
THE COMPLEXITY OF

INTERSECTING FINITE

AUTOMATA HAVING

FEW FINAL STATES

Michael Blondin, Andreas Krebs,

and Pierre McKenzie

Abstract. The problem of determining whether several finite automata
accept a word in common is closely related to the well-studied member-
ship problem in transformation monoids. We raise the issue of limiting
the number of final states in the automata intersection problem. For
automata with two final states, we show the problem to be ⊕L-complete
or NP-complete according to whether a nontrivial monoid other than a
direct product of cyclic groups of order 2 is allowed in the automata.
We further consider idempotent commutative automata and (abelian,
mainly) group automata with one, two or three final states over a sin-
gleton or larger alphabet, elucidating (under the usual hypotheses on
complexity classes) the complexity of the intersection nonemptiness and
related problems in each case.

Keywords. Finite automata, intersection problem, monoids, logspace,
NP-complete, point spread problem.

Subject classification. 68Q15, 68Q25, 68Q17, 03D15, 68Q70.

1. Introduction

Let [m] denote {1, 2, ...,m} and let PS be the point-spread problem
for transformation monoids, which we define as follows:

Input: m > 0, g1, g2, . . . , gk : [m] → [m] and
S1, S2, . . . , Sm ⊆ [m].

Question: ∃g ∈ 〈g1, g2, . . . , gk〉 such that ig ∈ Si
for every i ∈ [m]?

2 Blondin, Krebs & McKenzie

Here 〈g1, g2, . . . , gk〉 denotes the monoid obtained by closing the
set {idm, g1, g2, . . . , gk} under function composition and ig denotes
the image of i under g.

The PS problem generalizes many problems found in the lit-
erature. For example, it generalizes the (transformation monoid)
membership problem (Kozen 1977), Memb, defined as follows:

Input : m > 0, g1, g2, . . . , gk, g : [m]→ [m].
Question: g ∈ 〈g1, g2, . . . , gk〉?

As we point out in Section 2.3, it also generalizes the pointset
transporter problem (Luks & McKenzie 1988) and the set trans-
porter problem (Luks & McKenzie 1988). Moreover, it largely
amounts to none other than the finite automata nonemptiness in-
tersection problem, AutoInt, defined as follows:

Input: finite automata A1, A2, . . . , Ak and a
common alphabet Σ.

Question: ∃w ∈ Σ∗ accepted by Ai for every i ∈
[k]?

As we note in Proposition 2.1, PSb, i.e., PS in which each Si is
restricted to have size m or at most b, has the same complexity as
AutoIntb, i.e., AutoInt in which the automata have at most b final
states, and this holds as well when the monoid in the PS instances
and the transition monoids of the automata in the AutoInt instances
are drawn from a fixed monoid variety X. We view PS as mildly
more fundamental because it involves a single monoid.

Memb and AutoInt were shown to be PSPACE-complete by
Kozen (Kozen 1977). Shortly afterwards, the connection with the
graph isomorphism problem led to an in-depth investigation of per-
mutation group problems. In particular, Memb was shown to be-
long to P for groups (Furst et al. 1980), then to NC3 for abelian
groups (McKenzie & Cook 1987; Mulmuley 1987), to NC for nilpo-
tent groups (Luks & McKenzie 1988), solvable groups (Luks &
McKenzie 1988), groups with bounded non-abelian composition
factors (Luks 1986), and finally all groups (Babai et al. 1987). A
similar complexity classification of Memb for group-free (or aperi-
odic) monoids owes to (Beaudry 1988a; Beaudry et al. 1992; Kozen

The Complexity of Intersecting Finite Automata 3

1977), who show that Memb for any fixed aperiodic monoid variety
is either in AC0, in P, in NP, or in PSPACE (and complete for that
class with very few exceptions).

On the other hand, AutoInt has received less attention. This
is (or might be) due to the fact that AutoInt is equivalent to
Memb when both are intractable, but appears harder than Memb
when Memb is efficiently solvable. For example, Beaudry (Beaudry
1988b) shows that AutoInt is NP-complete for abelian groups and
for idempotent commutative monoids. Beaudry points out that
those two cases are examples where AutoInt seems strictly harder
than Memb (whose complexity is NC3 for abelian groups and AC0

for idempotent commutative monoids). Moreover, early results
from (Galil 1976) show that AutoInt is NP-complete even when Σ
is a singleton.

Nevertheless, interesting results concerning AutoInt are known.
For example, the case where k is bounded by a function in the
length of the input to the problem was studied in (Lange & Ross-
manith 1992). When k ≤ g(n), it is proved that the problem
is NSPACE(g(n) log n)-complete under log-space reductions. This
arguably provided the first natural complete problems for
NSPACE(logc n). Moreover, it was proved by Karakostas, Lip-
ton and Viglas that improving the best algorithms known solving
AutoInt for a constant number k of automata to roughly o(nk)
would imply NL 6= P (Karakostas et al. 2003).

More recently, the intersection problem was also studied for
regular expressions without binary + operators (Bala 2002), in-
stead of finite automata. It is shown to be PSPACE-complete for
expressions of star height 2 and NP-complete for star height (at
most) 1. Finally, the parameterized complexity of a variant of the
problem, where Σc is considered instead of Σ∗, was examined in
(Wareham 2001). Different parameterizations of c, k and the size
of the automata yield FPT, NP, W[1], W[2] and W[t] complexities.
More results on AutoInt are surveyed in (Holzer & Kutrib 2011).

1.1. Our Contribution. We propose PS as the right algebraic
formulation of AutoInt. We observe that PS generalizes known
problems and we identify PS variants that are both efficiently solv-
able and interesting. We obtain these variants by restricting the

4 Blondin, Krebs & McKenzie

Table 1.1: Completeness of the point-spread and the automata
intersection problems for abelian groups.

Max size b of Si ; max # of final states

1 2 3 or more

Single generator; |Σ| = 1 L L NP
Elementary 2-groups ⊕L ⊕L NP (Beaudry 1988b)
Elementary p-groups ModpL NP NP (Beaudry 1988b)
All abelian groups ∈ NC3,∈ FLModL/poly NP NP (Beaudry 1988b)

transition monoids of the automata or the number of generators
(alphabet size), or by limiting the size of the Si s (number of final
states) to less than 3.

We then mainly investigate monoids that are abelian groups,
but we also consider groups, commutative monoids and idempo-
tent monoids. In the case of abelian groups, we need to revisit
the equivalences with AGM (abelian permutation group member-
ship) and LCON (feasibility of linear congruences with tiny moduli)
(McKenzie & Cook 1987), which have further been investigated
recently in the context of log-space counting classes (Arvind & Vi-
jayaraghavan 2010). Focussing on the cases involving one or two
final states complements Beaudry’s hardness proofs for the inter-
section problem (Beaudry 1988b), which require at least three final
states. Table 1.1 summarizes our classification of the complexities
of PS(Abelian groups), or equivalently AutoInt for automata whose
transformation monoids are abelian groups. Table 1.2 summarizes
our classification for other pseudovarities of monoids.

In the case of the intersection problem, we show that the first
line in Table 1.1 in fact applies as well to nongroup automata over
Σ = {a}, and to a class of abelian group automata which we will
call tight abelian group automata. To the best of our knowledge, Ta-
ble 1.1 yields the first efficiently solvable variants of AutoInt. More-
over, it provides characterizations of ModpL and thus allows the
study of (some) log-space counting classes in terms of automata.

For nonabelian groups and monoids in general, essentially draw-
ing from the literature yields

The Complexity of Intersecting Finite Automata 5

Table 1.2: Completeness of the point-spread and the automata
intersection problems for monoids.

Max size b of Si ; max # of final states

1 2 3 or more

Idempotent commutative ∈ AC0 NP NP (Beaudry 1988b)
Groups ∈ NC (Luks 1990) NP NP
Commutative NP (Beaudry et al. 1992) NP (Beaudry et al. 1992) NP (Beaudry et al. 1992)
Idempotent NP (Beaudry et al. 1992) NP (Beaudry et al. 1992) NP (Beaudry et al. 1992)
Aperiodic NP (Beaudry et al. 1992) NP NP (Beaudry et al. 1992)
All monoids PSPACE (Kozen 1977) PSPACE (Kozen 1977) PSPACE (Kozen 1977)

◦ AutoInt(Groups) is NP-complete (see Proposition 3.2)

◦ AutoInt1(Groups) ∈ NC (see Proposition 3.2)

◦ AutoInt1(Idempotent and commutative monoids) ∈ AC0 (see
Theorem 4.2).

More strikingly, the two NP-complete entries in the middle column
of Table 1.1 follow from a more general result proved here as The-
orem 3.15: if X is any monoid pseudovariety not contained in the
2-elementary abelian groups, then AutoInt2(X) is NP-hard. This
implies that

◦ AutoInt2(X) is NP-complete for any non-group pseudovariety
X, hence

◦ AutoInt2(Idempotent and commutative monoids) is NP-com-
plete.

Finally, we introduce a generalization of AutoInt by adding
∪-clauses. More formally, the problem is to determine whether
∩ki=1 ∪mj=1 L(Ai,j) 6= ∅. When m = 2 and each automaton possesses
one final state, this generalizes the original version of the problem
with two final states. As summarized in Table 1.3, we are able
to show this variant to be NL-complete for unary languages, and
NP-complete in many other cases.

Section 2 presents our notation, defines the relevant problems
and relates PS and AutoInt to some algebraic problems. Section
3 is devoted to the analysis of the complexity of PS and AutoInt

6 Blondin, Krebs & McKenzie

Table 1.3: Completeness of the generalized automata intersection
problems for monoids.

Max # of final states, m of automata per ∪-clause

1 final state, m = 2 1 or more final states, m ≥ 3

Single generator ; |Σ| = 1 NL NP
Elementary abelian p-groups NP NP
Groups NP NP
Idempotent commutative NP NP
Aperiodic NP (Beaudry et al. 1992) NP (Beaudry et al. 1992)
All monoids PSPACE (Kozen 1977) PSPACE (Kozen 1977)

for abelian group automata subject to multiple restrictions. A
short Section 4 contains observations about the complexity of PS
and AutoInt in commutative and idempotent monoids. Section 5
concludes and mentions open problems.

2. Preliminaries

2.1. Complexity Theory. We assume familiarity with L =
DSPACE(log n) ⊆ NL = NSPACE(log n) ⊆ P ⊆ NP ⊆ PSPACE.
The class NCk (resp. ACk) is the set of languages accepted by
families of bounded (resp. unbounded) fan-in Boolean circuits of
polynomial size and depth O(logk n). Then NC = ∪kNCk. Here
the circuit families defining AC0 and NCk are taken respectively
to be DLOGTIME-uniform (Barrington et al. 1990) and logspace-
uniform ((Borodin 1977), see (Vollmer 1999) for an extensive treat-
ment of uniformity).

FL is the set of functions computable by deterministic logspace
Turing machines. A function f : Σ∗ → N is in #L if there is a
logspace nondeterministic Turing machine such that for every input
x the number of accepting paths equals f(x). A function f : Σ∗ →
Z is in GapL if f is log-space many-one reducible to computing
the determinant of an integer matrix (Allender & Ogihara 1996).
A language S is in ModkL (Buntrock et al. 1992) if there exists
f ∈ #L such that x ∈ S ⇔ f(x) 6≡ 0 (mod k). A language S
is in ModL (Arvind & Vijayaraghavan 2010) if there exists f ∈

The Complexity of Intersecting Finite Automata 7

GapL, g ∈ FL such that for all strings x, g(x) = 0p
e

for some prime
p and e ∈ N, and x ∈ S ⇔ f(x) ≡ 0 (mod |g(x)|). For every prime
power pe, ModpeL ⊆ ModL ⊆ NC2, and FLModL = FLGapL (Arvind
& Vijayaraghavan 2010).

We use the notation ≤m (resp. ≤T) for many-one (resp. Tur-
ing) reductions. We use ≤log for log-space reductions, ≤NC1 for
logspace-uniform NC1 reductions and ≤AC0 for DLOGTIME-uni-
form AC0 reductions. Equivalences are defined analogously and
denoted by ≡. In the case of ≤T

NC1 , we follow (McKenzie & Cook
1987) by saying that A ≤T

NC1B if by making use of special gates
deciding B, A can be decided by a uniform family of circuits in
which the nth circuit has depth O(log n) and has size n (where an
oracle gate g is considered to have size equal to one and depth
equal to log(1 + (# of inputs to g))). As noted in (McKenzie &
Cook 1987), if A ≤T

NC1B and B ∈ NCk then A ∈ NCk.

2.2. Basic Definitions and Notation. An automaton refers
to a deterministic complete finite automaton. Formally, it is a
tuple (Ω,Σ, δ, α, F) where Ω is the set of states, Σ is an alphabet,
δ : Ω × Σ → Ω is the transition function, α ∈ Ω is the initial
state and F ⊆ Ω is the set of final states (accepting states). The
language of an automaton A is denoted L(A). The number of
occurrences of σ in a word w is denoted by |w|σ. Throughout the
paper, the automata defining a problem instance always share an
alphabet Σ and we denote its size |Σ| by s.

A monoid is simply a set equipped with an associative binary
operation and containing an identity element under that operation.
The transition monoid M(A) of an automaton A is the monoid
〈{Tσ : σ ∈ Σ}〉 formed by closing the set {1}∪{Tσ : σ ∈ Σ} under
function composition, where 1 is the identity transformation and
Tσ(γ) = δ(γ, σ). For w = w1w2 · · ·w`, Tw = Tw` ◦ · · · ◦ Tw2 ◦ Tw1 so
for example Tσ1σ2(γ) = Tσ2(Tσ1(γ)). A group is a monoid in which
every element g has an inverse g−1 such that g ◦ g−1 = g−1 ◦ g = 1.
WhenM(A) is a group, and thus a permutation group on Ω, every
letter σ ∈ Σ has an order ord(σ) that may be defined as the order
of Tσ in M(A), i.e., as the least i such that Tσi = 1. However,
we prefer considering the automaton A′ obtained from removing
the states not accessible from the initial state of A. Then M(A′)

8 Blondin, Krebs & McKenzie

is transitive on A′, and we define ord(σ) as the order of Tσ in the
transitive permutation groupM(A′). For an automaton A, we say
that A is an (abelian) group automaton if its transition monoid is
an (abelian) group.

An abelian group automaton A will be said to be a tight abelian
group automaton if

{v ∈ Zord(σ1) × Zord(σ2) × · · · × Zord(σs) : Tσv11 σ
v2
2 ···σ

vs
s

(α) = β}

contains only one element for the initial state α and each final state
β. We note that when Σ = {a}, such automata are directed cycles
of size ord(a), and thus each final state accepts only one word of
size less than ord(a). Another family fulfilling this criterion is the
set of automata obtained by taking the cartesian product of unary
automata working on distinct letters.

Automata are encoded by their transition monoid. We assume
any reasonable encoding of monoids, described in terms of their
generators, that allows basic operations like composing two trans-
formations and determining the image of a point under a transfor-
mation in AC0.

Let p be a prime. A finite group is a p-group if its order is a
power of p. An abelian group is an abelian elementary p-group if
every non trivial element has order p. A finite group is nilpotent if
it is the direct product of p-groups (see, for instance, (Zassenhaus
1999)).

We use lcm for the least common multiple, gcd for the greatest
common divisor, n for the input length, and Zq for the integers
mod q. We say that an integer q is tiny if its value is smaller than
the input length (i.e. |q| ≤ n).

2.3. Finite Monoids and Complexity. We will need very lit-
tle monoid theory beyond standard linear algebra, but this section
is included for completeness and added context.

The universal algebra notion of a variety of monoids becomes
that of a pseudovariety when only finite monoids are studied (Pin
1986): a pseudovariety of finite monoids is any set of finite monoids
closed under taking homomorphisms, taking submonoids and form-
ing finite direct products. A pseudovariety of finite monoids is the

The Complexity of Intersecting Finite Automata 9

epitome of a “natural” class: abelian groups, nilpotent groups,
solvable groups, all groups, aperiodic monoids (a.k.a. group-free
monoids, i.e., those having no nontrivial group as a subset) and
any set of monoids whose elements verify a fixed set of identities
are pseudovarieties.

In the 1960’s and 1970’s, pseudovarieties of monoids came into
prominence in the study of regular languages, whose combinato-
rial properties are tied to the algebraic properties of the transition
monoid of their minimal automata. Celebrated results include the
characterization of star-free regular languages as those having an
aperiodic such monoid (Schützenberger 1965). The theory led to a
rather complete understanding of regular languages “recognized”
by monoids drawn from any pseudovariety that excludes nonsolv-
able groups (Pin 1986).

In the 1980’s, Barrington and Thérien (Barrington 1989; Bar-
rington & Thérien 1988) observed that extending the notion of
“recognition” to that of “program-recognition” allows lifting the
above theory to the level of NC1. In the new theory, any pseu-
dovariety that contains a nonsolvable group captures NC1, while
the internal structure of NC1 hinges on the subtle behavior of the
remaining pseudovarieties (see (Straubing 1994), leading to Conjec-
ture IX.3.4, whose validity would settle the major open questions
about ACC0 circuits, i.e., AC0 with MODq gates).

Further applications of the theory of finite monoids include
proofs of decidability for certain temporal logics (Thérien & Wilke
1998), contributions to our understanding of uniform circuit com-
plexity (Barrington et al. 1990; Behle & Lange 2006), links to mod-
els of communication complexity (Tesson & Thérien 2005) and,
for example, a characterization of the regular languages (with a
so-called neutral letter) whose membership can be determined by
ACC0 circuits having a linear number of wires (Koucký et al. 2005).
For a survey of the issues discussed in the present paragraph, see
(Tesson & Thérien 2007).

Problems involving finite monoids were studied for their own
sake as well, as evidenced from the many results quoted in our
introduction section. In particular, we point out the extent to
which the membership problem in varieties of aperiodic monoids

10 Blondin, Krebs & McKenzie

captures complexity classes within PSPACE (Beaudry et al. 1992;
Kozen 1977).

Let Cq for q ≥ 2 denote the cyclic group with q elements. Let
p be prime. The following are well known:

◦ the elementary abelian p-groups, i.e., the class of finite direct
products of Cp, form a pseudovariety,

◦ the class J1 of commutative and idempotent monoids, i.e.,
in which every two elements x and y satisfy xy = yx and
xx = x, forms a pseudovariety,

◦ if a pseudovariety X is not contained in the least pseudova-
riety containing C2, then X either contains a Cq for q > 2 or
an aperiodic monoid.

2.4. Problems. We define and list the problems mentioned in
this paper for ease of reference. Here X is any pseudovariety of
finite monoids.

• PSb(X) (Point-spread problem)

Input : m > 0, g1, g2, . . . , gk : [m]→ [m] such that
〈g1, g2, . . . , gk〉 ∈ X, and S1, S2, . . . , Sm ⊆
[m], such that |Si| ≤ b or |Si| = m for
every i ∈ [m].

Question: ∃g ∈ 〈g1, g2, . . . , gk〉 such that ig ∈ Si for
every i ∈ [m]?

• AutoIntb(X) (Automata nonemptiness intersection problem)

Input : finite automata A1, A2, . . . , Ak and a com-
mon alphabet Σ, such that M(Ai) ∈ X
and Ai has at most b final states for every
i ∈ [k].

Question: ∃w ∈ Σ∗ accepted by Ai for every i ∈ [k]?

• AutoIntb(
⋃mX) (Generalized automata nonemptiness inter-

section problem)

The Complexity of Intersecting Finite Automata 11

Input : finite automata A1,1, A1,2, . . . , Ak,m and a
common alphabet Σ, such thatM(Ai,j) ∈
X and Ai,j has at most b final states for
every i ∈ [k], j ∈ [m].

Question: ∃w ∈ Σ∗ such that w ∈
⋂k
i=1

⋃m
j=1 L(Ai,j)?

• Memb(X) (Membership problem)

Input : m > 0, g1, g2, . . . , gk : [m]→ [m] such that
〈g1, g2, . . . , gk〉 ∈ X, and g : [m]→ [m].

Question: g ∈ 〈g1, g2, . . . , gk〉?

• PT(X) (Pointset transporter)

Input : m > 0, g1, g2, . . . , gk : [m]→ [m] such that
〈g1, g2, . . . , gk〉 ∈ X, {ι1, ι2, . . . , ιr} ⊆ [m],
and b1, b2, . . . , br ∈ [m] for some r ≤ m.

Question: ∃g ∈ 〈g1, g2, . . . , gk〉 such that ιi
g = bi for

every i ∈ [r]?

• ST(X) (Set transporter)

Input : m > 0, g1, g2, . . . , gk : [m]→ [m] such that
〈g1, g2, . . . , gk〉 ∈ X, r ≤ m and B ⊆ [m].

Question: ∃g ∈ 〈g1, g2, . . . , gk〉 such that
{1g, 2g, . . . , rg} ⊆ B?

• LCON (Linear congruences)

Input : B ∈ Zk×l, b ∈ Zk, and an integer q pre-
sented by its factorization pe11 , p

e2
2 , . . . , p

er
r

such that for every i ∈ [r] the integers pi
and ei are tiny.

Question: ∃x ∈ Zl satisfying Bx ≡ b (mod q)?

• LCONNULL (Linear congruences “nullspace”)

12 Blondin, Krebs & McKenzie

Input: B ∈ Zk×l, and an integer q presented by
its factorization pe11 , p

e2
2 , . . . , p

er
r such that

for every i ∈ [r] the integers pi and ei are
tiny.

Problem: compute a generating set for the Z-module
{x ∈ Zl : Bx ≡ 0 (mod q)}.

PS(X) and AutoInt(X) refer to PSb(X) and AutoIntb(X) with
no bound placed on b.

Moreover, we refer to b as the number of final states, even in
the context of PS. When the modulus q is fixed to a constant, we
use the notation LCONq and LCONNULLq.

The point-spread problem and the automata intersection prob-
lem relate to other problems as follows.

Proposition 2.1. AutoIntb(X) ≡m
AC0 PSb(X) for any finite mo-

noid variety X.

Proof. AutoIntb(X) ≤m
AC0 PSb(X):

Let A1, A2, . . . , Ak be the given automata where Ai = (Ωi,Σ, δi,
αi, Fi) for every i ∈ [k]. Suppose Ωi and Ωj are disjoint for every
i 6= j and let Ω = Ω1 ∪ Ω2 ∪ · · · ∪ Ωk.

For each σ ∈ Σ, let gσ be the transformation action of the letter
σ on Ω. For each γ ∈ Ω, let

Sγ =

{
Fi if γ is the initial state of Ai,

Ω if γ is any other state of Ai.

Let αi be the initial state of Ai, then there is a word w accepted
by every automaton iff αi

gw ∈ Fi for every i ∈ [k] iff gw maps
every initial state to a final state. To complete the reduction,
one must notice that |Sγ| is either equal to |Ω| or bounded by
b. Moreover, 〈{gσ : σ ∈ Σ}〉 ∈ X since it is a submonoid of
M(A1)×M(A2)× · · · ×M(Ak).

PSb(X) ≤m
AC0 AutoIntb(X): For every i ∈ [m], let Ai = ([m],

{g1, g2, . . . , gk}, δ, i, Si) where δ : [m]×{g1, g2, . . . , gk} → [m] maps
(j, g`) to jg` for every j ∈ [m], ` ∈ [k]. When Si = [m], we do not
build any automaton since it would accept Σ∗. If no automata are

The Complexity of Intersecting Finite Automata 13

built, then build a trivial automaton accepting Σ∗. We note that
there exists g ∈ 〈g1, g2, . . . , gk〉 such that ig ∈ Si for every i ∈ [m]
iff g is accepted by every automaton. Moreover, every automaton
has at most b final states and M(Ai) ∈ X. �

Proposition 2.2. Memb(X) ≤m
AC0 PT(X) ≡m

AC0 PS1(X) and
ST(X) ≤m

AC0 PS(X).

Proof. We use the same generators for every reduction. For
Memb(X) ≤m

AC0 PT(X), we let ιi = i and bi = ig for every i ∈ [m]
where g is the given test transformation. For PT(X) ≤m

AC0 PS1(X),
we let Si = {bi} for every i ∈ {ι1, ι2, . . . , ιr} and Si = [m] otherwise.
For PS1(X) ≤m

AC0 PT(X), if |Si| = 1, we let ιi = i and bi be the
unique element of Si. Finally, for ST(X) ≤m

AC0 PS(X), we let
Si = B for every i ∈ [r], and Si = [m] for every i such that
r < i ≤ m. �

Proposition 2.3. If Memb(X) ∈ NP (PSPACE) then PS(X) ∈
NP (PSPACE).

Proof. We guess a transformation g such that ig ∈ Si for i ∈
[m]. From there, we run the NP (PSPACE) machine for Memb(X)
to test whether g ∈ 〈g1, g2, . . . , gk〉. For the PSPACE result, we
use PSPACE = NPSPACE (Savitch 1970). �

Proposition 2.4. AutoIntb(X) ≤m
AC0 AutoIntdb/me(

⋃mX) for ev-
ery b ≥ m > 1.

Proof. Let A1, A2, . . . , Ak be the given automata where Ai =
(Ωi,Σ, δi, αi, Fi) for every i ∈ [k]. For every i ∈ [k], we build
Ai,1, Ai,2, . . . , Ai,m, m copies of Ai. The first m − 1 copies each
keep db/me distinct final states from Ai, and the last automa-
ton keeps the remaining b − (m − 1)db/me final states. Clearly
the union of these m copies accept the language of the original
automaton. Moreover, Ai,j has at most db/me final states and
M(Ai,j) =M(Ai) as the transition monoid is independent of the
final states. �

14 Blondin, Krebs & McKenzie

3. Groups and Abelian Groups

We first recall a slick reduction. Let PointStab(Groups) be the
problem in which, given the same input as in problem PT(Groups),
we must compute a generating set for the pointwise stabilizer of
{b1, b2, . . . , br} in 〈g1, g2, . . . , gk〉, i.e., the subgroup formed of all
h ∈ 〈g1, g2, . . . , gk〉 such that bhi = bi for 1 ≤ i ≤ r.

Proposition 3.1 (Luks 1990). PT(Groups) ≤T
AC0 PointStab(Gr-

oups).

Proof. We sketch the proof (Luks 1990, p. 27) for completeness.
Let g1, g2, . . . , gk be permutations of [m] and b1, b2, . . . , br ∈ [m].
Assuming with no loss of generality that some gi is the identity
permutation, let

G = 〈{(gs, gt) : 1 ≤ s, t ≤ k}〉 ∼= 〈g1, g2, . . . , gk〉 × 〈g1, g2, . . . , gk〉

act on [m] × [m] as (i, j)(gs,gt) = (igs , jgt). Now define x as the
permutation that merely flips each pair (i, j), i.e., (i, j)x = (j, i)
for every (i, j) ∈ [m]× [m]. We claim the following:

Claim: The pointwise stabilizer H of {(1, b1), (2, b2), . . . ,
(r, br)} in

〈{(gs, gt) : 1 ≤ s, t ≤ k} ∪ {x}〉 = 〈G ∪ {x}〉

is not contained in G iff some g ∈ 〈g1, g2, . . . , gk〉 maps i to bi for
1 ≤ i ≤ r.

To prove the claim, we first note that any y ∈ 〈G ∪ {x}〉 can
be expressed as

y = (f1, h1)x(f2, h2) · · ·x(fn, hn)

for fi, hi ∈ 〈g1, g2, . . . , gk〉. Moreover, if y 6∈ G then it must have
an odd number of occurrences of x since for an even number of
occurrences, we have (i, j)y = (if1h2f3···hn , jh1f2h3···fn) and thus y
may be rewritten as an element of G.
⇒) If H 6⊆ G, then there exists y ∈ H such that y 6∈ G. More-

over y = (f1, h1)x(f2, h2) · · ·x(fn, hn) where fi, hi ∈ 〈g1, g2, . . . , gk〉

The Complexity of Intersecting Finite Automata 15

and x appears an odd number of times. Therefore yx ∈ G and
(i, bi)

yx = (i, bi)
x = (bi, i) for 1 ≤ i ≤ r.

⇐) Suppose there exists g ∈ 〈g1, g2, . . . , gk〉 such that ig = bi for
1 ≤ i ≤ r. We have (g, g−1)x ∈ H since (i, bi)

(g,g−1)x = (bi, i)
x =

(i, bi). Moreover, (g, g−1)x 6∈ G since the opposite would imply
that x ∈ G which is impossible.

Given the claim, we compute generators for H by using the
pointwise stabilizer oracle gate, and we detect whether H is larger
than G by testing whether any generator of H flips a pair (i, j) ∈
[m]× [m]. �

By the work of (Babai et al. 1987), which appeals to the mas-
sive classification of finite simple groups, PointStab(Groups) ∈
NC. Combined with Proposition 3.1, Proposition 2.2 and Propo-
sition 2.3, and with the forthcoming Theorem 3.25, this yields:

Proposition 3.2. PS1(Groups) ∈ NC and PS(Groups) is NP-
complete under ≤m

AC0 reducibility.

We will see later that PS2(Groups) is NP-complete. It is shown
in (Luks & McKenzie 1988) that PT(Nilpotent groups) ∈ NC, so
that PS1(Nilpotent groups) ∈ NC by Proposition 2.2. This implies
that both problems belong to NC for abelian groups.

The rest of our investigation of PS in the group case is de-
voted to abelian groups. We first refine the above NC upper
bound for PS1(Abelian groups) to NC3, namely the same complex-
ity as Memb(Abelian groups). To achieve this, we give some defi-
nitions and lemmata to show that AutoInt1(Abelian groups) ≤T

NC1

LCONNULL.

Definition 3.3. Let A = (Ω,Σ, δ, α, F) be an abelian group au-
tomaton. We define Gα = {Tw : w ∈ Σ∗ ∧ Tw(α) = α} the
stabilizer of α, and ΦA as the following set:

ΦA =
{
v ∈ Zsq : Tσv11 σ

v2
2 ···σ

vs
s
∈ Gα

}
,

where q = lcm(ord(σ1), ord(σ2), . . . , ord(σs)) and Σ = {σ1, σ2,
. . . , σs}.

16 Blondin, Krebs & McKenzie

In other words, ΦA is the set of vectors (v1, v2, . . . , vs) ∈ Zsq
such that reading σv11 σ

v2
2 · · ·σvss from the initial state α leads back

to α. Since the language accepted by A is commutative and the
order of each letter divides q, the set ΦA characterizes L(A). The
following is clear.

Proposition 3.4. Let A = (Ω, {σ1, σ2, . . . , σs}, δ, α, F) be an
abelian group automaton, then ΦA is a sub Zq-module of Zsq where
q = lcm(ord(σ1), ord(σ2), . . . , ord(σs)).

Definition 3.5. Let A = (Ω, {σ1, σ2, . . . , σs}, δ, α, F) be an abe-
lian group automaton. Let q = lcm(ord(σ1), ord(σ2) . . . , ord(σs)).
We define the monoid homomorphism φA : Σ∗ → Zsq as:

φA(w) = (|w|σ1 mod q, |w|σ2 mod q, . . . , |w|σs mod q).

This homomorphism is alternatively the Parikh mapping with
each component of the Parikh image taken modulo q for a well
chosen q ∈ N+.

Lemma 3.6. Let A = (Ω, {σ1, σ2, . . . , σs}, δ, α, F) be an abelian
group automaton, β ∈ Ω, 0 ≤ i ≤ s and b1, b2, . . . , bi ∈ N. It is
possible to verify whether there exists a word w ∈ Σ∗ such that
Tw(α) = β and |w|σj = bj for every 1 ≤ j ≤ i in logarithmic space.
Moreover, if such a word exists then it is possible to compute one
in logarithmic space.

Proof. We first note that A may be considered as an undirected
graph. Indeed, since M(A) is a group, traversing an arc labeled
by σ in reverse direction is equivalent to applying T−1σ . Therefore,
for every arc (transition) from γ to γ′ labeled by σ, we add the arc
(γ′, γ) labeled by σ−1. Since M(A) is abelian, we may suppose,
without loss of generality, that σ1, σ2, . . . , σi are read first. Let
α′ = Tw′(α) where w′ = σb11 σ

b2
2 · · ·σ

bi
i . Remove every transition

associated to σ1, σ2, . . . , σi to make sure these letters are not used
again so that we may obtain |w|σj = bj for every 1 ≤ j ≤ i. It now
suffices to find a path from α′ to β in the graph to build a word w
such that Tw(α) = β. Since finding a path in an undirected graph

The Complexity of Intersecting Finite Automata 17

is in FL (Reingold 2005), we can find such a word in logarithmic
space. �

Lemma 3.7. Let A = (Ω, {σ1, σ2, . . . , σs}, δ, α, F) be an abelian
group automaton. A generating set U for ΦA such that |U | ≤
ord(σ1)+ord(σ2)+. . .+ord(σs)+s can be computed in logarithmic
space.

Proof. We give the following algorithm:

1. for i← 1 to |Σ| do
2. for j ← 0 to ord(σi)− 1 do

3. compute w (if any) such that Tw(α) = α,

|w|σr = 0 for every 1 ≤ r < i, and |w|σi = j

4. output φA(w)

5. output v such that vi = ord(σi) and vr = 0 for every r 6= i

We first note that the algorithm computes a set U having at most
ord(σ1) + ord(σ2) + . . .+ ord(σs) + |Σ| vectors and such that U ⊆
ΦA by definition. Moreover, the word w computed at line 3 is
computable in logarithmic space by Lemma 3.6.

We now show that 〈U〉 = ΦA. Let v ∈ ΦA. We prove by
induction on s, that there exists u1, u2, . . . , us ∈ 〈U〉 such that
ui,j = 0 for every 1 ≤ j < i and ui,i = vi −

∑i−1
j=1 uj,i. Before doing

so, we note that this statement implies v = u1 + u2 + . . .+ us, and
thus v ∈ 〈U〉.

We observe that there exists 0 ≤ x < q = lcm(ord(σ1), ord(σ2),
. . . , ord(σs)) such that v1 = (v1 mod ord(σ1)) + x · ord(σ1). Let
u′1 ∈ U be such that u′1,1 = v1 mod ord(σ1), and let u1 = u′1 +
(x · ord(σ1), 0, . . . , 0). Then u1 ∈ 〈U〉 and u1,1 = v1. We notice
that there exists v′ ∈ ΦA such that v′1 = v1 mod ord(σ1), since the
vector obtained by modifying the first component of v by the value
v1 mod ord(σ1) is in ΦA. Therefore, line 4 will necessarily generate
such a vector u′1.

Suppose the hypothesis holds for u1, u2, . . . , ui−1. Let v′ = v −
(u1 + u2 + . . . + ui−1), then v′ ∈ ΦA. Moreover v′j = 0 for every

18 Blondin, Krebs & McKenzie

i ≤ j < i and v′i = vi −
∑i−1

j=1 uj,i. Let u′i ∈ U be such that
u′i,j = 0 for every j < i and u′i,i = v′i mod ord(σi). Let ui =
u′1 + (0, . . . , y · ord(σi), . . . , 0). Therefore ui ∈ 〈U〉 and ui,i = v′i for
some y < q. As stated in the base case, line 4 will generate such a
vector u′i. �

Definition 3.8. Let V be a submodule of Zsq, then

V ⊥ = {u ∈ Zsq : ∀v ∈ V v · u = 0},

where · is the usual dot product (i.e. u · v = (u1v1 + u2v2 + . . . +
usvs) mod q).

We need the following result in the next lemma proof. It can
be obtained with basic character theory of finite abelian groups
and Pontryagin duality. It is known under different names and
notation in the mathematics literature, therefore we prove it for
completeness.

Proposition 3.9. Let V be a submodule of Zsq, then (V ⊥)⊥ = V .

Proof. Let G be a finite abelian group. A character of G is
a homomorphism from G to the multiplicative group C×. Let Ĝ
be the group of characters of G. It is well known that G ∼= Ĝ
since G is a finite abelian group (Luong 2009, p. 52 Corollary

3.1.2). Let
ˆ̂
G be the group of characters of the finite abelian group

Ĝ. Even though we know that G ∼= ˆ̂
G by the previous fact, we

may define a canonical isomorphism betwen G and
ˆ̂
G (as opposed

to the case G ∼= Ĝ). Let κ : G → ˆ̂
G be defined by κ(g) = κg

where κg(χ) = χ(g). Then κ is the so-called natural isomorphism

between G and
ˆ̂
G (Luong 2009, p. 54 ex. 12).

Let H be a subgroup of G. Let H# = {χ ∈ Ĝ : χ(H) = 1} and

(H#)# = {ψ ∈ ˆ̂
G : χ(H#) = 1}. We show the known fact that

H ∼= (H#)# (given as an exercice in (Conrad 2013, p. 12 ex. 13)
for example). Let h ∈ H and χ ∈ H#, then κ(h)(χ) = κh(χ) =
χ(h) = 1 by definition of χ. Therefore κh ∈ (H#)# and κ induces

The Complexity of Intersecting Finite Automata 19

an injective homomorphism from H to (H#)#. It remains to show
that |H| = |(H#)#|. We have

|(H#)#| = | ˆ̂G|/|Ĥ#| (by Ĥ# ∼= ˆ̂
G/(H#)#)

= |G|/|H#| (by G ∼= Ĝ and H# ∼= Ĥ#)

= |G|/|Ĝ/H| (by H# ∼= Ĝ/H)

= |G|/(|G|/|H|) (by G/H ∼= Ĝ/H)
= |H|.

The identities used in the first and third equalities can be found in
(Luong 2009, p. 54 ex. 10) for example.

Let ωq = e(2πi)/q and χu(v) = ωu·vq for all u, v ∈ Zsq. We have

Ẑsq = {χu : u ∈ Zsq} (Luong 2009, p. 53) and Zsq ∼= Ẑsq with u 7→ χu.
Moreover χu(v) = 1 iff u ·v = 0, and therefore χu ∈ V # iff u ∈ V ⊥.
Let u ∈ Zsq, then

u ∈ (V ⊥)⊥ ⇔ ∀v ∈ V ⊥ v · u = 0
⇔ ∀v ∈ V ⊥ χv(u) = 1
⇔ ∀χv ∈ V # χv(u) = 1
⇔ κu(V

#) = 1
⇔ κ(u) ∈ (V #)#.

Since κ is a bijection, we have κ((V ⊥)⊥) = (V #)#. Therefore
κ induces an isomorphism from (V ⊥)⊥ to (V #)#, and (V ⊥)⊥ ∼=
(V #)# ∼= V . Let v ∈ V and v′ ∈ V ⊥ then v′ · v = v · v′ = 0. Thus,
v ∈ (V ⊥)⊥ and V ⊆ (V ⊥)⊥. Since (V ⊥)⊥ ∼= V , we conclude that
(V ⊥)⊥ = V . �

Lemma 3.10. Let x, x′ ∈ Ns and let U = {u1, u2, . . . , u|U |} be a
generating set of Φ⊥A. Let q = lcm(ord(σ1), ord(σ2), . . . , ord(σs))
and let B be the matrix such that its ith row is ui. We have

Bx ≡ Bx′ (mod q)⇔ Tw(α) = Tw′(α)

where w = σx11 σ
x2
2 · · · σxss and w′ = σ

x′1
1 σ

x′2
2 · · ·σ

x′s
s .

Proof. Suppose that Bx ≡ Bx′. Let v = φA(w) and v′ =
φA(w′), then B(v − v′) ≡ Bv − Bv′ ≡ 0 (mod q) and therefore

20 Blondin, Krebs & McKenzie

v − v′ ∈ (Φ⊥A)⊥. By Proposition 3.9, we have v − v′ ∈ ΦA, and
therefore v + ΦA = v′ + ΦA. Thus, there exists v′′ ∈ ΦA such that
v = v′ + v′′ and

Tw(α) = Tσx11 ···σ
xs
s

(α) (By definition of w)

≡ T
σ
|w|σ1 mod q

1 ···σ|w|σs mod q
s

(α) (ord(σi) | q)
= Tσv11 ···σ

vs
s

(α) (By definition of v)

= T
σ
v′1+v

′′
1 mod q

1 ···σv
′
s+v
′′
s mod q

s

(α) (v = v′ + v′′)

≡ T
σ
v′1+v

′′
1

1 ···σv
′
s+v
′′
s

s

(α) (ord(σi) | q)
≡ T

(σ
v′1
1 ···σ

v′s
s)·(σ

v′′1
1 ···σ

v′′s
s)

(α) (M(A) is abelian)

≡ T
σ
v′1
1 ···σ

v′s
s

(α) (v′′ ∈ ΦA)

≡ Tw′(α) (Symmetric to lines 1–3).

We conclude that Tw(α) = Tw′(α).
We show the opposite direction. Suppose Tw(α) = Tw′(α), then

TwTw′
−1 ∈ Gα. Let u ∈ Σ∗ be such that Tu = Tw′

−1, then φA(wu) ∈
ΦA. Since φA is a homomorphism, we have φA(w) + φA(u) ∈ ΦA.
By Proposition 3.9 we have ΦA = (Φ⊥A)⊥ and therefore

BφA(w) +BφA(u) ≡ B(φA(w) + φA(u)) ≡ 0 (mod q),

and thus,
BφA(w) ≡ B(−φA(u)) (mod q).

We conclude that Bx ≡ Bx′ (mod q) since x ≡ φA(w) (mod q)
and x′ ≡ φA(w′) ≡ −φA(u) (mod q). �

We may now proceed to a classification of the complexity of
AutoInt for abelian groups.

Theorem 3.11. AutoInt1(Abelian groups) ≤ LCONNULL for ≤ ∈
{≤T

NC1 ,≤Tlog}.

Proof. We first note that LCON reduces to LCONNULL which
is hard for NL (and L) (McKenzie & Cook 1987) under ≤T

NC1 re-
ducibility. Moreover these reductions may be converted to log-
space reductions as noted in (Arvind & Vijayaraghavan 2010).
Therefore, log-space and LCON computations may be converted

The Complexity of Intersecting Finite Automata 21

to instances of LCONNULL and computed with oracle gates for
LCONNULL.

Let A1, A2, . . . , Ak be the given automata and let αi, βi be re-
spectively their initial and final states. We build a system of linear
congruences for each automaton. We first compute a generating
set for ΦAi . By Lemma 3.7, this can be achieved in logarithmic
space. Given this set, we can derive a generating set Ui of Φ⊥Ai by
calling the oracle for LCONNULL. Let wi ∈ Σ∗ be a word such
that Twi(αi) = βi. By Lemma 3.6, such a word can be computed
in logarithmic space. Let Bi be the matrix such that each line is
a distinct vector from Ui, and let bi = BiφAi(wi). By Lemma 3.10,
Bix ≡ bi (mod qi) iff w = σx11 σ

x2
2 · · ·σxss is accepted by automaton

Ai where qi = lcm(ord(σ1), ord(σ2), . . . , ord(σs)). Therefore, there
exists a solution x ∈ Zs, for every i ∈ [k], to

Bix ≡ bi (mod qi) (∗)

if and only if a word w is accepted by every automaton. Thus, we
reduce the instance of the intersection problem to this instance of
LCON:

B1 q1 0 · · · 0
B2 0 q2 · · · 0
...

...
. . .

...
Bk 0 0 · · · qk

x1
x2
...
xs
y1
y2
...
yk

≡

b1
b2
...
bk

 (mod lcm(q1, q2, . . . , qk))

which is equivalent to system (∗). We note that lcm(q1, q2, . . . , qk)
can be large, but its factors are tiny since q1, q2, . . . , qk are tiny. �

Since LCONNULL ∈ NC3 (McKenzie & Cook 1987) and
LCONNULL ∈ FLModL/poly (Arvind & Vijayaraghavan 2010), we
obtain the following corollaries.

Corollary 3.12. AutoInt1(Abelian groups) is in both NC3 and
FLModL/poly.

22 Blondin, Krebs & McKenzie

By Proposition 2.2, Memb(Abelian groups) ≤m
AC0 AutoInt1(

Abelian groups). Since Memb(Abelian groups) ∈ NC3 (McKen-
zie & Cook 1987), we obtain a rather tight bound.

We now restrict our abelian groups to elementary abelian p-
groups. This allows a characterization of the complexity class
ModpL (denoted ⊕L when p = 2) by the intersection problem,
and thus in terms of automata.

Theorem 3.13. AutoInt1(Elementary abelian p-groups) is
ModpL-complete under ≤mlog reducibility.

Proof. Every element of a p-group is either of order 1 or p,
therefore we have lcm(ordi(σ1), ordi(σ2), . . . , ordi(σs)) ∈ {1, p}.
Thus, the reduction built in the proof of Theorem 3.11 yields a re-
duction to LCONNULLp. Therefore, AutoInt1(Elementary abelian
p-groups) ≤Tlog LCONNULLp. Since LCONNULLp ∈ ModpL (Bun-

trock et al. 1992) and ModpL = ModpL
ModpL (FModpL = FLModpL)

(Hertrampf et al. 2000), we obtain AutoInt1(Elementary abelian p-
groups) ∈ ModpL. Similarly, a many-one log-space reduction from
LCONp is easily obtained by mapping each equation to an automa-
ton. Since LCONp is complete for ModpL (Buntrock et al. 1992),
it completes the proof. �

We now give the first result of this paper concerning the in-
tersection problem with each automaton having at most two final
states. When the transition monoids are restricted to elementary
abelian 2-groups, we are able to reduce AutoInt2 to LCON2. There-
fore, in this case, the problem with two final states per automaton
is not harder than with one final state.

Theorem 3.14. AutoInt2(Elementary abelian 2-groups) is ⊕L-
complete under ≤mlog reducibility.

Proof. We modify the proof of Theorem 3.11. Let αi be the
initial state and βi, β

′
i the two final states of automaton Ai. We use

Theorem 3.11 notation; Ui is a generating set for Φ⊥Ai ; wi, w
′
i ∈ Σ∗

are words such that αwii = βi and α
w′i
i = β′i; Bi is the matrix such

that each line is a distinct vector from Ui; bi = BiφAi(wi), and
b′i = BiφAi(w

′
i).

The Complexity of Intersecting Finite Automata 23

By Lemma 3.10, there exists a solution x ∈ Zs to

(Bix ≡ bi (mod 2)) ∨ (Bix ≡ b′i (mod 2)) ∀i ∈ [k]

if and only if a word is accepted by every automaton.
We build this system without the ∨-clauses by introducing vari-

ables zi, z
′
i:

0 1 1 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 1 1
B1 b1 b′1 · · · 0 0
B2 b2 b′2 · · · 0 0
...

...
...

. . .
...

...
Bk 0 0 · · · bk b′k

x
z1
z′1
z2
z′2
...
zk
z′k

≡

1
...
1
0
...
0

(mod 2) .

We note that this system is equivalent to

Bix+ zibi + z′ib
′
i ≡ 0 (mod 2) ∀i ∈ [k],

with constraints zi + z′i ≡ 1 (mod 2) for every i ∈ [k]. Since
−zibi ≡ zibi (mod 2) and −z′ib′i ≡ z′ib

′
i (mod 2), this system is

equivalent to

Bix ≡ zibi + z′ib
′
i (mod 2) ∀i ∈ [k].

Constraints zi + z′i ≡ 1 (mod 2) force the selection of either bi or
b′i. Thus, this system of linear congruences is an instance of LCON2

which possesses a solution iff there exists a word accepted by every
automaton. Hardness follows from Theorem 3.13. �

In a preliminary version of the present work (Blondin & McKen-
zie 2012), we were only able to resolve the complexity of AutoInt2
(for general alphabets) in the case of elementary abelian 2-groups.
This triggered many open questions concerning AutoInt2. Here
we settle all those questions. In particular, as anticipated, the
complexity jumps when we go from AutoInt2(Elementary abelian
2-groups) to AutoInt2(Elementary abelian 3-groups). But much
to our surprise, the jump is all the way from ⊕L-completeness to
NP-hardness.

And in fact, the jump occurs regardless of how we leave the
elementary abelian 2-groups:

24 Blondin, Krebs & McKenzie

Theorem 3.15. Let X be a monoid pseudovariety not contained
in the variety of elementary abelian 2-groups, then AutoInt2(X) is
hard for NP under ≤m

AC0 reducibility.

Proof. We have mentioned in Section 2.4 that if X is not con-
tained in the monoid pseudovariety of the 2-elementary abelian
groups, then either X contains an aperiodic monoid, or it con-
tains a cyclic group Zp for p > 2. In both cases here we reduce
CIRCUIT–SAT to AutoInt(X).

Given a circuit, we let Σ be the set of gates of this circuit. In
our construction the number of occurrences of the letter σ in a
word accepted by all automata will represent the truth value of
the gate. We will add automata that check the soundness of the
representation, and that check that the output gate according to
this representation is assigned the value true. Hence a word will
be accepted by all the automata iff there is a valid assignment of
truth values to the gates of the circuit that sets the output gate to
true.

Contains a cyclic group: Suppose that X contains a cyclic
group Zp for p > 2. We assume that the circuit only consists of
∧ and ¬ gates. In this case a letter σ should occur in the word 0
or 1 times modulo p, where 0 corresponds to false and 1 to true.
For each σ ∈ Σ we build an automaton with two final states that
verifies whether each letter σ occurs either 0 or 1 times modulo p.
Taking the intersection of these automata yields a representation
of the valid assignments to the circuit gates.

We build extra automata to validate the computations of the
circuit. For each negation gate σ with input gate σ′, we build an
automaton accepting words w such that |w|σ + |w|σ′ ≡ 1 (mod p).
For each ∧ gate with input gates σ′ and σ′′, we build an automa-
ton accepting words w such that (|w|σ′ + |w|σ′′ − 2 · |w|σ) mod p
∈ {0, 1}. In the case p > 3 this suffices to check the correct
evaluation of the ∧ gate (see Table 3.1). If p = 3, we need
to add an extra automaton accepting every words w such that
(|w|σ′ + |w|σ′′ − |w|σ) mod p ∈ {0, 1} since 1 ≡ −2. As shown in
Table 3.1, these formulas are satisfied iff the assignment agrees
with the ∧ gate.

We build one last automaton accepting words w such that

The Complexity of Intersecting Finite Automata 25

Table 3.1: Formulas for ∧ gates when Zp ∈ X. The middle
column shows that when p > 3, an automaton Zp with accepting
states 0 and 1 captures precisely the legal truth value triples that
describe the operation of an ∧ gate if the automaton moves one
step forward upon reading σ′, one step forward upon reading σ′′ and
two steps backward upon reading σ. When p = 3, an automaton
corresponding to the rightmost column is required as well, because
−2 and +1 are not distinguished by the automaton from the middle
column.

σ′σ′′σ validity of

σ′ ∧ σ′′ = σ σ′ + σ′′ − 2σ ≡ 0, 1 σ′ + σ′′ − σ ≡ 0, 1
p > 3 and p = 3 p = 3

000 333333333333333333333333333 333333333333333333333333333 333333333333333333333333333

001 7 7 (if p > 3) / 3 (p = 3) 7

010 333333333333333333333333333 333333333333333333333333333 333333333333333333333333333

011 7 7 3

100 333333333333333333333333333 333333333333333333333333333 333333333333333333333333333

101 7 7 3

110 7 7 7

111 333333333333333333333333333 333333333333333333333333333 333333333333333333333333333

|w|σ ≡ 1 (mod p) where σ is the output gate. It remains to no-
tice that the transformation monoid of each automaton is a cyclic
group Zp and is therefore in X.

Contains an aperiodic monoid: Assume X contains an ape-
riodic monoid. Then X must contain U1, i.e., the monoid {0, 1}
under multiplication. This holds because X is closed under tak-
ing submonoids. Indeed, consider any nontrivial aperiodic sub-
monoid M then M contains a nontrivial idempotent e, i.e., verify-
ing e2 = e 6= 1. The monoid {e, 1} is isomorphic to U1.

Here we assume that the circuit only consists of ∨ and ¬ gates.
For a word w ∈ Σ∗ and a gate σ ∈ Σ, we consider |w|σ = 0 (resp.
|w|σ > 0) as a 0 (resp. 1) assignment.

For each negation gate σ with input gate σ′, we build an au-
tomaton accepting words w such that |w|σ′ = 0 ⇔ |w|σ > 0. For

26 Blondin, Krebs & McKenzie

Figure 3.1: Automata for ¬ and ∨ gates when U1 ∈ X.

0, 0

1, 0

0, 1

1, 1

σ

σ′

σ

σ′

Σ \ {σ, σ′}

Σ \ {σ}

Σ \ {σ′}

Σ

0, 0

1, 0

0, 1

1, 1

σ

σ′, σ′′

σ

σ′, σ′′

Σ \ {σ, σ′, σ′′}

Σ \ {σ}

Σ \ {σ′, σ′′}

Σ

each ∨ gate with input gates σ′ and σ′′, we build an automaton
accepting words w such that (|w|σ′ > 0 ∨ |w|σ′′ > 0) ⇔ |w|σ > 0.
These constructions are illustrated in Figure 3.1.

It remains to build one last automaton accepting words w such
that |w|σ > 0 where σ is the output gate. The automata built are
such that their transition monoid is either U1 or U1×U1. Since X
is closed under finite direct products, this completes the proof. �

Corollary 3.16. AutoInt2(Elementary abelian p-groups) for ev-
ery p ≥ 3, AutoInt2(Abelian groups), AutoInt2(Groups) are NP-
complete under ≤m

AC0 reducibility.

We now consider the problem AutoInt1(
⋃2X). The complex-

ity of this problem is left open in a preliminary version of the
present work (Blondin & McKenzie 2012). From Proposition 2.4,
AutoInt1(

⋃2X) generalizes AutoInt2(X), however the NP-hardness
from Theorem 3.15 does not apply to AutoInt1(

⋃2 Elementary
abelian 2-groups). Therefore the complexity remains open in this
particular case. We show the problem to be NP-hard from this
more general theorem:

The Complexity of Intersecting Finite Automata 27

Theorem 3.17. Let X be a non trivial monoid pseudovariety,
then AutoInt1(

⋃2X) is hard for NP under ≤m
AC0 reducibility.

Proof. We proceed as in Theorem 3.15 by reducing from
CIRCUIT–SAT. We assume that the given circuit only has negation
gates at its first layer under the inputs and ∧,∨ everywhere else
(this is without loss of generality, exploiting double rail logic as in
the proof that the monotone circuit value problem is P-complete
(Goldschlager 1977)).

Recall that if X is a non trivial pseudovariety, then either X
contains an aperiodic monoid, or it contains a cyclic group Zp for
p ≥ 2. We only consider the case where X contains Z2 since all
the other cases are a direct consequence of the Theorem 3.15.

Given a circuit C, we let Σ be the set of gates of C. Each letter
σ in a word accepted by all constructed automata will occur 0 or
1 times modulo 2, where 0 corresponds to false and 1 to true. For
each negation gate σ with input gate σ′, we build an automaton
accepting words w such that |w|σ + |w|σ′ ≡ 1 (mod 2). For each
∨ gate σ with input gates σ′ and σ′′, we build automata accepting
words w such that the following “∨ formula” holds:

(|w|σ + |w|σ′ ≡ 0 (mod 2)) ∨ (|w|σ + |w|σ′′ ≡ 0 (mod 2)) .

For each ∧ gate σ with input gates σ′ and σ′′, we build automata
accepting words w such that the following “∧ formula” holds:

((|w|σ + |w|σ′ ≡ 0 (mod 2)) ∧ (|w|σ + |w|σ′′ ≡ 0 (mod 2))) ∨
(|w|σ ≡ 0 (mod 2)) .

We build one last automaton verifying that the output gate takes
the value 1.

As shown in Table 3.2, these formulas are satisfied by an as-
signment iff the assignment is consistent with the semantics of the
∧,∨ gates, except in three specific cases. Therefore, our automata
implement the correct semantics across circuit gates in general but
mistakenly tolerate 0 ∨ 1 = 0, 1 ∨ 0 = 0 and 1 ∧ 1 = 0. We will
show that this doesn’t matter since the circuit is monotone under
the first layer of negation gates.

We show that C is satisfiable iff there exists a word accepted
by every automaton.

28 Blondin, Krebs & McKenzie

Table 3.2: Validity of the formulas for ∨ and ∧ gates. The three
errors appear in bold.

σ′σ′′σ validity of

σ′ ∨ σ′′ = σ ∨ formula

000 3 3

001 7 7

010 777777777777777777777777777 333333333333333333333333333

011 3 3

100 777777777777777777777777777 333333333333333333333333333

101 3 3

110 7 7

111 3 3

σ′σ′′σ validity of

σ′ ∧ σ′′ = σ ∧ formula

000 3 3

001 7 7

010 3 3

011 7 7

100 3 3

101 7 7

110 777777777777777777777777777 333333333333333333333333333

111 3 3

⇒) Let x1, x2, . . . , xm be a satisfying assignment to the gates
σ1, σ2, . . . , σm of C, and let w = σx11 σ

x2
2 · · ·σxmm . As shown in Ta-

ble 3.2, every valid computation in the circuit is accepted by the
automata, thus w must be accepted.

⇐) Let w be accepted by all the automata constructed from
C, leaving out the last automaton (constraining the output gate).
Consider evaluating C when its input gates σ1, σ2, . . . , σi are as-
signed |w|σ1 mod 2, |w|σ2 mod 2, . . . , |w|σi mod 2. We prove the
following by induction on d:

Claim: If |w|σ is odd for a gate σ at depth≤ d, then σ evaluates
to true.

Proof of claim: If |w|σ is odd for σ at depth 0 then σ was
assigned true. So let |w|σ be odd for a gate σ at depth d > 0. If
σ is a ¬, then the gate σ′ input to σ was a circuit input gate and
|w|σ′ + |w|σ is odd by construction, hence |w|σ′ is even, so σ′ was
assigned false in C and σ evaluates to true as required. Otherwise,
let the inputs to σ be σ′ and σ′′. If σ is an ∧, then consider the
unique row fulfilling the “∧ formula” when σ is 1 in Table 3.2. This
row is the 111 row. Hence the “∧ formula” forces |w|σ′ and |w|σ′′ to
be odd. By induction, σ′ and σ′′ therefore evaluate to true in C, so
that indeed σ evaluates to true as well. If σ is an ∨, then only the
rows 011, 101 and 111 in Table 3.2 fulfill the “∨ formula” when σ
is 1. Hence either |w|σ′ is odd or |w|σ′′ is odd. By induction, either

The Complexity of Intersecting Finite Automata 29

σ′ or σ′′ therefore evaluates to true in C, so that σ evaluates to
true. This proves the claim.

When w is accepted by all the automata, including the last
automaton forcing |w|output gate to be odd, the claim ensures that
the output gate evaluates to true on the boolean assignment to the
input gates induced by w.

It remains to note that the conjunction of the formulas may be
expressed as the intersection of unions of two automata each with
one final state. This is straightforward for the negation, output
and ∨ gates. For the ∧ formula, we use distributivity to obtain the
equivalent formula

((|w|σ + |w|σ′ ≡ 0 (mod 2)) ∨ (|w|σ ≡ 0 (mod 2)))∧
((|w|σ + |w|σ′′ ≡ 0 (mod 2)) ∨ (|w|σ ≡ 0 (mod 2))) .

�

Corollary 3.18. AutoInt1(
⋃2Elementary abelian p-groups) for

every p ≥ 2, AutoInt1(
⋃2 Abelian groups), AutoInt1(

⋃2Groups)
are NP-complete under ≤m

AC0 reducibility.

We may now study the case where Σ consists of a single letter a.
Instead of directly considering unary automata, we study the more
general case of tight abelian group automata. Before proceeding,
we note that the intersection problem over unary languages in gen-
eral is not harder than for abelian group automata over a unary
alphabet

Indeed, an automaton over a singleton alphabet consists of a
tail and a cycle. Words accepted by the tail of an automaton
may be tested first on the whole collection. If none is accepted,
the associated final states are removed and an equivalent cyclic
automaton is built.

We first examine the case of AutoInt1(
⋃2) that generalizes

AutoInt2, and show it is NL-complete for unary and tight abelian
group automata.

We will use the following generalization of the Chinese remain-
der theorem:

30 Blondin, Krebs & McKenzie

Lemma 3.19. (Knuth 1981, see p. 277 ex. 3) Let a1, a2, . . . , ak ∈
N and q1, q2, . . . , qk ∈ N. There exists x ∈ N such that x ≡
ai (mod qi) for every i ∈ [k] iff ai ≡ aj (mod gcd(qi, qj)) for every
i, j ∈ [k].

Theorem 3.20. AutoInt1(
⋃2 Tight abelian group automata) ≤mlog

2–SAT.

Proof. Let A[i, 0] and A[i, 1] be the two automata of the ith ∪-
clause. Let v[i, x] be the unique vector of V [i, x] = {v ∈ Zordi,x(σ1)×
Zordi,x(σ2) × · · · × Zordi,x(σs) : σv11 σ

v2
2 · · ·σvss ∈ L(A[i, x])} which is

computable in log-space. We first note that A[i, x] accepts exactly
words w ∈ Σ∗ such that |w|σj ≡ v[i, x]j (mod ordi,x(σj)) for every
j ∈ [s], by definition of V [i, x]. Therefore, distinct letters are
independent and we may find a word accepted by every automaton
by verifying restrictions locally on σ1, σ2, . . . , σs. Thus, we have the
following equivalences:

∃w such that w ∈
k⋂
i=1

1⋃
x=0

L(A[i, x])

⇔ ∃w ∃x ∈ {0, 1}k such that w ∈
k⋂
i=1

L(A[i, xi])

⇔ ∃w ∃x ∈ {0, 1}k such that
k∧
i=1

s∧
j=1

|w|σj ≡ v[i, xi]j (mod ordi,xi(σj))

⇔ ∃w ∃x ∈ {0, 1}k such that
s∧
j=1

(
k∧
i=1

|w|σj ≡ v[i, xi]j (mod ordi,xi(σj))

)

⇔ ∃x ∈ {0, 1}k such that
s∧
j=1

(
k∧
i=1

k∧
i′=1

Ci,i′,j(x)

)
,

where

Ci,i′,j(x) =
(
v[i, xi]j ≡ v[i′, xi′]j (mod gcd(ordi,xi(σj), ordi′,xi′ (σj)))

)
.

The last equivalence is a consequence of Lemma 3.19. Therefore,
there is a word accepted by every automaton iff this last Boolean
expression is satisfiable. For every i, i′ ∈ [k], j ∈ [s], the truth table
of Ci,i′,j may be computed by evaluating the four congruences.

The Complexity of Intersecting Finite Automata 31

Since Ci,i′,j depends only on two variables, it is always possible
to obtain a 2-CNF. Moreover, the congruences are computable in
logarithmic space since the numbers implied are tiny. �

Theorem 3.21. 2–SAT ≤m
NC1 AutoInt1(

⋃2 Abelian groups with
|Σ| = 1).

Proof. Let C(x) be the Boolean expression
∧k
i=1Ci(x) over

x1, x2, . . . , xm where Ci(x) = (xri⊕bi)∨ (xti⊕b′i) and bi, b
′
i ∈ {0, 1}

indicate whether negation must be taken or not.
It is possible to represent an assignment with an integer, assum-

ing it is congruent to 0 or 1 mod the m first primes p1, p2, . . . , pm.
The remainder of such an integer mod pi represents the value of
the ith variable. Let

Ej = {w ∈ {a}∗ : |w| ≡ 0 (mod pj) ∨ |w| ≡ 1 (mod pj)} ,
Xi = {w ∈ {a}∗ : |w| ≡ ¬bi (mod pri) ∨ |w| ≡ ¬b′i (mod pti)} .

The language E1 ∩E2 ∩ · · · ∩Em represents valid assignments and
Xi represents assignments satisfying Ci (but may contain invalid
assignments, i.e. not congruent to 0 or 1). The language Ej (resp.
Xi) is recognized by the union of two cyclic automata of size pj
(resp. size pri and pti). It remains to point out that (E1 ∩ E2 ∩
· · · ∩ Em) ∩ (X1 ∩X2 ∩ · · · ∩Xk) 6= ∅ iff C is satisfiable. �

Corollary 3.22. AutoInt1(
⋃2 Tight abelian group automata)

and AutoInt1(
⋃2 Abelian groups with |Σ| = 1) are NL-complete

under ≤m
NC1 reducibility.

Recall, that 2–⊕SAT is defined similarly to 2–SAT but with ⊕
operators instead of ∨. It is L-complete under NC1 reducibility by
(Cook & McKenzie 1987; Jones et al. 1976; Reingold 2005).

Theorem 3.23. AutoInt2(Tight abelian group automata) ≤mlog
2–⊕SAT.

Proof. We first note that an automaton with two final states
may be replaced with the union of two copies of the same automa-
ton, each having one final state. Thus, we may use the proof of

32 Blondin, Krebs & McKenzie

Table 3.3: Possible expressions for Ci,i′,j

True congruences Possible expressions

0 0
1 (xi,j ∧ xi′,j), (¬xi,j ∧ xi′,j), (xi,j ∧ ¬xi′,j), (¬xi,j ∧ ¬xi′,j)
2 xi,j,¬xi,j, xi′,j,¬xi′,j, (xi,j ⊕ xi′,j), (¬xi,j ⊕ xi′,j)
4 1

Theorem 3.20. However, it remains to show that it is possible to
build an expression in 2-⊕CNF (instead of 2-CNF).

To achieve this, we first note that each letter σj has the same
order in A[i, 0] and A[i, 1] (according to Theorem 3.20 notation).
We denote this common order by ordi(σj). Therefore, there is a

word accepted by every automaton iff
∧s
j=1

∧k
i=1

∧k
i′=1Ci,i′,j(x) is

satisfiable, where

Ci,i′,j(x) = (v[i, xi]j ≡ v[i′, xi′]j (mod gcd(ordi(σj), ordi′(σj)))) .

The truth table of Ci,i′,j may be computed as before by evaluat-
ing the four congruences. However, in this case, the modulus is
independent of x. Thus, it can be shown that if three of these con-
gruences are true, then all four are. Therefore, Ci,i′,j can be written
solely with the operators ⊕ and ∧ as illustrated in Table 3.3.

�

Note that we may modify the proof of Theorem 3.21 to obtain a
reduction from 2–⊕SAT to AutoInt2(Abelian groups with |Σ| = 1),
therefore we obtain the following corollary.

Corollary 3.24. AutoInt2(Tight abelian group automata) and
AutoInt2(Abelian groups with |Σ| = 1) are L-complete under ≤m

NC1

reducibility.

To complete the classification of the intersection problem over
unary languages, we argue that it is NP-complete for three final
states. A reduction from Monotone 1–in–3 3–SAT (Garey & John-
son 1979) may be obtained in a similar fashion to Theorem 3.21.

The Complexity of Intersecting Finite Automata 33

For each clause (x1 ∨ x2 ∨ x3) we build an automaton with p1p2p3
states (and three final states) accepting words w ∈ {a}∗ such that

(|w| mod p1, |w| mod p2, |w| mod p3) ∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1)}.

Theorem 3.25. AutoInt3(Tight abelian group automata) and
AutoInt3(Abelian groups with |Σ| = 1) are NP-complete under
≤m

AC0 reducibility.

4. Some Observations on Commutative and
Idempotent Monoids

Here we briefly examine the PS problem for monoids (instead of
groups). Recall that a monoid is idempotent iff x2 = x holds for ev-
ery element x. We first notice that both PS(Idempotent monoids)
and PS(Commutative monoids) are NP-complete. This follows
from Proposition 2.2 and Proposition 2.3, since their Memb coun-
terparts are NP-complete (Beaudry 1988a,b; Beaudry et al. 1992).

Proposition 4.1 (Beaudry 1988a,b; Beaudry et al. 1992).
PS(Idempotent monoids) and PS(Commutative monoids) are NP-
complete under ≤m

AC0 reducibility, even for one final state.

The point-spread problem becomes efficiently solvable when re-
stricted to the variety J1 of idempotent commutative monoids.

Theorem 4.2. PS1(J1) ∈ AC0.

Proof. We use the technique of (Beaudry et al. 1992), for solv-
ing Memb(J1), based on the so-called maximal alphabet of a trans-
formation. However, we have to be careful since we are dealing
with a partially defined transformation. Let G = {g1, g2, . . . , gk}
and let bi be the unique element of Si. Let A = {g ∈ G : bi

g =
bi ∀i ∈ [r]} and a =

∏
g∈A g. Suppose there exists f ∈ 〈G〉 such

that if = bi for every i ∈ [r]. We first notice that iaf = if for every
i ∈ [r]. Indeed, iaf = ifa = bai = bi = if . Moreover, we have hj ∈ A
for any hj appearing in f = h1h2 · · ·hl, since b

hj
i = ifhj = if = bi

for every i ∈ [r]. Thus, iaf = ia(h1h2···hl) = ia for every i ∈ [r].

34 Blondin, Krebs & McKenzie

Therefore ia = iaf = if = bi for every i ∈ [r]. We conclude that
there exists f ∈ 〈G〉 such that if = bi for every i ∈ [r] iff ia = bi
for every i ∈ [r]. This last test can be carried out easily. �

Since J1 is not contained in the variety of 2-elementary abelian
groups, we obtain the following proposition from Theorem 3.15 and
Proposition 4.1.

Proposition 4.3. PS2(J1) and PS3(J1) are NP-complete under
≤m

AC0reducibility.

5. Conclusion and Further Work

This paper raises the issue of limiting the number of accepting
states in the automata intersection nonemptiness problem. Lim-
iting that number to fewer than 3 seemed of particular interest
because exactly 3 was known to yield NP-completeness in such
simple cases as when the automata involved are direct products of
cyclic groups of order 2 (Beaudry 1988b).

To within the usual hypotheses concerning complexity classes,
we completely resolve the complexity of the problem when the num-
ber of final states is at most two: the problem is then ⊕L-complete
or NP-complete, depending on whether no nontrivial monoid other
then a direct product of cyclic groups of order 2 occurs. We find in-
teresting, for example, that intersecting two-final-states automata
that are direct products of cyclic groups of order 3 is already NP-
complete, rather than Mod3L-complete as we might have expected.

When the number of final states is one, the complexity of the
intersection problem naturally bears a close relationship with the
complexity of the membership problem in transformation monoids.
The membership problem indeed ≤m

AC0-reduces to the intersection
problem (Proposition 2.2) and we show that the case of elementary
abelian p-groups is ModpL-complete, while the cases of groups and
commutative idempotent monoids respectively belong to NC and
to AC0. More generally (Proposition 2.3), any pseudovariety for
which membership is NP-complete (resp. PSPACE-complete) has a
NP-complete (resp. PSPACE-complete) one-final-state intersection
problem. A wealth of such cases are known (Beaudry et al. 1992),

The Complexity of Intersecting Finite Automata 35

implying, for example, NP-completeness for aperiodic commutative
monoids of threshold two and aperiodic monoids of threshold one,
and implying PSPACE-completeness for all aperiodic monoids. We
leave open the question of one final state for aperiodic automata
whose membership problem lies in the P-complete and NP-hard
regions of (Beaudry et al. 1992, Fig. 1).

Finally, by restricting the alphabet and relaxing the problem
definition, we have identified NL-complete and NP-complete in-
stances of the intersection problem, namely of AutoInt1(

⋃2X).
Here we leave open the questions of AutoInt2(X) when |Σ| > 1
is a constant (e.g. Σ = {0, 1}).

Acknowledgements

We thank the referees for helpful comments and for pointing out
the need to relax the labelling of the elements transported in the
definition of the PT(X) problem.

This work is supported by the Natural Sciences and Engineer-
ing Research Council of Canada, by the Fonds québécois de la
recherche sur la nature et les technologies, by the (French) Centre
national de la recherche scientifique, and by the Chaire DIGITEO
ENS Cachan-École Polytechnique held by Pierre McKenzie.

References

E. Allender & M. Ogihara (1996). Relationships Among PL, #L,
and the Determinant. In RAIRO - Theoretical Information and Appli-
cation, 267–278.

V. Arvind & T. C. Vijayaraghavan (2010). Classifying Problems on
Linear Congruences and Abelian Permutation Groups Using Logspace
Counting Classes. Computational Complexlity 19, 57–98. ISSN 1016-
3328.

L. Babai, E. M. Luks & A. Seress (1987). Permutation groups in
NC. In Proc. 19th annual ACM symposium on Theory of computing,
409–420. ISBN 0-89791-221-7.

S. Bala (2002). Intersection of Regular Languages and Star Hierarchy.

36 Blondin, Krebs & McKenzie

In Proc. 29th International Colloquium on Automata, Languages and
Programming, 159–169. ISBN 3-540-43864-5.

David A. Mix Barrington (1989). Bounded-Width Polynomial-Size
Branching Programs Recognize Exactly Those Languages in NC1. J.
Comput. Syst. Sci. 38(1), 150–164.

David A. Mix Barrington, Neil Immerman & Howard Straub-
ing (1990). On Uniformity within NC1. J. Comput. Syst. Sci. 41(3),
274–306.

David A. Mix Barrington & Denis Thérien (1988). Finite
monoids and the fine structure of NC1. J. ACM 35(4), 941–952.

M. Beaudry (1988a). Membership testing in commutative transfor-
mation semigroups. Information and Computation 79(1), 84–93. ISSN
0890-5401.

M. Beaudry (1988b). Membership testing in transformation monoids.
Ph.D. thesis, McGill University.

M. Beaudry, P. McKenzie & D. Thérien (1992). The Membership
Problem in Aperiodic Transformation Monoids. J. ACM 39(3), 599–
616.

Christoph Behle & Klaus-Jörn Lange (2006). FO[<]-Uniformity.
In IEEE Conference on Computational Complexity, 183–189.

M. Blondin & P. McKenzie (2012). The complexity of intersecting
finite automata having few final states. In Proc. 7th International Com-
puter Science Symposium in Russia, 31–42. Springer Berlin Heidelberg.

Allan Borodin (1977). On Relating Time and Space to Size and
Depth. SIAM J. Comput. 6(4), 733–744.

G. Buntrock, C. Damm, U. Hertrampf & C. Meinel (1992).
Structure and importance of logspace-MOD class. Theory of Computing
Systems 25, 223–237. ISSN 1432-4350.

K. Conrad (2013). Characters of Finite Abelian Groups. Lecture
Notes. Available at http://www.math.uconn.edu/~kconrad/blurbs/

grouptheory/charthy.pdf.

The Complexity of Intersecting Finite Automata 37

S. A. Cook & P. McKenzie (1987). Problems Complete for Deter-
ministic Logarithmic Space. J. Algorithms 8(3), 385–394.

M. L. Furst, J. E. Hopcroft & E. M. Luks (1980). Polynomial-
Time Algorithms for Permutation Groups. In Proc. 21st Annual Sym-
posium on Foundations of Computer Science, 36–41.

Z. Galil (1976). Hierarchies of complete problems. Acta Informatica
6, 77–88. ISSN 0001-5903.

M.R. Garey & D.S. Johnson (1979). Computers and intractability: a
guide to the theory of NP-completeness. W. H. Freeman and Company.

L. M. Goldschlager (1977). The Monotone and Planar Circuit Value
Problems Are Log Space Complete for P. SIGACT News 9(2), 25–29.

U. Hertrampf, S. Reith & H. Vollmer (2000). A note on closure
properties of logspace MOD classes. Information Processing Letters 75,
91–93. ISSN 0020-0190.

M. Holzer & M. Kutrib (2011). Descriptional and computational
complexity of finite automata – A survey. Information and Computation
209(3), 456–470.

N. D. Jones, Y. E. Lien & W. T. Laaser (1976). New problems
complete for nondeterministic log space. Theory of Computing Systems
10, 1–17. ISSN 1432-4350.

G. Karakostas, R. J. Lipton & A. Viglas (2003). On the complex-
ity of intersecting finite state automata and NL versus NP. Theoretical
Computer Science 302(1-3), 257–274. ISSN 0304-3975.

D.E. Knuth (1981). The art of computer programming: seminu-
merical algorithms, volume 2. Addidon-Wesley, 2nd edition. ISBN
9780201038224.

Michal Koucký, Pavel Pudlák & Denis Thérien (2005).
Bounded-depth circuits: separating wires from gates. In STOC, 257–
265.

D. Kozen (1977). Lower bounds for natural proof systems. In Proc.
18th Annual Symposium on Foundations of Computer Science, 254–266.
ISSN 0272-5428.

38 Blondin, Krebs & McKenzie

K.-J. Lange & P. Rossmanith (1992). The emptiness problem for in-
tersections of regular languages. In Mathematical Foundations of Com-
puter Science, volume 629 of Lecture Notes in Computer Science, 346–
354.

E. M. Luks (1986). Parallel Algorithms for Permutation Groups and
Graph Isomorphism. In Proc. 27th Annual Symposium on Foundations
of Computer Science, 292–302.

E. M. Luks (1990). Lectures on polynomial-time computation in
groups. Technical report. College of Computer Science, Northeast-
ern University. Available at http://ix.cs.uoregon.edu/~luks/

northeasterncourse.pdf.

E. M. Luks & P. McKenzie (1988). Parallel Algorithms for Solvable
Permutation Groups. Journal of Computer and System Sciences 37(1),
39–62.

B. Luong (2009). Fourier Analysis on Finite Abelian Groups.
Birkhäuser. ISBN 9780817649159.

P. McKenzie & S. A. Cook (1987). The parallel complexity of
Abelian permutation group problems. SIAM Journal on Computing
16, 880–909. ISSN 0097-5397.

K. Mulmuley (1987). A fast parallel algorithm to compute the rank
of a matrix over an arbitrary field. Combinatorica 7, 101–104. ISSN
0209-9683.

Jean-Eric Pin (1986). Varieties of Formal Languages. Plenum Press.

O. Reingold (2005). Undirected ST-connectivity in log-space. In Proc.
37th annual ACM symposium on Theory of computing, 376–385. ISBN
1-58113-960-8.

W. J. Savitch (1970). Relationships between nondeterministic and
deterministic tape complexities. Journal of Computer and System Sci-
ences 4(2), 177–192. ISSN 0022-0000.

Marcel Paul Schützenberger (1965). On Finite Monoids Having
Only Trivial Subgroups. Information and Control 8(2), 190–194.

Howard Straubing (1994). Finite Automata, Formal Logic and Cir-
cuit Complexity. Birkhauser.

The Complexity of Intersecting Finite Automata 39

Pascal Tesson & Denis Thérien (2005). Complete Classifications
for the Communication Complexity of Regular Languages. Theory Com-
put. Syst. 38(2), 135–159.

Pascal Tesson & Denis Thérien (2007). Logic Meets Algebra: the
Case of Regular Languages. Logical Methods in Computer Science 3(1).

Denis Thérien & Thomas Wilke (1998). Over Words, Two Vari-
ables Are as Powerful as One Quantifier Alternation. In Symposium on
Theory of Computing, 234–240.

H. Vollmer (1999). Introduction to Circuit Complexity – A Uniform
Approach. Texts in Theoretical Computer Science. Springer Verlag.

H. T. Wareham (2001). The Parameterized Complexity of Intersec-
tion and Composition Operations on Sets of Finite-State Automata. In
Implementation and Application of Automata, volume 2088, 302–310.

H.J. Zassenhaus (1999). The Theory of Groups. Dover Books on
Mathematics. Dover Publications. ISBN 9780486409221.

Michael Blondin
Département d’informatique et de

recherche opérationnelle
Université de Montréal
Montréal, Québec, Canada
blondimi@iro.umontreal.ca

http://www-etud.iro.umontreal.ca/

~blondimi

Laboratoire Spécification et Véri-
fication

ENS Cachan
Cachan, France
mblondin@lsv.ens-cachan.fr

Andreas Krebs
Wilhelm-Schickard-Institut für In-

formatik
Universität Tübingen
Tübingen, Germany
mail@krebs-net.de

http://fuseki.informatik.

uni-tuebingen.de/de/mitarbeiter/krebs

40 Blondin, Krebs & McKenzie

Pierre McKenzie
Département d’informatique et de

recherche opérationnelle
Université de Montréal
Montréal, Québec, Canada
mckenzie@iro.umontreal.ca

http://www.iro.umontreal.ca/~mckenzie

Laboratoire Spécification et Véri-
fication

ENS Cachan
Cachan, France

