod q)?

LCONNULL (Linear congruences “nullspace”)

Input: B ∈ Z
k×l, and an integer q presented as a list of its tiny

factors pe11 , . . . , perr .

Problem: compute a generating set for the Z-module {x ∈ Z
l : Bx ≡

0 (mod q)}.
PS(X) and AutoInt(X) refer to PSb(X) and AutoIntb(X) with no bound placed
on b. Moreover, we refer to b as the number of final states, even in the context
of PS. When the modulus q is fixed to a constant, we use the notation LCONq

and LCONNULLq.
The point-spread problem relates to other problems as follows.

Proposition 2.1. AutoIntb(X) ≡m
NC1 PSb(X) for any finite monoid variety X.

Proof. AutoIntb(X) ≤m
NC1 PSb(X): Let Ω = Ω1 ∪ · · · ∪ Ωk. For each σ ∈ Σ, let

gσ be the transformation action of the letter σ on Ω. For each γ ∈ Ω, let

Sγ =

{
Fi if γ is the initial state of Ai,

Ω if γ is any other state of Ai.
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Let αi be the initial state of Ai, then there is a word w accepted by every
automaton iff αi

gw ∈ Fi for every i ∈ [k] iff gw maps every initial state to a final
state. To complete the reduction, one must notice that |Sγ | is either equal to
|Ω| or bounded by b. Moreover, 〈{gσ : σ ∈ Σ}〉 ∈ X since it is a submonoid of
M(A1)× · · · ×M(Ak).

PSb(X) ≤m
NC1 AutoIntb(X): For every i ∈ [m], let Ai = ([m], {g1, . . . , gk}, δ,

i, Si) where δ : [m] × {g1, . . . , gk} → [m] maps (j, g�) to jg� for every j ∈ [m],
� ∈ [k]. When Si = [m], we do not build any automaton since it would accept
Σ∗. We note that there exists g ∈ 〈g1, . . . , gk〉 such that ig ∈ Si for every i ∈ [m]
iff g is accepted by every automaton. Moreover, every automaton has at most b
final states and M(Ai) ∈ X . ��
Proposition 2.2. Memb(X) ≤m

NC1 PT(X) ≡m
NC1 PS1(X) and ST(X) ≤m

NC1

PS(X).

Proof. We use the same generators for every reduction. For Memb(X) ≤m
NC1

PT(X), we let bi = ig for every i ∈ [m] where g is the given test transformation.
For PT(X) ≤m

NC1 PS1(X), we let Si = {bi} for every i ∈ [r] and Si = [m]
otherwise. For PS1(X) ≤m

NC1 PT(X), if |Si| = 1, we let bi be the unique element
of Si. To be consistent with the definition, the points should be reordered such
that the points transported come first. Finally, for ST(X) ≤m

NC1 PS(X), we let
Si = B for every i ∈ [r], and Si = [m] for every i such that r < i ≤ m. ��
Proposition 2.3. If Memb(X) ∈ NP (PSPACE) then PS(X) ∈ NP (PSPACE).

Proof. We guess a transformation g such that ig ∈ Si for i ∈ [m]. From there,
we execute the NP (PSPACE) machine for Memb(X) to test whether g ∈
〈g1, . . . , gk〉. For the PSPACE result, we use PSPACE = NPSPACE [Sav70]. ��

3 Groups and Abelian Groups

In this section we consider groups. We first record that PS1(Groups) ∈ NC,
owing to a slick parallel reduction [Luk90, p. 27] from PT(X) to the problem of
computing pointwise stabilizers, also known [BLS87] to be in NC. It follows that
PS(Groups) is in NP by Propositions 2.2 and 2.3, and complete for NP by the
forthcoming Theorem 3.12.

Proposition 3.1. PS1(Groups) ∈ NC and PS(Groups) is NP-complete.

We have been unable so far to solve PS2(Groups). It is shown in [LM88] that
PT(Nilpotent groups) ∈ NC, so that PS1(Nilpotent groups) ∈ NC by Proposi-
tion 2.2. This implies that both problems belong to NC for abelian groups.

The rest of our investigation of PS in the group case is devoted to abelian
groups. We first refine the above NC upper bound for PS1(Abelian groups) to
NC3, namely the same complexity as Memb(Abelian groups). To achieve this,
we show that AutoInt1(Abelian groups) ≤ LCONNULL. Such a reduction can be
extracted from [MC87]. However, we sketch a direct reduction, not considered
explicitly in [MC87], here:
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Proposition 3.2 ([MC87]). AutoInt1(Abelian groups) ≤T
NC1 LCONNULL.

Proof. Let σ ∈ Σ and ordi(σ) be the order of σ in Ai. Let Φi = {v ∈ Z
s
qi :

Tσ
v1
1 ···σvs

s
(αi) = αi} where qi = lcm(ordi(σ1), . . . , ordi(σs)) and αi is the initial

state of Ai. Let Bi be the matrix such that each line is a vector from a generating
set for Φ⊥

i = {v ∈ Z
s
qi : ∀u ∈ Φi, u·v = 0}, which may be obtained by computing

a generating set for Φi and then calling an oracle for LCONNULL. A generating
set for Φi may be computed in logarithmic space because checking the existence
of a word w ∈ Σ∗ accepted by an abelian group automaton such that |w|σi = ci
for every 1 ≤ i ≤ k can be done by testing accessiblity in an undirected graph.
Let βi be the final state of Ai, and bi = Bixi where xi = (|wi|σ1 mod qi, . . . ,
|wi|σs mod qi) for any word wi such that Twi(αi) = βi. Then, there is a word
accepted by every automaton iff this instance of LCON is feasible:

⎛
⎜⎝
B1 q1 · · · 0
...

...
. . .

...
Bk 0 · · · qk

⎞
⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

x1

...
xs

y1
...
yk

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

≡

⎛
⎜⎝
b1
...
bk

⎞
⎟⎠ (mod lcm(q1, . . . , qk)) .

��
Since LCONNULL ∈ NC3 [MC87] and LCONNULL ∈ FLModL/poly [AV10], we
obtain the following corollaries.

Corollary 3.3. AutoInt1(Abelian groups) is in NC3 and FLModL/poly.

By Proposition 2.2, Memb(Abelian groups) ≤m
NC1 AutoInt1(Abelian groups).

Since Memb(Abelian groups) ∈ NC3 [MC87], we obtain a rather tight bound.
We now restrict our abelian groups to elementary abelian p-groups. This al-

lows a characterization of the complexity class ModpL (denoted ⊕L when p = 2)
by the intersection problem, and thus in terms of automata.

Theorem 3.4. AutoInt1(Elementary abelian p-groups) is ModpL-complete.

Proof (sketch). In an elementary abelian p-group, every (nontrivial) element has
order p. Therefore lcm(ordi(σ1), . . . , ordi(σs)) = p (or 1). Thus, the reduction
from Proposition 3.2 may be converted to a log-space computable reduction to
LCONNULLp without any significant modification. A log-space reduction from
LCONp is also easily obtained by mapping each equation to an automaton. Since
LCONp and LCONNULLp are both ModpL-complete [BDHM92], and ModpL =

ModpL
ModpL (FModpL = FLModpL) [HRV00], we obtain the desired result. ��

We now give the first result of this paper concerning the intersection problem
with each automaton having two final states. When the transition monoids are
restricted to elementary abelian 2-groups, we are able to reduce AutoInt2 to
LCON2. Therefore, in this case, the problem with two final states per automaton
is not harder than with one final state.
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Theorem 3.5. AutoInt2(Elementary abelian 2-groups) is ⊕L-complete.

Proof (sketch). We give a reduction to LCONNULL2. By following the proof of
Proposition 3.2, we can derive a system of linear congruences (Bix ≡ bi (mod 2))
∨ (Bix ≡ b′i (mod 2)) for every i ∈ [k], feasible if and only if there is a word
accepted by every automaton. The ∨-clauses are removed by introducing addi-
tional variables. More formally, we build Bix ≡ zibi + z′ib

′
i (mod 2) for every

i ∈ [k] with constraints zi + z′i ≡ 1 (mod 2) forcing the selection of either bi or
b′i. ��

We may now study the case where Σ consists of a single letter a. Instead of
directly considering unary automata, we study the more general case of tight
abelian group automata. Before proceeding, we note that the intersection prob-
lem over unary languages in general is not harder. Indeed, an automaton over a
singleton alphabet consists of a tail and a cycle. Words accepted by the tail of an
automaton may be tested first on the whole collection. If none is accepted, the
associated final states are removed and an equivalent cyclic automaton is built.

We first consider a generalization of AutoInt, denoted AutoInt(∪k′
), that con-

sists of determining whether ∩k
i=1∪k′

j=1Language(Ai,j) 	= ∅. We examine the case

of AutoInt1(∪2) that generalizes AutoInt2, and show it is NL-complete for unary
and tight abelian group automata.

We will use the following generalization of the Chinese remainder theorem:

Lemma 3.6. [Knu81, see p. 277 ex. 3] Let a1, . . . , ak ∈ N and q1, . . . , qk ∈
N. There exists x ∈ N such that x ≡ ai (mod qi) for every i ∈ [k] iff ai ≡
aj (mod gcd(qi, qj)) for every i, j ∈ [k].

Theorem 3.7. AutoInt1(
⋃2 Tight abelian group automata) ≤m

log 2–SAT.

Proof. Let A[i, 0] and A[i, 1] be the two automata of the ith ∪-clause. Let v[i, x]
be the unique vector of V [i, x] = {v ∈ Zordi,x(σ1)×· · ·×Zordi,x(σs) : σv1

1 · · ·σvs
s ∈

Language(A[i, x])} which is computable in log-space. We first note that A[i, x]
accepts exactly words w ∈ Σ∗ such that |w|σj ≡ v[i, x]j (mod ordi,x(σj)) for
every j ∈ [s], by definition of V [i, x]. Therefore, distinct letters are independent
and we may find a word accepted by every automaton by verifying restrictions
locally on σ1, . . . , σs. Thus, we have the following equivalences:

∃w such that w ∈
k⋂

i=1

1⋃
x=0

Language(A[i, x])

⇔ ∃w ∃x ∈ {0, 1}k such that w ∈
k⋂

i=1

Language(A[i, xi])

⇔ ∃w ∃x ∈ {0, 1}k such that
k∧

i=1

s∧
j=1

|w|σj ≡ v[i, xi]j (mod ordi,xi(σj))
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⇔ ∃w ∃x ∈ {0, 1}k such that

s∧
j=1

(
k∧

i=1

|w|σj ≡ v[i, xi]j (mod ordi,xi(σj))

)

⇔ ∃x ∈ {0, 1}k such that

s∧
j=1

(
k∧

i=1

k∧
i′=1

Ci,i′,j(x)

)
,

where Ci,i′,j(x) =
(
v[i, xi]j ≡ v[i′, xi′ ]j (mod gcd(ordi,xi(σj), ordi′,xi′ (σj)))

)
.

The last equivalence is a consequence of Lemma 3.6. Therefore, there is a
word accepted by every automaton iff this last Boolean expression is satisfiable.
For every i, i′ ∈ [k], j ∈ [s], the truth table of Ci,i′,j may be computed by
evaluating the four congruences. Since Ci,i′,j depends only on two variables, it
is always possible to obtain a 2-CNF expression. Moreover, the congruences are
computable in logarithmic space since the numbers implied are tiny. ��
Theorem 3.8. 2–SAT ≤m

log AutoInt1(
⋃2 Abelian groups with |Σ| = 1).

Proof. Let C(x) be the Boolean expression
∧k

i=1 Ci(x) over x1, . . . , xm where
Ci(x) = (xri ⊕ bi) ∨ (xti ⊕ b′i) and bi, b

′
i ∈ {0, 1} indicate whether negation must

be taken or not.
It is possible to represent an assignment with an integer, assuming it is con-

gruent to 0 or 1 mod the m first primes p1, . . . , pm. The remainder of such an
integer mod pi represents the value of the ith variable. Let

Ej = {w ∈ {a}∗ : |w| ≡ 0 (mod pj) ∨ |w| ≡ 1 (mod pj)} ,
Xi = {w ∈ {a}∗ : |w| ≡ ¬bi (mod pri) ∨ |w| ≡ ¬b′i (mod pti)} .

The language E1 ∩ · · · ∩ Em represents valid assignments and Xi represents
assignments satisfying Ci (but may contain invalid assignments, i.e. not congru-
ent to 0 or 1). The language Ej (resp. Xi) is recognized by the union of two
cyclic automata of size pj (resp. size pri and pti). It remains to point out that
(E1 ∩ · · · ∩ Em) ∩ (X1 ∩ · · · ∩Xk) 	= ∅ iff C is satisfiable. ��
Corollary 3.9. AutoInt1(

⋃2
Tight abelian group automata) and AutoInt1(

⋃2

Abelian groups with |Σ| = 1) are NL-complete.

Recall, that 2–⊕SAT is defined similarly to 2–SAT but with ⊕ operators in-
stead of ∨. It is SL-complete [JLL76] and thus L-complete by SL = L [Rei05].

Theorem 3.10. AutoInt2(Tight abelian group automata) ≤m
log 2–⊕SAT.

Proof. We first note that an automaton with two final states may be replaced
with the union of two copies of the same automaton, each having one final state.
Thus, we may use the proof of Theorem 3.7. However, it remains to show that
it is possible to build an expression in 2-⊕CNF (instead of 2-CNF).

To achieve this, we first note that each letter σj has the same order in A[i, 0]
and A[i, 1] (according to Theorem 3.7 notation). We denote this common or-
der by ordi(σj). Therefore, there is a word accepted by every automaton iff∧s

j=1

∧k
i=1

∧k
i′=1 Ci,i′,j(x) is satisfiable, where

Ci,i′,j(x) = (v[i, xi]j ≡ v[i′, xi′ ]j (mod gcd(ordi(σj), ordi′(σj)))) .
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The truth table of Ci,i′,j may be computed as before by evaluating the four
congruences. However, in this case, the modulus is independent of x. Thus, it
can be shown that if three of these congruences are true, then all four are.
Therefore, Ci,i′,j can be written solely with the operators ⊕ and ∧. ��
Corollary 3.11. AutoInt2(Tight abelian group automata) and AutoInt2(Abelian
groups with |Σ| = 1) are L-complete.

To complete the classification of the intersection problem over unary languages,
we argue that it is NP-complete for three final states. A reduction fromMonotone
1–in–3 3–SAT [GJ79] may be obtained in a similar fashion to Theorem 3.8. For
each clause (x1 ∨ x2 ∨ x3) we build an automaton with p1p2p3 states (and three
final states) accepting words w ∈ {a}∗ such that

(|w| mod p1, |w| mod p2, |w| mod p3) ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1)}.
Theorem 3.12. AutoInt3(Tight abelian group automata) and AutoInt3(Abelian
groups with |Σ| = 1) are NP-complete.

4 Some Observations on Commutative Monoids

Here we briefly examine the PS problem for monoids (instead of groups). Re-
call that a monoid is idempotent iff x2 = x holds for every element x. We
first notice that both PS(Idempotent monoids) and PS(Commutative monoids)
are NP-complete. This follows from Propositions 2.2 and 2.3, since their Memb
counterparts are NP-complete [Bea88a, Bea88b, BMT92].

Proposition 4.1 ([Bea88a, Bea88b, BMT92]). PS(Idempotent monoids) and
PS(Commutative monoids) are NP-complete, even for one final state.

The point-spread problem becomes efficiently solvable when restricted to the
variety J1 of idempotent commutative monoids.

Theorem 4.2. PS1(J1) ∈ AC0.

Proof. We use the technique of [BMT92], for solving Memb(J1), based on the
so-called maximal alphabet of a transformation. However, we have to be careful
since we are dealing with a partially defined transformation. LetG = {g1, . . . , gk}
and let bi be the unique element of Si. Let A = {g ∈ G : bi

g = bi ∀i ∈ [r]} and
a =

∏
g∈A g. Suppose there exists f ∈ 〈G〉 such that if = bi for every i ∈ [r].

We first notice that iaf = if for every i ∈ [r]. Indeed, iaf = ifa = bai = bi = if .

Moreover, we have hj ∈ A for any hj appearing in f = h1 · · ·hl, since b
hj

i =
ifhj = if = bi for every i ∈ [r]. Thus, iaf = ia(h1···hl) = ia for every i ∈ [r].
Therefore ia = iaf = if = bi for every i ∈ [r]. We conclude that there exists
f ∈ 〈G〉 such that if = bi for every i ∈ [r] iff ia = bi for every i ∈ [r]. This last
test can be carried out easily. ��
We note that the complexity of PS(J1) rises at least to L for two final states.
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Proposition 4.3. PS2(J1) is hard for L.

Proof. We give a reduction from 2–⊕SAT. For a clause (x1 ⊕ x2), we build
an automaton with four states (and two final states) accepting the language
(Σ \ {x1, x2})∗(x1x

∗
1 + x2x

∗
2)(Σ \ {x1, x2})∗. For a clause (x1 ⊕ x2 ⊕ 1), we build

the automaton accepting the complement of the previous language. ��
Unfortunately, we were not able to show PS2(J1) ∈ L, even though it appears to
be a reasonable claim. The previous hardness proof yields very specific automata,
more exactly they have four states and at most one transition between any two
distinct states. Only with such an outrageous restriction are we currently able
to show a log-space upper bound.

For the sake of completeness, we note that the problem is NP-complete for
three final states, as proved in [Bea88b].

Proposition 4.4 ([Bea88b]). PS3(J1) is NP-complete.

5 Conclusion and Further Work

The question marks in Table 1 and the lack of upper bound in Proposition 4.3
indicate that further work is needed to properly locate the complexity of the
point-spread problem for two final states. Judging from our results for unary
languages and elementary abelian 2-groups, we might suspect PS2 and AutoInt2
to remain efficiently solvable for abelian permutation groups and for idempotent
commutative monoids. However, our current proof for elementary abelian 2-
groups cannot be extended. We suspect that PS2(Elementary abelian p-groups)
is harder for p > 2 than for p = 2.

It would be interesting to answer such questions since PS2(Abelian groups)
is equivalent to testing feasibility of linear congruences of the type (B1x ≡
b1 (mod q1) ∨ B1x ≡ b′1 (mod q1)) ∧ · · · ∧ (Bkx ≡ bk (mod qk) ∨ Bkx ≡
b′k (mod qk)). The variant of AutoInt1, with two automata per ∪-clause, yields
similar linear congruences, but with Bi and qi differing in each ∨-clause. There-
fore, exploring AutoInt2 and AutoInt2(∪2) appears to be a fruitful line of research
to obtain interesting variants of PS efficiently solvable.

Finally, PS1(Solvable groups) ∈ NC using [Luk90, p. 27] and [BLS87]. But
what about PS2(Solvable groups) and PS2(Groups)? An NC toolkit is available,
but are the tools sufficient?
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