
Black Ninjas in the Dark:

Formal Analysis of Population Protocols

Michael Blondin

Fakultät für Informatik

Technical University of Munich

Garching bei München, Germany

blondin@in.tum.de

Javier Esparza

Fakultät für Informatik

Technical University of Munich

Garching bei München, Germany

esparza@in.tum.de

Stefan Jaax

Fakultät für Informatik

Technical University of Munich

Garching bei München, Germany

jaax@in.tum.de

Antonín Kučera

Faculty of Informatics

Masaryk University

Brno, Czech Republic

kucera@fi.muni.cz

Abstract

In this interactive paper, which you should preferably read con-

nected to the Internet, the Black Ninjas introduce you to population

protocols, a fundamental model of distributed computation, and to

recent work by the authors and their colleagues on their automatic

verification.

CCS Concepts •Theory of computation→Distributed com-

puting models; Logic and verification;

Keywords population protocols, distributed computing, parame-

terized verification

ACM Reference Format:

Michael Blondin, Javier Esparza, Stefan Jaax, and Antonín Kučera. 2018.

Black Ninjas in the Dark: Formal Analysis of Population Protocols. In LICS
’18: 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, July
9–12, 2018, Oxford, United Kingdom. ACM, New York, NY, USA, 10 pages.

https://doi.org/10.1145/3209108.3209110

1 Black ninjas in the dark

“ You can feel her in the dark.
She’s a black ninja! ” — Battle Beast (2013)

The Black Ninjas are an ancient secret society of warriors. It is so

secret that its members do not even know each other and howmany

they are. When there is a matter to discuss, Sensei, the founder of

the society, asks the ninjas to meet at night, preferably during a

storm as it minimizes the chance of being surprised by the enemy.

As it happens, all ninjas have just received a note asking them

to meet in a certain Zen garden at midnight, wearing their black

uniform, in order to decide whether they should attack a nearby

castle at dawn. The decision is taken by majority, and in the case

of a tie the ninjas will not attack. All ninjas must decide their vote

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or

a fee. Request permissions from permissions@acm.org.

LICS ’18, July 9–12, 2018, Oxford, United Kingdom
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5583-4/18/07. . . $15.00

https://doi.org/10.1145/3209108.3209110

in advance, the only purpose of the meeting is to compute the final

outcome.

When the ninjas reach the garden in the gloomy night, dark

clouds cover the sky as rain pours vociferously. The weather is so

dreadful that it is impossible to see or hear anything at all. For this

reason, voting procedures based on visual or oral communication

are hopeless. Is there a way for the ninjas to conduct their vote in

spite of these adverse conditions?

1.1 A first protocol

Sensei has foreseen this situation and made preparations. The note

sent to the ninjas contains detailed instructions on how to proceed.

Each ninja must wander randomly around the garden. Two ninjas

that happen to bump into each other exchange information using

touch according to the following protocol.

Each ninja maintains two bits of information:

• the first bit indicates whether the ninja is currently active
(A) or passive (P); and

• the second bit indicates the current expectation of each ninja

on the final outcome of the vote: yes, we will attack (Y) or no,
we will not attack (N).

This gives four possible states for each ninja: AY, AN, PY, PN. Ini-

tially the ninjas set their first bit to A, i.e., they are all active, and

their second bit to their vote. State changes obey interaction rules or
transitions of the form p,q 7→ p′,q′, meaning that if the interacting

ninjas are in states p and q, respectively, they move to states p′ and
q′. Sensei specifies two rules, shown on the left of Table 1, with the

implicit assumption that for any combination of states not covered

by the rules, the ninjas must simply keep their current states. The

intuition behind the rules is as follows:

• The first rule asks two active ninjas with opposite votes to

become passive and change their expectations to N. Intu-

itively, since the ninjas have opposite votes, they become

passive to let the rest decide the outcome, and inform them

of the final result. They move to N since, for all they know,

they could be the only two ninjas of the society. In this case,

there are no other ninjas and, since the vote is a tie, the final

outcome is N.

• The second rule asks a passive ninja that bumps into an

active ninja to change his or her expectation to the one of

the active ninja. Strictly speaking, these are two rules, one

for Y and one for N.

https://doi.org/10.1145/3209108.3209110
https://doi.org/10.1145/3209108.3209110

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Michael Blondin, Javier Esparza, Stefan Jaax, and Antonín Kučera

Rule Nr. First protocol Second protocol Third protocol

1 AY,AN 7→ PN, PN AY,AN 7→ PN, PN AY,AT 7→ AY, PY

2 Aα , Pβ 7→ Aα , Pα α , β ∈ {Y,N} Aα , Pβ 7→ Aα , Pα α , β ∈ {Y,N} AY,AN 7→ AT, PT

3 PN, PY 7→ PN, PN AT,AN 7→ AN, PN

4 AT,AT 7→ AT, PT

5 Aα , Pβ 7→ Aα , Pα α , β ∈ {Y,T,N}

Table 1. Three protocols for computing majority.

Sensei reasons as follows: If initially there are more Y-ninjas than N-

ninjas, then eventually all remaining active ninjas will be Y-ninjas

(first rule), and they will eventually turn all passive ninjas into Y-

ninjas (second rule). The opposite case is symmetric. So eventually

all ninjas will have the same expectation, and will maintain it

forever, i.e., the ninjas will eventually reach a stable consensus and,
further the value of the consensus (Y or N) will correspond to the

correct outcome of the vote.

Throughout the paper, we will give links to interactive webpages.

Each link will be depicted by a clickable pictogram of the form n

which can alternatively be accessed as the n-th example found at

https://peregrine.model.in.tum.de/lics18.
You can run the described protocol at 1 . In the simulation,

the ninjas are represented as circles wandering along the garden.

States are represented by colours (see the legend on the screen).

You can inspect the states and transitions of the protocol, and

change the initial number of Y-ninjas and N-ninjas. The physical

representation of the ninjas moving around is only for fun. In

reality, the operational semantics of the protocol is as follows: at

each moment in time, a pair of ninjas is picked uniformly at random,

and the corresponding rule (if any) is applied. By clicking the menu

tab Population View, you can see another visualization showing

only the number of ninjas in each state evolving over time.

Observe that no individual ninja can know with certainty that

a consensus has already been reached. Indeed, at each moment

in time, a ninja has interacted only with a finite number of other

ninjas, and, since the ninjas do not know how many they are, they

cannot exclude the existence of many other individuals that could

flip the current outcome of the vote. However, this does not make

the protocol useless. Indeed, from the size of the garden, the ninjas

can deduce an upper bound for the number of ninjas, and from

this upper bound and the mean time between interactions they

can compute bounds on the probability to have reached consensus

after a given time. In particular, a computation of this kind (or a

sufficiently large number of simulations) can ensure that consensus

is reached before dawn with large probability.

1.2 A second protocol

The protocol works fine for a time, but then disaster strikes. At one

gathering there is an equal number of Y-ninjas and N-ninjas. In

this case — and only in this case — the protocol is incorrect, and

the ninjas may never reach a consensus. In fact, this happens with

large probability. You can experiment with this scenario by clicking

again the link above, and changing the initial number of ninjas to,

say, five ninjas each in states AY and AN.

Consider the case in which there are initially four ninjas, two in

state AY, and two in state AN. One possible execution is:(
AY AN PY PN

— —

)
rule 1

−−−−→

(
AY AN PY PN

—

)
rule 2

−−−−→

(
AY AN PY PN

)
rule 2

−−−−→

(
AY AN PY PN

—

)
rule 1

−−−−→

(
AY AN PY PN

— —

)
after which the states of the ninjas cannot change anymore. Only

half of the ninjas attack at dawn, they are massacred, and Sensei

commits harakiri. Very sad story.

It is not difficult to see what goes wrong. If the first rule had

priority over the second rule, then the protocol would indeed work

correctly even in the case of a tie. The active ninjas would become

passive in pairs, after which an N-consensus would be reached,

which corresponds to the right outcome (“in the case of a tie, do not

attack”). However, in the actual protocol, the second rule “interferes”

with the first rule. For example, consider an execution in which the

active ninjas become passive in pairs by means of the first rule, until

only one active pair AY, AN remains. The remaining AY-ninja may

now turn arbitrarily many ninjas to Y (interference of the second

rule), and only then interact with the AN ninja (first rule again).

After this we have arbitrary numbers of Y and N ninjas, and no

rule is applicable anymore.

The newly elected Sensei II analyzes the problem and quickly

comes up with a repair for the protocol. It is shown in the middle of

Table 1: a new rule PY, PN 7→ PN, PN is added. If all ninjas become

passive, which can only happen in the case of a tie, then the new

rule guarantees that an N-consensus is eventually reached. This

new protocol can be simulated at 2 .

1.3 A third protocol

Again, the new protocol works fine . . . until it doesn’t. The story

repeats itself: At dawn no consensus has been reached, only some

ninjas attack, they are decimated, Sensei II commits harakiri . . . In

a farewell note he describes his puzzlement:

I have studied Math with the best Zen masters and I

have carefully crafted a mathematical proof showing

that the protocol eventually reaches a consensus with

probability 1. But the heavens did not bless my efforts

. . . it was not enough. Unable to complete this heavy

task, arrows all spent, so sad I fall.

https://peregrine.model.in.tum.de/lics18
https://peregrine.model.in.tum.de/lics18
https://peregrine.model.in.tum.de/lics18/example1
https://peregrine.model.in.tum.de/lics18/example2

LICS ’18, July 9–12, 2018, Oxford, United Kingdom

The successor, Sensei III, is well versed in new technologies and

quickly writes a program to simulate the behaviour of the protocol

for different initial numbers of ninjas. You can conduct simulations

of the second protocol together with statistics at 3 .

In each simulation, the number of ninjas is chosen uniformly at

random between 10 and 15, and the simulation runs for 500 steps, or

until no rule is applicable. We see that the protocol does not reach a

consensus in about 25% of the runs on average, and scrolling down

the page we see that this happens only for the case in which the

initial numbers of Y-ninjas is slightly above the number of N-ninjas.

Sensei III considers then the general scenario in which Y has a

majority of only one ninja, and finds the following explanation: In

this situation, the protocol reaches with high probability a configu-

ration with one single ninja in state AY and many ninjas in states

PN. There is now a struggle between the single AY ninja, who turns

PN-ninjas to PY using the second rule, against the many PN-ninjas,

who turn PY-ninjas back to PN using the new rule. The AY-ninja

eventually “wins”, and consensus Y is reached, but only after she

turns all PN-ninjas to PY before any of the PN-ninjas converts any

of them back to PY. As we will see in Section 5, for an initial con-

figuration with 8 Y-ninjas and 7 N-ninjas, this takes on average

9,072,494 steps, and dawn arrives long before consensus!

Sensei III wants a new protocol with a clean design. Since ties

are the source of all problems, she decides that the protocol should

explicitly deal with them. So, apart from being active or passive,

ninjas can now have a more refined expectation of the outcome: Y,

N, and T (for “tie”). The protocol is shown on the right of Table 1.

When two active ninjas meet, only one of them becomes passive,

and both change their expectation in the natural way. For example,

if the expectations are Y and T, then the ninja with expectation

T changes it to Y. This explains rules 1 to 4. Rule 5 is the usual

one: passive ninjas adopt the expectation of active ninjas. You can

simulate the protocol at 4 . In simulations with up to 15 ninjas,

consensus never takes more than 170 steps: 5 .

1.4 Sensei III’s questions

The new protocol is working fine but, given the fate of her two

predecessors, Sensei III does not feel completely at rest . . . Perhaps

some formal methods could contribute to her peace of mind? She

has several obvious questions:

(a) What is a protocol?

(b) What does it mean for a protocol to be correct? What does

it mean for it to be efficient?

(c) How can I ensure that a protocol is correct and efficient?

Moreover, apart from these verification questions, she is also inter-

ested in other problems:

(d) Are there protocols for other tasks? For example, if the ninjas

should attack only if at least 90% of them vote for it, could

the protocol be changed? And what if 4 votes or more can

veto the attack?

(e) Some ninjas cannot remember complicated protocols. What

is the minimal number of states of a protocol for a given

task?

In 2004, Sensei III discussed these questions with a team of com-

puter scientists at Yale University. The latter formally defined the

population protocol model [3], and started answering some of the

questions of Sensei III. Other researchers then joined in. In the rest

of the paper, we review some of the results they found, and devote

special attention to questions (c) and (e) studied by the authors.

2 What is a (correct) protocol?

The ninja majority protocols of Section 1 can all be seen as popula-

tion protocols, an elegant formalism, introduced by Angluin et al.,
for distributed systems of mobile agents with little computational

power [3]. Such protocols allow for modeling systems such as net-

works of passively mobile sensors and chemical reaction networks.

Formally, a population protocol is a tuple P = (Q,T , I ,O) such
that

• Q is a finite set of elements called states,
• T ⊆ Q2 ×Q2

is a finite set of rules called transitions,
• I ⊆ Q is a subset of states said to be initial,
• O : Q → {0, 1} maps each state to an output.

For simplicity, we denote a transition ((p,q), (p′,q′)) ∈ T as p,q 7→

p′,q′, and we assume T contains transition p,q 7→ p,q for every

p,q ∈ Q .
A configuration is a vector C ∈ NQ assigning to each state q a

number C(q) of agents (i.e. ninjas) in state q. A configuration is

initial if C(q) = 0 for every q < I . For example, (1, 1, 0, 2) repre-

sents the following pictorial configuration of ninjas described in

Section 1.2: (
AY AN PY PN

—

)
.

We write C
t
−→ D for a transition t : (p,q) 7→ (p′,q′) if changing

an agent from state p to p′ and another agent from state q to q′

in configuration C results in configuration D. We write C
∗
−→ D if

D can be reached from C through a (possibly empty) sequence of

transitions. A configuration C is terminal if C
∗
−→ D implies D = C ,

i.e.C cannot be changed. For example, in the first protocol of Table 1,

we have (2, 2, 0, 0)
∗
−→ (0, 0, 2, 2) where the latter configuration is

terminal.

An execution is an infinite sequence of configurationsC0,C1, . . .

for which there exist transitions t1, t2, . . . ∈ T such that

C0

t1
−→ C1

t2
−→ C2

t3
−→ · · · .

An execution is said to be fair if for every configuration D, if

{i ∈ N : Ci
∗
−→ D} is infinite, then {i ∈ N : Ci = D} is infinite. In

other words, a fair execution cannot avoid a configuration reach-

able infinitely often. Fairness is an abstraction of the interactions

occurring stochastically among agents.

The output of a configuration C is defined as

O(C) =

{
b if O(q) = b for every q ∈ Q,

⊥ otherwise.

A configuration C is said to be stable if O(C) ∈ {0, 1} and for every

configuration D the following holds: if C
∗
−→ D, then O(D) = O(C).

In other words, a configuration is stable if it has reached a consensus

which cannot be reverted.

A protocol P computes a predicate φ : NI → {0, 1} if for every

initial configurationC , every fair execution fromC leads to a stable

configuration D such that O(D) = φ(C). We say that a protocol P

is correct with respect to a predicate φ if P computes φ. The three
protocols of Section 1, under outputs

O(AY) = O(PY) = 1 and O(AN) = O(PN) = O(AT) = O(PT) = 0,

https://peregrine.model.in.tum.de/lics18/example3
https://peregrine.model.in.tum.de/lics18/example4
https://peregrine.model.in.tum.de/lics18/example5

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Michael Blondin, Javier Esparza, Stefan Jaax, and Antonín Kučera

attempt to compute the predicate φ such that φ(C) = 1 ⇐⇒

C(AY) > C(AN). Only the second and third protocols are correct.

For a survey on population protocols and their variants which

will not be covered here, see the recent review article of Michail

and Spirakis [22] on the theory of dynamic networks, or the intro-

duction to population protocols by Aspnes and Ruppert [7].

3 What predicates can ninjas compute?

Sensei III’s fourth question was given a precise answer by An-

gluin et al. [3, 4, 6]: Population protocols can compute precisely

all Presburger-definable predicates [3, 4]. Recall that a predicate

is Presburger-definable if it can be defined in the first-order logic

over N with addition and order, i.e. in FO(N,+, <). The proof that
population protocols can compute all Presburger predicates is not

very complicated, once one observes that Presburger arithmetic

admits a quantifier elimination procedure [25] (see [12], e.g., for a
modern presentation). By this result, every Presburger-definable

predicate is equivalent to a boolean combination of threshold and

modulo predicates respectively of the form

n∑
i=1

aixi ≤ b and

n∑
i=1

aixi ≡ b (mod c).

It is not so difficult to give families of protocols for these predi-

cates. You can inspect and simulate a protocol for 2x −y ≤ 1 at 6 ,

and one for x ≡ 2 (mod 3) at 7 . Now, it only remains to show

that the class of predicates computed by protocols is closed under

boolean operations. This is achieved by means of constructions

closely resembling those for finite automata. Indeed, flipping the

outcomes of the states of a protocol P computing φ yields a proto-

col P ′
computing ¬φ, i.e., we replace the mapping O : Q → {0, 1}

by the mapping O given by O(q) = 1 −O(q) for every q ∈ Q . For
conjunction, there is also a simple product construction. Given

protocols P1 = (Q1,T1, I1,O1) and P2 = (Q2,T2, I2,O2) computing

respectively predicates φ1 and φ2, the protocol P1 × P2 with states

Q1 × Q2, outputs defined by O((q1,q2)) = O1(q1) ∧ O2(q2), and
transitions defined in the expected way, computes φ1 ∧ φ2 (see,

e.g., [3, Sect. 4] for details).
The proof that population protocols can only compute Pres-

burger predicates is much harder. Currently there exist two inde-

pendent proofs. The original proof by Angluin et al. [4, 6] applies
results from convex geometry. The second proof by Esparza et al.
[17] is based on the theory of vector addition systems, and leads

to an algorithm to construct, given a protocol, a representation of

the predicate it computes (if any) as a Presburger formula or as a

semilinear set.

4 Are the senseis’ protocols correct?

Once a population protocol P has been designed for computing a

certain predicate φ, it is natural to ask whether P indeed computes

φ correctly. For example, how can we be sure that the protocols

designed by the senseis in Section 1 really compute the predicate

#Y > #N?

4.1 Handcrafted proofs

One possible way is to manually establish some sorts of invariants

and progress measures in order to derive a formal proof. Let us

illustrate this idea on the second protocol of Table 1. Observe that for

every configurationsC and D such thatC
t
−→ D for some transition

t ∈ T , the following holds:

C(AY) +C(AN) ≥ D(AY) + D(AN). (1)

C(AY) −C(AN) = D(AY) − D(AN), (2)

D(AY) + D(AN) + D(PN) > 0. (3)

By inequality (1), the number of active agents in any fair execution

must eventually stabilize, and hence at most one type of active

agents, namely AY or AN, eventually remains. If some active agent

Aα remains, then, by rule 2 combined with fairness, all passive

agents will be converted to Pα , leading to a stable terminal configu-

ration. Invariant (2) ensures that the reached consensus is correct.

In the other case where no active agent remains, invariant (3)

ensures that some agent in state PN remains and, again by fair-

ness and (2), it will also convert all passive agents to the correct

consensus.

Coming up with such invariants and progress measures becomes

tricky as protocols get more complex. Moreover, there is a serious

risk of missing some corner cases or of introducing subtle bugs

upon implementing a protocol. As an example, we challenge the

reader to find the typo in the more complex majority protocol

depicted in Figure 1!

4.2 Towards an automatic approach

One way to alleviate some of the issues just discussed is to get

assistance from an interactive theorem prover, e.g. Deng and Monin

successfully verified a simple leader election protocol withCoq [16].

While more reliable, this approach further increases the burden as

protocols get more complicated.

One alternative way to gain additional confidence in the correct-

ness of a protocol consists in fixing an upper boundn on the number

of agents. Off-the-shelf or custom model checking tools can then

be used to verify whether a protocol is correct for configurations

of size up to n. This approach has been studied and implemented

by various authors [13, 14, 24, 27]. While fully automatic, such

“incomplete algorithms” do not prove correctness. Moreover, due

to state-space explosion, n is typically limited to small numbers.

Determining algorithmically whether correctness holds is a chal-

lenging task since it involves reasoning about infinitely many ini-

tial configurations, i.e. every n. In fact, it is a priori not even clear

whether this is a decidable decision problem.

By an intricate reduction to the Petri net reachability problem,

Esparza, Ganty, Leroux and Majumdar have recently shown that

verifying the correctness of a population protocol is decidable [17].

This result has opened the door for the design and implementa-

tion of complete algorithms for the automatic verification of pop-

ulation protocols. Unfortunately, the current best upper bound

on the complexity of the Petri net reachability problem is hyper-

Ackermaniann [20].

4.3 A truly automatic approach

Formally, determining whether a population protocol P computes

a predicate φ amounts to testing whether the following formula is

unsatisfiable:

∃C,D : C
∗
−→ D (4)

∧ C is initial (5)

∧ D is bottom (6)

∧ O(D) , φ(C) (7)

https://peregrine.model.in.tum.de/lics18/example6
https://peregrine.model.in.tum.de/lics18/example7

LICS ’18, July 9–12, 2018, Oxford, United Kingdom

Figure 1. Average-and-conquer majority protocol of [2]. A typo
1
appears in the original figure of [2] which we reproduce here.

where “D is bottom” means that every configuration reachable

from D can reach it back, i.e. D
∗
−→ D ′ ⇐⇒ D ′ ∗

−→ D for every

configuration D ′
.

Therefore, one line of attack for verifying correctness consists

in using an SMT solver to test whether the above formula is unsat-

isfiable. Conjuncts (5) and (7) can be encoded respectively as the

two following Presburger formulas:∧
q∈Q\I

C(q) = 0,∨
q∈Q

(D(q) > 0 ∧O(q) , φ(C)).

However, it is not clear how to encode conjunct (6), and encoding

conjunct (4) is simply impossible since the reachability relation of

a population protocol is not Presburger-definable in general.

Fortunately, there is a way to circumvent these two issues [10].

First, the reachability relation in conjunct (4) can be replaced by a

suitable over-approximation. Secondly, most protocols found in the

literature are silent: all fair executions lead to terminal configura-

tions. Therefore, assuming that a protocol is silent, one can replace

conjunct (6) by “D is terminal”, which is Presburger-definable:∧
rule p,q 7→p′,q′
s.t.{p,q },{p′,q′ }

[(p , q → (D(p) = 0 ∨ D(q) = 0)) ∧

(p = q → (D(p) ≤ 1))].

4.4 How to make it work?

For the approach just described to work, two crucial questions must

be answered:

1. What is a good over-approximation of reachability?

2. How can we be sure that a protocol is silent?

As it turns out, the first question can be answered by borrowing an

over-approximation from Petri net theory that has been recently

applied in other contexts: the so-called state-equation + trap/siphon

constraints (e.g., see [18]).
Here, we focus our attention on the answer to the second ques-

tion (see [10, Sect. 4.1] for the detailed answer to question 1). Let us

consider again the second protocol of Table 1. We have already seen

that this protocol is silent as all fair executions end up in terminal

configurations. In fact, the protocol’s structure is richer: it works

in layers. First, the active agents “collide” until at most one type

1 Line12:value(x)+value(y)>0shouldbevalue(x)+value(y),0.

of actives agents remains. Then, either agents in state AY convert

all agents in state PN, or agents in states AN and PN convert all

agents in state PY. These layers are illustrated as a directed tree in

Figure 2.

c1 : {AY,AN 7→ PN, PN}

c2 : {AY, PN 7→ AY, PY} c3 : { AN, PY 7→ AN, PN,

PN, PY 7→ PN, PN }

Figure 2. Layer graph of the second protocol of Table 1.

For every node c of Figure 2, let Tc be the transitions labeling

node c . Let us fix some node c . Any (fair or unfair) execution of the

protocol restricted to the transitions ofTc must be finite. Moreover,

once transitions Tc are disabled, executing transitions Td , of some

successor node d , cannot lead to a configuration in which a tran-

sition of Tc becomes enabled. In short, every subprotocol induced

by a node of the graph is silent and cannot be re-enabled upon

termination.

Such a layer graph is a certificate of silentness since:

• from any initial configuration, it is possible to reach a ter-

minal configuration by repeatedly executing transitions of a

node and moving down the layer graph upon termination

of the node;

• by fairness, any initial configuration must eventually reach

such a terminal configuration.

It is crucial to see that an execution needs not to follow the structure

of the layer graph. The latter only proves silentness of the protocol.
As observed by the authors, most protocols found in the litera-

ture admit a layer graph, or equivalently in the terminology of [10]:

satisfy layered termination. In fact, most protocols are naturally

designed with such layers in mind. Moreover, the problem of de-

termining whether a layer graph exists belongs to NP and can be

expressed as a Presburger formula that can be fed to an SMT solver,

thus answering Question 2.

5 Will ninjas agree before dawn?

Now that the Sensei knows how to determine whether her plans

are sound, she wants to know how to determine whether the ninjas

will agree before dawn, or more formally: whether the expected

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Michael Blondin, Javier Esparza, Stefan Jaax, and Antonín Kučera

running time of a given protocol is fast or not in terms on the

number of ninjas.

5.1 Expected convergence time

While fairness allows for reasoning about predicates computed by

population protocols, it is not a sufficient assumption for analyzing

convergence time. For this reason, it is often assumed that at each

step of an execution, a pair of agents is selected uniformly at ran-

dom. The expressive power of the resulting model is unchanged: a

protocol computes a predicate φ with probability 1 if and only if it

computes φ under the fairness assumption.

In the probabilistic setting, we define the (sequential) expected
convergence time of a protocol P as the mapping tP (n) assigning
to every n ≥ 2, the maximal expected number of steps required,

over initial configurations of size n, to reach a stable consensus.

Intuitively, this corresponds to a sequential model in which all inter-

actions occur one after another. The parallel expected convergence
time is typically defined as tP (n)/n. It corresponds to an asynchro-

nous model in which every agent has an internal clock ticking at

the times of a rate 1 Poisson process [11]. When the clock of agentA
ticks, another agent B is selected uniformly at random, andA and B
interact. For n agents, there are n independent clocks, and the time

between two consecutive interactions has exponential distribution

with rate n. Hence, the expected number of interactions in one time

unit is n.
It was shown by Angluin et al. [3] that every Presburger-defi-

nable predicate can be computed by a protocol whose expected

convergence time is in O(n2 logn). This bound can be improved to

O(n log5 n) by means of a protocol with a leader [5]. (We delay the

introduction of protocols with leaders to the next section.) More

recent work on the topic is outside the scope of this paper (see, e.g.,
[1, 2]).

5.2 Towards an automatic approach

It is possible to obtain some knowledge on the expected conver-

gence time of a population protocol by analyzing the case of a fixed

population size n. This can be done by simulating a protocol from

randomly chosen initial configurations [9], or by using a proba-

bilistic model checker [14, 23]. For example, one can translate a

population protocol as a Markov chain, for a fixed population size n,
and compute the expected number of steps before reaching a stable

configuration. The results obtained using the tool PRISM [19] for

the three protocols of Table 1, with n = 15, is illustrated in Figure 3.

In particular, we observe that the second protocol appears to be

extremely slow in the case of a slight majority of AY, while the two

other protocols seem to be reasonably fast overall.

5.3 A truly automatic approach

As in the case of correctness, the approach just described does not

give any formal guarantee on expected convergence times. For

this reason, we are currently developing an alternative to the layer

graphs of Section 4 in order to automatically derive asymptotic
upper bounds on expected convergence times. These alternative

stage graphs store sets of configurations via a simple temporal logic

1 2 3 4 5 6 7 8 9 10 11 12 13 14

10
1

10
3

10
5

10
7

number of agents initially in state AY

e
x
p
e
c
t
e
d
n
u
m
b
e
r
o
f
s
t
e
p
s

t
o
s
t
a
b
l
e
c
o
n
fi
g
u
r
a
t
i
o
n

Protocol 1 Protocol 2 Protocol 3

Figure 3. Expected number of steps before reaching a stable con-

figuration, for each protocol of Table 1 starting from initial config-

urations of size 15.

whose syntax and semantics are defined as follows:

C |= q ⇐⇒ C(q) ≥ 1,

C |= q! ⇐⇒ C(q) = 1,

C |= φ ∧ψ ⇐⇒ C |= φ and C |= ψ ,

C |= ¬φ ⇐⇒ C ̸ |= φ,

C |= □φ ⇐⇒ D |= φ for every D reachable from C,

where C,D denote configurations and q a state.

A stage graph is a directed acyclic graph (S,−→) such that

• every node S ∈ S is associated to a formula φS and a set of

configurations JSK = {C : C |= φS };
• for every initial configurationC , there exists S ∈ S such that

C ∈ JSK;
• for every S ∈ S andC ∈ JSK, any fair execution fromC leads

to someC ′ ∈ JS ′K such that S −→ S ′, i.e.C leads to a successor

configuration with probability 1.

Let us fix a stage graph G = (S,−→) for some protocol P. We say

that a node S ∈ S is stable if all configurations of JSK are stable. If
all bottom nodes of G are stable, then G can be used to derive an

upper bound on the expected convergence time of P. Indeed, any

execution of P must start from some node S and end up in some

stable bottom node S ′. Therefore, an upper bound on tP can be

obtained by bounding the expected time to move from a node ofG
to its successors.

5.4 Stage graphs: an example

As discussed in Section 1, the third majority protocol of Table 1 does

not suffer from the slow convergence time of the second protocol.

This can be derived from the stage graph G = (S,−→) depicted in

Figure 4.

Let us consider a fair execution C0,C1, . . . from some initial

configuration C0. Note that C0 ∈ JS0K. If C0 consists only of state

AY or only of state AN, then C0 is stable, and hence the execution

has already stabilized. This scenario corresponds to the edges from

S0 to S1 and S2.
If C0(AY) ≥ 1 and C0(AN) ≥ 1, then rules 1 to 3 eventually

become permanently disabled after some i steps. Moreover, when

LICS ’18, July 9–12, 2018, Oxford, United Kingdom

S0 : (AY ∨ AN) ∧ ¬AT ∧
∧
α ∈{Y,N,T} ¬Pα

S1 : □
(
AY ∧

∧
q,AT

¬q
)

S2 : □
(
AN ∧

∧
q,AN

¬q
)

S3 : □ [(¬AY ∨ ¬AT) ∧ (¬AY ∨ ¬AN) ∧ (¬AT ∨ ¬AN) ∧ (¬AT ∨ AT!)] ∧

((AY ∧ PY) ∨ (AN ∧ PN) ∨ (AT ∧ PT))

S6 : □
(
AY ∧ PY ∧

∧
q<{AY,PY } ¬q

)
S5 : □

(
AN ∧ PN ∧

∧
q<{AN,PN } ¬q

)
S4 : □

(
AT! ∧ PT ∧

∧
q<{AT,PT } ¬q

)

O(1)
O(1)

O(n2 logn)

O(n2 logn)

O(n2 logn)

O(n2 logn)

Figure 4. A stage graph for the third majority protocol of Table 1 where each state Si is labeled by its formula φSi .

this happens, it is the case that Ci (Aα) ≥ 1 and Ci (Pα) ≥ 1 for

some α ∈ {Y,N,T}. This scenario corresponds to the edge from

S0 to S3. Rules 4 and 5 also become eventually disabled, leading to

a terminal configuration Cj consisting only of states Aα and Pα .

This scenario corresponds to the edges from S3 to S4, S5 and S6.
It can be shown that moving from each node of G to one of its

successors takes an expected time ofO(n2 logn). Thus, the expected
convergence time of the protocol is in O(n2 logn). Moreover, with

the machinery currently developed by some of the authors, G and

these bounds can be derived automatically in less than a second.

6 How much memory do ninjas need?

The Sensei organizes a more elaborated castle attack that requires at

least 9 ninjas to be successful. She needs a protocol for the predicate

x ≥ 9.

6.1 A protocol for x ≥ c with O(c) states

Confident in her new skills at devising protocols, the sensei quickly

crafts one for the task. Each ninja carries a purse initially containing

one pebble. When two ninjas meet, one of them gives all of his

pebbles to the other. If a ninja collects 9 pebbles, he tells the others

that they have reached the necessary number and asks them to

spread the news. More precisely:

• the states are {0, 1, . . . , 9}, with O(9) = 1 and O(x) = 0 for

x , 9; initially all ninjas are in state 1;

• the transitions are x ,y 7→ 0,min(9,x +y) and 9,x 7→ 9, 9 for

every states x ,y.

You can run the protocol at 8 . It is easy to see that the protocol

works not only for 9, but for any constant c ≥ 1. More precisely, we

have a family of protocols of c + 1 states for the family of predicates

x ≥ c .

6.2 A protocol for x ≥ c with O(log c) states

The protocol above has ten states. The sensei is not satisfied with

this as she is convinced ninjas do not have to carry this many

pebbles. After some time, she comes up with a protocol with only

six states. The states are {0, 1, 2, 4, 8, 9}, withO(9) = 1 andO(x) = 0

for x , 9; and initially all ninjas are in state 1. The transitions are

• x ,x 7→ 2x , 0 and 2x , 0 7→ x ,x for every x ∈ {1, 2, 4};

• 8, 1 7→ 9, 9; and

• 9,x 7→ 9, 9 for every x ∈ {0, 1, 2, 4, 8}.

You can run the protocol at 9 .

It requires more work to generalize the idea of this protocol

to produce a family of protocols for every constant c . The set

of states seems easy to generalize: For x ≥ c , it should contain

{0, 20, 21, . . . , 2 ⌈log c ⌉ }. However, getting the transitions right re-

quires some additional states, and quite some care
2
. Nonetheless it

can be done, and for every c ≥ 0 we obtain a protocol with Θ(log c)
states that computes predicate x ≥ c . The details of the construction
can be found in [8].

Is Θ(log c) optimal? A simple counting argument yields:

Theorem 6.1 ([8]). There exist infinitely many c ≥ 1 such that
every protocol computing x ≥ c has at least (log c)1/4 states.

So, for example, there can be no family of predicates computing

x ≥ c with O(log log c) states for every c . But is this possible for
some c? To the best of our knowledge, this question is open for

population protocols as described in Section 2. However, the answer

is positive for the slightly more general class of population protocols
with a constant number of leaders.

6.3 Protocols with leaders

Intuitively, leaders are auxiliary agents whose number is finite and

potentially known: Think of a finite number of red ninjas that do not

belong to the society, but help to conduct the protocols. A protocol

with leaders has an additional set Qℓ of leader states, disjoint from

the set Q of regular states, containing a distinguished initial state

qℓ0, and an additional set of rules of the form (qℓ ,q) 7→ (q′
ℓ
,q′),

where qℓ ,q
′
ℓ
∈ Qℓ and q,q

′ ∈ Q . The number of leaders is fixed by

the set of initial configurations: If the protocol has k leaders, then

a configuration is initial if and only if it has exactly k agents in

qℓ0 (the leaders), and an arbitrary number of agents in the initial

regular states. One can also have different sets Qℓ1 ,Qℓ2 , . . . ,Qℓm
of leader states (think of red, yellow, green ninjas . . .), with initially

k1,k2, . . . ,km agents.

Protocols with a constant number of leaders have the same ex-

pressive power as leaderless protocols. However, with the help of

leaders one can design simpler, faster, or more compact protocols.

Imagine Sensei III has decided to change the voting rules: The nin-

jas will only attack if Y wins by at least 4 votes. It is easy to design

a new protocol with 4 red ninjas. Intuitively, the red ninjas pretend

to vote N, which reduces the problem to the previous protocol for

2
To convince yourself of this, we suggest you try to design the protocol for c = 7 or,

more generally, for constants of the form c = 2
d − 1.

https://peregrine.model.in.tum.de/lics18/example8
https://peregrine.model.in.tum.de/lics18/example9

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Michael Blondin, Javier Esparza, Stefan Jaax, and Antonín Kučera

+0

+1

+2

+4

+8

2

2

22

2

2

x

−0

−1

−2

−4

−8

2

2

22

2

2

y

Figure 5. Petri net representation of a population protocol with 14 leaders computing 5x − 3y > 0.

simple majority. More precisely, any protocol computing the predi-

cate x ≥ y can be transformed into a protocol computing x ≥ y + 4
as follows:

• Split each state q ∈ Q into two states qb ∈ Qb
and qr ∈ Qr

(b for “black” and r for “red”), with the same output as q.
• Split each transition q1,q2 7→ q3,q4 into 16 transitions

qc1
1
,qc2

2
7→ qc3

3
,qc4

4
for c1, . . . , c4 ∈ {r ,b};

• if qx ,qy are the initial states for the variables x and y, then

let qbx and qby be the initial states for the black ninjas, and qry
the initial state for the red ninjas. (Many of these transitions

may not be necessary.)

The protocol obtained by applying this transformation to Sensei

III’s protocol can be simulated at 10 . Some “useless” transitions

have been removed.

You may try to design a “leaderless” protocol for predicate x ≥

y + 4 or, alternatively, inspect and simulate one at 11 .

6.4 Some thresholds have very succinct protocols

Let us go back to the question stated before our excursion into

protocols with leaders: Is there a family of predicates x ≥ c having
protocols of size O(log log c)? The answer is positive for protocols
with two leaders:

Theorem 6.2 ([8]). There exists a family {P0,P1, . . .} of protocols
with two leaders and a family {c0, c1, . . .} of natural numbers such
that for every n ∈ N, the protocol Pn has O(log log cn) states and
computes x ≥ cn .

The proof of the theorem relies on a result byMayr andMeyer on

succinct representations of commutative semigroups [21]. Whether

the same bound can be achieved with “leaderless” protocols is an

open question, and so is determining whether the log log c bound
is tight. However, [8] provides some partial information.

We mentioned in Section 1 that ninjas executing a correct ma-

jority protocol — like the protocols of Sensei II and Sensei III —

will eventually reach a consensus, but they never have absolute

certainty that the consensus will be 0 or 1, even after reaching it!

However, for ninjas executing the O(log c) protocol for x ≥ c , the
situation is different: when they converge to 1, they eventually

know with certainty that they will converge to 1. Indeed, in this

case all ninjas eventually reach state c , and once they do, they know
the consensus will be 1. A protocol with this property is called 1-
aware. It is not difficult to show that a predicate φ(x1,x2, . . . ,xn)
can be computed by a 1-aware protocol if and only if it is mono-

tone, meaning that φ(x1,x2, . . . ,xn) = 1 and

∧n
i=1 yi ≥ xi implies

φ(y1,y2, . . . ,yn) = 1.

Theorem 6.3 ([8]). Every 1-aware, leaderless population protocol
computing x ≥ c has at least Ω(log c) states. Every 1-aware popula-
tion protocol with a constant number of leaders computing x ≥ c has
at least Ω((log log c)1/9) states.

6.5 Succinct protocols for linear inequalities

The upper bound of Section 6.2 can be generalized if leaders are

allowed: any predicate of the form

m∧
i=1

ai,1x1 + ai,2x2 + . . . + ai,nxn > ci

can be computed by a protocol with 14m(logm + k) leaders and
27(logm + k)(m + n) states, where k is the number of bits in the

binary representation of

max{|ai,1 |, |ai,2 |, . . . , |ai,n |, |ci | : 1 ≤ i ≤ m}.

To demonstrate how this can be achieved, we give a sketch of

the protocol P = (Q,T , I ,O) for the predicate 5x − 3y > 0. The

states are defined asQ = Q1∪Q0 and the initial states as I = {x, y},
where

Q1 = {x,+0,+1,+2,+4,+8},

Q0 = {y,−0,−1,−2,−4,−8}.
For every b ∈ {0, 1} and every q ∈ Qb , we define the output of q as

O(q) = b.
Let us now describe the transitions of P and explain how the

protocol works. We give a (partial) graphical representation of P

as a Petri net in Figure 5. For readers not familiar with Petri nets,

see Figure 6.

The agents, as a whole population, carry the binary representa-

tion of two numbers: a positive one (on the left of Figure 5) and a

https://peregrine.model.in.tum.de/lics18/example10
https://peregrine.model.in.tum.de/lics18/example11

LICS ’18, July 9–12, 2018, Oxford, United Kingdom

negative one (on the right of Figure 5). Each agent initially in x (resp.
y) is eventually converted into the binary representation of 5 (resp.

−3). Two states of the form ±2i, where i ∈ {0, 1, 2}, can be “pro-

moted” into the equivalent representation made of states ±2i+1 and
±0. Similarly, states of the form ±2i+1 and ±0, where i ∈ {0, 1, 2},

can be “downgraded” into the equivalent representation made of

two occurrences of state ±2i. Assuming there are sufficiently many

agents in states +0 and −0, this allows for representing all possi-

ble representations of the two current numbers. The positive and

negative numbers may “cancel out” with the middle transitions of

Figure 5.

In any fair execution, one side will eventually “win” and all

agents will end up in states Q1 ∪ {−0} or Q0 ∪ {+0} depending on

whether 5x − 3y > 0 holds or not. Extra transitions, not depicted

in Figure 5, are added to the protocol to stabilize to a consensus. In

more details, any state of Q1 \ {+0} can convert −0 into +0, and
any state of Q0 can convert +0 into −0. Note that these rules are
not entirely symmetric because of the case 5x − 3y = 0.

By a careful analysis, it can be shown that if 4k + 2 leaders

are initially distributed equally among states +0 and −0, then the

protocol can never “run out of zeros”, regardless of the number of

agents, and hence the protocol is correct.

p

q

p′

q′
t1

p

q

p′t2

2

p

p′

q′
t3

2

Figure 6. Left to right: Petri net representation of transitions

t1 : p,q 7→ p′,q′, t2 : p,q 7→ p′,p′ and t3 : p,p 7→ p′,q′ respectively,
where p,q,p′,q′ denote distinct states.

7 Peregrine: a tool for the analysis of

population protocols

All the demos you have (hopefully) run while reading this paper

execute code from Peregrine, a tool under development at the

Chair for Foundations of Software Reliability of the Technical Uni-

versity of Munich. The current version of the tool, presented almost

simultaneously with this paper at the CAV 2018 conference [9], is

available at https://peregrine.model.in.tum.de.
Peregrine allows you to specify protocols either through an

editor or as simple scripts, and to analyze them via a graphical

interface. The scripts are particularly useful to describe families of

protocols, like the ones discussed in Section 6 for the predicates

x ≥ c , or for linear inequalities. The analysis features of Peregrine
include manual step-by-step or random simulation (the feature

most used in this paper), automatic sampling (like the one used to

analyze Sensei II’s majority protocol), statistics generation of aver-

age convergence speed, detection of incorrect executions through

simulation, and formal verification of correctness. The formal veri-

fication component implements the verification algorithm for silent

protocols presented in [10] and sketched in Sections 4.3 and 4.4.

More precisely, the algorithm can automatically check whether a

silent protocol computes a given predicate. If the answer is negative,

Peregrine returns a counterexample execution leading from an ini-

tial configuration to a terminal configuration which is either not in

consensus, or is in the wrong consensus. The verification algorithm

calls the SMT solver Z3 [15] to test satisfiability of Presburger for-

mulas, and the LoLA model checker to find counterexamples [26].

We have used Peregrine to prove correctness of most of the

protocols described in this paper. Actually, almost none of them

was correct in our first attempt. Also, the typo in the average-

and-conquer majority protocol of Figure 1 was found thanks to

Peregrine, after it reported that the algorithm, when written as

shown in the figure, was not correct. However, there is still much

to do. At the time of writing these lines, Peregrine’s verification

component only handles silent, leaderless protocols — while, for

example, the succinct protocol for linear inequalities of Section 6.5

is neither — and the automatic time analysis of Section 5.3 is still a

prototype. Looking ahead, the distributed computing community

has defined a large number of extensions to the basic model, none

of which has been yet studied by the verification community.

Population protocols are an excellent testbed for studying the

parameterized verification (i.e., verification for all possible popula-

tion sizes) of liveness properties under fairness assumptions, and

the quantitative verification of parameterized systems. The field is

still in its infancy, and there is much work ahead before ninjas can

be sure that, whatever they should agree on, they will agree before

dawn.

Acknowledgments

Michael Blondin was supported by the Fonds de recherche du

Québec – Nature et technologies (FRQNT).

Antonín Kučera
3
was supported by the Czech Science Founda-

tion, grant No. P202/12/G061.

We thank Dejvuth Suwimonteerabuth for implementing a first

simulator of population protocols, and Philipp J. Meyer, Philip

Offtermatt and Amrita Suresh for helpful discussions.

References

[1] Dan Alistarh, James Aspnes, David Eisenstat, Rati Gelashvili, and Ronald L.

Rivest. 2017. Time-Space Trade-offs in Population Protocols. In Proc. 28th Annual
ACM-SIAM Symposium on Discrete Algorithms (SODA). SIAM, 2560–2579. https:
//doi.org/10.1137/1.9781611974782.169

[2] Dan Alistarh, Rati Gelashvili, and Milan Vojnović. 2015. Fast and Exact Majority

in Population Protocols. In Proc. ACM Symposium on Principles of Distributed
Computing (PODC). ACM, 47–56. https://doi.org/10.1145/2767386.2767429

[3] Dana Angluin, James Aspnes, Zoë Diamadi, Michael J. Fischer, and René Per-

alta. 2006. Computation in networks of passively mobile finite-state sen-

sors. Distributed Computing 18, 4 (2006), 235–253. https://doi.org/10.1007/
s00446-005-0138-3

[4] Dana Angluin, James Aspnes, and David Eisenstat. 2006. Stably computable

predicates are semilinear. In Proc. 25th ACMSymposium on Principles of Distributed
Computing (PODC). ACM, 292–299. https://doi.org/10.1145/1146381.1146425

[5] Dana Angluin, James Aspnes, and David Eisenstat. 2008. Fast computation by

population protocols with a leader. Distributed Computing 21, 3 (2008), 183–199.

https://doi.org/10.1007/s00446-008-0067-z
[6] Dana Angluin, James Aspnes, David Eisenstat, and Eric Ruppert. 2007. The

computational power of population protocols. Distributed Computing 20, 4 (2007),
279–304. https://doi.org/10.1007/s00446-007-0040-2

[7] James Aspnes and Eric Ruppert. 2009. An Introduction to Population Protocols.

In Middleware for Network Eccentric and Mobile Applications. Springer, Chapter 5,
97–120.

[8] Michael Blondin, Javier Esparza, and Stefan Jaax. 2018. Large Flocks of Small

Birds: on the Minimal Size of Population Protocols. In Proc. 35th Symposium

3
The presented results were partially achieved during the author’s stay at TUMünchen

supported by the Friedrich Wilhelm Bessel Research Award (Alexander von Humboldt

Foundation).

https://peregrine.model.in.tum.de
https://doi.org/10.1137/1.9781611974782.169
https://doi.org/10.1137/1.9781611974782.169
https://doi.org/10.1145/2767386.2767429
https://doi.org/10.1007/s00446-005-0138-3
https://doi.org/10.1007/s00446-005-0138-3
https://doi.org/10.1145/1146381.1146425
https://doi.org/10.1007/s00446-008-0067-z
https://doi.org/10.1007/s00446-007-0040-2

LICS ’18, July 9–12, 2018, Oxford, United Kingdom Michael Blondin, Javier Esparza, Stefan Jaax, and Antonín Kučera

on Theoretical Aspects of Computer Science (STACS). Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 16:1–16:14. https://doi.org/10.4230/LIPIcs.STACS.2018.16

[9] Michael Blondin, Javier Esparza, and Stefan Jaax. 2018. Peregrine: A Tool for

the Analysis of Population Protocols. In Proc. 30th International Conference on
Computer Aided Verification (CAV). Springer, to appear.

[10] Michael Blondin, Javier Esparza, Stefan Jaax, and Philipp J. Meyer. 2017. Towards

Efficient Verification of Population Protocols. In Proc. 36th ACM Symposium on
Principles of Distributed Computing (PODC). ACM, 423–430. https://doi.org/10.
1145/3087801.3087816

[11] Stephen P. Boyd, Arpita Ghosh, Balaji Prabhakar, and Devavrat Shah. 2006.

Randomized gossip algorithms. IEEE Transactions on Information Theory 52, 6

(2006), 2508–2530. https://doi.org/10.1109/TIT.2006.874516
[12] Aaron R. Bradley and Zohar Manna. 2007. The Calculus of Computation – Decision

Procedures with Applications to Verification. Springer. https://doi.org/10.1007/
978-3-540-74113-8

[13] Ioannis Chatzigiannakis, Othon Michail, and Paul G. Spirakis. 2010. Algorithmic

Verification of Population Protocols. In Proc. 12th International Symposium on
Stabilization, Safety, and Security of Distributed Systems (SSS). Springer, 221–235.
https://doi.org/10.1007/978-3-642-16023-3_19

[14] Julien Clément, Carole Delporte-Gallet, Hugues Fauconnier, and Mihaela Sighire-

anu. 2011. Guidelines for the Verification of Population Protocols. In Proc. Inter-
national Conference on Distributed Computing Systems (ICDCS). IEEE Computer

Society, 215–224. https://doi.org/10.1109/ICDCS.2011.36
[15] Leonardo Mendonça de Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT

Solver. In Proc. 14th International Conference on Tools and Algorithms for the
Construction and Analysis of Systems (TACAS). Springer, 337–340. https://doi.org/
10.1007/978-3-540-78800-3_24 Z3 is available at https://github.com/Z3Prover/z3.

[16] Yuxin Deng and Jean-François Monin. 2009. Verifying Self-stabilizing Population

Protocols with Coq. In Proc. Third IEEE International Symposium on Theoretical
Aspects of Software Engineering (TASE). IEEE Computer Society, 201–208. https:
//doi.org/10.1109/TASE.2009.9

[17] Javier Esparza, Pierre Ganty, Jérôme Leroux, and Rupak Majumdar. 2017. Veri-

fication of population protocols. Acta Informatica 54, 2 (2017), 191–215. https:
//doi.org/10.1007/s00236-016-0272-3

[18] Javier Esparza, Ruslán Ledesma-Garza, Rupak Majumdar, Philipp J. Meyer, and

Filip Nikšić. 2014. An SMT-Based Approach to Coverability Analysis. In Proc.
26

th International Conference on Computer Aided Verification (CAV). Springer,
603–619. https://doi.org/10.1007/978-3-319-08867-9_40

[19] Marta Z. Kwiatkowska, Gethin Norman, and David Parker. 2011. PRISM 4.0: Veri-

fication of Probabilistic Real-Time Systems. In Proc. 23rd International Conference
on Computer Aided Verification (CAV). Springer, 585–591. https://doi.org/10.1007/
978-3-642-22110-1_47 PRISM is available at http://www.prismmodelchecker.org.

[20] Jérôme Leroux and Sylvain Schmitz. 2015. Demystifying Reachability in Vector

Addition Systems. In Proc. 30th Annual ACM/IEEE Symposium on Logic in Com-
puter Science (LICS). IEEE Computer Society, 56–67. https://doi.org/10.1109/LICS.
2015.16

[21] Ernst W. Mayr and Albert R. Meyer. 1982. The complexity of the word problems

for commutative semigroups and polynomial ideals. Advances in Mathematics
46, 3 (1982), 305–329. https://doi.org/10.1016/0001-8708(82)90048-2

[22] Othon Michail and Paul G. Spirakis. 2018. Elements of the theory of dynamic

networks. Commun. ACM 61, 2 (2018), 72. https://doi.org/10.1145/3156693
[23] Philip Offtermatt. 2017. A Tool for Verification and Simulation of Population

Protocols. Bachelor thesis. Technical University of Munich.

[24] Jun Pang, Zhengqin Luo, and Yuxin Deng. 2008. On Automatic Verification

of Self-Stabilizing Population Protocols. In Proc. Second IEEE/IFIP International
Symposium on Theoretical Aspects of Software Engineering (TASE). IEEE Computer

Society, 185–192. https://doi.org/10.1109/TASE.2008.8
[25] Mojżesz Presburger. 1929. Über die Vollständigkeit eines gewissen Systems

der Arithmetik ganzer Zahlen, in welchem die Addition als einzige Operation

hervortritt. Comptes-rendus du premier congrès des mathématiciens des pays slaves
(1929), 192–201.

[26] Karsten Schmidt. 2000. LoLA: A Low Level Analyser. In Proc. 21st Interna-
tional Conference on Application and Theory of Petri Nets (ICATPN). Springer,
465–474. https://doi.org/10.1007/3-540-44988-4_27 LoLA is available at http:
//service-technology.org/lola/.

[27] Jun Sun, Yang Liu, Jin Song Dong, and Jun Pang. 2009. PAT: Towards Flexible Ver-

ification under Fairness. In Proc. 21st International Conference on Computer Aided
Verification (CAV). Springer, 709–714. https://doi.org/10.1007/978-3-642-02658-4_
59

https://doi.org/10.4230/LIPIcs.STACS.2018.16
https://doi.org/10.1145/3087801.3087816
https://doi.org/10.1145/3087801.3087816
https://doi.org/10.1109/TIT.2006.874516
https://doi.org/10.1007/978-3-540-74113-8
https://doi.org/10.1007/978-3-540-74113-8
https://doi.org/10.1007/978-3-642-16023-3_19
https://doi.org/10.1109/ICDCS.2011.36
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/978-3-540-78800-3_24
https://github.com/Z3Prover/z3
https://doi.org/10.1109/TASE.2009.9
https://doi.org/10.1109/TASE.2009.9
https://doi.org/10.1007/s00236-016-0272-3
https://doi.org/10.1007/s00236-016-0272-3
https://doi.org/10.1007/978-3-319-08867-9_40
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47
http://www.prismmodelchecker.org
https://doi.org/10.1109/LICS.2015.16
https://doi.org/10.1109/LICS.2015.16
https://doi.org/10.1016/0001-8708(82)90048-2
https://doi.org/10.1145/3156693
https://doi.org/10.1109/TASE.2008.8
https://doi.org/10.1007/3-540-44988-4_27
http://service-technology.org/lola/
http://service-technology.org/lola/
https://doi.org/10.1007/978-3-642-02658-4_59
https://doi.org/10.1007/978-3-642-02658-4_59

	Abstract
	1 Black ninjas in the dark
	1.1 A first protocol
	1.2 A second protocol
	1.3 A third protocol
	1.4 Sensei III's questions

	2 What is a (correct) protocol?
	3 What predicates can ninjas compute?
	4 Are the senseis' protocols correct?
	4.1 Handcrafted proofs
	4.2 Towards an automatic approach
	4.3 A truly automatic approach
	4.4 How to make it work?

	5 Will ninjas agree before dawn?
	5.1 Expected convergence time
	5.2 Towards an automatic approach
	5.3 A truly automatic approach
	5.4 Stage graphs: an example

	6 How much memory do ninjas need?
	6.1 A protocol for x >= c with O(c) states
	6.2 A protocol for x >= c with O(log c) states
	6.3 Protocols with leaders
	6.4 Some thresholds have very succinct protocols
	6.5 Succinct protocols for linear inequalities

	7 Peregrine: a tool for the analysis of population protocols
	Acknowledgments
	References

