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Abstract

Most decidability results concerning well-structured transition systems apply
to the finitely branching variant. Yet some models (inserting automata, ω-
Petri nets, . . . ) are naturally infinitely branching. Here we develop tools to
handle infinitely branching WSTS by exploiting the crucial property that in
the (ideal) completion of a well-quasi-ordered set, downward-closed sets are
finite unions of ideals. Then, using these tools, we derive decidability results
and we delineate the undecidability frontier in the case of the termination, the
maintainability and the coverability problems. Coverability and boundedness
under new effectiveness conditions are shown decidable.

Keywords: Well-structured transition systems, infinite branching, completion,
decidability, coverability, termination

1. Introduction

Well-structured transition systems (WSTS) [1, 2, 3] as a general class of
infinite-state systems have spawned decidability results for important problems
such as termination, boundedness, maintainability and coverability. WSTS con-
sist of a (usually infinite) well ordered set of states, together with a monotone
transition relation. WSTS have found multiple uses: in settling the decidability
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status of reachability and coverability for graph transformation systems [4, 5],
in the forward analysis of depth-bounded processes [6, 7], in the verification of
parameterized protocols [8] and the verification of multi-threaded asynchronous
software [9]. WSTS remain under development and are actively being investi-
gated [10, 11, 12, 13, 14, 15].

Most existing decidability results for WSTS apply to the finitely branching
variant. However, there are many intrinsically infinitely branching WSTS. Let
us cite inserting FIFO automata [16] which are able to insert any word at any
time in a FIFO buffer, inserting automata [17], recursive-parallel systems [18]
and ω-Petri nets [19]. Moreover, any finitely branching WSTS parameterized
with an infinite set of initial states (such as broadcast protocols [8]) also in-
herits an infinitely branching state. For instance, Geeraerts, Heußner, Praveen
and Raskin argue in [19] that parametric concurrent systems with dynamic
thread creation can naturally be modeled by some classes of infinitely branch-
ing systems, like ω-Petri nets, i.e. Petri net with arcs that can consume/create
arbitrarily many tokens.

The primary motivation for this paper is to explore the decidability status
of the termination, boundedness, maintainability and coverability problems for
infinitely branching (general) WSTS. For the coverability problem, known to be
decidable for WSTS fulfilling upward pre-effectiveness [3] (which roughly means
computability of a finite basis of the upward closure of the set of immediate pre-
decessors, the testing of which is provably undecidable in some WSTS), we wish
to draw from the recent algebra-theoretic characterizations of downward-closed
sets [10] and conceive of a post-oriented computability hypothesis suitable for
the design of a forward algorithm. Indeed, forward algorithms are arguably more
intuitive than backward algorithms and post-oriented computability more easily
verified than pre-oriented computability. Our contributions are the following:

1. As technical tools, we simplify and extend the analysis of the completion
of a general WSTS and we relate the behavior of a WSTS to that of
its completion. In particular, we provide a general presentation of the
completion that is much less daunting than the presentations currently
available in the literature. This sets the stage for exploiting the main
property of the completion of a WSTS, namely, the expressibility of any
downward-closed set as a (unique, as shown here) finite union of ideals, in
the design of algorithms.

2. We uncover a new termination property (called strong termination) that is
computationally equivalent to the usual termination property for finitely
branching WSTS but that subtly differs from it in the presence of infinitely
branching WSTS. Indeed, we exhibit WSTS for which strong termination
is decidable yet the usual termination is undecidable. A similar subtle
issue arises as well in our generalization of the maintainability problem to
infinitely branching.

3. We generalize most decidability results mentioned for finitely branching
WSTS earlier to the infinitely branching case. This requires carefully
tracking the effectiveness and the monotonicity conditions which support
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decidability. When possible, we delineate the frontier between decidability
for a problem and the undecidabilty that results from dropping one of
these conditions. The new decidability results for (strong) termination
and (weak) maintainability exploit the completion. An outcome of our
work is that the finite tree construction technique can be recovered, even in
the infinitely branching case, for the purpose of deciding the boundedness
problem for example. The new algorithm for coverability uses a forward
strategy coupled with a post-oriented computability hypothesis.

Section 2 below fixes the notation pertaining to orderings and transition sys-
tems. Section 3 recalls the notion of WSTS, gives examples, discusses branching
and effectiveness, defines the computation problems at issue and adds two unde-
cidability results concerning finitely branching WSTS. Section 4 develops tools
to handle infinitely branching WSTS and forms the theoretical backbone of our
paper. Section 5 contains our decidability results for infinitely branching WSTS.
Section 6 summarizes and suggests future work.

2. Preliminaries

2.1. Orderings

Let X be a set and ≤ ⊆ X × X. We say that ≤ is a quasi-ordering (qo)
for X if it is reflexive and transitive. If ≤ is also antisymmetric, then it is a
partial ordering (po). A quasi-ordering (resp. partial ordering) ≤ is said to be a
well-quasi-ordering (resp. well partial ordering), abbreviated wqo (resp. wpo),
if for every infinite sequence x0, x1, . . . of elements xn ∈ X, there exist i < j
such that xi ≤ xj .

It is well-known that Nd is well partially ordered under ≤Nd defined by

(x1, x2, . . . , xd) ≤Nd (x′1, x
′
2, . . . , x

′
d) ⇐⇒ ∀i ∈ {1, 2, . . . , d} xi ≤ x′i .

In this work, we extend N to Nω
def
= N ∪ {ω} and we extend ≤N to ≤Nω with

x ≤Nω ω for all x ∈ Nω. The quasi-ordering ≤Nω is also a wpo and is naturally
extended to the wpo ≤Nd

ω
over Ndω. We will simply write ≤ for ≤N, ≤Nω

,≤Nd

and ≤Nd
ω

when there is no ambiguity. We also write x < y whenever x ≤ y
and ¬(y ≤ x). In some examples, we will also consider the subword ordering
denoted �. For every finite alphabet Σ and u, v ∈ Σ∗, u � v if, and only if,
u = v or u can be obtained from v by removing some letters. It is well-known
that � is a wqo.

Let T ⊆ X. We define the upward closure of T as ↑T def
= {x ∈ X : y ≤

x for some y ∈ T} and the downward closure of T as ↓T def
= {x ∈ X : x ≤

y for some y ∈ T}. We say that T is upward closed if T = ↑T and downward
closed if T = ↓T . Let x ∈ X, we simply write ↑x for ↑ {x}, and ↓x for ↓ {x}.
An (upward) basis of an upward closed set T is a set B such that T = ↑B.
It is known that every upward closed subset of a well-quasi-ordered set has a
minimal finite basis. An ideal I is a downward closed subset of X that is also
directed, i.e., nonempty and such that ∀a, b ∈ I, ∃c ∈ I such that a ≤ c and
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b ≤ c. We define Ideals(X) as the set of ideals of X, i.e., Ideals(X)
def
= {∅ ⊂ I ⊆

X : I = ↓ I and I is directed}.

2.2. Transition systems

A transition system is a pair S = (X,−→) where X is a set, called the set
of states, and −→ is a relation −→ ⊆ X × X, called the transition relation. If a
transition system S is also equipped with a quasi-ordering ≤ on X, we say that
S = (X,−→,≤) is an ordered transition system. We let

−→k def
= −→ ◦ −→ ◦ · · · ◦ −→︸ ︷︷ ︸

k times

, −→+ def
=
⋃
k≥1
−→k and −→∗ def

= −→0 ∪ −→+ .

In other words, −→+ is the transitive closure of −→ , and −→∗ is the reflexive and
transitive closure of −→. We define, respectively, the set of immediate prede-

cessors and immediate successors of x ∈ X by PreS(x)
def
= {y : y −→ x} and

PostS(x)
def
= {y : x −→ y}. These sets are extended naturally for T ⊆ X by

PreS(T )
def
=
⋃
x∈T PreS(x) and PostS(T )

def
=
⋃
x∈T PostS(x). We also define, re-

spectively, the set of predecessors and successors of x ∈ X by Pre∗S(x)
def
= {y :

y −→∗ x} and Post∗S(x)
def
= {y : x −→∗ y}. These sets are also extended naturally

for T ⊆ X by Pre∗S(T )
def
=
⋃
x∈T Pre∗S(x) and Post∗S(T )

def
=
⋃
x∈T Post∗S(x). Let

x, y ∈ X and T ⊆ X, we say that x −→T y if x, y ∈ T . We define −→kT ,−→+
T and

−→∗T similarly in the natural way.

2.3. Undecidability

We denote by Turingi the ith Turing machine in a classical enumeration. We
assume that the problem of testing, on input i ∈ N, whether Turingi halts on
its encoding is undecidable. We will use this fact throughout this work in order
to show that some problems are undecidable.

3. Well-structured transition systems (WSTS)

In this section we introduce well-structured transition systems and the dif-
ferent problems we will study in the following sections.

Definition 1. A well-structured transition system (WSTS ) is an ordered tran-
sition system S = (X,−→,≤) such that ≤ is a wqo, and the relation −→ is
monotone (or compatible) with ≤, i.e.,

∀x, x′, y ∈ X x ≤ x′ and x −→ y =⇒ ∃y′ ∈ X s.t. y ≤ y′ and x′ −→∗ y′ . (1)
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• Petri nets

• ω-Petri nets

• Petri nets with resets

• Timed automata

• Lossy channel systems

• Recursive-parallel systems

Figure 1: WSTS monotonicity inclusions with examples.

3.1. Monotonicity

There exist many other variations of monotonicity obtained by modify-
ing (1). In this work we will consider the following ones:

strong: x ≤ x′ and x −→ y =⇒ ∃y′ s.t. y ≤ y′ and x′ −→ y′

stuttering: x ≤ x′ and x −→ y =⇒ ∃x′′, y′ s.t. y ≤ y′ and x′ −→∗↑x x′′ −→ y′

transitive: x ≤ x′ and x −→ y =⇒ ∃y′ s.t. y ≤ y′ and x′ −→+ y′ .

When (1) or any of the above conditions also holds with <, we say that the
monotonicity is additionally strict. For example, transitive and strict mono-
tonicity entails both:

x ≤ x′ and x −→ y =⇒ ∃y′ s.t. y ≤ y′ and x′ −→+ y′

x < x′ and x −→ y =⇒ ∃y′ s.t. y < y′ and x′ −→+ y′ .

Note that strong monotonicity implies stuttering monotonicity which implies
transitive monotonicity. A classification of the different types of monotonicity,
with some examples drawn from the literature, is illustrated in Fig. 1. See
[2, Fig. 9] for a more detailed classification. Note that among the 22 WSTS
models in [2, Fig. 9], there is no WSTS having a transitive but non-stuttering
monotonicity.

3.2. Functional WSTS and concrete examples of WSTS

We define a generic class of WSTS that will be used in some parts of the
paper. Recall that a partial function f : X −→ X is non decreasing if, for
every x ∈ X, if f(x) is defined then f(y) is defined for every y ≥ x, and
x ≤ y =⇒ f(x) ≤ f(y).
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Definition 2 ([11]). A functional WSTS is an ordered transition system S =
(X,−→,≤) such that ≤ is a wqo for X, and −→ is defined by a finite set F of non
decreasing partial functions, i.e., x −→ y if f(x) = y for some f ∈ F .

To see that functional WSTS are indeed WSTS, let us show that they have
strong monotonicity. Let x, y, x′ ∈ X be such that x ≤ x′ and x −→ y, then
f(x) = y for some f ∈ F . Hence, since f is non decreasing, f(x′) is defined and
thus y = f(x) ≤ f(x′) = y′ for some y′ ∈ X. Therefore, x′ −→ y′ and y ≤ y′.
Note that in general the monotonicity is not necessarily strict, e.g. when the
functions are constant.

For completeness, we also give some concrete examples of WSTS drawn from
the literature.

Example 3 (Affine nets). A d-dimensional affine net [20] is a functional
WSTS S = (Nd,−→,≤) where −→ is defined by a finite set F of affine functions:

• each f ∈ F is an affine function given by some A ∈ Nd×d and b ∈ Zd, i.e.,
f(x) = Ax+ b, and

• x −→ y if f(x) = y ∈ Nd for some f ∈ F .

Affine nets encompass Petri nets and most of their extensions (with resets,
transfers, etc.).

p t

r

t′q
∗−→

p t

t′

r

q

Figure 2: Left: example of a Petri net marked (counterclockwise) with (2, 3, 0). Right: mark-
ing obtained, i.e. (0, 0, 5), after firing t twice and t′ three times.

Example 4 (Petri nets). A Petri net is an affine net such that each of its
affine functions is of the form f(x) = Ix + b where I is the identity matrix.
Petri nets are often defined equivalently with the notion of places, transitions
and markings. In the formalism of d-dimensional affine nets, the number of
places is d, the transitions correspond to the affine functions, and markings are
vectors x ∈ Nd. Petri nets are WSTS with strong and strict monotonicity.
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For example, consider the Petri net S = (N3,−→,≤) defined by

ft(xp, xq, xr) = I

xpxq
xr

+

−1
0
1



ft′(xp, xq, xr) = I

xpxq
xr

+

 0
−1

1

 .

S is illustrated on the left side of Fig. 2 with the initial marking (2, 3, 0).
Its places {p, q, r} correspond to the three components of markings, and its
transitions {t, t′} correspond to the functions ft and ft′ . This Petri net “weakly
computes” the sum of p and q into r, i.e. (0, 0, xp + xq) can be reached from
(xp, xq, 0), and x′r ≤ xp + xq for every reachable marking (x′p, x

′
q, x
′
r). For

example, (0, 0, 5) may be reached from (2, 3, 0) as illustrated in Fig. 2.

Example 5 (ω-Petri nets). An ω-Petri net [19] is an extended Petri net in
which arcs can be labelled with positive integers or with ω. The semantics
of an ω-output arc from transition t to place p is that transition t can create
nondeterministically an unbounded albeit finite number of tokens in p; hence
from a marking x in which t may be fired, there are infinitely many reachable
markings y such that yp ∈ xp + N. The semantics of an ω-input arc from a
place p to a transition t is that transition t can consume any positive amount
of tokens from p. ω-Petri nets are WSTS with strong and strict monotonicity.

For example, the ω-Petri net illustrated on the left side of Fig. 3 is initially
marked with (3, 5, 0) and a single firing of its unique transition may lead to
(1, 1, 3).

2

ω

ω →
2

ω

ω

Figure 3: Left: example of an ω-Petri net marked (counterclockwise) with (3, 5, 0). Right:
example of a possible marking, i.e. (1, 1, 3), obtained after firing the unique transition.

Example 6 (Lossy channel systems). A channel system [21, 22] is a finite
state automaton (Q,Σ, δ) equipped with finitely many FIFO channels. The
transitions of a channel system are labelled either with ci!σ or ci?σ. A transition
labelled ci!σ adds the letter σ to channel i. A transition labelled ci?σ may be
taken if the first letter of channel i is σ, in which case it is consumed. A channel
system is said to be a lossy channel system [23] when the system is additionally
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allowed to lose any letter of any channel in any configuration. For example,
consider the lossy channel system illustrated in Fig. 4 withQ = {p, q},Σ = {a, b}
and channels c1, c2. From the initial configuration (p, c1 = ε, c2 = ε), the
configuration (p, c1 = b, c2 = a) can be reached by executing t1 t3 t3, losing the
first letter of c1, and executing t2 t4.

A lossy channel system with d channels is a WSTS (Q× (Σ∗)d,−→,≤) where
(p, w1, w2, . . . , wd) ≤ (p′, w′1, w

′
2, . . . , w

′
d) if, and only if,

(p = q) ∧ (w1 � w′1) ∧ (w2 � w′2) ∧ · · · ∧ (wd � w′d).

Lossy channel systems have stuttering monotonicity [2].

p q

t1 : c1!a

t2 : c1?b

t3 : c1!bt4 : c2!a

Figure 4: Example of a lossy channel system with two channels.

3.3. Branching

In the literature, PostS(x) is usually assumed to be finite, this will not be the
case in this paper and therefore we need to introduce the notion of branching.

Definition 7. A WSTS S = (X,−→,≤) is finitely branching if PostS(x) is finite
for every x ∈ X. Otherwise, S is said to be infinitely branching.

Example 8. Most well-known transition systems such as affine nets, Petri nets
and lossy channel systems (see Sect. 3.2) are finitely branching. However, some
WSTS, such as inserting FIFO automata [16], inserting automata [17], ω-Petri
nets (see Example 5) and broadcast protocols [8], are not finitely branching.
More generally, parameterized transition systems (i.e. with an infinite set of
initial states) are naturally infinitely branching.

Even though we will not consider it in this paper, it is worth mentioning that
a subclass of infinitely branching WSTS has been studied in [3]. They define
a WSTS to be essentially finitely branching if PostS(x) has a finite number of
maximal elements for every x ∈ X.

3.4. Encoding, classes and effectiveness

The point of view taken in this paper is upstream from computational com-
plexity issues. We introduce classes of WSTS in order to parametrize computa-
tional problems.

Definition 9. A class C of WSTS is any countable set of WSTS. We denote
the ith WSTS of C by C(i).
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Classes of WSTS in this generality will only serve to parametrize computa-
tional problems. For the purpose of manipulating WSTS, we extend Finkel &
Goubault-Larrecq [11] and require for any class C of WSTS that a set EC ⊆ N
and a surjective representation map r : EC →

⋃
iXi be understood where Xi is

the set of states of C(i). Let EXi
= {e ∈ EC : r(e) ∈ Xi}, we further require the

set {(i, e) : i ∈ N, e ∈ EXi} to be decidable. Any e ∈ EXi such that r(e) = x
is called an encoding of x ∈ Xi. A Turing machine M over N × N is said to
compute a relation ρ ⊆ Xi ×Xi if M halts at least on EXi

× EXi
and for each

e, e′ ∈ EXi
, M accepts (e, e′) if, and only if, (r(e), r(e′)) ∈ ρ.

Throughout this paper, WSTS will be assumed effective in the following
sense:

Definition 10. A class C of WSTS is effective if a pair of Turing machines
(M−→,M≤) operating on N× N× N exists such that, for each i ∈ N, M−→ with
first argument set to i computes the transition relation “−→” of C(i) and M≤
with first argument set to i computes the ordering relation “≤” of C(i). By
extension, we say that a WSTS S is effective if the degenerate class {S} is
effective.

Most well-known classes of WSTS are effective, e.g., Petri nets and their
usual extensions with reset/transfer transitions or with ω-transitions, FIFO au-
tomata with perfect or lossy channels. Note the subtle, yet crucial, “uniformity”
distinction between effective classes of WSTS and classes of WSTS such that
each of their WSTS is effective:

Proposition 11. There exists a class C of WSTS such that each S ∈ C is
effective, yet C is not effective.

Proof. Let i ∈ N and let Si = ({0},−→, {(0, 0)}) be such that

−→ def
=

{
{(0, 0)} if Turingi halts on its encoding,
∅ otherwise.

Let C = {Si : i ∈ N}. Si is an effective WSTS since there exists a Turing
machine that computes −→, i.e. either the machine accepting every input or the
machine refusing every input.

Suppose that C is an effective class of WSTS, then we can decide whether
Turingi halts on its encoding by verifying whether 0 −→ 0 in Si. This is a
contradiction, hence C is not effective. �

In the literature, PostS(x) is usually assumed to be finite and most analysis
techniques compute the finite set PostS(x), which is made possible by assuming
PostS to be computable. Because our setting allows PostS(x) to be infinite, we
need to adapt this assumption.

Definition 12. A class C of WSTS is said to be post-effective if it is effective,
and if there exists a Turing machine M|Post| that computes |PostC(i)(x)| ∈ N ∪
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{∞} on input (i, x), with i ∈ N and x a state5 of C(i). By extension, we say
that a WSTS S is post-effective if the degenerate class {S} is post-effective.

We note that even when a class of WSTS is post-effective, it is undecidable
to test whether its WSTS are finitely branching or not.

Proposition 13. There exists a post-effective class C of WSTS with strong and
strict monotonicity for which testing, on input i ∈ N, whether C(i) is finitely
branching is undecidable.

Proof. Let i ∈ N and let Si = (N,−→,≤) be such that

x −→ x if Turingi does not halt on its encoding in x steps or less,
x −→ x, x+ 1, . . . otherwise.

Let C = {Si : i ∈ N}. Note that Si has strong and strict monotonicity, and
both x −→ y and |PostSi(x)| can be computed by executing Turingi for a finite
amount of steps. Moreover, Turingi halts on its encoding if, and only if, there
exists x ∈ X such that PostSi

(x) is infinite. �

Even though our work does not rely on upward pre-effectiveness, which was
already mentioned in the introduction, we will compare it with our effectiveness
hypotheses. Therefore, we define it formally.

Definition 14 ([3]). A class C of WSTS is said to be upward pre-effective if
there exists a Turing machine Mprebasis that computes the minimal basis of
↑PreC(i)(↑x) on input (i, x), with i ∈ N and x a state of C(i). By extension, we
say that a WSTS S is upward pre-effective if the degenerate class {S} is upward
pre-effective.

3.5. Decision problems

In this section, we formally define the decision problems considered through-
out this paper. Let C be a class of WSTS, we parametrize these problems by C,
i.e., the input WSTS are given by their index i ∈ N in C.

TerminationC
INPUT: A WSTS S = (X,−→,≤) ∈ C and x0 ∈ X.
QUESTION: Is it the case that no infinite sequence x0, x1, . . . such that x0 −→

x1 −→ . . . exists?

Strong terminationC
INPUT: A WSTS S = (X,−→,≤) ∈ C and x0 ∈ X.
QUESTION: ∃m ∈ N such that x0 −→ x1 −→ . . . −→ xk =⇒ k ≤ m?

5As in Definition 10, manipulating the elements of the set of states Xi of C(i) is done via
EXi

, with M|Post| required to halt at least on N× EXi
.
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BoundednessC
INPUT: A WSTS S = (X,−→,≤) ∈ C and x0 ∈ X.
QUESTION: Is Post∗S(x0) finite?

MaintainabilityC
INPUT: A WSTS S = (X,−→,≤) ∈ C, x0 ∈ X and t1, t2, . . . , tn ∈ X.
QUESTION: Let T = ↑ {t1, t2, . . . , tn}. Is there a maximal execution from x0

staying in T? Namely, is there an infinite sequence x0, x1, . . .
such that x0 −→T x1 −→T . . ., or a finite sequence x0, x1, . . . , xk
such that x0 −→T x1 −→T . . . −→T xk and PostS(xk) = ∅?

Weak maintainabilityC
INPUT: A WSTS S = (X,−→,≤) ∈ C, x0 ∈ X and t1, t2, . . . , tn ∈ X.
QUESTION: Let T = ↑ {t1, t2, . . . , tn}. For every m ∈ N, is there a finite

sequence x0, x1, . . . , xk such that x0 −→T x1 −→T . . . −→T xk and
k ≥ m?

CoverabilityC
INPUT: A WSTS S = (X,−→,≤) ∈ C and x0, x ∈ X.
QUESTION: ∃x′ ∈ X such that x ≤ x′ and x0 −→∗ x′?

3.6. Decidability status of the decision problems for finitely branching WSTS

We summarize the four main decidability results known about finitely bran-
ching WSTS. Theorem 15 recalls results exactly as they appear in the literature
except for two new results, proven in Prop. 16 and Prop. 17, about the unde-
cidability of termination and maintainability.

Theorem 15 ([1, 2, 3, 24, 20]). The following holds, where classes C and D
are assumed to be post-effective classes of finitely branching WSTS:

• Termination is decidable for any class C with transitive monotonicity [1,
2], and there exists a class D of WSTS with well partial ordering for which
the problem is undecidable (see Prop. 16).

• Boundedness is decidable for any class C with strict monotonicity and well
partial ordering [1, 2], and there exists a class D of WSTS with strong
monotonicity and well partial ordering for which the problem is undecid-
able [24].

• Maintainability is decidable for any class C with stuttering monotonic-
ity [2], and there exists a class D of WSTS with well partial ordering for
which the problem is undecidable (see Prop. 17).

The following holds, where classes C and D are assumed to be effective classes
of WSTS:
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• Coverability is decidable for any upward pre-effective class C [2, 3], and
there exists a post-effective class D of finitely branching WSTS with strong
and strict monotonicity for which the problem is undecidable [20].

Proposition 16. There exists a post-effective class of finitely branching WSTS
for which termination is undecidable.

Proof. Let Si = (N,−→,≤) be the transition system such that x −→ x + 1 if
Turingi does not halt on its encoding in x steps or less. Let C = {Si : i ∈ N}.

Let us show that C is a post-effective class of finitely branching WSTS. It is
clear that Si is finitely branching. Moreover, C is post-effective because −→ and
|PostSi(x)| can be computed by executing Turingi for a finite amount of steps.
Since ≤ is a wqo, it only remains to show that S is monotone. Let x, x′, y ∈ N
be such that x ≤ x′ and x −→ y. By definition, we have y = x + 1. If x = x′,
then x′ −→ x + 1 and we are done since y ≤ x + 1. If x < x′, then trivially
x′ −→∗ x′ and we are also done since y = x+ 1 ≤ x′.

Now, we note that for each i there exists an infinite sequence x0, x1, . . . such
that x0 = 0 and x0 −→ x1 −→ . . . if, and only if, Turingi does not halt on its
encoding. Hence, termination for C is undecidable. �

Proposition 17. There exists a post-effective class of finitely branching WSTS
for which maintainability is undecidable.

Proof. Let Si = (N,−→,≤) be the transition system such that

• x −→ x+ 1 if x ≥ 1 and Turingi does not halt on its encoding in x steps
or less,

• x −→ 0 if x ≥ 1 and Turingi halts on its encoding in x steps or less.

Let C = {Si : i ∈ N}. With a similar argument as in the proof of Prop. 16, we
can show that C forms a post-effective class of finitely branching WSTS.

Let x0 = 1 and T = ↑ 1. Suppose that, for any i, there exists a finite sequence
x0, x1, . . . , xk such that x0 −→T x1 −→T . . . −→T xk in Si and PostSi

(xk) = ∅,
then by definition xk = 0, hence there is a contradiction since 0 6∈ T . Moreover,
there exists an infinite sequence x0, x1, . . . such that x0 −→T x1 −→T . . . in Si if,
and only if, Turingi does not halt. Hence, maintainability for C is undecidable.

�

4. Handling infinitely branching WSTS finitely

In this section we develop the theory that will support the design in Sec-
tion 5 of procedures capable of handling, under natural hypotheses, infinitely
branching systems.

We begin by discussing downward-closed sets and their ideals. Then we re-
visit the so-called WSTS completion in the general setting of infinitely branch-
ing WSTS. We will see that completing a WSTS yields a system that is finitely
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branching, but at the expense of blurring some, though fortunately not all, of
the original WSTS behaviors. Furthermore, we will see that computing the
completion of a WSTS requires computing finite representations of each term
in the sequence

↓x, ↓Post(↓x), ↓Post(↓Post(↓x)), . . .

which requires the ability to represent downward closed sets finitely. Concrete
examples are scattered throughout this section, with a final subsection devoted
to examples of completions.

4.1. Downward closed sets and ideals

It has long been known that in a well-quasi-ordered set, any upward closed
subset has a finite basis; this is Dickson’s lemma in (Nk,≤) and it is Higman’s
lemma in (Σ∗,�). It has recently been (re)discovered that a similar situation
occurs for well-quasi-ordered downward closed sets. We will see this in The-
orem 21, but first we give two examples of downward closed sets and observe
that they can be represented by finitely many ideals.

Example 18. Let us consider the ideals of Nd. It can be shown that

Ideals(Nd) = Ideals(N)× Ideals(N)× · · · × Ideals(N)︸ ︷︷ ︸
d times

and that I ∈ Ideals(N) is either N or of the form ↓x for some x ∈ N. Therefore,
any ideal I ∈ Ideals(Nd) may be represented by some x ∈ Ndω where xi = ω
represents N and xi = y represents ↓ y. Consider the following downward closed
set

X = {(x1, x2) ∈ N2 : (x1 ≤ 4) ∨ (x1 ≤ 8 ∧ x2 ≤ 10) ∨ (x2 ≤ 5)}.
As illustrated in Fig. 5, it is possible to write X as the following finite union of
ideals:

↓ 4× N ∪ ↓ 8× ↓ 10 ∪ N× ↓ 5

which can be represented by {(4, ω), (8, 10), (ω, 5)}.

Example 19. It has been recently shown that downward closed languages (un-
der the subword ordering) coincide with the class of strictly piecewise-testable
languages [25]. Previously, downward closed languages were studied and used in
[26] for representing infinite reachability subsets of lossy channel systems; it is
proved that every downward closed language on Σ∗, where Σ is a finite alphabet,
is a finite union of products P1P2 · · ·Pm where each Pi is either {ε, σ} for some
σ ∈ Σ, or A∗ for some A ⊆ Σ. It has been remarked in [10] that every ideal
I ∈ Ideals(Σ∗), is exactly a product I = P1P2 · · ·Pm like in [26]. Following [10],
the previous result on downward closed languages is then a particular instance
of a more general result: every downward closed set (here a downward closed
language on Σ∗), in a wqo, is a finite union of ideals.
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Figure 5: Decomposition of X = {(x1, x2) ∈ N2 : (x1 ≤ 4) ∨ (x1 ≤ 8 ∧ x2 ≤ 10) ∨ (x2 ≤ 5)}
into finitely many ideals. The three ideals ↓ 4× N, ↓ 8× ↓ 10 and N× ↓ 5 appear respectively
in blue, orange and green.

For example, consider the language of words over Σ = {a, b, c} where the
first letter does not reappear, i.e., let

L = {w ∈ Σ+ : wi 6= w1 for 1 < i ≤ |w|}

= a{b, c}∗ ∪ b{a, c}∗ ∪ c{a, b}∗ .

It can be shown that

↓L = L ∪ {w ∈ Σ∗ : |w|σ = 0 for some σ ∈ Σ}

= L ∪ {a, b}∗ ∪ {a, c}∗ ∪ {b, c}∗

= {a, ε}{b, c}∗ ∪ {b, ε}{a, c}∗ ∪ {c, ε}{a, b}∗ .

Hence, ↓L decomposes into finitely many ideals.

Before proving formally that ideal decompositions such as in Example 18
and Example 19 exist, we prove the following simple yet useful proposition that
states that any ideal contained in a finite union of ideals is contained in one of
these ideals.

Proposition 20. Let I, J1, J2, . . . , Jm ∈ Ideals(X) where X is a quasi-ordered
set, then I ⊆ J1 ∪ J2 ∪ · · · ∪ Jm if, and only if, I ⊆ Jj for some 1 ≤ j ≤ m.

Proof. We claim that if a directed set I is included in J ∪ K where J and
K are downward closed, then either I ⊆ J or I ⊆ K. The claim implies the
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proposition by a straightforward induction since an ideal is directed and any
union of ideals is downward closed.

To see the claim, let I ⊆ J ∪K under the conditions stated and suppose to
the contrary that there exist s ∈ I \ J and t ∈ I \K. Since I is directed, there
exists u ∈ I such that s ≤ u and t ≤ u. Since u ∈ I, either u ∈ J or u ∈ K.
By downward closures of J and K, either s ∈ J or t ∈ K, a contradiction that
proves the claim. �

Theorem 21. Let D be a downward closed subset of a well-quasi-ordered set X,
then D = I1 ∪ I2 ∪ · · · ∪ Im for some I1, I2, . . . , Im ∈ Ideals(X). Moreover, there
is exactly one collection of such ideals that are pairwise incomparable, namely
the maximal ideals contained in D (w.r.t. inclusion).

Proof. We say that a subset D ⊆ X is bad if it is downward closed and does
not admit a finite decomposition in ideals. Assume, to obtain a contradiction,
that a bad D exists. We can assume that D is minimal for inclusion among bad
subsets since strictly decreasing subsequences of downward closed subsets are
finite in a well-quasi-ordered set.

Let us now show that D is directed. First D is not empty since ∅ is equal
to an empty union. Let x1, x2 ∈ D. Since D \ ↑x1 and D \ ↑x2 are downward
closed and strictly included in D, they are not bad, by minimality of D. Thus,
D \ ↑x1 =

⋃n
j=1 Ij and D \ ↑x2 =

⋃m
j=n+1 Ij for some ideals I1, I2, . . . , Im ⊆ X.

Hence

D \ (↑x1 ∩ ↑x2) = (D \ ↑x1) ∪ (D \ ↑x2) =

m⋃
j=1

Ij

is not bad, hence differs from D. Therefore, D ∩ (↑x1 ∩ ↑x2) is not empty and,
thus, there exists y ∈ D such that x1 ≤ y and x2 ≤ y. We conclude that D is
directed and therefore an ideal, contradicting our assumption. Thus, D is equal
to a finite union of ideals.

Assume that there exist two distinct sets {I1, I2, . . . , Im} and {J1, J2, . . . , Jn}
of pairwise incomparable ideals each of whose union is D. Suppose with no loss
of generality that I1 /∈ {J1, J2, . . . , Jn}. By applying Prop. 20 twice, I1 ⊆ Jj ⊆
Ii for some 1 ≤ j ≤ n and some 1 ≤ i ≤ m. Since I1 6= Jj , I1 ( Jj ⊆ Ii so that
i 6= 1. But then I1 and Ii are comparable, a contradiction that completes the
proof. �

Remark 22. A proof of the first half of Theorem 21 appeals to a technical
bridge between topological completions and ordering completions of sets [10].
The above self-contained proof was later provided by Goubault-Larrecq [27] and
will be part of a future paper by a group of authors including Goubault-Larrecq
[28]. It has recently been noticed that this result has a long history. It has
seemingly been first proved by Erdős and Tarski in 1943 in a more general
setting [29]. The proof presented here is more reminiscent of proofs given later
by Bonnet [30] and Fräıssé [31].
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Definition 23. We will denote the ideal decomposition of a downward closed
set D, stated in Theorem 21, as IdealDecomp(D), i.e., IdealDecomp(D) is the
finite set of maximal ideals contained in D w.r.t. inclusion.

Since downward closed sets can be represented by finitely many ideals, it
will often be sufficient for algorithms to manipulate ideals, in particular to test
for inclusion. Fortunately, inclusion between ideals is decidable for well-quasi-
ordered sets obtained by closing finite sets and natural numbers under finite
products, disjoint sums, the multiset operator and the Kleene star (respectively
with their natural associated orderings) [10]. Therefore inclusion of ideals of Nd
and inclusion of ideals of Σ∗ are both decidable. Moreover:

Proposition 24. Let X be a well-quasi-ordered set, then Ideals(X) is countable
if, and only if, X is countable.

Proof. Suppose that X is countable. Any upward closed subset is the upward
closure of a finite basis, hence the number of upward closed sets is equal to the
number of finite subsets of X, which is countable. Since the complement of an
upward closed set is downward closed and vice versa, upward closed subsets are
in bijection with downward closed subsets. Since ideals are downward closed
sets, we conclude that Ideals(X) is countable.

Suppose that Ideals(X) is countable, then X is countable since x 7→ ↓x is
an injective mapping from X to Ideals(X). �

4.2. Completion of WSTS

Let S = (X,−→,≤) be a functional WSTS (recall Definition 2) defined by
a set F of non decreasing partial functions, the functional completion of S,
introduced by Finkel & Goubault-Larrecq [11], is defined by

S = (X, →,⊆)

where X = Ideals(X) and → is defined by F the set of functions f : Ideals(X)→
Ideals(X) such that f(I)

def
= ↓ f(I) for every f ∈ F . We note that f is well-

defined since f(I) is an ideal. An elementary proof of this fact is given in the
next proposition. A more general result expressed in a topological framework
can be found in [11].

Proposition 25. Let X be a well-quasi-ordered set, let f : X → X be a non
decreasing function, and let I ∈ Ideals(X), then f(I) is an ideal.

Proof. First, f(I) is downward-closed by definition. Let us verify that f(I) is
also directed. Let a′, b′ ∈ f(I) then, by definition, there exist a, b ∈ I such that
a′ ≤ f(a) and b′ ≤ f(b). Now, since I is an ideal, it is directed, hence there
exists c ∈ I such that a ≤ c and b ≤ c. Hence, as f is non decreasing, we have
f(a) ≤ f(c) and f(b) ≤ f(c). By transitivity, we obtain a′ ≤ f(c) and b′ ≤ f(c).
Since f(c) ∈ f(I) ⊆ f(I), we conclude that f(I) is directed. �
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Here we extend the notion of completion to any WSTS, including infinitely
branching WSTS:

Definition 26. The completion Ŝ of a WSTS S = (X,−→,≤) is the ordered

transition system Ŝ = (X̂, ,⊆) where X̂ = Ideals(X) and I  J if J ∈
IdealDecomp(↓PostS(I)).

Let S = (X,−→,≤) be a functional WSTS, then, by definition, the following

relations hold between S, S and Ŝ for every I ∈ Ideals(X):⋃
J∈PostS(I)

J =
⋃
f∈F

f(I) =
⋃
f∈F
↓ f(I) =

⋃
J∈PostŜ(I)

J = ↓PostS(I).

Another good news is that:

Proposition 27. Ŝ is finitely branching for every WSTS S = (X,−→,≤).

Proof. Let I ∈ Ideals(X). By definition of Ŝ,

PostŜ(I) = IdealDecomp(↓PostS(I)).

By Theorem 21, this set is finite, hence Ŝ is finitely branching. �

Moreover, the reachability sets of a WSTS and its completion are related in
the following way:

Proposition 28. For every WSTS S = (X,−→,≤) and every x ∈ X,

↓Post∗S(x) =
⋃

I∈Post∗
Ŝ
(↓ x)

I .

Proposition 28 is proved by comparing executions in a system with execu-
tions in its completion. This relation between executions, which will also be
useful later to prove decidability results, is proved in Prop. 29 and Prop. 30
below.

Proposition 29. Let S = (X,−→,≤) be a WSTS, and I, J ∈ X̂. If I  k J
for some k ∈ N, then for every xJ ∈ J there exist xI ∈ I, y ∈ X and k′ ∈ N
such that y ≥ xJ and xI −→k

′
y. Moreover, if S has transitive monotonicity then

k′ ≥ k; if S has strong monotonicity then k′ = k.

Proof. If I  0 J then I = J and for every xJ ∈ J , one can pick xI = y = xJ
and k′ = 0.

Let I  I ′  k J . By induction, for every xJ ∈ J there exist xI′ ∈ I ′, y′ ≥ xJ
and k′ ∈ N (resp. k′ ≥ k; k′ = k) such that xI′ −→k

′
y′. Since xI′ ∈ ↓PostS(I),

there exist xI ∈ I and y′′ ≥ xI′ such that

xI −→ y′′. (2)
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Moreover, since y′′ ≥ xI′ , we can apply (resp. transitive; strong) monotonicity
to xI′ −→k

′
y′ and deduce

y′′ −→k′′ y (3)

for some y ≥ y′ and k′′ ∈ N (resp. k′′ ≥ k′; k′′ = k′). Hence, by (2) and (3),
we have xI −→ y′′ −→k′′ y of length k′′ + 1 (resp. k′′ + 1 ≥ k′ + 1 ≥ k + 1;
k′′ + 1 = k′ + 1 = k + 1), with y ≥ y′ ≥ xJ , completing the induction and
proving the proposition. �

Proposition 30. Let S = (X,−→,≤) be a WSTS and x, y ∈ X. If x −→k y for
some k ∈ N, then for every ideal I ⊇ ↓x there exists an ideal J ⊇ ↓ y such that
I  k J .

Proof. If x −→0 y then x = y and I  0 I for every ideal I ⊇ ↓x = ↓ y.
Let x −→ x′ −→k y. Pick any ideal I ⊇ ↓x, then x′ ∈ PostS(I) ⊆ ↓PostS(I).

Therefore, I  I ′ for some ideal I ′ ⊇ {x′}. Since I ′ is downward closed,
I ′ ⊇ ↓x′. By induction, there exists an ideal J ⊇ ↓ y such that I ′  k J , hence
I  I ′  k J has length k + 1. �

We may now prove Prop. 28 that gives a relation between the reachability
sets of a WSTS and its completion.

Proof of Proposition 28. Let S = (X,−→,≤) be a WSTS and x ∈ X.
Let y ∈ Post∗S(x). By applying Prop. 30 with I = ↓x, we know that there

exists an ideal J ⊇ ↓ y such that J ∈ Post∗S(↓x). Hence, ↓ y ⊆ ⋃I∈Post∗S(↓ x) I.

Thus, we have ↓Post∗S(x) ⊆ ⋃I∈Post∗
Ŝ
(↓ x) I.

Let I = ↓x, J ∈ Post∗
Ŝ

(I) and xJ ∈ J . By Prop. 29, there exist xI ∈ I,

y ≥ xJ and k ∈ N such that xI −→k y. By definition of I and by monotonicity of
S, x −→∗ y′ for some y′ ≥ y. Hence, since xJ ≤ y ≤ y′, we have xJ ∈ ↓Post∗S(x)
and consequently J ⊆ ↓Post∗S(x). �

A natural question that arises is whether the completion of a WSTS is also
a WSTS. It does indeed have monotonicity:

Proposition 31. Ŝ has strong monotonicity for every WSTS S = (X,−→,≤).

Proof. Let I, I ′, J ∈ X̂ and suppose that I  J and I ⊆ I ′. We have to
show that I ′  J ′ for some J ′ ∈ X̂ such that J ⊆ J ′. Let PostŜ(I ′) =
{J ′1, J ′2, . . . , J ′m}. Since J ∈ PostŜ(I), we have

J ⊆ ↓PostS(I) ⊆ ↓PostS(I ′) = J ′1 ∪ J ′2 ∪ . . . ∪ J ′m.

By Prop. 20, we have J ⊆ J ′j for some 1 ≤ j ≤ k. Thus, I ′  J ′j and J ⊆ J ′j . �

Unfortunately, ⊆ is not always a wqo for X̂, and therefore the completion
is not always a WSTS. But we may totally characterize those WSTS S such
that Ŝ is still a WSTS. Let us first recall the characterization of ω2-wqos from
Jančar [32]: a wqo ≤ is a ω2-wqo if, and only if, ≤# is a wqo, where ≤#
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is the Smyth ordering defined by A ≤# B ⇔ ↑ B ⊆ ↑ A (or equivalently,

A ≤# B ⇔ ∀b ∈ B, ∃a ∈ A, a ≤ b). Now, it is known that ⊆ is a wqo for X̂ if,
and only if, ≤ is an ω2-wqo for X (e.g. see [11, Prop. 3]).

In general, a wqo is not necessarily an ω2-wqo and the typical counter-
example is the Rado set [33],

XRado
def
= {(m,n) ∈ N2 : m < n},

ordered by ≤Rado where

(m,n) ≤Rado (m′, n′)⇔ (m = m′ ∧ n ≤ n′) ∨ (n < m′).

It is well-known that ≤Rado is a well-quasi-ordering, and that 2XRado is not well-
quasi-ordered by ≤#

Rado [32].

We extend the terminology to WSTS and say that a WSTS S = (X,−→,≤) is
a ω2-WSTS if ≤ is an ω2-wqo for X. We obtain the following result generalizing
the known result for functional WSTS [11]:

Theorem 32. Let S be a WSTS, then Ŝ is a WSTS if, and only if, S is an
ω2-WSTS.

We also observe that a WSTS inherits the strict monotonicity of its comple-
tion but not conversely.

Proposition 33. Let S = (X,−→,≤) be a WSTS. If Ŝ has strict monotonicity,

then so does S. However, if S has strict monotonicity then Ŝ does not necessarily
have it.

Proof. Suppose Ŝ has strict monotonicity. Let x, x′, y ∈ X be such that x −→ y
and x < x′. We have to show that x′ −→∗ y′ for some y′ ∈ X such that y < y′.

Let PostŜ(↓x) = {J1, J2, . . . , Jm} ⊆ Ideals(X). Since y ∈ PostS(x), we have

↓ y ⊆ ↓PostS(↓x) = J1 ∪ J2 ∪ . . . ∪ Jm.

By Prop. 20, we have ↓ y ⊆ Ji for some 1 ≤ i ≤ n. Let J = Ji. We have ↓x J
and ↓ y ⊆ J .

Since ↓x ⊂ ↓x′, there exists J ′ ∈ X̂ such that ↓x′  ∗ J ′ and J ⊂ J ′ by
hypothesis on strict monotonicity. Since J ⊆ J ′, we have y ∈ J ′. Let b ∈ J ′ \J ,
then there exists c ∈ J ′ such that y ≤ c and b ≤ c since J ′ is directed. Note
that c 6∈ J , because the opposite would imply b ∈ J since J is downward closed.
Moreover c > y since c = y implies c ∈ J .

By Prop. 29, there exists x′′ ∈ ↓x′ and c′ ≥ c such that x′′ −→∗ c′. By
(standard) monotonicity, we have x′ −→∗ y′ for some y′ ≥ c′. Since y′ ≥ c′ ≥ c >
y, it shows strict monotonicity for S.

To show that the converse fails, let S = (N2,−→,≤) be the WSTS such
that (a, b) −→ (0, a + b), then S has strict monotonicity. Let I = N × ↓ 1 and
I ′ = N× ↓ 2. We have I ⊂ I ′, but PostŜ(I) = PostŜ(I ′) = {↓ 0×N}. Therefore

Ŝ does not have strict monotonicity. �
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4.2.1. Effectiveness

The completion of a WSTS will often be useful, assuming, minimally, that

we can manipulate it. Let C be a class of WSTS, we let Ĉ def
= {Ŝ : S ∈ C} and

Ĉ(i) def
= C(i). When manipulating the completions, we naturally require for any

class C of WSTS that a set ÊC ⊆ N and a surjective map r̂ : ÊC →
⋃
i X̂i be

understood where Xi is the set of states of C(i). Let ÊXi
= {e ∈ ÊC : r(e) ∈ X̂i},

we further require the set {(i, e) : i ∈ N, e ∈ ÊXi} to be decidable.

Definition 34. Let a class C of WSTS have the property that

(a) there exists a Turing machine M↓ that computes, on input (i, x) where i ∈ N
and x is a state of C(i), some ê ∈ ÊC such that r̂(ê) = ↓x;

(b) there exists a Turing machine M↑c that computes, on input (i, {x1, x2, . . . ,
xm}) where i ∈ N and {x1, x2, . . . , xm} is a set of states of C(i), some

ê1, ê2, . . . , ên ∈ ÊC such that

IdealDecomp
(
↑{r(x1), r(x2), . . . , r(xm)}

)
= {r̂(ê1), r̂(ê2), . . . , r̂(ên)} .

Such a class C is called completion-effective (resp. completion-post-effective6) if

the class Ĉ is effective (resp. post-effective). By extension, we say that a WSTS
S is completion-effective (resp. completion-post-effective) if the degenerate class
{S} is completion-effective (resp. completion-post-effective).

Definitions of effective “S-representations” for various ideals (and for various
topological spaces) S, similar to Definition 34, can be found in [10]; the idea is
to ensure that irreductible downward closed sets (like ↓x) can be manipulated
and that inclusion and intersection between ideals can effectively be tested. The
specific conditions appearing in Definition 34 also appeared in a similar form
in [34, Sect. 4.3.4] but the latter is not adapted for dealing with infinite sets of
WSTS.

We note that the post-effectiveness of a class C of WSTS is independent
from the post-effectiveness of its completion Ĉ. Actually, this is even true for
degenerate classes of WSTS as shown in the two following propositions.

Proposition 35. There exists a post-effective WSTS that is not completion-
effective.

Proof. The argument mimics the proof of [20, Prop. 2.4]. Let S = (N2,−→,≤)
be the WSTS such that

(m,n) −→ (m+ |{i ≤ m : Turingi halts on its encoding in at most n steps}| , n) .

Note that S is post-effective because −→ and ≤ are decidable under a natural
encoding of N2 and |PostS(x)| = 1 for every x ∈ N2.

6It happens here that, unlike for WSTS, the outcome of M|Post| on (i, x̂) is never ∞ since
completions are finitely branching.
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Let us show that Ŝ is not effective. Let Im be the ideal ↓m×N and let Jm
be the unique ideal such that Im  Jm. One can show that for every m > 0,
there exists a ∈ N such that Jm−1 = Ia = ↓ a× N and

Jm =

{
↓ (a+ 2)× N if Mm halts on its encoding,
↓ (a+ 1)× N otherwise.

Assume Ŝ to be effective and let us show that we can decide whether Mm halts
or not on its encoding. By definition, it is possible to compute the encoding of
Ii by computing IdealDecomp(↑{(i+ 1, 0)}) which is equal to ↓ i×N. Therefore,
we can compute Im−1 and Im which allows us to compute Jm−1 and Jm since
 is computable. We know that Jm−1 = Ia = ↓ a × N for some a ∈ N. As
explained earlier, we can compute the ideals I0, I1, . . ., hence, to determine a,
we test Ii ⊆ Jm−1 for i ≥ 0 until we reach Ia+1 6⊆ Jm−1. Note that testing

Ii ⊆ Jm−1 is possible since Ŝ is effective. Similary, we know that Jm = Ia+b for
some b ∈ {1, 2} and we can find the value of b with the same process. If b = 1,

then Mm halts on its own encoding, otherwise it does not. Therefore, if Ŝ was
effective, we could decide the halting problem, which is impossible. �

Proposition 36. There exists a non post-effective WSTS that is completion-
post-effective.

Proof. Let S = (Nω,−→,≤) be the WSTS such that

• i −→ j if i, j ∈ N and Turingi runs on its encoding for more than j steps,

• i −→ ω for every i ∈ Nω.

Note that S is effective. However, S is not post-effective. Indeed, PostS(i) is
finite if, and only if, Turingi halts on its encoding. Therefore, if S was post-
effective, it would come equipped with a Turing machine powerful enough to
decide the halting problem, which would be a contradiction. On the other hand,
Ŝ is post-effective since PostŜ(I) = {Nω} for every I ∈ Ideals(Nω). �

4.3. Completion-post-effectiveness of concrete classes of WSTS

Let us examine some prominent classes of WSTS, introduced in Sect. 3.2,
and let us show that they are completion-post-effective.

4.3.1. Affine nets and Petri nets

Let S = (Nd,−→,≤) be an affine net with affine functions F . As noted in
Example 18, the ideals of Nd can be represented by elements of Ndω. This way,
we can simply extend each f ∈ F to Ndω with the rule ω + x = ω for every

x ∈ Ndω. Let us call F̂ the extension of F to Ndω. The completion of S is

Ŝ = (Ndω, ,≤)
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where I  J si J ∈ max{f̂(I) : f̂ ∈ F̂}. Let I ∈ Ndω, then PostŜ(I) can easily
be computed by computing {

f̂(I) : f̂ ∈ F̂
}

and remove its non maximal elements by applying Prop. 20. Hence, affine nets
are completion-post-effective and consequently Petri nets too.

4.3.2. ω-Petri nets

In order to show that ω-Petri nets are completion-post-effective, we need to
extend transitions of ω-Petri nets to ideals, and take the downward closure of
their images.

Let S = (Nd,−→,≤) be an ω-Petri net with d places. Let t be a transition of
S such that its input arc from place i is labelled by a ∈ Nω and its output arc to
place i is labelled by b ∈ Nω. We extend t over ideals, and take the downward
closure of its image as follows. Let I ∈ Ideals(Nd). If a = b = 0, then t leaves
Ii unchanged. Assume that a 6= 0 or b 6= 0. If Ii = N, then t maps Ii to N; if
Ii = ↓n for some n ∈ N, then t maps Ii to

• ↓ (n− a+ b) if a ∈ N, b ∈ N, and n ≥ a,

• ↓ (n+ b) if a = ω, b ∈ N,

• N if a ∈ N, b = ω, and n ≥ a,

• N if a = ω, b = ω,

• undefined otherwise.

As in the case of Petri nets, ideals may be represented by elements of Ndω,
and in order to compute PostŜ(I), we may compute the maximal elements of

{J : J is obtained by firing some transition t from I}

by applying Prop. 20.

4.3.3. Lossy channel systems

For simplicity, we restrain ourselves to lossy channel systems with a single
channel. Our reasoning can be extended to many channels and a proof can be
found in another formalism in [35]. Let S = (Q× Σ∗,−→,�) be a lossy channel
system, and let t be one of its transitions. We extend t to ideals and take the
downward closure of its image. Let I ∈ Ideals(Q × Σ∗), then as explained in
Example 19, I = (p, P1P2 · · ·Pm) where each Pi is either {ε, σ} for some σ ∈ Σ,
or A∗ for some A ⊆ Σ. If t writes letter a ∈ Σ and goes to state q, then t maps
I to

• (q, P1P2 · · ·Pm) if Pm = A∗ with a ∈ A,

• (q, P1P2 · · ·Pm{ε, a}) otherwise.
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If t reads letter a ∈ Σ and goes to state q, then t maps I to

• (q, Pi+1Pi+2 · · ·Pm) if i is the smallest i s.t. a ∈ Pi and Pi = {ε, a},

• (q, PiPi+1 · · ·Pm) if i is the smallest i s.t. a ∈ Pi and Pi 6= {ε, a},

• undefined otherwise.

Therefore, we may represent ideals by regular expressions (or finite auo-
mata), and in order to compute PostŜ(I), we may compute the maximal ele-
ments of

{J : J is obtained by going through some transition t from I}

by applying Prop. 20 combined with regular languages inclusion.

5. Decidability and undecidability in infinitely branching WSTS

One of the goals of this paper is to extend the decidability of termination,
boundedness and maintainability given by Theorem 15 to the more general case
of infinitely branching WSTS. Our goal for the coverability problem, which is de-
cidable for infinitely branching WSTS, is to investigate alternative effectiveness
hypotheses.

5.1. Termination

We first note that termination is undecidable for infinitely branching WSTS
even with many hypotheses.

Theorem 37. Termination is undecidable for some post-effective and comple-
tion-post-effective class of ω2-WSTS with strong and strict monotonicity, and
well partial ordering.

Proof. We know from [36, 37] that structural termination, i.e. deciding whe-
ther a WSTS terminates from every initial state x ∈ X, is undecidable for
Petri nets with transfers. Petri nets with transfers form a post-effective and
completion-post-effective class C of ω2-WSTS with strong and strict monotonici-
ty, and well partial ordering. We show that structural termination for C reduces
to termination for some class D.

Let C(i) = (X,−→,≤) and let D(i)
def
= (X ∪ {x0},−→ ∪ {(x0, x) : x ∈ X},≤)

be the WSTS obtained from C(i) by adding a new “initial” element x0. By
definition, D(i) is also an ω2-WSTS with strong and strict monotonicity. Note
that D is infinitely branching because of x0. We claim that the class D is still
post-effective and completion-post-effective. Indeed, encoding x0 only requires
an extra special symbol; the only new ideal is {x0} and can also be encoded
with an extra special symbol; and the Turing machines computing −→, ≤,  
and ⊆ are easily adapted to handle these two new symbols. Now, note that C(i)
structurally terminates if, and only if, D(i) terminates from x0. �
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Figure 6: Example of an ω-Petri net that terminates from marking x0 = (1, 0, 0), but does
not terminate in the strong sense.

Recall that strong termination asks whether the length of executions is
bounded, whereas termination asks whether there is no infinite excution. When
a WSTS is infinitely branching, its termination problem differs in a subtle way
from its strong termination problem. For example, consider the ω-Petri net (see
Example 5) illustrated in Fig. 6. Consider x0 = (1, 0, 0), marking respectively
p, q and r. As illustrated in Fig. 7, initially, we can only fire t which yields
(0,m, 0) for some m ∈ N. Afterwards, we may only fire t′ at most m times.
Hence, this ω-Petri net terminates from x0 since there is no infinite execution,
however it does not terminate in the strong sense since the length of executions
is unbounded.

(1, 0, 0)

(0, 0, 0) (0, 1, 0)

(0, 0, 1)

(0, 2, 0)

(0, 1, 1)

(0, 0, 2)

· · ·

Figure 7: Reachability tree from x0 = (1, 0, 0) of the ω-Petri net depitcted in Fig. 6.

We show that, in contrast with termination, strong termination is decidable
under suitable hypotheses:

Theorem 38. Strong termination is decidable for any completion-post-effective
class of ω2-WSTS with transitive monotonicity.

Proof. Let C be a completion-post-effective class of ω2-WSTS with transitive
monotonicity. It has been shown by Finkel and Schnoebelen [2, Theorem 4.6],
that termination, and thus strong termination, is decidable for any post-effective
class of finitely branching WSTS with transitive monotonicity. Let S ∈ C,
since S is an ω2-WSTS, Ŝ is a WSTS. Moreover, Ŝ has strong monotonicity by
Prop. 31 and thus transitive monotonicity. Since C is completion-post-effective,
by definition, Ĉ is post-effective. Therefore, Ĉ is a post-effective class of finitely

24



branching WSTS with transitive monotonicity, and thus strong termination is
decidable for Ĉ.

Let us see how this implies decidability of strong termination for C. We claim
that no bound on the length of executions from x0 exists in S ∈ C if, and only
if, no bound on the length of executions from ↓x0 exists in Ŝ. Hence deciding
strong termination from x0 in S ∈ C follows from being able to decide strong
termination from ↓x0 in Ŝ. Since C is completion-post-effective, the latter can
be decided by obtaining the encoding of ↓x0 from x0.

To see the claim, let S = (X,−→,≤) ∈ C and suppose that there is no bound
on the length of executions in S from x0 ∈ X. By Prop. 30, there is no k ≥ 0 that
bounds the length of every execution from ↓x0 in Ŝ. In more detail, suppose to
the contrary that the longest execution from ↓x0 in Ŝ has length k ≥ 0; this is
contradicted by Prop. 30 since an execution of length k′ > k exists from x0 in
S. This proves the “only if”.

Conversely, suppose that there is no bound on the length of executions from
↓x0 in Ŝ. By Prop. 29, no k ≥ 0 bounds the length of every execution from
x0 in S. This proves the “if”. Hence the claim holds and strong termination is
decidable for C. �

5.2. Boundedness

Drawing from [24], we know that boundedness is undecidable, even for
some post-effective and completion-post-effective classes of finitely branching
ω2-WSTS with strong (but not strict) monotonicity.

It is known that for post-effective classes of finitely branching WSTS with
transitive and strict monotonicity, and a well partial ordering, the bounded-
ness problem is decidable [2]. We generalize this result to (possibly) infinitely
branching WSTS and we note that the hypothesis of transitive monotonicity
was not necessary in the proof of [2]. The proof follows [2] by building a finite
reachability tree, with the extra step of testing whether PostS(x) is infinite for
each new node.

Theorem 39. Boundedness is decidable for any post-effective class of WSTS
with strict monotonicity and well partial ordering.

Proof. Let C be a post-effective class of WSTS with strict monotonicity and
well partial ordering. Let S = (X,−→,≤) ∈ C, and let x0 ∈ X. We build a
reachability tree T with root c0 labelled x0. If PostS(x0) is infinite, then we
return “unbounded”, otherwise we mark c0 and for every x ∈ PostS(x0) we add
a child labelled x to c0. The tree is then built iteratively in the following way.
An unmarked node c labelled x is picked,

• if c has an ancestor c′ labelled x′ such that x′ < x, we return “unbounded”;

• otherwise, if c has an ancestor c′ labelled x′ such that x′ = x, we mark c;

• otherwise, if PostS(x) is infinite, we return “unbounded”;

25



• otherwise, we mark c and for every y ∈ PostS(x) we add a child labelled
y to c.

We prove that the procedure always terminates. First note that T is finitely
branching since children are added to a node labelled x only when PostS(x) is
finite. Suppose to the contrary that T is infinite, then by König’s lemma there
exists an infinite path labelled x0, x1, . . . in T . Since ≤ is a wqo, there exist
i < j such that xi ≤ xj . If xi < xj , then the algorithm returned “unbounded”.
Otherwise, if xi = xj , then the node labelled xj was marked. Therefore, the
path is not infinite which is a contradiction.

We prove that the algorithm is correct. We note that since S has strict
monotonicity and ≤ is a wpo, S is unbounded from x0 if, and only if, there
exists an execution x0 −→ x1 −→ . . . −→ xk such that xi 6= xj for every i 6= j,
and either PostS(xk) is infinite or xm < xk for some m < k. Therefore, when
the algorithm returns “unbounded”, S is indeed unbounded. Note that this
property would not hold with a wqo, since x 6= y and x ≤ y does not necessarily
imply x < y without antisymmetry.

Conversely, suppose that there exists such an execution x0 −→ x1 −→ . . . −→ xk,
then it appears in T . If PostS(xk) is infinite, then the algorithm returns “un-
bounded” which is correct. Otherwise, the algorithm also returns “unbounded”
since xm < xk. �

5.3. Maintainability

We prove that maintainability is undecidable for classes of infinitely branch-
ing WSTS even with many hypotheses.

Theorem 40. Maintainability is undecidable for some post-effective and com-
pletion-post-effective class of ω2-WSTS with strong and strict monotonicity, and
well partial ordering.

Proof. We give a reduction from the (non) termination problem which was
proven undecidable under the same hypotheses in Theorem 37.

Let C be a post-effective and completion-post-effective class of ω2-WSTS
with strong and strict monotonicity, and well partial ordering. Let C(i) =
(X,−→,≤) and let x0 ∈ X. Let (X ′,−→′,≤′) be a disjoint copy of C(i), and let

D(i)
def
= (X ∪X ′ ∪ {xmin},−→′′,≤′′) be the ordered transition system such that

• −→′′ def
= −→ ∪ −→′ ∪ {(x, x′) : x ∈ X)},

• ≤′′ def
= ≤ ∪ ≤′ ∪ {(xmin, x) : x ∈ X ∪ {xmin}}.

Note that it can be shown that D(i) is a ω2-WSTS with strong and strict
monotonicity. Moreover, D is a post-effective and completion-post-effective class
of WSTS. Indeed, encoding the disjoint copy of X can be achieved with an
extra special symbol as a prefix to the original encoding of X, moreover xmin

can be encoded with an extra symbol. The encoding of the ideals of X ∪X ′ ∪
{xmin}, i.e., {I ∪ {xmin} : I ∈ Ideals(X)} and a disjoint copy of Ideals(X),
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can easily be adapted from the original encoding of Ideals(X). The Turing
machines computing −→, ≤,  and ⊆ are also easily adapted to handle these
new encodings.

Let T = ↑xmin and let us prove that C(i) does not terminate from x0 if,
and only if, D(i) is maintainable in T from x0. Suppose that there exists an
infinite x0, x1, . . . such that x0 −→ x1 −→ . . .. By definition, the same sequence
is an execution in D(i). Moreover, xmin ≤′′ x for every x ∈ X. Therefore,
x0 −→′′T x1 −→′′T . . ., hence D(i) is maintainable in T from x0. Conversely,

(a) suppose that there exists a finite sequence x0, x1, . . . , xk such that x0 −→′′T
x1 −→′′T . . . −→′′T xk and PostD(i)(xk) = ∅, then for every 0 ≤ j ≤ k we have
xj ∈ X since X ′ ∩ T = ∅ and xmin is not reachable from x0. Therefore,
x′k ∈ PostD(i)(xk). This is a contradiction, hence there is no such sequence;

(b) suppose that there exists an infinite sequence x0, x1, . . . such that x0 −→′′T
x1 −→′′T . . ., then, again, xj ∈ X for every j ∈ N. Since every element is in
X, it implies that C(i) does not terminate from x0. �

Recall that weak maintainability asks whether the length of executions stay-
ing in some upward closed set T is bounded, whereas maintainability deals with
maximal executions staying in T . We note that the maintainability problem
slightly differs from the weak maintainability problem. For example, reconsider
the ω-Petri net introduced in Sect. 5.1 and illustrated in Fig. 6, but now with
initial marking x0 = (1, 1, 0). Let T = ↑ (0, 1, 0). As illustrated in Fig. 8, there
is no maximal execution that remains in T , hence this ω-Petri net is not main-
tainable in T from x0. However, it is weakly maintainable since the length of
executions staying in T is unbounded.

(1, 1, 0)

(1, 0, 1)

(0, 0, 1) (0, 1, 1)

(0, 0, 2)

(0, 2, 1)

(0, 1, 2)

(0, 0, 3)

· · ·

(0, 1, 0)

(0, 0, 1)

(0, 2, 0)

(0, 1, 1)

(0, 0, 2)

(0, 3, 0)

(0, 2, 1)

(0, 1, 2)

(0, 0, 3)

· · ·

Figure 8: Reachability tree from x0 = (1, 1, 0) of the ω-Petri net depitcted in Fig. 6. Execu-
tions staying in T = ↑ (0, 1, 0) are colored in blue.
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We show that, in contrast with maintainability, weak maintainability is de-
cidable under suitable hypotheses:

Theorem 41. Weak maintainability is decidable for any completion-post-effec-
tive class of ω2-WSTS with strong monotonicity.

Before proving Theorem 41, we need Prop. 42 and Prop. 43 to relate “cov-
ering” executions in a WSTS to “covering” executions in its completion.

Proposition 42. Let S = (X,−→,≤) be a WSTS with strong monotonicity, and
let t1, t2, . . . , tn ∈ X. Let T = ↑ {t1, t2, . . . , tn} and U = ↑X̂ {↓ t1, ↓ t2, . . . , ↓ tm}.
If I0  U I1  U . . .  U Ik, then for every y ∈ Ik there exists an execution
x0 −→T x1 −→T . . . −→T xk such that x0 ∈ I0 and xk ≥ y.

Proof. We proceed by induction on k. Assume that k = 0 and let y ∈ I0. By
hypothesis, there exists ti such that ↓ ti ⊆ I0 and thus ti ∈ I0. Since I0 is an
ideal, there exists x0 ∈ I0 such that y ≤ x0 and ti ≤ x0. Thus, x0 ∈ T , x0 ∈ I0
and x0 ≥ y.

Assume that k > 0 and I0  U I1  U . . .  U Ik. By induction hypothesis,
for every y ∈ Ik there exists an execution x1 −→T x2 −→T . . . −→T xk such that
x1 ∈ I1 and xk ≥ y. Since x1 ∈ I1 ⊆ ↓PostS(I0), there exists x0 ∈ I0 and
y′ ≥ x1 such that x0 −→ y′. By hypothesis, there exists ti such that ↓ ti ⊆ I0
and thus ti ∈ I0. Since I0 is an ideal, there exists x′0 ∈ I0 such that x0 ≤ x′0 and
ti ≤ x′0. By strong monotonicity, there exists x′1 ≥ y′ such that x′0 −→ x′1. Thus,
x′0 −→T x

′
1. Moreover, applying strong monotonicity to x1 −→T x2 −→T . . . −→T xk

with x′1 ≥ x1, we obtain an execution x′1 −→T x′2 −→T . . . −→T x′k such that
x′j ≥ xj for every 1 ≤ j ≤ k. Therefore, x′0 −→T x

′
1 −→T . . . −→T x

′
k, x′0 ∈ I0 and

x′k ≥ y. �

Proposition 43. Let S = (X,−→,≤) be a WSTS and let t1, t2, . . . , tn ∈ X. Let
T = ↑ {t1, t2, . . . , tn} and U = ↑X̂ {↓ t1, ↓ t2, . . . , ↓ tn}. If x0 −→T x1 −→T . . . −→T

xk, then for every ideal I0 ⊇ ↓x0 there exists an execution I0  U I1  U . . . U

Ik such that Ik ⊇ ↓xk.

Proof. We proceed by induction on k. Assume that k = 0 and let I0 be an
ideal such that I0 ⊇ ↓x0. By hypothesis, there exists ti such that x0 ≥ ti. Thus,
I0 ⊇ ↓x0 ⊇ ↓ ti, hence I0 ∈ U .

Assume that k > 0 and x0 −→T x1 −→T . . . −→T xk. Let I0 be an ideal
such that I0 ⊇ ↓x0, then x1 ∈ PostS(I0) ⊆ ↓PostS(I0). Therefore, I0  I1
for some ideal I1 ⊇ {x1}. Since I1 is downward closed, I1 ⊇ ↓x1. Moreover,
by hypothesis there exists ti such that x0 ≥ ti. Thus, I0 ⊇ ↓x0 ⊇ ↓ ti and
we have I0 ∈ U . By induction hypothesis, there exists an execution I1  U

I2  U . . . U Ik such that Ik ⊇ ↑xk. Therefore, I0  U I1  U . . . U Ik and
Ik ⊇ ↓xk. �

We may now prove Theorem 41 from Prop. 42 and Prop. 43.
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Proof of Theorem 41. Let C be a completion-post-effective class of ω2-
WSTS with strong monotonicity. Let S = (X,−→,≤) ∈ C, let t1, t2, . . . , tn ∈ X,
T = ↑ {t1, t2, . . . , tn} and let U = ↑X̂ {↓ t1, ↓ t2, . . . , ↓ tn}. By Prop. 42 and
Prop. 43 there exists an execution x0 −→T x1 −→T . . . −→T xk if, and only if,
there exists an execution I0  U I1  U . . .  U Ik. Therefore, it suffices to
verify, in Ŝ, whether ↓x0 is weakly maintainable in U .

We know from [2] that the maintainability problem is decidable for post-
effective classes of finitely branching WSTS with stuttering monotonicity. Note
that even though Ĉ is such a class, we still need to adapt their algorithm to the
weak maintainability problem which does not coincide.

More specifically, it suffices to build the finite reachability tree of Ŝ from
↓x0, and verify that it contains a maximal path labelled I0, I1, . . . , Ik such that
Ij ∈ U for every 0 ≤ j ≤ k, and such that Ij ⊆ Ik for some 0 ≤ j < k. This

can be achieved since C is completion-post-effective, and thus, by definition, Ĉ
is post-effective. �

5.4. Coverability

We now turn to coverability. Existing proofs that coverability is decidable
require, in general, upward pre-effectiveness: Abdulla et al. use a backward
algorithm [2, 38] that computes a finite basis of ↑Pre∗(↑x) and Geeraerts et al.
use a forward algorithm [12] that requires further hypotheses (i.e., restriction to
an adequate domain of limits, a mathematical hypothesis subsequently shown
superfluous [39, 10]). Note that, in general, coverability becomes undecidable
for classes of WSTS that are not upward pre-effective. Indeed, as stated in
Theorem 15, [20] exhibits a post-effective class of finitely branching WSTS with
strong and strict monotonicity for which the problem is undecidable. Moreover,
upward pre-effectiveness is not the unique hypothesis ensuring decidability of
coverability: for depth-bounded processes [6], a class of WSTS, upward pre-
effectiveness is not satisfied and coverability is yet proved decidable by using
the EEC algorithm (i.e. the Expand, Enlarge and Check of [39]) which is
partially reformulated in the ideal completion framework of [10].

We show in the following theorem that coverability can be shown decid-
able under an alternative hypothesis, namely, it is decidable for completion-
post-effective classes of WSTS. Even though some classes are completion-post-
effective and upward pre-effective [20], our approach relies on evaluating Post
on ideals rather than Pre on upward closed sets. Often this is more efficient,
e.g., it is much easier to evaluate affine functions over Ndω ' Ideals(Nd) than
inverting them.

Theorem 44. Coverability is decidable for any completion-post-effective class
of WSTS.

Proof. Let C be a class of completion-post-effective WSTS. Let S = (X,−→
,≤) ∈ C, and x, y ∈ X. We show how to decide whether y is coverable from x
using two “semi-procedures”. More precisely, we alternately try to determine
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on one hand that y is coverable, and on the other hand to determine that y is
not coverable.

Let us argue that y is coverable from x in S if, and only if, ↓ y is coverable
from ↓x in Ŝ. If y is coverable from x in S, then there exists y′ ≥ y such that
x −→∗ y′. Therefore, by Prop. 30, there exists an ideal J ⊇ ↓ y′ ⊇ ↓ y such that
↓x  ∗ J , hence ↓ y is coverable from ↓x in Ŝ. Assume that ↓ y is coverable
from ↓x, then there exists an ideal J ⊇ ↓ y such that ↓x  ∗ J . Therefore, by
Prop. 29, there exists x′ ∈ ↓x and y′ ≥ y such that x′ −→∗ y′. By monotonicity,
x −→∗ y′′ for some y′′ ≥ y′. Since y′′ ≥ y′ ≥ y, y is coverable from x in S.

This way, in order to determine whether y is coverable, we iteratively build
the reachability tree of Ŝ from ↓x. More formally, we compute

↓x, PostŜ(↓x), PostŜ(PostŜ(↓x)), . . .

and test whether any of these sets contains an ideal J such that J ⊇ ↓ y. This
can be achieved since Ŝ is post-effective.

On the other hand, we test whether y is not coverable from x in S. To do so,
we note that y is not coverable from x if, and only if, there exists an inductive
invariant D such that x ∈ D and y 6∈ D. An inductive invariant is a downward
closed set D ⊆ X such that ↓PostS(D) ⊆ D. By a simple induction, we note
that any inductive invariant D satisfies ↓Post∗S(D) ⊆ D. Hence, if x ∈ D and
y 6∈ D, then y is not coverable from x in S. More formally, suppose on the
contrary that y is coverable, then y ∈ ↓Post∗S(x) ⊆ ↓Post∗S(D) ⊆ D, which is a
contradiction. Moreover, if y is not coverable from x in S, ↓Post∗S(x) is such an
inductive invariant. Indeed, let us see that ↓PostS(↓Post∗S(x)) ⊆ ↓Post∗S(x).
Let z ∈ ↓PostS(↓Post∗S(x)), there exist x, y, y′, z′ ∈ X such that x −→∗ y, y ≥ y′,
y′ −→∗ z′ and z′ ≥ z, hence, by monotonicity, there exists z′′ ≥ z′ ≥ z such that
x −→∗ z′′ and therefore z ∈ ↓Post∗S(x).

Thus, in order to ascertain that y is not coverable from x in S, it suffices
to enumerate inductive invariants D and to test whether x ∈ D and y 6∈ D.
This is made possible by post-effectiveness of Ŝ. Downward closed sets may
be enumerated by their ideal decomposition. In order to test whether D is an
inductive invariant, we use the following observation, where the last equivalence
follows from Prop. 20:

↓PostS(D) ⊆ D ⇐⇒
⋃

I∈IdealDecomp(D)

↓PostS(I) ⊆
⋃

I∈IdealDecomp(D)

I

⇐⇒
⋃

I∈IdealDecomp(D)

⋃
J∈PostŜ(I)

J ⊆
⋃

I∈IdealDecomp(D)

I

⇐⇒ ∀J ∈ PostŜ(IdealDecomp(D)),

∃I ∈ IdealDecomp(D) s.t. J ⊆ I . (4)
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Since Ŝ is post-effective, it is possible to compute PostŜ , to test ideal inclusion,
and therefore to test (4). �

Unfortunately, not all classes of WSTS for which coverability is decidable
are completion-post-effective. For completeness, we exhibit a class of WSTS
that is neither completion-post-effective, nor upward pre-effective, and yet has
its coverability problem decidable. This class, that we will name F1, is inspired
by the more general, but non effective, class of so-called well-structured nets of
dimension 1 [20].

We define F1 as follows. The ith WSTS S of the class, S = (N,−→,≤),
is associated to a finite collection of Turing machines M1,M2, . . . ,Mn, and is
a functional WSTS defined by the finite set of non decreasing functions F =
{f1, f2, . . . , fn} where each fj is defined as follows,

fj(x) =



0 if x = 0,

f(x− 1) if x > 0, and if Mj , on input x ∈ N, does not halt
in at most x steps,

f(x− 1) + y if x > 0, and if Mj , on input x ∈ N, halts in at
most x steps, and returns y.

Since F1 is a class of functional WSTS over N, and since each fj can be
computed by executing Mj for a finite amount of time, it is readily seen that F1

forms a post-effective class of finitely branching ω2-WSTS with strong mono-
tonicity and well partial ordering. However, F1 is neither completion-effective,
nor upward pre-effective.

Proposition 45. F1 is not completion-effective or upward pre-effective.

Proof. Let Turing′i be a Turing machine that executes Turingi and returns 1.
Let Si = (N,−→,≤) be the WSTS of F1 associated to Turing′i. If Turingi does
not halt on its encoding, then Turing′i never halts, hence PostSi

(x) = {0} for
every x ∈ N. If Turingi halts on its encoding, then there exists m ∈ N such that
PostSi

(x) = {0} for every x < m and PostSi
(x) = {x−m+ 1} for every x ≥ m.

By definition of Si and Ŝi, we have

N N ⇐⇒ N ⊆ ↓PostSi
(N)

⇐⇒ PostSi(N) = N

⇐⇒ Turing′i outputs 1 for infinitely many inputs x ∈ N

⇐⇒ Turingi halts on its encoding.

If F1 was completion-effective, we could produce IdealDecomp(∅) = N and
verify whether N  N. This would yield a procedure to decide the halting
problem, which is impossible. Therefore, F1 is not completion-effective.

By definition of Si, we also have that ↑PreSi(↑ 1) 6= ∅ if, and only if, Turingi
halts on its encoding. Thus, if F1 was upward pre-effective, it would be possible
to decide whether ↑PreSi

(↑ 1) 6= ∅ and hence to decide whether Turingi halts on
its encoding, which is impossible. Therefore, F1 is not upward pre-effective. �
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Even though F1 is neither completion-post-effective, nor upward pre-effect-
ive, its coverability problem can still be shown decidable.

Proposition 46. Coverability for F1 is decidable.

Proof. Let S = (N,−→,≤) ∈ F1 be the functional WSTS whose transition rela-
tion is defined by the finite set of non decreasing functions F = {f1, f2, . . . , fn}.
Let x0, x ∈ N. First note that if x0 ≥ x, then x is coverable from x0 and we are
done. Therefore, assume that x0 < x.

Let F≤` = {fi1 ◦ fi2 ◦ · · · ◦ fik : 1 ≤ i1, i2, . . . , ik ≤ n, k ≤ `} and let
m` = max{g(x0) : g ∈ F≤`}. Consider the infinite sequence m0,m1, . . ., let
us prove that if two consecutive terms coincide, then the sequence stabilizes.
Assume that m`+1 = m` for some ` ∈ N, then by definition fi(m`) ≤ m` for
every i ∈ [n], hence by monotonicity and by induction on p, we may prove
that g(m`) ≤ m` for every g ∈ F≤p. Thus, m`+p ≤ m` for every p ≥ 0. By
construction, m`+p ≥ `n, hence m`+p = m` and the sequence stabilizes.

Since the sequence strictly increases until it stabilizes, it suffices to compute
mx−x0 . If mx−x0 ≥ x, then x is coverable from x0, otherwise it is not. �

What is nevertheless encouraging is that most known useful classes of WSTS
can be shown to be completion-post-effective; see [10] for a hierarchy of data-
types, containing integers and words, the cartesian product, the multiset and the
concatenation operators and allowing also trees, that permits the construction
of various such classes of WSTS. Moreover, [10] shows how the ideals associated
with these hierarchy of datatypes can be effectively manipulated.

It is worth mentioning that the technique of enumerating inductive invari-
ants, used in our coverability algorithm, was already used by Pachl in 1982 to
provide a witness of non-reachability for finite automata communicating through
FIFO channels, having recognizable reachability sets [40, Corollary 9.6]. More
recently, Raskin et al. [12, 39] also used similar enumeration of inductive invari-
ants to provide forward algorithms for deciding coverability in WSTS. However,
their techniques use algebraic and additional effectiveness hypotheses, while we
appeal to completion-post-effectiveness.

6. Conclusion and further work

In this paper we have extended the decidability results of finitely branch-
ing WSTS properties to the case of infinitely branching WSTS. We have also
further completed the picture of the decidability status of the four main compu-
tational problems (termination, boundedness, coverability and maintainability)
of interest for WSTS. This is depicted in Table 1. To make this extension, we
have used the completion of well-structured transition systems and along the
way, we have simplified the presentation currently found in the literature and
we have also extended it to general (i.e., non functional) WSTS. Moreover, we
have then established the precise connection between executions in a WSTS and
executions in its completion, for both finitely and infinitely branching WSTS
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obeying an exhaustive list of different monotonicity conditions. The completion
of infinitely branching WSTS by means of ideals can be done for ω2-WSTS and
this confirms the central place of ω2-WSTS among general WSTS.

The theory developed led not only to new decidability results but to re-
proving some of the well known results in a uniform way. In particular, a new
(forward) algorithm was shown to solve the coverability problem for completion-
post-effective classes of infinitely branching WSTS (hence fulfilling a simpler
condition than the usual upward pre-effectiveness found in the literature).

Finitely branching Infinitely branching

Termination

Dec. • post-effective Undec. • post-effective
• transitive monotonicity • completion-post-effective

Undec. • post-effective • strong and strict
• ω2-WSTS monotonicity
• well partial ordering • ω2-WSTS

• well partial ordering

Strong
termination

Dec. • post-effective Dec. • completion-post-effective
• transitive monotonicity • transitive monotonicity

• ω2-WSTS
Undec. • post-effective

• ω2-WSTS
• well partial ordering

Boundedness

Dec. • post-effective
• strict monotonicity
• well partial ordering

Undec. • post-effective
• strong monotonicity
• well partial ordering

Maintaina-
bility

Dec. • post-effective Undec. • post-effective
• stuttering monotonicity • completion-post-effective

• strong and strict
Undec. • post-effective monotonicity

• ω2-WSTS • ω2-WSTS
• well partial ordering • well partial ordering

Weak main-
tainability

Dec. • post-effective Dec. • completion-post-effective
• stuttering monotonicity • strong monotonicity

• ω2-WSTS
Undec. • post-effective

• ω2-WSTS
• well partial ordering

Coverability
Dec. • upward pre-effective
Dec. • completion-post-effective
Undec. • post-effective

• strong and strict monotonicity
• ω2-WSTS
• well partial ordering

Table 1: Decidability (in green) or undecidability (in red) of WSTS classes problems. Darker
and hached regions identify results new to this paper. See Theorem 15 for references to the
sources of results known prior to this paper.

We have uncovered a subtlety that arises in the study of the termination
problem for WSTS when the finitely branching hypothesis is dropped: such
WSTS having no infinite executions can nonetheless have executions of every
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finite length. This led to a distinction between weak and strong termination,
and to a similar distinction between weak and strong maintainability.

The preliminary version of the present paper first appeared at ICALP 2014.
Since then, much recent research [41, 34, 42, 43, 44, 45] was devoted to exploiting
the finite decomposition of downward closed sets into a finite set of ideals. We
believe that our simple presentation of the theory underlying this decomposition
has made applying the latter possible.

We now turn to perspectives and further work. There are other interest-
ing properties (than the four studied here) to decide for infinitely branching
WSTS; for instance, being able to decide whether there exists a simulation be-
tween an infinitely branching WSTS and a finite automaton would simplify the
verification of certain WSTS.

Our treatment of infinitely branching WSTS has unified several results and
proofs dealing with parameterized systems based on Petri nets, extended Petri
nets with resets and transfers, and affine nets. Future work should consider
applying these results to other general parameterized WSTS.

Recursive-parallel systems are shown to be WSTS in [18], for an ordering
which uses the multiset ω2-ordering; this suggests that recursive-parallel sys-
tems could also belong to the family of ω2-WSTS. The completion of ω2-WSTS
also opens the way for designing new forward algorithms. Such algorithms are
conceptually simpler than backward algorithms and may in some respects be
more efficient as well. It will be interesting to further investigate these algo-
rithmic aspects and, in particular, to see how the efficiencies of backward and
forward strategies compare when applied to concrete models.
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[41] R. Lazić, S. Schmitz, The ideal view on rackoff’s coverability technique, in:
Proc. 9th International Workshop on Reachability Problems (RP), 2015,
pp. 76–88. doi:10.1007/978-3-319-24537-9 8.
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