
Logical Methods in Computer Science
Volume 16, Issue 2, 2020, pp. 13:1–13:33
https://lmcs.episciences.org/

Submitted Nov. 15, 2018
Published Jun. 23, 2020

FORWARD ANALYSIS FOR WSTS, PART III: KARP-MILLER TREES ∗

MICHAEL BLONDIN a, ALAIN FINKEL b,c, AND JEAN GOUBAULT-LARRECQ b

a Université de Sherbrooke, Canada
e-mail address: michael.blondin@usherbrooke.ca

b Université Paris-Saclay, ENS Paris-Saclay, CNRS, Laboratoire Spécification et Vérification, France
e-mail address: {finkel,goubault}@lsv.fr

c Institut Universitaire de France

Abstract. This paper is a sequel of “Forward Analysis for WSTS, Part I: Completions”
[STACS 2009, LZI Intl. Proc. in Informatics 3, 433–444] and “Forward Analysis for WSTS,
Part II: Complete WSTS” [Logical Methods in Computer Science 8(3), 2012]. In these
two papers, we provided a framework to conduct forward reachability analyses of WSTS,
using finite representations of downward-closed sets. We further develop this framework
to obtain a generic Karp-Miller algorithm for the new class of very-WSTS. This allows
us to show that coverability sets of very-WSTS can be computed as their finite ideal
decompositions. Under natural effectiveness assumptions, we also show that LTL model
checking for very-WSTS is decidable. The termination of our procedure rests on a new
notion of acceleration levels, which we study. We characterize those domains that allow for
only finitely many accelerations, based on ordinal ranks.

1. Introduction

1.1. Context. A well-structured transition system (WSTS) is an infinite well-quasi-ordered
set of states equipped with transition relations satisfying one of various possible monotonicity
properties. WSTS were introduced in [Fin87] for the purpose of capturing properties common
to a wide range of formal models used in verification. Since their inception, much of the work
on WSTS has been dedicated to identifying generic classes of WSTS for which verification
problems are decidable. Such problems include termination, boundedness [Fin87, Fin90,
FPS01] and coverability [ACJT96, ACJT00, BFM17, BFM18]. In general, verifying safety
and liveness properties corresponds respectively to deciding the coverability and the repeated

Key words and phrases: well-structured transition systems, Karp-Miller trees, model checking, coverability,
ideals.
∗ Extended and expanded version of “Analysis for WSTS, Part III: Karp-Miller Trees” by M. Blondin,

A. Finkel and J. Goubault-Larrecq, in Proc. 37th IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science (FSTTCS), 2017.

M. Blondin was supported by the Fonds de recherche du Quebec – Nature et technologies (FRQNT) and
by a Discovery Grant from the Natural Sciences and Engineering Research Council of Canada (NSERC).

LOGICAL METHODSl IN COMPUTER SCIENCE DOI:10.23638/LMCS-16(2:13)2020
c© M. Blondin, A. Finkel, and J. Goubault-Larrecq
CC© Creative Commons

https://lmcs.episciences.org/
http://creativecommons.org/about/licenses

13:2 M. Blondin, A. Finkel, and J. Goubault-Larrecq Vol. 16:2

control-state reachability problems. Coverability can be decided for WSTS by two different
algorithms: the backward algorithm [ACJT96, ACJT00] and by combining two forward
semi-procedures, one of which enumerates all downward-closed invariants [GRB06, BFM17,
BFM18]. Repeated control-state reachability is undecidable for general WSTS, but decidable
for Petri nets by use of the Karp-Miller coverability tree [KM67] and the detection of
increasing sequences. That technique fails on well-structured extensions of Petri nets:
generating the Karp-Miller tree does not always terminate on ν-Petri nets [RMdF11], on
reset Petri nets [DFS98], on transfer Petri nets, on broadcast protocols, and on the depth-
bounded π-calculus [HMM14, RM12, ZWH12] which can simulate reset Petri nets. This is
perhaps why little research has been conducted on coverability tree algorithms and model
checking of liveness properties for general WSTS. Nonetheless, some recent Petri nets
extensions, e.g. ω-Petri nets [GHPR15] and unordered data Petri nets [HLL+16], benefit
from algorithms in the style of Karp and Miller. Hence, there is hope of finding a general
framework of WSTS with Karp-Miller-like algorithms.

1.2. The Karp-Miller coverability procedure. In 1967, Karp and Miller [KM67] pro-
posed what is now known as the Karp-Miller coverability tree algorithm, which computes a
finite representation (the clover) of the downward closure (the cover) of the reachability set
of a Petri net. In 1978, Valk extended the Karp-Miller algorithm to post-self-modifiying
nets [Val78], a strict extension of Petri nets. In 1987, the second author proposed a general-
ization of the Karp-Miller algorithm that applies to a class of finitely branching WSTS with
strong-strict monotonicity, and having a WSTS completion in which least upper bounds
replace the original Petri nets ω-accelerations [Fin87, Fin90]. In 2004, Finkel, McKenzie
and Picaronny [FMP04] applied the framework of [Fin90] to the construction of Karp-Miller
trees for strongly increasing ω-recursive nets, a class generalizing post-self-modifiying nets.
In 2005, Verma and the third author [VG05] showed that the construction of Karp-Miller
trees can be extended to branching vector addition systems with states. In 2009, the second
and the third authors [FG12] proposed a non-terminating procedure that computes the
clover of any complete WSTS; this procedure terminates exactly on so-called cover-flattable
systems. Recently, this framework has been used for defining computable accelerations in
non-terminating Karp-Miller algorithms for both the depth-bounded π-calculus [HMM14]
and for ν-Petri nets; terminating Karp-Miller trees are obtained for strict subclasses.

1.3. Model checking WSTS. In 1994, Esparza [Esp94] showed that model checking the
linear time µ-calculus is decidable for Petri nets by using both the Karp-Miller algorithm and
a decidability result due to Valk and Jantzen [VJ85] on infinite T -continual sequences in Petri
nets. LTL is undecidable for Petri net extensions such as lossy channel systems [AJ94] and
lossy counter machines [Sch10]. In 1998, Emerson and Namjoshi [EN98] studied the model
checking of liveness properties for complete WSTS, but their procedure is not guaranteed to
terminate. In 2004, Kouzmin, Shilov and Sokolov [KSS04] gave a generic computability result
for a fragment of the µ-calculus; in 2006 and 2013, Bertrand and Schnoebelen [BBS06, BS13]
studied fixed points in well-structured regular model checking; both [KSS04] and [BS13] are
concerned with formulas with upward-closed atomic propositions, and do not subsume LTL.
In 2011, Chambart, Finkel and Schmitz [CFS11, CFS16] showed that LTL is decidable for
the recursive class of trace-bounded complete WSTS; a class which does not contain all
Petri nets.

Vol. 16:2 FORWARD ANALYSIS FOR WSTS, PART III: KARP-MILLER TREES 13:3

1.4. Our contributions.

• We define very-well-structured transition systems (very-WSTS); a class defined in terms of
WSTS completions, and which encompasses models such as Petri nets, ω-Petri nets, post-
self-modifying nets and strongly increasing ω-recursive nets. We show that coverability
sets of very-WSTS are computable as finite sets of ideals.
• The general clover algorithm of [FG12], based on the ideal completion studied in [FG09],

does not necessarily terminate and uses an abstract acceleration enumeration. We give an
algorithm, the Ideal Karp-Miller algorithm, which organizes accelerations within a tree.
We show that this algorithm terminates under natural order-theoretic and effectiveness
conditions, which we make explicit. This allows us to unify various versions of Karp-Miller
algorithms in particular classes of WSTS.
• We identify the crucial notion of acceleration level of an ideal, and relate it to ordinal

ranks of sets of reachable states in the completion. We show, notably, that termination
is equivalent to the rank being strictly smaller than ω2. This classifies WSTS into those
with high rank (the bad ones), among which those whose sets of states consist of words
(e.g., lossy channel systems) or multisets; and those with low rank (the good ones), among
which Petri nets and post-self-modifying nets.
• We show that the downward closure of the trace language of a very-WSTS is computable,

again as a finite union of ideals. This shows that downward trace inclusion is decidable
for very-WSTS.
• Finally, we prove the decidability of model checking liveness properties for very-WSTS

under some effectiveness hypotheses.

1.5. A short story of well-structured transition systems. Structured transition sys-
tems were initially defined and studied in [Fin86, Fin87, Fin90] as monotone transition
systems equipped with a well-quasi-ordering on their set of states. Termination was shown
decidable for structured transition systems with transitive monotonicity, while bounded-
ness was shown decidable for structured transition systems with strict monotonicity. For
a subclass of finitely branching labeled structured transition systems with strong-strict
monotonicity, initially called well structured transition systems in [Fin86, Fin87, Fin90],
a generalization of the Karp-Miller algorithm was shown to compute their coverability
sets. In [ACJT96, ACJT00], the coverability problem was shown to be decidable for well-
structured systems [ACJT96, Def. 3.1], i.e. labeled structured transition systems with strong
monotonicity and satisfying an additional effective hypothesis : the existence of an algorithm
to compute the finite set of minimal elements min(Pre (↑ s)), where Pre (↑ s) is the set of
immediate predecessors of the upward-closure ↑ s of a state s. In [FPS01], mathematical
properties were distinguished from effective properties, and the coverability problem was
shown decidable for the entire class of structured transition systems satisfying the additional
effective hypothesis that there exists an algorithm to compute the finite set min(↑Pre (↑ s)),
i.e. the hypotheses of transitions labeling and strong monotonicity made in [ACJT96] turned
out to be superfluous.

Today, following the presentation of [FPS01], what is mathematically known as well
structured transition systems is exactly the original class of structured transition systems;
and necessary effective hypotheses are added for obtaining decidability of properties such as
termination, coverability and boundedness.

13:4 M. Blondin, A. Finkel, and J. Goubault-Larrecq Vol. 16:2

1.6. Differences between very-WSTS and WSTS of [Fin90]. The class of WSTS
of [Fin90, Def. 4.17] is reminiscent of very-WSTS. It requires WSTS to be finitely branching
and strictly monotone, whereas our definition allows infinite branching and requires the
completion to be strictly monotone. Moreover, [Fin90, Thm. 4.18], which claims that its
Karp-Miller procedure terminates, is incorrect since it does not terminate on transfer Petri
nets and broadcast protocols [EFM99], which are finitely branching and strictly monotone
WSTS. Finally, some assumptions required to make the Karp-Miller procedure of [Fin90]
effective are missing.

2. Preliminaries

We write ⊆ for set inclusion and ⊂ for strict set inclusion. A relation ≤ ⊆ X×X over a set X
is a quasi-ordering if it is reflexive and transitive, and a partial ordering if it is antisymmetric
as well. It is well-founded if it has no infinite descending chain. A quasi-ordering ≤ is a
well-quasi-ordering (resp. well partial order), wqo (resp. wpo) for short, if for every infinite
sequence x0, x1, · · · ∈ X, there exist i < j such that xi ≤ xj . This is strictly stronger than
being well-founded.

One example of well-quasi-ordering is the componentwise ordering of tuples over N.
More formally, Nd is well-quasi-ordered by ≤ where, for every x,y ∈ Nd, x ≤ y if and only if
x(i) ≤ y(i) for every i ∈ [d]. We extend N to Nω def

= N ∪ {ω} where n ≤ ω for every n ∈ Nω.
Ndω ordered componentwise is also well-quasi-ordered. Let Σ be a finite alphabet. We write
Σ∗, Σ+ and Σω to denote the set of finite words, nonempty finite words and infinite words
over Σ, respectively. For every (finite or infinite) nonempty word w, we write wi to denote its
ith letter. For every u, v ∈ Σ∗, we write u � v if u is a subword of v, i.e. u can be obtained
from v by removing zero, one or multiple letters. Σ∗ is well-quasi-ordered by �.

2.1. Transition systems. A (labeled) transition system is a triple S = (X,
Σ−→) such that

X is a set, Σ is a finite alphabet, and
a−→ ⊆ X ×X for every a ∈ Σ. Elements of X are called

the states of S, and each
a−→ is a transition relation of S. A class C of transition systems is

any set of transition systems. We extend transition relations to sequences over Σ, i.e. for

every x, y ∈ X, x
ε−→ x, and x

wa−−→ y if there exists x′ ∈ X such that x
w−→ x′

a−→ y. We write

x
∗−→ y (resp. x

+−→ y) if there exists w ∈ Σ∗ (resp. w ∈ Σ+) such that x
w−→ y. The finite and

infinite traces of a transition system S from a state x ∈ X are respectively defined as

TracesS(x) def
= {w ∈ Σ∗ : x

w−→ y for some y ∈ X}, and

ω-TracesS(x) def
= {w ∈ Σω : x

w1−→ x1
w2−→ · · · for some x1, x2, . . . ∈ X}.

We define the immediate successors and immediate predecessors of a state x under some
sequence w ∈ Σ∗ as

PostS (x,w) def
= {y ∈ X : x

w−→ y}, and

PreS (x,w) def
= {y ∈ X : y

w−→ x}.
The successors and predecessors of x ∈ X are

Post∗S (x) def
= {y ∈ X : x

∗−→ y}, and

Pre∗S (x) def
= {y ∈ X : y

∗−→ x}.

Vol. 16:2 FORWARD ANALYSIS FOR WSTS, PART III: KARP-MILLER TREES 13:5

These notations are naturally extended to sets, e.g. PostS (A,w) def
=

⋃
x∈A PostS (x,w).

We say that S is deterministic if |PostS (x, a) | ≤ 1 for every x ∈ X and a ∈ Σ. When
S is deterministic, each a ∈ Σ induces a partial function ta : X → X such that ta(x) = y
for each x ∈ X such that PostS (x, a) = {y}. For readability, we simply write a for ta, i.e.
a(x) = ta(x). For every w ∈ Σ∗, we write w(x) for PostS (x,w) if PostS (x,w) 6= ∅.

2.2. Well-structured transition systems. An ordered (labeled) transition system is a

triple (X,
Σ−→,≤) such that (X,

Σ−→) is a (labeled) transition system and ≤ is a quasi-ordering.
An ordered transition system S is a well-structured transition system (WSTS) if ≤ is a

well-quasi-ordering and S is monotone, i.e. for all x, x′, y ∈ X and a ∈ Σ such that x
a−→ y

and x′ ≥ x, there exists y′ ∈ X such that x′
∗−→ y′ and y′ ≥ y. Many other types of

monotonicities were defined in the literature (see e.g. [FPS01]), but, for our purposes, we
only need to introduce strong monotonicities. We say that S has strong monotonicity if for

all x, x′, y ∈ X and a ∈ Σ, x
a−→ y and x′ ≥ x implies x′

a−→ y′ for some y′ ≥ y. We say that
S has strong-strict monotonicity1 if it has strong monotonicity and for all x, x′, y ∈ X and

a ∈ Σ, x
a−→ y and x′ > x implies x′

a−→ y′ for some y′ > y.

Remark. Although the coverability problem is decidable for unlabeled WSTS, we consider
labeled WSTS here for two main reasons: firstly, we study the traces of WSTS and their
model checking, hence their transitions must be labeled with a finite alphabet; secondly, we
extend the acceleration technique to compute the downward closure of reachability sets: we
need a labeling of transitions to properly define the acceleration of a sequence of transitions
(this labeling is not necessary for Petri nets, but in an abstract model like WSTS, the
labeling seems necessary).

2.3. Verification problems. We say that a target state y ∈ X is coverable from an initial

state x ∈ X if there exists z ≥ y such that x
∗−→ z. The coverability problem asks whether a

target state y is coverable from an initial state x. The repeated coverability problem asks
whether a target state y is coverable infinitely often from an initial state x; i.e. whether

there exist z0, z1, · · · ∈ X such that x
∗−→ z0

+−→ z1
+−→ · · · and zi ≥ y for every i ∈ N.

3. An investigation of the Karp-Miller algorithm

In order to present our Karp-Miller algorithm for WSTS, we first highlight the key components
of the Karp-Miller algorithm for Petri nets. A Petri net with d places is a WSTS V =

(Nd, T−→,≤) induced by a finite set T ⊆ Nd × Nd and the rules:

x
t−→ y

def⇐⇒ x ≥ pre ∧ y = x− pre + post for every x,y ∈ Nd, t = (pre,post) ∈ T.
Petri nets are deterministic and have strong-strict monotonicity. Given a Petri net with d
places and a vector xinit ∈ Nd, the Karp-Miller algorithm initializes a rooted tree whose
root is labeled by xinit. For every (pre,post) ∈ T such that x ≥ pre, a child labeled by
x − pre + post is added to the root. This process is repeated successively to the new
nodes. If a newly added node c : x has an ancestor c′ : x′ such x = x′, then it is not

1Strong-strict monotonicity should not be confused with strong and strict monotonicities. Here strongness
and strictness have to hold at the same time.

13:6 M. Blondin, A. Finkel, and J. Goubault-Larrecq Vol. 16:2

explored furthermore. If a newly added node c : x has an ancestor c′ : x′ such x > x′, then
c is relabeled by the vector y ∈ Ndω such that y(i) def

= x(i) if x(i) = x′(i) and y(i) def
= ω if

x(i) > x′(i). The latter operation is called an acceleration of c with respect to c′.
A vector xtgt is coverable from xinit if and only if the resulting tree T contains a node

c : x such that x ≥ xtgt. A slightly more complex characterization in terms of T further
allows to decide whether a vector xtgt is repeatedly coverable from xinit.

3.1. Ideals and completions. One feature of the Karp-Miller algorithm is that it works
over Ndω instead of Nd. Intuitively, vectors containing some ω correspond to “limit” elements.

For a generic WSTS S = (X,
Σ−→,≤), a similar extension of X is not obvious. Let us present

one, called the completion of S in [FG12]. Instead of operating over X, the completion of S
operates over the so-called ideals of X. In particular, the ideals of Nd are isomorphic to Ndω.

Let X be a set quasi-ordered by ≤. The downward closure of D ⊆ X is defined as

↓D def
= {x ∈ X : x ≤ y for some y ∈ D}.

A subset D ⊆ X is downward-closed if D = ↓D. An ideal is a downward-closed subset I ⊆ X
that is additionally directed : I is non-empty and for all x, y ∈ I, there exists z ∈ I such that
x ≤ z and y ≤ z (equivalently, every finite subset of I has an upper bound in I). We denote

the set of ideals of X by Idl(X), i.e. Idl(X) def
= {D ⊆ X : D = ↓D and D is directed}.

It is known that

Idl(Nd) = {A1 × · · · ×Ad : A1, . . . , Ad ∈ {↓n : n ∈ N} ∪ {N}} .

Therefore, every ideal of Nd is naturally represented by some vector of Ndω, and vice versa.
We write ω-rep(I) for this representation, for every I ∈ Idl(Nd). For example, the ideal
I = N× ↓ 8× ↓ 3× N is represented by ω-rep(I) = (ω, 8, 3, ω).

Downward-closed subsets can often be represented by finitely many ideals: in fact, the
following Theorem 3.1 gives a complete characterization of quasi-ordered sets for which every
downward closed subset is equal to a finite union of ideals.

Theorem 3.1 ([ET43, Bon75, Pou79, PZ85, Fra86, LMP87, BFM17]). A countable quasi-
ordered set X contains no infinite antichain if, and only if, every downward closed subset of
X is equal to a finite union of ideals.

From this theorem, we immediately deduce a (known) corollary for wqos:

Corollary 3.2. Let X be a well-quasi-ordered set. For every downward-closed subset D ⊆ X,
there exist I1, I2, . . . , In ∈ Idl(X) such that D = I1 ∪ I2 ∪ · · · ∪ In.

The existence of such a decomposition has been proved numerous times (for partial
orderings instead of quasi-orderings) in the order theory community [Bon75, Pou79, PZ85,
Fra86, LMP87] under different terminologies, and is a particular case of a more general set
theory result of Erdős and Tarski [ET43] on the existence of limit numbers between ℵ0 and
2ℵ0 . The paper [FM14] explains in detail the fact that Theorem 3.1 is attributed to Erdős
and Tarski because the difficult direction (left to right) of Theorem 3.1 can be deduced
from [ET43, Theorem 1]. For the reader interested in a simple and self-contained proof,
we refer to [BFM17, Theorem 3.3]. More specifically, this proof is based on the fact that
such decompositions exist in well-quasi-ordered sets and is reminiscent of Fräıssé’s proof
strategy [Fra86, Sect. 4.7.2, p. 124], which is based on [Bon75, Lemma 2, p. 193].

Vol. 16:2 FORWARD ANALYSIS FOR WSTS, PART III: KARP-MILLER TREES 13:7

Theorem 3.1 gives rise to a canonical decomposition of downward-closed sets. The ideal
decomposition of a downward-closed subset D ⊆ X is the set of maximal ideals contained in D
w.r.t. inclusion. We denote the ideal decomposition of D by IdealDecomp(D) def

= max⊆{I ∈
Idl(X) : I ⊆ D}. By Corollary 3.2, IdealDecomp(D) is finite, and D =

⋃
I∈IdealDecomp(D) I.

In [FG12, BFM18], the notion of ideal decomposition is used to define the completion of
unlabeled WSTS. We slightly extend this notion to labeled WSTS:

Definition 3.3. Let S = (X,
Σ−→,≤) be a labeled WSTS. The completion of S is the labeled

transition system Ŝ = (Idl(X),
Σ
 ,⊆) such that

I
a
 J ⇐⇒ J ∈ IdealDecomp(↓PostS (I, a)).

The completion of a WSTS enjoys numerous properties. In particular, it has strong
monotonicity, and it is finitely branching [BFM18], i.e. PostŜ (I, a) is finite for every I ∈
Idl(X) and a ∈ Σ. Note that if S has strong-strict monotonicity, then this property is not

necessarily preserved by Ŝ [BFM18]. Moreover, the completion of a WSTS may not be a
WSTS since Idl(X) is not always well-quasi-ordered by ⊆. However, for the vast majority
of models used in formal verification, Idl(X) is well-quasi-ordered, and hence completions
remain well-structured. Indeed, Idl(X) is well-quasi-ordered if and only if X is a so-called
ω2-wqo, and widespread wqos, except possibly graphs under minor embedding, are ω2-wqo,
as discussed in [FG12]. The traces of a WSTS are closely related to those of its completion:

Proposition 3.4 ([BFM18]). The following holds for every WSTS S = (X,
Σ−→,≤):

(1) For all x, y ∈ X and w ∈ Σ∗, if x
w−→ y, then for every ideal I ⊇ ↓x, there exists an

ideal J ⊇ ↓ y such that I
w
 J .

(2) For all I, J ∈ Idl(X) and w ∈ Σ∗, if I
w
 J , then for every y ∈ J , there exist

x ∈ I, y′ ∈ X and w′ ∈ Σ∗ such that x
w′−→ y′ and y′ ≥ y. If S has strong monotonicity,

then w′ = w.
(3) if S has strong monotonicity, then

⋃
J∈PostŜ (I,w) J = ↓PostS (I, w) for all I ∈ Idl(X)

and w ∈ Σ∗.
(4) if S has strong monotonicity, then TracesS(x) = TracesŜ (↓x) and ω-TracesS(x) ⊆

ω-TracesŜ (↓x) for every x ∈ X.

Proof.

(1–3) The proofs given in [BFM18] for unlabeled WSTS can be adapted straightforwardly
to labeled WSTS. For completeness, these adaptations are given in the appendix.

(4) • For every w ∈ TracesS(x), there is a state y such that x
w−→ y. Use (1) on I = ↓x:

we obtain an ideal J such that I
w
 J , showing that w ∈ TracesŜ (↓x). Conversely,

for every w ∈ TracesŜ (↓x), there is an ideal J such that I
w
 J , where I = ↓x.

Ideals are non-empty, so pick y ∈ J . By (2), there are states x′ ∈ I and y′ ≥ y such

that x′
w−→ y′. The fact that x′ is in I, namely that x′ ≤ x, allows us to invoke

strong monotonicity and obtain a state y′′ ≥ y′ such that x
w−→ y′′. In particular, w

is in TracesS(x).

• Let w ∈ ω-TracesΣ(x). Let x0
def
= x, and let x1, x2, . . . ∈ X be such that x

w1−→
x1

w2−→ x2
w3−→ · · · . Let I0

def
= ↓x. By (1), there exists an ideal I1 ⊇ ↓x1 such that

13:8 M. Blondin, A. Finkel, and J. Goubault-Larrecq Vol. 16:2

I0
w1 I1. This process can be repeated using (1) to obtain Ii−1

wi Ii with Ii ⊇ ↓xi
for every i > 0.

It is worth noting that if S is infinitely branching, then an infinite trace of Ŝ from ↓x is not
necessarily an infinite trace of S from x (e.g. see [BFM18]).

Whenever the completion of a WSTS S is deterministic, we will often write w(I) for
PostŜ (I, w) if the latter is nonempty and if there is no ambiguity with PostS (I, w).

3.2. Levels of ideals. The Karp-Miller algorithm terminates for the following reasons:
Ndω is well-quasi-ordered and ω’s can only be added to vectors along a branch at most d
times. Loosely speaking, the latter property means that Idl(Nd) has d+ 1 “levels”. Here,
we generalize this notion. We say that an infinite sequence of ideals I0, I1, . . . ∈ Idl(X) is
an acceleration candidate if I0 ⊂ I1 ⊂ · · · . An acceleration candidate is below J ∈ Idl(X) if
Ii ⊆ J for every i ∈ N, and it goes through a set A ⊆ Idl(X) if Ii ∈ A for some i ∈ N.

Definition 3.5. The nth level of Idl(X) is defined as

An(Idl(X)) =

{
∅, n = 0,

{I ∈ Idl(X) : every accel. candidate below I goes through An−1} n > 0.

When X is clear from the context, we will simply write An instead of An(Idl(X)). For
the specific case of X = Nd, it can be shown that:

A1 = {I ∈ Idl(Nd) : ω-rep(I) has strictly less than 1 occurrence of ω},

A2 = {I ∈ Idl(Nd) : ω-rep(I) has strictly less than 2 occurrences of ω},
...

Hence, for all n ≥ 0:

An = {I ∈ Idl(Nd) : ω-rep(I) has strictly less than n occurrences of ω}.
Therefore, we have ∅ ⊂ A1 ⊂ · · · ⊂ Ad+1 = Ad+2 = · · · which corresponds to the fact that
Idl(Nd) has d+ 1 different levels. In particular, if we identify Ad+1 with Ndω, i.e. the set of
its ω-representations, then Ad+k is equivalent to Ndω for every k ≥ 1. More formally:

Proposition 3.6. An(Ndω) is the set of d-tuples with less than n components equal to ω.

Proof. Using the fact that An(Ndω) grows as n grows, it suffices to show the claim for n ≤ d+1.
This is shown by induction on n. The case n = 0 is obvious.

Let 1 ≤ n ≤ d + 1. If x ∈ Ndω has at least n components equal to ω, we obtain an
acceleration candidate by picking an index j such that x(j) = ω, and forming the tuples
(x(1), . . . ,x(j − 1), i,x(j + 1), . . . ,x(d)) for i ∈ N. By induction hypothesis, these tuples
have at least n−1 components equal to ω and therefore cannot be in An−1(Ndω). This entails
that x cannot be in An(Ndω).

Conversely, assume that x has less than n components equal to ω, say at positions
1, 2, . . . , k < n (the general case is obtained by applying a permutation of the indices). There
are only finitely many tuples y ≤ x that have their first k components equal to ω. Therefore
any acceleration candidate below x, being infinite, must contain a tuple with at most k − 1
components equal to ω. Since k − 1 < n− 1, by induction hypothesis it must go through
An−1(Ndω), showing that x ∈ An(Ndω).

Vol. 16:2 FORWARD ANALYSIS FOR WSTS, PART III: KARP-MILLER TREES 13:9

In general, we observe that ideal levels are monotonic and downward-closed with respect
to ideal inclusion:

Proposition 3.7. The following holds for every n ∈ N:

(1) for every I, J ∈ Idl(X), if I ∈ An and J ⊆ I, then J ∈ An,
(2) An ⊆ An+1.

Proof. Let n ∈ N. If An = ∅, then both claims follow immediately. Therefore, let us assume
that An 6= ∅.
(1) Let I ∈ An and let J ∈ Idl(X) be such that J ⊆ I. We must show that J ∈ An. Let

J0, J1, . . . be an acceleration candidate below J . We have Ji ⊆ J ⊆ I for every i ∈ N.
Therefore, J0, J1, . . . is also below I. Since I ∈ An, we conclude that J0, J1, . . . goes
through An−1, and hence that J ∈ An.

(2) Let I ∈ An. For the sake of contradiction, suppose I 6∈ An+1. By assumption, there
exists an acceleration candidate I0, I1, . . . below I that does not go through An. Note
that Ii ⊆ I for every i ∈ N. By (1), this implies that Ii ∈ An for every i ∈ N. Therefore,
we conclude that I0, I1, . . . goes through An, which is a contradiction.

We have seen that Idl(Nd) has only d+ 1 levels, i.e. Ad+1(Idl(Nd)) = Idl(Nd). We generalize
this notion as follows:

Definition 3.8. Idl(X) has finitely many levels if there exists n ∈ N such that An = Idl(X).

In the forthcoming sections, we will be interested in sets of ideals that have finitely
many levels. It is however worth mentioning that there are natural sets X whose ideals
do not have finitely many levels of ideals, even if Idl(X) is assumed to be countable and
well-quasi-ordered. We postpone this discussion to Section 6 where we will study ideal levels
in more details and in a more abstract setting.

3.3. Accelerations. The last key aspect of the Karp-Miller algorithm is the possibility to
accelerate nodes. In order to generalize this notion, let us briefly develop some intuition.
Recall that a newly added node c : x is accelerated if it has an ancestor c′ : x′ such that
x > x′. Consider the non-empty sequence w labeling the path from c′ to c. Since Petri nets
have strong-strict monotonicity, both over Nd and Ndω, wn(x) is defined for every n ∈ N.

For example, if (5, 0, 1)
w−→ (5, 1, 3) is encountered, (5, 1, 3) is replaced by (5, ω, ω). This

represents the fact that for every n ∈ N, there exists some reachable marking y ≥ (5, n, n).
Note that an acceleration increases the number of occurrences of ω. In our example, the
ideal I = ↓ 5× ↓ 1× ↓ 3, which is of level 0, is replaced by I ′ = ↓ 5×N×N, which is of level
2. Based on these observations, we extend the notion of acceleration to completions:

Definition 3.9. Let S = (X,
Σ−→,≤) be a WSTS such that Ŝ is deterministic, let I ∈ Idl(X),

and let w ∈ Σ+ be such that PostŜ (I, w) 6= ∅. The acceleration of I under w is defined as:

w∞(I) def
=

{⋃
k∈Nw

k(I) if I, w(I), w2(I), . . . is an acceleration candidate,

I otherwise.

In other words, if I can be accelerated by repeatedly applying w, then its acceleration is
the least upper bound of I ⊂ w(I) ⊂ w2(I) ⊂ · · · . This least upper bound is also an ideal:

13:10 M. Blondin, A. Finkel, and J. Goubault-Larrecq Vol. 16:2

Proposition 3.10. Let S = (X,
Σ−→,≤) be a WSTS such that Ŝ is deterministic. We have

w∞(I) ∈ Idl(X) for every I ∈ Idl(X) and w ∈ Σ+ such that PostŜ (I, w) 6= ∅.

Proof. If w∞(I) = I, then the claim trivially holds. Thus, we may assume that I, w(I),
w2(I), . . . is an acceleration candidate. Since w∞(I) is a union of downward-closed sets, it is
readily seen to be downward-closed. Let us show that it is also directed. Let x, y ∈ w∞(I).
There exist k, ` ∈ N such that x ∈ wk(I) and y ∈ w`(I). Therefore, both x and y are

elements of wmax(k,`)(I). Since wmax(k,`)(I) is an ideal, there exists z ∈ wmax(k,`)(I) ⊆ w∞(I)
such that x ≤ z and y ≤ z.

Recall that in the Karp-Miller algorithm for Petri nets, the level of an ideal remains
unchanged when applying a transition, and increases when accelerated. This holds because
the completion of a Petri net has strong-strict monotonicity. We introduce a more general
(i.e. weaker) type of monotonicity that essentially yields the same behaviour.

Let S = (X,
Σ−→,≤) be a WSTS. We define the level of an ideal I ∈ Idl(X) as follows. If

I ∈ An for some n ∈ N, then lvl(I) is the smallest such n, and otherwise lvl(I) def
= ∞. We say

that the completion of S has leveled-strong-strict monotonicity if for every I, I ′, J ∈ Idl(X)
and w ∈ Σ∗ such that lvl(I) 6=∞, the following holds:

if I ⊂ I ′, I w
 J and lvl(I) = lvl(J), then I ′

w
 J ′ for some J ′ ∈ Idl(X) s.t. J ⊂ J ′.

In other words, leveled-strong-strict monotonicity only requires strong-strict monotonicity
to hold between ideals of the same level.

Petri nets and their completions enjoy strong-strict monotonicity (hence also leveled-
strong-strict monotonicity), but strong-strict monotonicity is not inherited by the completion
of some extensions such as post-self-modifying nets and ω-Petri nets.

Let us recall the model of post-self-modifying nets [Val78] for which there is a Karp-
Miller algorithm. In post-self-modifying nets, transitions consume tokens as in Petri nets
but they may add the result of applying a (different) positive affine function in each place.
It has been shown [FMP04] that post-self-modifying nets are WSTS with strong-strict
monotonicity on Nd. Their completions are still WSTS with strong monotonicity on Ndω,
but they are not strictly monotone on Ndω (contrary to Figure 3 in [FMP04]). Let us show
here that completions of post-self-modifying nets are not strictly monotone. Let us consider
a post-self-modifying net N with two places p1, p2 and an unique transition t that adds
the contents of p1 onto p2. Consider the two ω-markings (ω, 0) < (ω, ω) from N2

ω and the

firing of transition t, extended on N2
ω, from both ω-markings. We obtain (ω, 0)

t−→ (ω, ω)

and (ω, ω)
t−→ (ω, ω). Since (ω, ω) 6< (ω, ω), transition t is not strictly increasing over N2

ω,
even if t is strictly increasing over N2. Hence the completion of N does not satisfy strict
monotonicity.

Therefore, post-self-modifying nets are WSTS with strong-strict monotonicity and that
their completions are WSTS with strong monotonicity. However, they are not strictly
monotone.

Recall that ω-Petri nets are Petri nets with arcs labeled by coefficients from Nω instead
of N. The semantics remains the same for coefficients over N. Every arc from a place p to a
transition t, which is labeled by ω, consumes an arbitrary number of tokens from p when t
is fired. Similarly, every arc from a transition t to a place p, which is labeled by ω, produces
an arbitrary number of tokens in p when t is fired. In particular, in the completion of an

Vol. 16:2 FORWARD ANALYSIS FOR WSTS, PART III: KARP-MILLER TREES 13:11

ω-Petri net, an arc from t to p labeled by ω increases the contents of p to ω whenever t is
fired. See Figure 1 for an example of an ω-Petri net, and [GHPR15] for precise definitions.

2

ω

ω →
2

ω

ω

Figure 1: Left : example of an ω-Petri net marked (counterclockwise) with (3, 5, 1). Right :
example of a possible marking, i.e. (1, 1, 4), obtained after firing the unique
transition; the other possible markings are (1, y, z) where 0 ≤ y ≤ 5 and z ≥ 1.
Over the completion of the same ω-Petri net, the ideal ↓ 3 × ↓ 5 × ↓ 1 leads to
↓ 1× ↓ 5× N when firing the unique transition; or equivalently (3, 5, 1) leads to
(1, 5, ω) in the ω-representation of the ideals.

It is known that ω-Petri nets are WSTS with strong-strict monotonicity and their
completions are still WSTS with strong monotonicity [BFM18] but they are not strictly
monotone. Indeed, consider the ω-Petri net with a single place p and a unique transition

t with a single arc from t to p labeled by ω. We have ↓ 5
t−→ N, ↓ 6

t−→ N, ↓ 5 ⊂ ↓ 6, but
not N ⊂ N. As a matter of fact, we will prove in Proposition 4.5 and Proposition 4.6 that
post-self-modifying nets and ω-Petri nets have leveled-strong-strict monotonicity.

We may now show the following:

Proposition 3.11. Let S = (X,
Σ−→,≤) be a WSTS such that Ŝ is deterministic and has

leveled-strong-strict monotonicity. Let I ∈ Idl(X) and w ∈ Σ+ be such that lvl(I) 6=∞ and
PostŜ (I, w) 6= ∅. The following holds:

(1) lvl(w(I)) ≥ lvl(I),
(2) if w∞(I) 6= I, then lvl(w∞(I)) > lvl(I),

Proof.

(1) We prove the claim by induction on n = lvl(I). If n = 1, then the claim trivially holds
since A0 = ∅ and hence lvl(J) ≥ 1 for every ideal J . Suppose that n > 1 and that the
claim holds for levels smaller than n. Since n > 1 and n is the smallest index such that
I ∈ An, there exists an acceleration candidate I0, I1, . . . below I such that Ii ∈ An−1

and Ii 6∈ An−2 for some i ∈ N. In other words, lvl(Ii) = n− 1.
Observe that Ii+1, Ii+2, . . . is also an acceleration candidate below I. Thus, there exists

j > i such that Ij ∈ An−1. By repeating this process, we obtain an acceleration candidate
Ii0 , Ii1 , . . . below I such that Iij ∈ An−1 for every j ∈ N. Thus, by lvl(I0) = n− 1 and
by Proposition 3.7 (1), we have lvl(Ii0) = lvl(Ii1) = · · · = n − 1. Hence, by leveled-

strong-strict monotonicity and determinism of Ŝ , we have

w(Ii0) ⊂ w(Ii1) ⊂ · · · ⊆ w(I). (3.1)

13:12 M. Blondin, A. Finkel, and J. Goubault-Larrecq Vol. 16:2

Observe that (3.1) yields an acceleration candidate below w(I). Thus, there exists ` ∈ N
such that w(Ii`) ∈ Alvl(w(I))−1. Therefore, we are done since:

lvl(w(I)) ≥ lvl(w(Ii`)) + 1 (by w(Ii`) ∈ Alvl(w(I))−1)

≥ lvl(Ii`) + 1 (by ind. hyp. since lvl(Ii`) < n)

= (n− 1) + 1

= n

= lvl(I).

(2) Assume w∞(I) 6= I. For the sake of contradiction, suppose that lvl(w∞(I)) ≤ lvl(I).
Since w∞(I) 6= I, the sequence I, w(I), w2(I), . . . is an acceleration candidate. By
definition of w∞(I), this acceleration candidate is below w∞(I). Moreover, it goes
through Alvl(I)−1, and hence there exists k ∈ N such that lvl(wk(I)) = lvl(I)− 1. This
contradicts (1).

4. The Ideal Karp-Miller algorithm

We have now introduced all the concepts necessary to present our generalization of the
Karp-Miller algorithm. This algorithm applies to a new class2 of WSTS that enjoy all of the
generalized properties of Petri nets:

Definition 4.1. A very-WSTS is a labeled WSTS S = (X,
Σ−→,≤) such that:

• S has strong monotonicity,

• Ŝ is a deterministic WSTS with leveled-strong-strict monotonicity,
• Idl(X) has finitely many levels.

Note that the completion Ŝ of a WSTS S always have strong monotonicity [BFM18].
However, it does not necessarily have leveled-strong-strict monotonicity. Moreover, if it does,
it is not necessarily the case that S has strong monotonicity. In other words, although the
first condition of Definition 4.1 may first appear redundant, it is not the case:

Proposition 4.2. The first condition of Definition 4.1 is not redundant.

Proof. We construct a WSTS S that satisfies all the requirements of a very-WSTS except

for strong monotonicity. Let S = (N, {t}−−→,≤) be the ordered transition system such that

m
t−→ m÷2 if m is even, and m

t−→ n for every n ∈ N otherwise. Since N is well-quasi-ordered,
it suffices to show that S is monotone in order to show that it is a WSTS. Let m,m′, n ∈ N
be such that m

t−→ n and m′ ≥ m. If m′ is odd, then m′
t−→ n and we are done. If m′ is even,

then it can be repeatedly halved until some odd number is obtained, after which we can

reach n in one step, i.e. m′
∗−→ n. Observe that S is not strongly monotone since 1

t−→ 3, but
3 6∈ ↓ 1 = ↓PostS (2, t).

Let us now show that Ŝ is a deterministic WSTS with leveled-strong-strict monotonicity.

It is readily seen that Ŝ is deterministic since:

PostŜ (↓ 0, t) = {↓ 0} and PostŜ (I, t) = {N} for every ideal I 6= ↓ 0.

2Note that the definition of very-WSTS given here is slightly more general than the one that appeared in
the preliminary version of this paper [BFGL17]. More precisely, strong-strict monotonicity is replaced here
with leveled-strong-strict monotonicity, which allows to encompass models such as ω-Petri nets.

Vol. 16:2 FORWARD ANALYSIS FOR WSTS, PART III: KARP-MILLER TREES 13:13

It remains to show that Ŝ has monotonicity and leveled-strong-strict monotonicity. Let

I, I ′, J ∈ Idl(N) be such that I
t
 J and I ⊂ I ′. Note that I ′ ⊃ I ⊇ ↓ 0, hence I ′ must

contain at least one odd number. Therefore, I ′
t
 N which shows (standard) monotonicity.

Since I ⊂ I ′ ⊆ N, we have I 6= N. Thus, if lvl(I) = lvl(J), then we have J 6= N. Since

I ′
t
 N and N ⊃ J , this shows leveled-strong-strict monotonicity.

We claim that the class of very-WSTS includes Petri nets (and hence vector addition
systems with/without states), ω-Petri nets [GHPR15], post-self-modifying nets [Val78] and
strongly increasing ω-recursive nets [FMP04] for which Karp-Miller algorithms were known.

Recall that a strongly increasing function f : Nd −→ Nd is a nondecreasing function
defined on an upward closed set of Nd that satisfies the following strongly increasing property:

for every x,y ∈ Nd, for every P ⊆ {1, 2, . . . , d}, x ≤P y =⇒ f(x) ≤P f(y),

where the ordering ≤P is defined by

x ≤P y
def⇐⇒ x ≤ y ∧ x(i) < y(i) for every i ∈ P.

A strongly increasing recursive net N is a finite set of strongly increasing recursive functions.
A strongly increasing ω-recursive net N is a strongly increasing recursive net such that the
continuous extensions of the functions f : Ndω −→ Ndω satisfy the previous strongly increasing
property but over Ndω instead (see, e.g., [FG12] for a definition of continuous extension). Let
us write SN for the transition system naturally associated with a net N . We may observe

that SN̂ = ŜN .
Since nondecreasing functions of post-self-modifying nets and of strongly increasing

ω-recursive nets are incomparable, we define another class of nondecreasing functions that
subsumes the two previous ones. Let us identify the nondecreasing functions over Nd that
are strictly increasing, but only on the subset of Nd such that x and f(x) have the same
number of ω’s.

Definition 4.3. A leveled-increasing partial function f : Nd → Nd is a nondecreasing partial

function such that its continuous extension f̂ : Ndω → Ndω satisfies the following property: for
every x,x′ ∈ Ndω such that x and f(x) contain the same number of ω (in terms of ideals, x
and f(x) have the same level), the following holds:

x < x′ =⇒ f(x) < f(x′).

A leveled-increasing recursive net is a finite set of leveled-increasing recursive partial functions.

Let us remark that the composition of two leveled-increasing partial functions is still a
leveled-increasing partial function, hence the associated transition system is a WSTS with
leveled-strong-strict monotonicity.

Proposition 4.4. Leveled-increasing recursive nets are very-WSTS.

Proof. Let N be a leveled-increasing recursive net. By hypothesis, SN has strong mono-
tonicity since the partial functions of N are nondecreasing. Moreover, SN can be shown
to be a deterministic WSTS, and SN̂ is a deterministic WSTS with leveled-strong-strict
monotonicity because finite composition of partial functions in N is leveled-increasing.
Finally, the set of states is Nd and we know that Idl(Nd) has finitely many levels. Therefore,
SN is a very-WSTS.

13:14 M. Blondin, A. Finkel, and J. Goubault-Larrecq Vol. 16:2

Since Petri nets (or vector addition systems with/without states) and strongly increasing
ω-recursive nets are leveled-increasing recursive nets by definition, to prove our claim it
is sufficient to prove that post-self-modifying nets and ω-Petri nets are leveled increasing
recursive nets.

Proposition 4.5. Post-self-modifying nets are very-WSTS.

Proof. Let N be a post-self-modifying net. Let us prove that each partial function f occurring
on a transition t of N is leveled-increasing. Recall that f(x) = A · x + b where A is greater
or equal to the identity matrix componentwise, and b ∈ Zd.

Recall that we want to show that for every x,x′ ∈ Ndω such that x and f(x) contain
the same number of ω’s, the following holds:

x < x′ =⇒ f(x) < f(x′).

Let x,x′ ∈ Ndω be such that x and f(x) contain the same number of ω’s and such that
x < x′. Since A ≥ 0, we have f(x) ≤ f(x′). Moreover, there exists a least index 1 ≤ ` ≤ d
such that x(`) < x′(`), and in particular x(`) 6= ω. Since A is greater or equal to the
identity matrix, then y(i) = ω implies f(y)(i) = ω for every y, i.e. ω’s cannot disappear.
Since, by hypothesis, the number of ω’s is the same in x and f(x), this means that f does
not create new ω’s in a new position and hence x and f(x) have exactly the same ω’s in the
same positions. Thus, x(`) 6= ω and f(x)(`) 6= ω.

Since A(`, `) ≥ 1 and x′(`) > x(`), we deduce that

A(`, `) · x′(`) > A(`, `) · x(`) 6= ω.

Moreover, for every 1 ≤ j ≤ d:

A(`, j) · x′(j) ≥ A(`, j) · x(j) 6= ω since f(x)(`) 6= ω.

Thus, f(x′)(`) =
∑d

j=1A(`, j) · x′(j) > f(x)(`). Therefore, we conclude that f(x′) > f(x)
and hence that f is leveled-increasing. Hence, from Proposition 4.4, we deduce that N is a
very-WSTS.

Proposition 4.6. ω-Petri nets are very-WSTS.

Proof. Let N be a ω-Petri net with places P and transitions T . Let t ∈ T be a transition
of N . Let f : NP → NP be the partial function such that f(x) is the marking obtained by
firing t in x, provided that t is enabled in x. Let us prove that f is leveled-increasing. Let
x,x′ ∈ NPω be such that x < x′ and

f(x) contains the same number of ω’s as x (4.1)

We need to show that f(x) < f(x′).

Let p ∈ P . Note that x(p) = ω implies f(x)(p) = ω, i.e. t cannot remove an ω in Ŝ . Let
Pre(p, t) and Post(p, t) denote respectively the number of tokens consumed and produced
by t in p. Let ∼ stand for ≤ or < depending on whether x(p) ≤ x′(p) or x(p) < x′(p). It
suffices to show that f(x)(p) ∼ f(x′)(p). We make a case distinction on whether x(p) equals
ω or not.

Case “x(p) 6= ω”: Let

a def
=

{
Pre(p, t) if Pre(p, t) 6= ω,

0 otherwise.
b def

= Post(p, t).

Vol. 16:2 FORWARD ANALYSIS FOR WSTS, PART III: KARP-MILLER TREES 13:15

We must have b 6= ω since we would otherwise have f(x)(p) = ω which would contradict (4.1).
Thus, f(x)(p) = x(p)− a+ b ∼ x′(p)− a+ b = f(x′)(p).

Case “x(p) = ω”: Since x′(p) ≥ x(p) = ω, we have x′(p) = ω. Therefore, f(x)(p) =

ω = f(x′)(p) and we are done. Hence, from Proposition 4.4, we deduce that N is a
very-WSTS.

By the two previous propositions, we obtain the following:

Corollary 4.7. Petri nets (or vector addition systems with/without states), ω-Petri nets,
post-self-modifying nets and strongly increasing ω-recursive nets are very-WSTS.

Note that very-WSTS do not include transfer Petri nets, since Ŝ does not have leveled-
strong-strict monotonicity, and unordered data Petri nets, since Idl(X) has infinitely many

levels. Observe that Ŝ may be deterministic (and finitely branching) even when S is not,
and even when S is not finitely branching, as the example of ω-Petri nets shows.

Algorithm 4.1: Ideal Karp-Miller algorithm.

1 initialize a tree T with root r : I0

2 while T contains an unmarked node c : I do
3 if c has an ancestor c′ : I ′ s.t. I ′ = I then
4 mark c /* stop exploration */

5 else
6 if c has an ancestor c′ : I ′ such that I ′ ⊂ I then
7 let c′ be the closest such ancestor

8 w ← sequence of labels from c′ to c

9 if w∞(I) 6= I then
10 replace c : I by c : w∞(I) /* accelerate */

11 for a ∈ Σ do
12 if PostŜ (I, a) 6= ∅ then

13 add arc labeled by a from c to a new child d : a(I)

14 mark c

15 return T

We now present the Ideal Karp-Miller algorithm (IKM)3 for very-WSTS in Algorithm 4.1.

The algorithm starts from an ideal I0, successively computes its successors in Ŝ and performs
accelerations as in the classical Karp-Miller algorithm for Petri nets. For every node c : I of
the tree built by the algorithm, let ideal(c) def

= I and lvl(c) def
= lvl(I). Let us first show that

the algorithm terminates.

Theorem 4.8. Algorithm 4.1 terminates for very-WSTS.

Proof. Since Idl(X) has finitely many levels, lvl(I) 6=∞ for every I ∈ Idl(X). Moreover,

lvl(c) is non-decreasing on each branch of T , (4.2)

3Note that the algorithm given here is slightly more general and simplified than the one that appeared in
the preliminary version of this paper [BFGL17]. Here we allow for some nested accelerations while this was
explicitly disallowed in the algorithm of [BFGL17].

13:16 M. Blondin, A. Finkel, and J. Goubault-Larrecq Vol. 16:2

that is: for every branch c0, c1, . . . of T , we have lvl(c0) ≤ lvl(c1) ≤ · · · . This observation
follows from Proposition 3.11 combined with the fact that the algorithm constructs a node’s
ideal either from applying a transition to its parent’s ideal, or by performing an acceleration.

The rest of the argument is as for the classical Karp-Miller algorithm. Suppose the
algorithm does not terminate. Let Tn be the finite tree obtained after n iterations. The

infinite sequence T0, T1, . . . defines a unique infinite tree T∞ =
⋃
n∈N Tn. Since Ŝ is finitely

branching, T∞ is also finitely branching. Therefore, T∞ contains an infinite path c0, c1, . . .
by König’s lemma. By (4.2), and since Idl(X) has finitely many levels, there exists k,m ∈ N
such that

lvl(ck) = lvl(ck+1) = · · · = m. (4.3)

Since Ŝ is a WSTS, the set Idl(X) is well-quasi-ordered, and hence we can find two indices
i, j such that k ≤ i < j and ideal(ci) ⊆ ideal(cj). If ideal(ci) = ideal(cj), then line 3 of the
algorithm would have stopped the exploration of the path. Therefore, ideal(ci) ⊂ ideal(cj).
Let ` ∈ N be the largest index such that ` < j and ideal(c`) ⊂ ideal(cj). Let w ∈ Σ+ be
the sequence of labels from c` to cj . Note that k ≤ i ≤ ` < j. Therefore, by (4.3) and
Proposition 3.11, no acceleration occurred between c` and cj , and hence

ideal(c`)
w
 ideal(cj).

Let I def
= ideal(c`) and J = ideal(cj). By (4.3), lvl(I) = lvl(J). Therefore, by leveled-strong-

strict monotonicity of Ŝ , the sequence J,w(J), w2(J), . . . is an acceleration candidate, and
hence w∞(J) 6= J . Thus, line 10 has been executed on cj , which implies that lvl(I) < lvl(J)
by Proposition 3.11. This contradicts (4.3), which completes the proof.

4.1. Properties of the algorithm. Let TI denote the tree returned by Algorithm 4.1 on
input (S, I). Let DI

def
=

⋃
c∈TI ideal(c). We claim that DI = ↓Post∗S (I). Instead of proving

this claim directly, we take traces into consideration and prove a stronger statement. We
define two word automata that will be useful for this purpose.

Definition 4.9. The stuttering automaton4 is the finite word automaton AI obtained by
making all of the states of TI accepting, by taking the root r as the initial state, and by
taking the arcs of TI as transitions, together with the following additional transitions:

• If a leaf c of TI has an ancestor c′ such that ideal(c) = ideal(c′), then a transition from c
to c′ labeled by ε is added to AI .

The Karp-Miller automaton is the automaton KI obtained by extending AI as follows:

• If a node c of TI has been accelerated because of an ancestor c′, then a transition from c
to c′ labeled by ε is added to KI .

Both AI and KI can be computed from TI . Moreover, they give precious information about
the traces of S. Let L(AI) and L(KI) denote the language over Σ accepted by AI and KI .
Recall that � denotes the subword ordering. We will show the following theorem:

Theorem 4.10. For every very-WSTS S = (X,
Σ−→,≤) and I ∈ Idl(X),

DI = ↓Post∗S (I), TracesS(I) ⊆ L(AI) and L(KI) ⊆ ↓�TracesS(I).

4We use the term stuttering as paths of the automaton correspond to stuttering paths of [GHPR15].

Vol. 16:2 FORWARD ANALYSIS FOR WSTS, PART III: KARP-MILLER TREES 13:17

In particular, for every x ∈ X, D↓x = ↓Post∗S (x), ↓� L(K↓x) = ↓�TracesS(x), and
↓�TracesS(x) is a computable regular language.

The proof of Theorem 4.10 follows from the forthcoming Propositions 4.11 and 4.12

describing the relations between traces of AI and KI with traces of S and Ŝ . We write

c
w
99KT c′, c

w
99KA c′ and c

w
99KK c′ whenever node c′ can be reached by reading w from c in

TI , AI and KI respectively.

Proposition 4.11. Let S = (X,
Σ−→,≤) be a very-WSTS and let I0 ∈ Idl(X). For every

y, z ∈ X, w ∈ Σ∗ and c ∈ AI0, if y
w−→ z and y ∈ ideal(c), then there exists d ∈ AI0 such

that c
w
99KA d and z ∈ ideal(d).

Proof. The proof is by induction on |w|. If |w| = 0, then w = ε, which implies z = y. Thus,

it suffices to take d def
= c.

Assume |w| > 0 and that the claims holds for words of length less than |w|. There exist

u ∈ Σ∗, a ∈ Σ and y′ ∈ X such that w = ua and y
u−→ y′

a−→ z. By induction hypothesis,

there exists a node c′ ∈ AI0 such that c
u
99KA c′ and y′ ∈ ideal(c′). Let I def

= ideal(c′). Since

y′
a−→ z and y′ ∈ I, there exists some J ∈ Idl(X) such that z ∈ J and I

a
 J . If c′ has a

successor under a labeled by J , then we are done. Otherwise, there are two cases to consider.

• If c′ has no successor under a, then c′ must be a leaf of TI0 . Thus, c′ has an ancestor c′′ in

TI0 such that ideal(c′) = ideal(c′′). Thus, c′
ε
99KA c′′. Now, c′′ has a successor d under a,

otherwise it would also be a leaf of TI0 , which is impossible. Therefore, J = ideal(d), and

hence c
u
99KA c′

ε
99KA c′′

a
99KA d and z ∈ ideal(d).

• If c has a successor d under a, then J has been accelerated. Therefore, ideal(d) = v∞(J)

for some v ∈ Σ+. By definition of accelerations, J ⊆ v∞(J). Therefore, c
u
99KA c′

a
99KA d

and y ∈ ideal(d).

Proposition 4.12. Let S = (X,
Σ−→,≤) be a very-WSTS and let I0 ∈ Idl(X). For every

z ∈ X, w ∈ Σ∗ and c, d ∈ KI0, if c
w
99KK d and z ∈ ideal(d), then there exist y ∈ ideal(c),

w′ � w and z′ ≥ z such that y
w′−→ z′.

Proof. The proof is by induction on |w|. If |w| = 0, then w = ε. We stress the fact that
even though w is empty, d might differ from c since KI0 contains ε-transitions. However, by
definition of KI0 , we know that ideal(d) ⊆ ideal(c). Therefore, z ∈ ideal(c), and we are done

since z
ε−→ z.

Suppose that |w| > 0. Assume the claim holds for every word of length less than |w|.
There exist u, v ∈ Σ∗, a ∈ Σ and d′ ∈ KI0 such that w = uav, c

u
99KK d′

a
99KK d

v
99KK d and

d′ is the parent of d in TI0 . Let I def
= ideal(c), J def

= ideal(d′), K def
= ideal(d), and K ′ def

= a(J).

By induction hypothesis, there exist yK ∈ K, v′ � v and z′ ≥ z such that yK
v′−→ z′.

• If K = K ′, then J
a
 K. By definition of

a
 , there exist yJ ∈ J and y′K ≥ yK such that

yJ
a−→ y′K . By induction hypothesis, there exist yI ∈ I, u′ � u and y′J ≥ yJ such that

yI
u′−→ y′J . By strong monotonicity of S, there exists z′′ ≥ z′ such that yI

u′av′−−−→ z′′. We
are done since u′av′ � uav.

13:18 M. Blondin, A. Finkel, and J. Goubault-Larrecq Vol. 16:2

• If K 6= K ′, then K was obtained through an acceleration. Therefore, K = σ∞(K ′) for

some σ ∈ Σ+. This implies that yK ∈ σk(K ′) for some k ∈ N. Let L def
= σk(K ′). Note

that J
a
 K ′

σk

 L. By Proposition 3.4(2), there exist yJ ∈ J and y′K ≥ yK such that

yJ
aσk

−−→ y′K . By induction hypothesis, there exist yI ∈ I, u′ � u and y′J ≥ yJ such that

yI
u′−→ y′J . By strong monotonicity of S, there exists z′′ ≥ z′ such that yI

u′aσkv′−−−−−→ z′′.

We may now prove the main theorem of this section:

Proof of Theorem 4.10.

(1) ⊆: Let y ∈ DI . There exist w ∈ Σ∗ and c ∈ KI such that r
w
99KK c and y ∈ ideal(c).

By Proposition 4.12, there exist x ∈ I, w′ � w and y′ ≥ y such that x
w′−→ y. Hence,

y ∈ Post∗S (x) ⊆ Post∗S (I0) ⊆ ↓Post∗S (I).

⊇: Let y ∈ ↓Post∗S (I). There exist x ∈ I, w ∈ Σ∗ and y′ ≥ y such that x
w−→ y′. By

Proposition 4.11, there exists a node c ∈ AI such that r
w
99KA c and y′ ∈ ideal(c). Since

ideals are downward closed, y ∈ ideal(c) which implies that y ∈ DI .

(2) Let w ∈ TracesS(I). There exist x ∈ I and y ∈ X such that x
w−→ y. By Proposition 4.11,

there exists a node c ∈ AI such that r
w
99KA c and y ∈ ideal(c). Therefore, w ∈ L(AI).

(3) Let w ∈ L(KI). There exists a node c ∈ KI such that r
w
99KK c. Let y ∈ ideal(c). By

Proposition 4.12, there exists x ∈ I, w′ � w and y′ ≥ y such that x
w′−→ y′. Therefore,

w ∈ ↓�TracesS(I) since w � w′.

Corollary 4.13. For every very-WSTS S = (X,
Σ−→,≤) and every state x ∈ X,

D↓x = ↓Post∗S (x) and ↓� L(K↓x) = ↓�TracesS(x).

In particular, ↓�TracesS(x) is a regular language computable from S and x.

Proof.

• By Theorem 4.10, we have D↓x = ↓Post∗S (↓x). Moreover, by strong monotonicity of S,
we have ↓Post∗S (↓x) = ↓Post∗S (x).

• By Theorem 4.10, we have

TracesS(↓x) ⊆ L(A↓x) ⊆ L(K↓x) ⊆ ↓�TracesS(↓x).

Therefore ↓�TracesS(↓x) = ↓� L(A↓x) = ↓� L(K↓x). Moreover, by strong monotonicity
of S, we have TracesS(↓x) = TracesS(x).

4.2. Effectiveness of the algorithm. The Ideal Karp-Miller algorithm can be imple-
mented provided that

(1) ideals can be effectively manipulated, i.e., the set of encodings of Idl(X) is recursive and
the encoding of ↓x is computable from x ∈ X (see [BFM17] for a formal treatment of
encodings),

(2) inclusion of ideals can be tested,
(3) PostŜ (I, a) can be computed for every ideal I and a ∈ Σ, and

(4) w∞(I) can be computed for every ideal I and sequence w ∈ Σ+.

Vol. 16:2 FORWARD ANALYSIS FOR WSTS, PART III: KARP-MILLER TREES 13:19

A class of WSTS satisfying (1–3) is called completion-post-effective, and a class satisfying (4)
is called ∞-completion-effective. By Theorem 4.10, we obtain the following:

Theorem 4.14. Let C be a completion-post-effective and∞-completion-effective class of very-
WSTS. The ideal decomposition of ↓Post∗S (x) can be computed for every S = (X,−→,≤) ∈ C
and x ∈ X. In particular, coverability for C is decidable.

5. Model checking liveness properties for very-WSTS

In this section, we show how the Ideal Karp-Miller algorithm can be used to test whether a
very-WSTS violates a liveness property specified by an LTL formula. We follow classical
constructions that have also been adapted to WSTS by Emerson and Namjoshi [EN98] with-
out effectiveness constraints. Testing that S violates a property ϕ amounts to constructing
a Büchi automaton B¬ϕ for ¬ϕ and testing whether B¬ϕ accepts an infinite trace of S. We
first show that repeated coverability is decidable for very-WSTS under some effectiveness
hypotheses. Then, we show how LTL model checking reduces to repeated coverability.

5.1. Deciding repeated coverability. Let S = (X,
Σ−→,≤) be a WSTS, let x ∈ X and let

I ∈ Idl(X). We say that w ∈ Σ∗ is (I, x)-increasing if there exist y ∈ I and z ∈ X such

that y
w−→ z and x ≤ y ≤ z. We establish a necessary and sufficient condition for repeated

coverability in terms of the stuttering automaton and (I, x)-increasing sequences:

Proposition 5.1. Let S = (X,
Σ−→,≤) be a very-WSTS and let x, y ∈ X. State y is

repeatedly coverable from x if and only if there exist a state c of the stuttering automaton

A↓x, and a sequence w ∈ Σ+, such that c
w
99KA c and w is (ideal(c), y)-increasing.

Proof. (⇒) Assume y is repeatedly coverable from x. There exist y0, y1, · · · ∈ X, v0 ∈ Σ∗

and v1, v2, . . . ∈ Σ+ such that

x
v0−→ y0

v1−→ y1
v2−→ · · ·

and yi ≥ y for every i ∈ N. By Proposition 4.11, there exist c0, c1, . . . ∈ A↓x such that

r
v0
99KA c0

v1
99KA c1

v2
99KA · · ·

and yi ∈ ideal(ci) for every i ∈ N. Since A↓x is finite, there exists c ∈ A↓x such that
I = {i ∈ N : ci = c} is infinite. Since X is well-quasi-ordered, there exist i, j ∈ I such that

i < j and yi ≤ yj . Let w def
= vi+1 · · · vj . We have c

w
99KA c and |w| > 0. Moreover, w is

(ideal(c), y)-increasing since yi ∈ ideal(c), yi
w−→ yj and y ≤ yi ≤ yj .

(⇐) Let c ∈ A↓x and w ∈ Σ+ be such that c
w
99KA c and w is (ideal(c), y)-increasing.

Since w is (ideal(c), y)-increasing, there exist y′ ∈ ideal(c) and y′′ ∈ X such that y ≤ y′ ≤ y′′
and

y′
w−→ y′′. (5.1)

Let u ∈ Σ∗ be the (unique) path from r to c in T↓x. By Proposition 4.12, there exist
x′ ∈ ideal(r), u′ � u and z ≥ y′ such that

x′
u′−→ z. (5.2)

13:20 M. Blondin, A. Finkel, and J. Goubault-Larrecq Vol. 16:2

Since ideal(r) = ↓x, we have x′ ≤ x. By (5.2) and strong monotonicity of S, x
u′−→ z′

for some z′ ≥ z. Let y0
def
= z′. By (5.1), y0 ≥ y′ and strong monotonicity of S, we have

y0
w−→ y1 for some y1 ≥ y′′. Note that y1 ≥ y′′ ≥ y′, and hence again by strong monotonicity,

y1
w−→ y2 for some y2 ≥ y′′. By such successive application of strong monotonicity, we obtain

y1, y2, y3, . . . ∈ X such that yi
w−→ yi+1 and yi+1 ≥ y′′ for every i ∈ N. Therefore,

x
u′−→ y0

w−→ y1
w−→ · · ·

and we are done since y0 = z′ ≥ z ≥ y′ ≥ y and yi ≥ y′′ ≥ y′ ≥ y for every i ∈ N.

Proposition 5.1 allows us to show the decidability of repeated coverability under the
following effectiveness hypothesis. A class C of WSTS is ideal-increasing-effective if there is
an algorithm that decides the following:

Input: S = (X,
Σ−→,≤) ∈ C, I ∈ Idl(X), x ∈ I and a finite automaton

A such that PostŜ (I, w) 6= ∅ for every w ∈ L(A).

Decide: does there exist w ∈ L(A) such that w is (I, x)-increasing?

Before proving decidability of repeated coverability, we first prove two useful observations
on the stuttering automaton. For every node c of an IKM tree, we define num-accel(c) as
the number of accelerations performed by Algorithm 4.1 from the root r of the tree to c
inclusively. The following holds:

Proposition 5.2. Let S = (X,
Σ−→,≤) be a very-WSTS and let I0 ∈ Idl(X). Let c, d ∈ TI0.

The following holds:

(1) If c
∗
99KT d and ideal(c) = ideal(d), then num-accel(c) = num-accel(d).

(2) If c
∗
99KA d, then num-accel(c) ≤ num-accel(d).

Proof.

(1) For the sake of contradiction, suppose that num-accel(c) 6= num-accel(d). This means
that at least one acceleration occurred between c (exclusively) and d (inclusively). Let
d′ be the first accelerated node, i.e. the first node d′ for which there exists c′ such that
num-accel(d′) = num-accel(c′) + 1 and

c
+
99KT c

′ 99KT d
′ ∗99KT d.

By Proposition 3.11, lvl(ideal(c)) = lvl(ideal(c′)) < lvl(ideal(d′)) ≤ lvl(ideal(d)). This is
a contradiction since ideal(c) = ideal(d).

(2) Since c can reach d, there exist a path of length n ≥ 0 from c to d in AI0 . Let c0, c1, . . . cn
be the nodes visited by this path, where c0 = c and cn = d. We prove the claim by
induction on n. If n = 0, then c = d and the the claim trivially holds. Assume that
n > 0 and that the claims holds for paths of length n − 1. By induction hypothesis,
num-accel(c0) ≤ num-accel(cn−1). If cn is an ancestor of cn−1 in TI0 and ideal(cn−1) =
ideal(cn), then we are done since num-accel(cn−1) = num-accel(cn) by (1). Otherwise,

cn−1
a
99KT cn for some a ∈ Σ. By Proposition 3.11, num-accel(cn−1) ≤ num-accel(cn),

and hence num-accel(c0) ≤ num-accel(cn−1) ≤ num-accel(cn).

Vol. 16:2 FORWARD ANALYSIS FOR WSTS, PART III: KARP-MILLER TREES 13:21

We may now prove the decidability of repeated coverability under some effectiveness hy-
potheses:

Theorem 5.3. Repeated coverability is decidable for completion-post-effective,∞-completion-
effective and ideal-increasing-effective classes of very-WSTS.

Proof. By Proposition 5.1, y is repeatedly coverable from x if and only if there exist c ∈ A↓x
and w ∈ Σ+ such that

c
w
99KA c and w is (ideal(c), y)-increasing. (5.3)

We show how (5.3) can be tested. For every c ∈ A↓x, let Ac be the automaton obtained
from A↓x by taking c as the initial state and the unique accepting state. Let A+

c be a finite
automaton that recognizes L(Ac) \ {ε}. By (5.3), y is repeatedly coverable from x if and
only if there exists c ∈ A↓x such that

L(A+
c) contains an (ideal(c), y)-increasing sequence. (5.4)

Let us explain how to decide (5.4). First, note that A+
c can be constructed effectively for

every c using the fact that C is completion-post-effective and∞-completion-effective. We may
also only consider nodes c such that y ∈ ideal(c). Note that if L(A+

c) contains an (ideal(c), y)-
increasing sequence, then y ∈ Idl(c) due to downward closure of ideals. Thus, when consider
a node c, we may first test whether y ∈ ideal(c) by completion-post-effectiveness.

Now, to test (5.4), we may use the fact that C is ideal-increasing-effective. In order to
do so, we must show that for every node c such that y ∈ ideal(c), the automaton A+

c is such
that PostŜ (ideal(c), w) 6= ∅ for every w ∈ L(A+

c). Let c be such that y ∈ ideal(c) and let

w ∈ L(A+
c). We have

c
w
99KA c

and, by Proposition 5.2(2), no acceleration can occur along this path. Therefore, ideal(c)
w

ideal(c) which implies that PostŜ (ideal(c), w) 6= ∅.

Let us remark that ideal-increasing-effective holds for Petri nets and ω-Petri nets, since,
for these models, testing whether a finite automaton A accepts some (I, x)-increasing sequence
amounts to computing the Parikh image of L(A), which is effectively semilinear [Par66]:

Proposition 5.4. Petri nets (or vector addition systems with/without states) and ω-Petri
nets are ideal-increasing-effective.

Proof. Since ω-Petri nets encompass all three models, we only give a proof for that model.
For a definition of ω-Petri nets, see either Section 4 or [GHPR15]. Let S be an ω-Petri net
with places P and transitions T . Let I ∈ Idl(NP) and x ∈ I. Let A be a finite automaton
such that PostŜ (I, w) 6= ∅ for every w ∈ L(A). We will show how to determine whether

L(A) contains an (I,x)-increasing sequence. Before doing so, we introduce a few definitions.
For every place p and transition t of S, let Pre(p, t) and Post(p, t) denote respectively

the number of tokens consumed and produced by t in p. Let N be the matrix defined as
follows:

N(p, t) def
=

{
Post(p, t)− Pre(p, t) if Post(p, t) 6= ω and Pre(p, t) 6= ω,

Post(p, t) otherwise.

Intuitively, N records the maximal increment that can be achieved in each place by firing
transitions of S. In particular, if S is a standard Petri net, then N is its incidence matrix.
By abuse of notation, “z = y + ω” with z, y ∈ N will stand for “z ≥ y”.

13:22 M. Blondin, A. Finkel, and J. Goubault-Larrecq Vol. 16:2

For every word w, let Ψw be the Parikh image of w, i.e. the vector such that Ψw(a) is
the number of occurrences of a in w. Furthermore, let

ΨA
def
= {Ψw : w ∈ L(A)},

and let i def
= ω-rep(I), i.e. the vector from NPω associated to I.

We claim that there exists w ∈ L(A) such that w is (I,x)-increasing if and only if there
exist p ∈ ΨA and y ∈ NP such that

N · p ≥ 0 and x ≤ y ≤ i. (5.5)

Before proving the claim, let us see how it helps proving the proposition. By [Par66], it is
possible to compute from A a Presburger-definable formula ϕA such that ϕA(p) holds if and
only if p ∈ ΨA. Let ϕ′(A,p, i), written more simply ϕ′, be the following Presburger-definable
sentence5:

∃p ∈ NT , ∃y ∈ NP : ϕA(p) ∧N · p ≥ 0 ∧ x ≤ y ≤ i.

By our claim, ϕ′ holds if and only if L(A) contains an (I,x)-increasing sequence. Thus,
we derive an algorithm from the fact that ϕ′ is effective and by decidability of Presburger
arithmetic [Pre29] (see [BM07], e.g., for a modern presentation in English).

Let us now prove the claim.

(⇐) Suppose there exist p ∈ ΨA and y ∈ NP such that (5.5) holds. Let w ∈ L(A) be a word

such that p = Ψw. By hypothesis on A, w is fireable from I in Ŝ , i.e. I
w
 J for some J . Let

z ∈ J . By Proposition 3.4(2), there exist y′ ∈ I and z′ ≥ z such that y′
w−→ z′. By (5.5),

we have y ≤ i. In other words, y ∈ I. Since y′ also belongs to I, which is a directed set,
there exists y′′ ∈ I such that y′′ ≥ y and y′′ ≥ y′. By strong monotonicity of S, we have

y′′
w−→ z′′ for some z′′ ≥ z′. We claim that there exists z′′′ ≥ z′′ such that

z′′′ = y′′ + N · p. (5.6)

Vector z′′′ can be derived by resolving the non determinism of each transition t occurring in
the firing sequence w as follows:

• for every place p such that Pre(p, t) = ω, we make every occurrence of t consume 0 token
from p;
• for every place p such that Post(p, t) = ω, we make every occurrence of t produce a

sufficiently large amount of tokens in p, e.g. |z′′(p)− y′′(p)| tokens.

This way, we have:

z′′′ = y′′ + N · p (by (5.6))

≥ y′′ (by N · p ≥ 0 from (5.5)).

Moreover, by (5.5) and by transitivity, we have x ≤ y ≤ y′′. Thus, overall, we obtain

y′′
w−→ z′′′ and x ≤ y′′ ≤ z′′′, which means that w is (I,x)-increasing.

(⇒) Suppose there exists w ∈ L(A) such that w is (I,x)-increasing. By definition, there

exist y ∈ I and z ∈ X such that y
w−→ z and x ≤ y ≤ z. Let us take p def

= Ψw. By definition
of N , the following holds for ω-Petri nets (and it is an equality for Petri nets):

z ≤ y + N ·Ψw. (5.7)

5Note that Presburger arithmetic typically only allows for integers coefficients, while N and i may contain
ω’s. However, this is not an issue since constraints of the form “

∑
i,ai∈Z ai · xi +

∑
j ω · xj ≥ 0” and “x ≤ ω”

can respectively be replaced by “
∑

i,ai∈Z ai · xi ≥ 0 ∨
∨

j xj ≥ 0” and “true”.

Vol. 16:2 FORWARD ANALYSIS FOR WSTS, PART III: KARP-MILLER TREES 13:23

Thus, by (5.7), we have y ≤ z ≤ y + N · p. This implies that N · p ≥ 0. Moreover, the
inequalities x ≤ y ≤ i hold by hypothesis and by the fact that y ∈ I which is equivalent to
y ≤ i.

5.2. From model checking to repeated coverability. We conclude this section by
reducing LTL model checking to repeated coverability. Recall that a Büchi automaton B is
a non-deterministic finite automaton B = (Q,Σ, δ, q0, F) interpreted over Σω. An infinite
word is accepted by B if it contains an infinite path from q0 labeled by w and visiting F
infinitely often. We denote by L(B) the set of infinite words accepted by B.

Let B = (Q,Σ, δ, q0, F) be a Büchi automaton and let S = (X,
Σ−→,≤) be a WSTS. The

product of B and S is defined as

B × S def
= (Q×X, Σ×Q−−−→,= × ≤)

where (p, x)
(a,r)−−−→ (q, y) if (p, a, r) ∈ δ, q = r and x

a−→ y. The point in including r in the
label is so that the completion of B×S is deterministic, a requirement for very-WSTS. This
is formalized in the following proposition:

Proposition 5.5. Let B = (Q,Σ, δ, q0, F) be a Büchi automaton and let S = (X,
Σ−→,≤) be

a very-WSTS. The product B × S is a very-WSTS. Moreover, it preserves completion-post-
effectiveness, ∞-completion-effectiveness and ideal-increasing-effectiveness.

Proof. Let us show that B × S is a WSTS with strong monotonicity. Since equality is a
wqo for finite sets and since wqos are closed under cartesian product, = × ≤ is a wqo. Let
p, q ∈ Q, x, x′, y ∈ X and (a, r) ∈ Σ×Q be such that

(p, x)
(a,r)−−−→ (q, y) and x′ ≥ y.

By definition of B ×S, we have (p, a, q) ∈ δ, r = q and x
a−→ y. By strong monotonicity of S,

there exists y′ ≥ y such that x′
a−→ y′. Therefore,

(p, x′)
(a,r)−−−→ (q, y′).

It remains to show that the completion of B × S is a deterministic WSTS with leveled-
strong-strict monotonicity, and that Idl(Q×X) has finitely many levels. First note that

Idl(Q×X) = {{q} × I : q ∈ Q, I ∈ Idl(X)}. (5.8)

Since Idl(X) has finitely many levels, it follows from (5.8) that Idl(Q×X) also has finitely
many levels. Similarly, Idl(Q × X) is well-quasi-ordered by ⊆ since Idl(X) is well-quasi-
ordered by ⊆ and since Q is finite. We also note that ideal levels are preserved, i.e.
lvl({q} × I) = lvl(I) for every q ∈ Q and I ∈ Idl(X).

Leveled-strong-strict monotonicity. Let I, I ′, J ∈ Idl(Q×X), a ∈ Σ and r ∈ Q be such that
lvl(I) 6=∞ and

I ⊂ I ′, I (a,r)
 J and lvl(I) = lvl(J).

13:24 M. Blondin, A. Finkel, and J. Goubault-Larrecq Vol. 16:2

By (5.8), there exist p, q ∈ Q and Ip, I
′
p, Jq ∈ Idl(X) such that I = {p} × Ip, I ′ = {p} × I ′p

and J = {q} × Jq. We have Ip ⊂ I ′p, Ip
a
 Jq, q = r and (p, a, r) ∈ δ. By leveled-strong-

strict monotonicity of Ŝ , there exists J ′q ∈ Idl(X) such that I ′p
a
 J ′q and Jq ⊂ J ′q. Let

J ′ def= {q} × J ′q. We obtain

I ′
(a,r)
 J ′ and J ⊂ J ′.

Determinism. Let I, J, J ′ ∈ Idl(Q×X), a ∈ Σ and r ∈ Q be such that I
(a,r)
 J and I

(a,r)
 J ′.

By (5.8), there exist p, q, q′ ∈ Q and Ip, Jq, Jq′ ∈ Idl(X) such that I = {p}× Ip, J = {q}×Jq
and J ′ = {q′} × Jq′ . We have r = q = q′, Ip

a
 Jq and Ip

a
 Jq′ . Since Ŝ is deterministic,

we have Jq = Jq′ , and hence J = J ′.

Effectivenesses. Completion-post-effectiveness is preserved due to the fact that: ideals
can be represented by an extra finite state; testing {p} × I ⊆ {q} × J simply amounts to
testing whether p = q and I ⊆ J ; and computing PostŜ ({q} × I, (a, r)) simply amounts to

computing the successors of q and I under a in B and S respectively. The ∞-completion-
effectiveness is preserved due to the fact that any acceleration candidate must, by definition,
be of the form {q} × I0, {q} × I1, {q} × I2, . . . for some q ∈ Q, and hence that it suffices to

perform accelerations in Ŝ . Similarly, ideal-increasing-effectiveness is preserved because
testing whether a sequence w is ({p} × I, (q, x))-increasing amounts to testing whether w is
(I, x)-increasing and whether p = q; this follows again from the fact that Q is ordered by
equality.

For every WSTS S = (X,
Σ−→,≤), we extend S with a new “minimal” element ⊥ smaller

than every other states, i.e.

S⊥ def
= (X ∪ {⊥}, Σ−→,≤⊥)

where transition relations are unchanged, and ≤⊥def
= ≤ ∪ {(⊥, y) : y ∈ X ∪ {⊥}}. Adding

the minimal element ⊥ preserves the properties of very-WSTS:

Proposition 5.6. S⊥ is a very-WSTS for every very-WSTS S. Moreover, it preserves
completion-post-effectiveness, ∞-completion-effectiveness and ideal-increasing-effectiveness.

Proof. It is readily seen that X∪{⊥} is a wqo and that S⊥ preserves the strong monotonicity
of S. Note that Idl(X ∪ {⊥}) = {⊥} ∪ {I ∪ {⊥} : I ∈ Idl(X)}. Since inclusion is a wqo for
Idl(X), it is also a wqo for Idl(X∪{⊥}). Morever, Idl(X∪{⊥}) has as many levels as Idl(X).
Let ⊥ denote the transition relation of the completion of S⊥. For every I, J ∈ Idl(X) and

a ∈ Σ, we have I
a
 J if and only if I ∪ {⊥} a

 ⊥ J ∪ {⊥}. Therefore, the completion of S⊥
is also deterministic and also has leveled-strong-strict monotonicity. It is readily seen that
effectivenesses are preserved.

Taking the product of B and S⊥ allows us to test whether a word of L(B) is also an
infinite trace of S:

Proposition 5.7. Let B = (Q,Σ, δ, q0, F) be a Büchi automaton, let S = (X,
Σ−→,≤) be a

very-WSTS, and let x0 ∈ X. There exists w ∈ L(B) ∩ ω-TracesS(x0) if and only if there
exists qf ∈ F such that (qf ,⊥) is repeatedly coverable from (q0, x0) in B × S⊥.

Vol. 16:2 FORWARD ANALYSIS FOR WSTS, PART III: KARP-MILLER TREES 13:25

Proof. (⇒) Let w ∈ L(B) ∩ ω-TracesS(x0). Since w ∈ L(B), there exist q1, q2, . . . ∈ Q such

that q0
w1−→ q1

w2−→ q2
w3−→ · · · and qi ∈ F for infinitely many i ∈ N. Since F is finite, there

exists some qf ∈ F such that qi = qf for infinitely many i ∈ N. Since w ∈ ω-TracesS(x0),

there exist x1, x2, . . . ∈ X such that x0
w1−→ x1

w2−→ x2
w3−→ · · · . Therefore,

(q0, x0)
(w1,q1)−−−−→ (q1, x1)

(w2,q2)−−−−→ (q2, x2)
(q3,w3)−−−−→ · · ·

which implies that (qf ,⊥) is repeatedly coverable from (q0, x0) in B × S⊥ since xi ≥ ⊥ for
every i ∈ N.

(⇐) Suppose (qf ,⊥) is repeatedly coverable from (q0, x0) in B × S⊥. There exist
(a1, q1), (a2, q2), . . . ∈ Σ×Q and (q1, x1), (q2, x2), . . . ∈ Q×X such that

(q0, x0)
(a1,q1)−−−−→ (q1, x1)

(a2,q2)−−−−→ (q2, x2)
(a3,q3)−−−−→ · · · (5.9)

and qi = qf and xi ≥ ⊥ for infinitely many i ∈ N. By (5.9) and by definition of B × S⊥,

we have (qi, ai, qi+1) ∈ δ and xi
ai−→ xi+1 for every i ∈ N. Therefore, we conclude that

a1a2 · · · ∈ L(B) ∩ ω-TracesS(x0).

Theorem 5.3 together with Propositions 5.5, 5.6 and 5.7 imply the decidability of LTL
model checking:

Theorem 5.8. LTL model checking is decidable for completion-post-effective, ∞-completion-
effective and ideal-increasing-effective classes of very-WSTS.

Theorem 5.8 implies that LTL model checking for ω-Petri nets is decidable. This includes
and strictly generalizes decidability of termination in ω-Petri nets [GHPR15] and decidability
of LTL model checking for Petri nets.

To the best of our knowledge, we also provide the first self-contained presentation
of the decidability of LTL model checking for Petri nets that does not rely on Rackoff
techniques. The first proof for the decidability of LTL model checking for Petri nets comes
from Esparza [Esp94]; it uses a result from Jantzen and Valk [VJ85] on the decidability of
the existence of an infinite number of occurrences of a given transition in an infinite run.
This essentially corresponds to our general study of (I, x)-increasing sequences. Moreover,
to derive a 2-EXPSPACE complexity bound, Esparza also used the logic of Yen [Yen92]
which extends Rackoff techniques. Unfortunately, some flaws in the paper of Yen were found
later by Atig and Habermehl [AH11]. Habermehl gave the first proof that the linear-time
µ-calculus is in EXPSPACE [Hab97]; his proof directly uses techniques a la Rackoff to
compute the length of short witnesses of some infinite runs. In both previous papers, on
the decidability of LTL model checking for Petri nets, it is not clear how the proofs found
therein can be extended to general very-WSTS.

6. A characterization of acceleration levels

In this section, we give a precise characterization of ideals that have finitely many levels.
Let us redefine the family of sets An(Idl(X)) introduced in Section 3.2 in a more

general setting. Let Z be a well-founded partially ordered set, abstracting away from the
case Z = Idl(X). We say that a sequence z0, z1, . . . ∈ Z is an acceleration candidate if
z1 < z2 < · · · . Such an acceleration candidate is below z ∈ Z if zi ≤ z for every i ∈ N, and
goes through a set A if zi ∈ A for some i ∈ N.

13:26 M. Blondin, A. Finkel, and J. Goubault-Larrecq Vol. 16:2

Definition 6.1. Let Z be a partially ordered set. Let A0(Z) def
= ∅. For every ordinal α > 0,

Aα(Z) is the set of elements z ∈ Z such that every acceleration candidate below z goes
through Aβ(Z) for some β < α.

The observations made in Section 3.2 still hold, i.e. Aα(Z) ⊆ Aβ(Z) and Aα(Z) is
downward-closed for every α ≤ β.

The rank of z ∈ Z, denoted rk z, is the ordinal defined inductively by

rk z def
= sup{rk y + 1 : y < z},

where sup(∅) def
= 0. The rank of Z is defined as

rkZ def
= sup{rk z + 1 : z ∈ Z}.

Let us first show that An(Z) is exactly the set of elements of rank less than ω · n. This rests
on the following, which is perhaps less obvious than it seems.

Lemma 6.2. Let Z be a countable wpo. For every z ∈ Z such that rk z is a limit ordinal,
z is the supremum of some acceleration candidate z0 < z1 < · · · . Moreover, for any given
ordinal β < rk z, the acceleration candidate can be chosen such that β ≤ zi for every i ∈ N.

Proof. Let α def
= rk z. A fundamental sequence for α is a monotone sequence of ordinals

strictly below α whose supremum equals α. Fundamental sequences exist for all countable
limit ordinals, in particular for α, since Z is countable (e.g. see [For10]). Pick one such
fundamental subsequence (γi)i∈N. Replacing γi by sup(β, γi) if necessary, we may assume
that β ≤ γm for every i ∈ N. By the definition of rank, for every i ∈ N, there is an element
zi < z of rank at least γi. Since Z is well-quasi-ordered, we may extract a non-decreasing
subsequence from (zi)i∈N. Without loss of generality, assume that z0 ≤ z1 ≤ · · · . If all
but finitely many of these inequalities were equalities, then z would be equal to zi for
m large enough, but that is impossible since zi < z. We can therefore extract a strictly
increasing subsequence from (zi)i∈N. This is an acceleration sequence, its supremum is z,
and β ≤ γi ≤ zi for every i.

Note that Lemma 6.2 fails if Z is not countable: take Z = ω1 + 1, where ω1 is the first
uncountable ordinal, then ω1 ∈ Z is not the supremum of countably many ordinals < ω1.
This also fails if Z is not well-quasi-ordered, even when Z is well-founded: consider the set
with one root r above chains of length n, one for each n ∈ N: rk r = ω, but there is no
acceleration candidate below r.

Lemma 6.3. Let Z be a countable wpo, and let n ∈ N. For every z ∈ Z, rk z < ω · n if and
only if z ∈ An(Z).

Proof. (⇒) By induction on n. The case n = 0 is immediate. Let n ≥ 1. Given any
acceleration candidate z1 < z2 < · · · below z, we must have rk z1 < rk z2 < · · · < rk z. Since
rk z < ω ·n, there exist `,m ∈ N with ` < n such that rk z = ω.`+m. Therefore, rk zi ≥ ω · `
for only finitely many i. In particular, there exists some i such that rk zi < ω · `. Since ` < n,
we have rk zi < ω · (n− 1). By induction hypothesis, zi ∈ An−1(Z), and hence z ∈ An(Z).

(⇐) We show by induction on n that rk z ≥ ω · n implies z 6∈ An(Z). The case n = 0 is
immediate. Let n ≥ 1. In general, rk z is not a limit ordinal, but can be written as α+ ` for
some limit ordinal α and some ` ∈ N. By definition of rank, z is larger than some element
of rank α+ (`− 1), which is itself larger than some element of rank α+ (`− 2), and so on.
Iterating this way, we find an element y ≤ z of rank exactly α. Since rk y is a limit ordinal,

Vol. 16:2 FORWARD ANALYSIS FOR WSTS, PART III: KARP-MILLER TREES 13:27

Lemma 6.2 entails that y is the supremum of some acceleration candidate z0 < z1 < · · · .
Moreover, since ω · (n− 1) < rk y, we may assume that rk zi ≥ ω · (n− 1) for every i ∈ N.
By induction hypothesis, zi 6∈ An−1(Z) for every i ∈ N, and hence z 6∈ An(Z).

Theorem 6.4. Let X be a countable wqo such that Idl(X) is well-quasi-ordered by inclusion6.
The following holds: Idl(X) has finitely many levels if and only if rk Idl(X) < ω2.

Proof. We apply Lemma 6.3 to Z = Idl(X), a wpo by assumption. For that, we need to
show that Z is countable. There are countably many upward-closed subsets, since they are
all determined by their finitely many minimal elements. Downward-closed subsets are in
one-to-one correspondence with upward-closed subsets, through complementation, hence are
countably many as well, and ideals are particular downward-closed subsets.

We conclude by noting that the following are equivalent: (1) rk Idl(X) < ω2; (2)
rk Idl(X) ≤ ω · n for some n ∈ N; (3) An(Idl(X)) = Idl(X) for some n ∈ N (by Lemma 6.3);
(4) An(X) = ∅ for some n ∈ N.

While rk Idl(Nd) = ω · d + 1 < ω2, not all wqos X used in formal verification satisfy

rk Idl(X) < ω2. For example, rk Idl(Σ∗) = ω|Σ| + 1, for any finite alphabet Σ; a similar
result holds for multisets over Σ.

Proposition 6.5. rk Idl(Σ∗) = ω|Σ| + 1 for every finite alphabet Σ.

Proof. Let k def
= |Σ|. The elements of Idl(Σ∗) are word-products P , defined as formal products

e1e2 · · · em of atomic expressions of the form a?, a ∈ Σ, or A∗, where a? denotes {a, ε} and
A is a non-empty subset of Σ [KP92, FG09]. Word-products were introduced under this
name in [ACABJ04].

Lower bound. Enumerate the letters of Σ as a1, a2, . . . , ak. Let Ai = {a1, a2, . . . , ai}.
Any ordinal α strictly less than ωk can be written in a unique way as ωk−1 · nk−1 + ωk−2 ·
nk−2 + · · ·+ ω · n1 + n0. Define an ideal Iα by the word-product

(a?
1)
n0

(a?
2A
∗
1)
n1

(a?
3A
∗
2)
n2 · · · (a?

kA
∗
k−1)

nk−1
.

The first terms, n0 times a?
1, have a different format from the rest of the word-product.

For uniformity of treatment, we write a?
1 as a?

1A
∗
0 (indeed A∗0 = ∅∗ = {ε}), so Iα =

(a?
1A
∗
0)
n0(a?

2A
∗
1)
n1 · · · (a?

kA
∗
k−1)

nk−1 .
We claim that β > α implies Iβ ⊃ Iα.

Let α = ωk−1 ·nk−1 +ωk−2 ·nk−2 + · · ·+ω ·n1 +n0 and β = ωk−1 ·mk−1 +ωk−2 ·mk−2 +
· · ·+ω ·m1+m0. The condition β > α is equivalent to the fact that (mk−1,mk−2, . . . ,m1,m0)
is lexicographically larger than (nk−1, nk−2, . . . , n1, n0). Write β → α if for some i with
0 ≤ i < k, nk−1 = mk−1, nk−2 = mk−2, . . . , ni+1 = mi+1, and mi = ni + 1. Since > is the
transitive closure of →, it suffices to show that β → α implies Iβ ⊃ Iα.

Containment is proved as follows. Iβ = (a?
1A
∗
0)
m0(a?

2A
∗
1)
m1 · · · (a?

kA
∗
k−1)

mk−1 contains

(a?
i+1A

∗
i)
mi(a?

i+2A
∗
i+1)

mi+1 · · · (a?
kA
∗
k−1)

mk−1 , because the empty word belongs to the removed

prefix (a?
1A
∗
0)
m0(a?

2A
∗
1)
m1 · · · (a?

iA
∗
i−1)

mi−1 . Since mi = ni + 1 ≥ 1, we can write (a?
i+1A

∗
i)
mi

(a?
i+2A

∗
i+1)

mi+1 · · · (a?
kA
∗
k−1)

mk−1 as a?
i+1A

∗
iP , where P abbreviates (a?

i+1A
∗
i)
ni(a?

i+2A
∗
i+1)

mi+1

· · · (a?
kA
∗
k−1)

mk−1 . Hence Iβ contains A∗iP . By the definition of →, P is equal to

(a?
i+1A

∗
i)
ni

(a?
i+2A

∗
i+1)

ni+1 · · · (a?
kA
∗
k−1)

nk−1
.

6Recall that such a wqo is known as an ω2-wqo [FG12]. That we find the ordinal ω2 in the statement of
Theorem 6.4 and in the notion of ω2-wqo seems to be coincidental.

13:28 M. Blondin, A. Finkel, and J. Goubault-Larrecq Vol. 16:2

We now note that A∗i contains (a?
1A
∗
0)
n0(a?

2A
∗
1)
n1(a?

3A
∗
2)
n2 · · · (a?

iA
∗
i−1)

ni−1 , because every
word in the latter contains only letters from {a1, a2, . . . , ai} = Ai. Hence A∗iP contains

(a?
1A
∗
0)
n0(a?

2A
∗
1)
n1(a?

3A
∗
2)
n2 · · · (a?

iA
∗
i−1)

ni−1P , which is equal to Iα. Since Iβ contains A∗iP ,
we conclude.

We now show that containment is strict. Let w be the word am0
1 (a2a1)m1(a3a2)m2 · · ·

(akak−1)mk−1 . Clearly, w is in Iβ. To show that w is not in Iα, we show that u(ai+1ai)
ni+1

(ai+2ai+1)mi+1 · · · (ajaj−1)mj−1 is not in L(a?
i+1A

∗
i)
ni(a?

i+2A
∗
i+1)

mi+1 · · · (a?
jA
∗
j−1)

mj−1 for any
j, i+ 1 ≤ j ≤ k, where u is an arbitrary word in A∗i and L is an arbitrary language included
in A∗i . We will obtain w 6∈ Iα by letting j = k, u = am0

1 (a2a1)m1 · · · (aiai−1)mi−1 and

L = (a?
1A
∗
0)
n0(a?

2A
∗
1)
n1(a?

3A
∗
2)
n2 · · · (a?

iA
∗
i−1)

ni−1 . This is by induction on j − (i + 1). If

j = i + 1, we must show that u(ai+1ai)
ni+1 is not in L(a?

i+1A
∗
i)
ni , and that is obvious

since any word in L(a?
i+1A

∗
i)
ni can contain at most ni occurrences of ai+1. In the induction

case, let v = u(ai+1ai)
ni+1(ai+2ai+1)mi+1 · · · (ajaj−1)mj−1 , A = L(a?

i+1A
∗
i)
ni(a?

i+2A
∗
i+1)

mi+1

· · · (a?
jA
∗
j−1)

mj−1 , and let us show that v(aj+1aj)
mj 6∈ A(a?

j+1A
∗
j)
mj , knowing that v 6∈ A by

induction hypothesis. If v(aj+1aj)
mj were in A(a?

j+1A
∗
j)
mj , there would be two words v1 ∈ A

and v2 ∈ (a?
j+1A

∗
j)
mj such that v(aj+1aj)

mj = v1v2. Since v2 is a suffix of v(aj+1aj)
mj

and is in (a?
j+1A

∗
j)
mj , v2 must in fact be a suffix of (aj+1aj)

mj . Hence v1 contains v as
prefix. However, v1 is in A and A is downward-closed, and that implies v ∈ A in particular:
contradiction.

This ends our proof that β > α implies Iβ ⊃ Iα. Since Iβ ⊃ Iα implies rk Iβ > rk Iα, an

easy ordinal induction shows that rk Iα ≥ α for every ordinal α < ωk. There is a further
ideal A∗k = Σ∗ in Σ∗. It contains every Iα, and strictly so since the number of occurrences of

ak in any word of Iα is bounded from above by nk−1 (where α = ωk−1 · nk−1 + ωk−2 · nk−2 +
· · · + ω · n1 + n0), but there are words with arbitrarily many occurrences of ak in A∗k. It

follows that the rank of A∗k in Idl(Σ∗) is at least sup{α+ 1 | α < ωk} = ωk, and therefore

that the rank of Idl(Σ∗) is at least ωk + 1.
Upper bound. Order atomic expressions by: A∗ @ B∗ if and only if A ⊂ B, a? @ B∗

if and only if a ∈ B, and no other strict inequality holds. The relation @ is simply strict
inclusion of the corresponding ideals. A word-product P = e1e2 · · · em is reduced if and only
if the ideal eiei+1 is included neither in ei nor in ei+1, for every i, 1 ≤ i < m. Reduced
word-products are normal forms for word-products [ACABJ04]. On reduced word-products,
we define two binary relations @w and vw by the following rules, and the specification that
vw is the reflexive closure of @w:

eP vw P ′

eP @w e′P ′

P @w P ′

a?P @w a?P ′

∀i · ei @ A′∗ P vw P ′

e1 . . . ekP @
w A′

∗
P ′

P @w P ′

A∗P @w A∗P ′

Those rules are taken from [Gou13, Figure 1], and specialized to the case where all letters
from Σ are incomparable. (That means that the rule called (w2) there never applies, and
we have kept the remaining rules (w1), (w3)–(w5).) For reduced word-products P and P ′,
P @w P ′ if and only if P , as an ideal, is strictly contained in P ′ (loc.cit.; alternatively,
this is an easy exercise from the characterization of [non-strict] inclusion in [ACABJ04].)
It follows that if P is strictly below P ′ in Idl(Σ∗), then µ(P) is strictly below µ(Q) in the
multiset extension of @, where, for P = e1e2 · · · em, µ(P) is the multiset {e1, e2, . . . , em}, a
fact already used in [Gou13].

Vol. 16:2 FORWARD ANALYSIS FOR WSTS, PART III: KARP-MILLER TREES 13:29

The set of atomic expressions consists of the following elements: elements of the form a?

are at the bottom, and have rank 1; just above, we find {a}∗, of rank 2, then {a, b}∗ of rank
3, etc.. In other words, A∗ has rank one plus the cardinality of A. In particular, all atomic
expressions except Σ∗ have rank at most k.

Among reduced word-products P , those that are different from Σ∗ must be of the form
e1e2 · · · em where no ei is equal to Σ∗. This is by definition of reduction. Hence the suborder
of those reduced word-products P 6= Σ∗ has rank less than or equal to the set of multisets
{e1, e2, . . . , em} where each ei has rank at most k (in the set of atomic expressions different
from Σ∗).

The rank of the set of multisets of elements, where each element has rank at most k, is
at most ωk. This is well-known, but here is a short argument. We can map any multiset
{e1, e2, . . . , em} to the ordinal ωk−1 · nk−1 + ωk−2 · nk−2 + · · ·+ ω · n1 + n0 where ni counts
the number of elements ej of rank i, and we observe that this mapping is strictly monotone.

It follows that the suborder of those reduced word-products P that are different from
Σ∗ has rank at most ωk. Idl(Σ∗) contains just one additional element, Σ∗, which is therefore
of rank at most ωk. Hence Idl(Σ∗) has rank at most ωk + 1.

7. Discussion and further work

We have presented the framework of very-WSTS, for which we have given a Karp-Miller
algorithm. This allowed us to show that ideal decompositions of coverability sets of very-
WSTS are computable, and that LTL model checking is decidable under some additional
assumptions. We have also characterized acceleration levels in terms of ordinal ranks. Finally,
we have shown that downward traces inclusion is decidable for very-WSTS.

As future work, we propose to study well-structured models beyond very-WSTS for
which there exist Karp-Miller algorithms, e.g. unordered data Petri nets (UDPN) [HMM14,
HLL+16], or for which reachability is decidable, e.g. recursive Petri nets7 [HP07] with strict
monotonicity. It is conceivable that LTL model checking is decidable for such models. Our
approach will have to be extended to tackle this problem.

For example, UDPN do not have finitely many acceleration levels. To circumvent this
issue, Hofman et al. [HLL+16] make use of two types of accelerations that can be nested.
One type is prioritized to ensure that acceleration levels along a branch grow “fast enough”
for the algorithm to terminate. A possible way to apply the theory of very-WSTS to such
models that are not very-WSTS simply because they have an ideal rank larger or equal to
ω2 could be to find an abstraction of the set of ideals that reduces their rank to an ordinal
strictly smaller that ω2 while preserving suitable acceleration properties.

Moreover, observe that the IKM algorithm still terminates if, for each branch B =
(c0 : I0, c1 : I1, . . .) of the Ideal Karp-Miller tree, the following set has rank less than ω2:

[B] def
= {I ∈ Idl(X) : ∃j, k ∈ N, j ≤ k and Ij ⊆ I ⊆ Ik}.

Indeed, the IKM algorithm terminates if and only if each branch B is finite, and the states
involved in computing the branch, as well as all needed accelerations, are all included in [B].
Therefore, relaxing “rk Idl(X) < ω2” to the more technical condition “rk [B] < ω2” may
allow one to extend the notion of very-WSTS.

7Recursive Petri nets are WSTS for the tree embedding.

13:30 M. Blondin, A. Finkel, and J. Goubault-Larrecq Vol. 16:2

We know from [BFP12] that model checking of the eventually increasing Presburger CTL
fragment of CTL, which has been defined by Atig and Habermehl in [AH11], is undecidable
for post-self-modifying nets, while it is decidable for Petri nets [AH11]. However, to the
best of our knowledge, the (un)decidability of LTL model checking for post-self-modifying
nets is still open. One could hope to show decidability using our framework by proving
ideal-increasing-effectiveness.

It also remains to establish the computational complexity of LTL model checking for
ω-Petri nets, which cannot directly be done in our framework. It might be possible to adapt
extended Rackoff techniques as done for termination in ω-Petri nets [GHPR15].

References

[ACABJ04] Parosh Aziz Abdulla, Aurore Collomb-Annichini, Ahmed Bouajjani, and Bengt Jonsson. Using
forward reachability analysis for verification of lossy channel systems. Formal Methods in System
Design, 25(1):39–65, 2004.

[ACJT96] Parosh Aziz Abdulla, Karlis Cerans, Bengt Jonsson, and Yih-Kuen Tsay. General decidability
theorems for infinite-state systems. In Proc. 11th Annual IEEE Symposium on Logic in Computer
Science (LICS), pages 313–321, 1996.

[ACJT00] Parosh Aziz Abdulla, Karlis Cerans, Bengt Jonsson, and Yih-Kuen Tsay. Algorithmic analysis
of programs with well quasi-ordered domains. Inf. Comput., 160(1-2):109–127, 2000.

[AH11] Mohamed Faouzi Atig and Peter Habermehl. On Yen’s path logic for Petri nets. International
Journal of Foundations of Computer Science, 22(4):783–799, 2011.

[AJ94] Parosh Aziz Abdulla and Bengt Jonsson. Undecidable verification problems for programs
with unreliable channels. In Proc. 21st International Colloquium on Automata, Languages and
Programming (ICALP), pages 316–327, 1994.

[BBS06] Christel Baier, Nathalie Bertrand, and Philippe Schnoebelen. On computing fixpoints in well-
structured regular model checking, with applications to lossy channel systems. In Proc. 13th

International Conference on Logic for Programming, Artificial Intelligence, and Reasoning,
(LPAR), pages 347–361, 2006.

[BFGL17] Michael Blondin, Alain Finkel, and Jean Goubault-Larrecq. Forward analysis for WSTS, part
III: Karp-Miller trees. In Proc. 37th IARCS Annual Conference on Foundations of Software
Technology and Theoretical Computer Science (FSTTCS), pages 16:1–16:15, 2017.

[BFM17] Michael Blondin, Alain Finkel, and Pierre McKenzie. Well behaved transition systems. Logical
Methods in Computer Science, 13(3), 2017.

[BFM18] Michael Blondin, Alain Finkel, and Pierre McKenzie. Handling infinitely branching well-
structured transition systems. Information and Computation, 258:28–49, 2018.

[BFP12] Rémi Bonnet, Alain Finkel, and M. Praveen. Extending the Rackoff technique to affine nets.
In Proc. IARCS Annual Conference on Foundations of Software Technology and Theoretical
Computer Science, (FSTTCS), pages 301–312, 2012.

[BM07] Aaron R. Bradley and Zohar Manna. The calculus of computation – Decision procedures with
applications to verification. Springer, 2007.

[Bon75] Robert Bonnet. On the cardinality of the set of initial intervals of a partially ordered set. In
Infinite and finite sets: to Paul Erdős on his 60th birthday, pages 189–198. North-Holland, 1975.

[BS13] Nathalie Bertrand and Philippe Schnoebelen. Computable fixpoints in well-structured symbolic
model checking. Formal Methods in System Design, 43(2):233–267, 2013.

[CFS11] Pierre Chambart, Alain Finkel, and Sylvain Schmitz. Forward analysis and model checking for
trace bounded WSTS. In Proc. 32nd International Conference on Applications and Theory of
Petri Nets, 2011.

[CFS16] Pierre Chambart, Alain Finkel, and Sylvain Schmitz. Forward analysis and model checking for
trace bounded WSTS. Theor. Comput. Sci., 637:1–29, 2016.

[DFS98] Catherine Dufourd, Alain Finkel, and Philippe Schnoebelen. Reset nets between decidability and
undecidability. In Proc. 25th International Colloquium Automata, Languages and Programming
(ICALP), pages 103–115, 1998.

Vol. 16:2 FORWARD ANALYSIS FOR WSTS, PART III: KARP-MILLER TREES 13:31

[EFM99] Javier Esparza, Alain Finkel, and Richard Mayr. On the verification of broadcast protocols. In
Proc. 14th Annual IEEE Symposium on Logic in Computer Science (LICS), pages 352–359, 1999.

[EN98] E. Allen Emerson and Kedar S. Namjoshi. On model checking for non-deterministic infinite-state
systems. In Proc. 13th IEEE Symposium on Logic in Computer Science (LICS), pages 70–80,
1998.

[Esp94] Javier Esparza. On the decidability of model checking for several µ-calculi and Petri nets. In Proc.
19th International Colloquium on Trees in Algebra and Programming (CAAP), pages 115–129,
1994.

[ET43] Paul Erdős and Alfred Tarski. On families of mutually exclusive sets. Annals of Mathematics,
2(44):315–329, 1943.

[FG09] Alain Finkel and Jean Goubault-Larrecq. Forward analysis for WSTS, part I: Completions. In
STACS’09, pages 433–444, Freiburg, Germany, 2009. Leibniz-Zentrum für Informatik, Intl. Proc.
in Informatics 3.

[FG12] Alain Finkel and Jean Goubault-Larrecq. Forward analysis for WSTS, part II: complete WSTS.
Logical Methods in Computer Science, 8(3), 2012.

[Fin86] Finkel. Structuration des systèmes de transitions-applications au contrôle du parallélisme par
Files FIFO. PhD thesis, Université Paris Sud Orsay, 1986.

[Fin87] Alain Finkel. A generalization of the procedure of Karp and Miller to well structured transition
systems. In Proc. 14th International Colloquium on Automata, Languages and Programming
(ICALP), pages 499–508, 1987.

[Fin90] Alain Finkel. Reduction and covering of infinite reachability trees. Information and Computation,
89(2):144–179, 1990.

[FM14] Emanuele Frittaion and Alberto Marcone. Reverse mathematics and initial intervals. Ann. Pure
Appl. Logic, 165(3):858–879, 2014.

[FMP04] Alain Finkel, Pierre McKenzie, and Claudine Picaronny. A well-structured framework for
analysing Petri net extensions. Information and Computation, 195(1-2):1–29, 2004.

[For10] Thomas Forster. A tutorial on countable ordinals. Available from the Web at https://www.

dpmms.cam.ac.uk/~tf/fundamentalsequence.pdf, November 2010. Read on Feb. 03, 2017.
[FPS01] Alain Finkel and Philippe Schnoebelen. Well-structured transition systems everywhere! Theoret-

ical Computer Science, 256(1-2):63–92, 2001.
[Fra86] Roland Fräıssé. Theory of relations. Studies in Logic and the Foundations of Mathematics,

118:1–456, 1986.
[GHPR15] Gilles Geeraerts, Alexander Heußner, M. Praveen, and Jean-François Raskin. ω-Petri nets:

Algorithms and complexity. Fundamenta Informaticae, 137(1):29–60, 2015.
[Gou13] Jean Goubault-Larrecq. A constructive proof of the topological Kruskal theorem. In Proc. 38th

International Symposium on Mathematical Foundations of Computer Science (MFCS), pages
22–41, 2013.

[GRB06] Gilles Geeraerts, Jean-François Raskin, and Laurent Van Begin. Expand, enlarge and check: New
algorithms for the coverability problem of WSTS. Journal of Computer and System Sciences,
72(1):180–203, 2006.

[Hab97] Peter Habermehl. On the complexity of the linear-time µ-calculus for Petri nets. In Proc. 18th

International Conference on Application and Theory of Petri Nets (ICATPN), pages 102–116,
1997.

[HLL+16] Piotr Hofman, Slawomir Lasota, Ranko Lazic, Jérôme Leroux, Sylvain Schmitz, and Patrick
Totzke. Coverability trees for Petri nets with unordered data. In Proc. 19th International
Conference on Foundations of Software Science and Computation Structures (FoSSaCS), pages
445–461, 2016.

[HMM14] Reiner Hüchting, Rupak Majumdar, and Roland Meyer. Bounds on mobility. In Proc. 25th

International Conference on Concurrency Theory (CONCUR), pages 357–371, 2014.
[HP07] Serge Haddad and Denis Poitrenaud. Recursive Petri nets. Acta Informatica, 44(7-8):463–508,

2007.
[KM67] Richard M. Karp and Raymond E. Miller. Parallel program schemata: a mathematical model

for parallel computation. In Proc. 8th Annual Symposium on Switching and Automata Theory,
pages 55–61. IEEE Computer Society, 1967.

https://www.dpmms.cam.ac.uk/~tf/fundamentalsequence.pdf
https://www.dpmms.cam.ac.uk/~tf/fundamentalsequence.pdf

13:32 M. Blondin, A. Finkel, and J. Goubault-Larrecq Vol. 16:2

[KP92] M. Kabil and M. Pouzet. Une extension d’un théorème de P. Julien sur les âges de mots.
Informatique théorique et applications, 26(5):449–482, 1992.

[KSS04] E. V. Kouzmin, Nikolay V. Shilov, and Valery A. Sokolov. Model checking mu-calculus in well-
structured transition systems. In Proc. 11th International Symposium on Temporal Representation
and Reasoning (TIME), pages 152–155, 2004.

[LMP87] J.D. Lawson, M. Mislove, and H. Priestley. Ordered sets with no infinite antichains. Discrete
Mathematics, 63(2):225–230, 1987.

[Par66] Rohit J. Parikh. On context-free languages. Journal of the ACM, 13(4):570–581, 1966.
[Pou79] Maurice Pouzet. Relations non reconstructibles par leurs restrictions. Journal of Combinatorial

Theory, Series B, 26(1):22–34, 1979.

[Pre29] Mojżesz Presburger. Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer
Zahlen, in welchem die Addition als einzige Operation hervortritt. Comptes Rendus du 1er

congrès des mathématiciens des pays slaves, pages 192–201, 1929.
[PZ85] Maurice Pouzet and Nejib Zaguia. Dimension de Krull des ensembles ordonnés. Discrete Mathe-

matics, 53:173–192, 1985.
[RM12] Fernando Rosa-Velardo and Maŕıa Martos-Salgado. Multiset rewriting for the verification of

depth-bounded processes with name binding. Inf. Comput., 215:68–87, 2012.
[RMdF11] Fernando Rosa-Velardo, Maŕıa Martos-Salgado, and David de Frutos-Escrig. Accelerations for

the coverability set of Petri nets with names. Fundamenta Informaticae, 113(3-4):313–341, 2011.
[Sch10] Philippe Schnoebelen. Lossy counter machines decidability cheat sheet. In Proc. 4th International

Workshop on Reachability Problems (RP), pages 51–75, 2010.
[Val78] Rüdiger Valk. Self-modifying nets, a natural extension of Petri nets. In Proc. 5th International

Colloquium on Automata, Languages and Programming (ICALP), pages 464–476, 1978.
[VG05] Kumar N. Verma and Jean Goubault-Larrecq. Karp-Miller trees for a branching extension

of VASS. Discrete Mathematics & Theoretical Computer Science, 7(1):217–230, 2005.
[VJ85] Rüdiger Valk and Matthias Jantzen. The residue of vector sets with applications to decidability

problems in Petri nets. Acta Informatica, 21:643–674, 1985.
[Yen92] Hsu-Chun Yen. A unified approach for deciding the existence of certain Petri net paths. Infor-

mation and Computation, 96(1):119–137, 1992.
[ZWH12] Damien Zufferey, Thomas Wies, and Thomas A. Henzinger. Ideal abstractions for well-structured

transition systems. In VMCAI, pages 445–460, 2012.

Vol. 16:2 FORWARD ANALYSIS FOR WSTS, PART III: KARP-MILLER TREES 13:33

8. Appendix

Proof of Proposition 3.4(1–3).

(1) By induction on |w|. When |w| = 0, the claim is obvious. Otherwise, write w as av

where a ∈ Σ, v ∈ Σ∗, |v| < |w|, and let x
a−→ z

v−→ y, for some state z. Certainly z
is in PostS (I, a), hence in ↓(PostS (I, a)). Write the ideal decomposition of the latter

as {I1, I2, . . . , In}. For some k, 1 ≤ k ≤ n, z is in Ik, and by definition I
a
 Ik. By

induction hypothesis, Ik
v
 J for some ideal containing y, whence the result.

(2) By induction of |w| again. The case |w| = 0 is obvious, too. Otherwise, write w as av,

where a ∈ Σ, v ∈ Σ∗, |v| < |w|. There is an ideal K such that I
a
 K

v
 J , and the

induction hypothesis gives us elements z ∈ K and y′ ∈ J , and a word v′ ∈ Σ∗ such that

z
v′−→ y′ and y′ ≥ y. (Moreover, if S has strong monotonicity, then v′ = v.) By definition

of
a
 , K is included in ↓PostS (I, a), so there are elements x ∈ I and z′ ∈ K with z′ ≥ z

such that x
a−→ z′. Since S is monotonic, there is a further element y′′ ≥ y′ and a further

word v′′ such that z′
v′′−→ y′′. (If S is strongly monotonic, v′′ = v′, so v′′ = v.) This

entails that x
av′′−−→ y′′ ≥ y, and if S is strongly monotonic, av′′ = av = w.

(3) Let J ∈ PostŜ (I, w) and let y ∈ J . By (2), there exist x ∈ I and y′ ∈ X such

that x
w−→ y′ and y′ ≥ y. Thus, y ∈ ↓PostS (x,w) ⊆ ↓PostS (I, w). Conversely, let

y ∈ ↓PostS (I, w). There exist x ∈ I and y′ ∈ X such that x
w−→ y′ and y′ ≥ y. By (1),

there exists an ideal J ⊇ ↓ y′ ⊇ ↓ y such that I
w
 J . Thus, J ∈ PostŜ (I, w) and

y ∈ J .

This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/4.0/ or send a letter to Creative
Commons, 171 Second St, Suite 300, San Francisco, CA 94105, USA, or Eisenacher Strasse
2, 10777 Berlin, Germany

	1. Introduction
	1.1. Context
	1.2. The Karp-Miller coverability procedure
	1.3. Model checking WSTS
	1.4. Our contributions
	1.5. A short story of well-structured transition systems
	1.6. Differences between very-WSTS and WSTS of (Finkel, 1990)

	2. Preliminaries
	2.1. Transition systems
	2.2. Well-structured transition systems
	2.3. Verification problems

	3. An investigation of the Karp-Miller algorithm
	3.1. Ideals and completions
	3.2. Levels of ideals
	3.3. Accelerations

	4. The Ideal Karp-Miller algorithm
	4.1. Properties of the algorithm
	4.2. Effectiveness of the algorithm

	5. Model checking liveness properties for very-WSTS
	5.1. Deciding repeated coverability
	5.2. From model checking to repeated coverability

	6. A characterization of acceleration levels
	7. Discussion and further work
	References
	8. Appendix

