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Abstract. We present a sound and complete method for the verification
of qualitative liveness properties of replicated systems under stochastic
scheduling. These are systems consisting of a finite-state program, exe-
cuted by an unknown number of indistinguishable agents, where the next
agent to make a move is determined by the result of a random experi-
ment. We show that if a property of such a system holds, then there is
always a witness in the shape of a Presburger stage graph: a finite graph
whose nodes are Presburger-definable sets of configurations. Due to the
high complexity of the verification problem (non-elementary), we intro-
duce an incomplete procedure for the construction of Presburger stage
graphs, and implement it on top of an SMT solver. The procedure makes
extensive use of the theory of well-quasi-orders, and of the structural the-
ory of Petri nets and vector addition systems. We apply our results to a
set of benchmarks, in particular to a large collection of population pro-
tocols, a model of distributed computation extensively studied by the
distributed computing community.

Keywords: parameterized verification · liveness · stochastic systems.

1 Introduction

Replicated systems consist of a fully symmetric finite-state program executed by
an unknown number of indistinguishable agents, communicating by rendez-vous
or via shared variables [36,12,42,14]. Examples include distributed protocols and
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multithreaded programs, or abstractions thereof. The communication graph of
replicated systems is a clique. They are a special class of parameterized systems,
i.e., infinite families of systems that admit a finite description in some suitable
modeling language. In the case of replicated systems, the (only) parameter is
the number of agents executing the program.

Verifying a replicated system amounts to proving that an infinite family of
systems satisfies a given property. This is already a formidable challenge, but it
is made even more difficult by the fact that correctness problems for distributed
protocols require to check liveness properties against a class of schedulers. Indeed,
liveness properties are known to be harder to verify than safety properties, and
scheduling adds additional problems.

We address the verification of liveness properties of replicated systems with
stochastic scheduling. Loosely speaking, stochastic schedulers select the set of
agents that should execute the next action as the result of a random experiment.
Stochastic scheduling often appears in distributed protocols, and in particular
also in population protocols—a model much studied in distributed computing
with applications in computational biology4—that supplies many of our case
studies [8,54]. Under stochastic scheduling, the semantics of a replicated system
is an infinite family of finite-state Markov chains. In this work, we study qualita-
tive liveness properties, stating that the infinite runs starting at configurations
satisfying a precondition almost surely reach and stay in configurations satisfy-
ing a postcondition. In this case, whether the property holds or not depends only
on the topology of the Markov chains, and not on the concrete probabilities.

We present a formal model of replicated systems, based on multiset rewrit-
ing, that encompasses both shared variables and multiway synchronization, and
introduce a sound and complete verification method, called Presburger stage
graphs. These are directed acyclic graphs whose nodes are Presburger formulas
representing possibly infinite inductive sets of configurations, i.e., sets of config-
urations closed under reachability. Such a graph has the property that successors
of a node S represent sets of configurations that will eventually be visited from
configurations of S. A stage graph supplies a witness of this fact in the form
of a Presburger certificate, a sort of ranking function expressible in Presburger
arithmetic. Completeness, meaning that for every property that holds there is
a stage graph proving that it holds, follows from deep results of the theory of
vector addition systems (VASs) [47,48,49].

Unfortunately, the theory of VASs also shows that, while the verification
problems we consider are decidable, they have non-elementary computational
complexity [28]. As a consequence, verification techniques that systematically
explore the space of possible stage graphs for a given property are bound to be
very inefficient. For this reason, we design an incomplete but efficient algorithm
for the computation of stage graphs. Inspired by theoretical results, the algorithm
combines a solver for linear constraints with some elements of the theory of well-
structured systems [34,2]. We report on the performance of this algorithm for
a large number of case studies. In particular, it automatically verifies many

4 Under the name of chemical reaction networks.
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standard population protocols described in the literature [23,7,4,17,18,15,26],
and liveness properties of distributed algorithms for leader election and mutual
exclusion [45,57,60,39,37,35,55,3].

Related work. The parameterized verification of replicated systems was first stud-
ied in [36], where it was shown that they can be modeled as counter systems.
This allows to apply many efficient techniques. Most are inherently designed for
safety properties [43,32,10,19], and some can also handle fair termination prop-
erties [33], but none of these works can handle stochastic scheduling. To the best
of our knowledge, the only works studying parameterized verification of liveness
properties under our notion of stochastic scheduling are those dealing with the
verification of population protocols. For fixed populations this problem can be
tackled with standard probabilistic model checking [61,11], and early work on the
automatic verification of population protocols follows this approach [23,26,56,59].
Subsequently, an algorithm and a tool for the parameterized verification of pop-
ulation protocols were described in [17,16], and a first version of stage graphs
was introduced in [18] for analyzing the expected termination time of population
protocols. In essence, we overhaul the framework of [18] for liveness verification,
drawing inspiration from the safety verification technology of [17,16]. Compared
to [17,16], our approach is not a priori limited to a specific subclass of protocols,
and captures models beyond population protocols. Furthermore, our new tech-
niques for computing Presburger certificates essentially subsume the procedure
of [17]. In comparison to [18], we provide the first completeness and complexity
results for stage graphs, which we redesigned for liveness verification.

There is also a large body of work on parameterized verification of systems
via a cutoff property: a given system satisfies a specification ϕ for any number
of agents iff it satisfies ϕ for any number of agents below some threshold called
the cutoff (e.g., see [21,29,25,42,5], and [14] for a comprehensive survey). This
approach can also be applied to systems with an array or ring communication
structure, but it requires the existence and effectiveness of a cutoff, which is not
the case in our setting. Other important parameterized verification techniques
are regular model checking [20,1] and automata learning [6]. The classes of com-
munication structures they can handle are orthogonal to ours: arrays and rings
for regular model checking and automata learning, and cliques in our work. Reg-
ular model checking and learning have recently been employed to verify safety
properties [24], liveness properties under arbitrary schedulers [50] and termina-
tion under finitary fairness [46]. The classes of schedulers considered in [50,46]
are incomparable to ours: arbitrary schedulers in [50], and finitary-fair sched-
ulers in [46]. Another significant difference is that these works are based on
symbolic state-space exploration, while our techniques are based on automatic
construction of invariants and ranking functions [14].

2 Preliminaries

Let N denote {0, 1, . . .} and let E be a finite set. A unordered vector over E is
a mapping V : E → Z. In particular, a multiset over E is an unordered vector
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M : E → N where M(e) denotes the number of occurrences of e in M . The sets
of all unordered vectors and multisets over E are respectively denoted ZE and
NE . Vector addition, subtraction and comparison are defined componentwise.
The size of a multiset M is denoted |M | =

∑
e∈EM(e). We let E〈k〉 denote the

set of all multisets over E of size k. We sometimes describe multisets using a
set-like notation, e.g. M = Hf, g, gI or equivalently M = Hf, 2 · gI is such that
M(f) = 1, M(g) = 2 and M(e) = 0 for all e 6∈ {f, g}.

Presburger arithmetic. Let X be a set of variables. The set of formulas of Pres-
burger arithmetic over X is the result of closing atomic formulas, as defined in
the next sentence, under Boolean operations and first-order existential quan-
tification. Atomic formulas are of the form

∑k
i=1 aixi ∼ b, where ai and b are

integers, xi are variables and ∼ is either < or ≡m, the latter denoting the con-
gruence modulo m for any m ≥ 2. Formulas over X are interpreted on NX . Given
a formula φ of Presburger arithmetic, we let JφK denote the set of all multisets
satisfying φ. A set E ⊆ NX is a Presburger set if E = JφK for some formula φ.

2.1 Replicated systems

A replicated system over Q of arity n is a tuple P = (Q,T ), where T ⊆⋃n
k=0Q

〈k〉 ×Q〈k〉 is a transition relation containing the set of silent transitions⋃n
k=0{(x,x) | x ∈ Q〈k〉)}5. A configuration is a multiset C of states, which we

interpret as a global state with C(q) agents in each state q ∈ Q.
For every t = (x,y) ∈ T with x = HX1, X2, . . . , XkI and y = HY1, Y2, . . . , YkI,

we write X1X2 · · ·Xk 7→ Y1Y2 · · ·Yk and let •t
def
= x, t•

def
= y and ∆(t)

def
= t• − •t.

A transition t is enabled at a configuration C if C ≥ •t and, if so, can occur,
leading to the configuration C ′ = C+∆(t). If t is not enabled at C, then we say
that it is disabled. We use the following reachability notation:

C
t−→ C ′ ⇐⇒ t is enabled at C and its occurrence leads to C ′,

C −→ C ′ ⇐⇒ C
t−→ C ′ for some t ∈ T,

C
w−→ C ′ ⇐⇒ C = C0

w1−−→ C1 · · ·
wn−−→ Cn = C ′ for some C0, C1, . . . , Cn ∈ NQ,

C
∗−→ C ′ ⇐⇒ C

w−→ C ′ for some w ∈ T ∗.

Observe that, by definition of transitions, C −→ C ′ implies |C| = |C ′|, and

likewise for C
∗−→ C ′. Intuitively, transitions cannot create or destroy agents.

A run is an infinite sequence C0t1C1t2C2 · · · such that Ci
ti+1−−→ Ci+1 for

every i ≥ 0. Given L ⊆ T ∗ and a set of configurations C, we let

postL(C) def
= {C ′ : C ∈ C, w ∈ L,C w−→ C ′},

preL(C) def
= {C : C ′ ∈ C, w ∈ L,C w−→ C ′}.

We write post∗(C) and pre∗(C) for L = T ∗, and post(C) and pre(C) for L = T .

5 In the paper, we will omit the silent transitions when giving replicated systems.
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Stochastic scheduling. We assume that, given a configuration C, a probabilistic
scheduler picks one of the transitions enabled at C. We only make the following
two assumptions about the random experiment determining the transition: first,
the probability of a transition depends only on C, and, second, every transition
enabled at C has a nonzero probability of occurring. Since C

∗−→ C ′ implies
|C| = |C ′|, the number of configurations reachable from any configuration C is
finite. Thus, for every configuration C, the semantics of P from C is a finite-state
Markov chain rooted at C.

Example 1. Consider the replicated system P = (Q,T ) of arity 2 with states
Q = {AY,AN,PY,PN} and transitions T = {t1, t2, t3, t4}, where

t1 : AY AN 7→ PY PN, t2 : AY PN 7→ AY PY,

t3 : AN PY 7→ AN PN, t4 : PY PN 7→ PN PN.

Intuitively, at every moment in time, agents are either Active or Passive, and
have output Yes or No, which corresponds to the four states of Q. This system
is designed to satisfy the following property: for every configuration C in which
all agents are initially active, i.e., C satisfies C(PY) = C(PN) = 0, if C(AY) >
C(AN), then eventually all agents stay forever in the “yes” states {AY,PY}, and
otherwise all agents eventually stay forever in the “no” states {AN,PN}. 4

2.2 Qualitative model checking

Let us fix a replicated system P = (Q,T ). Formulas of linear temporal logic
(LTL) on P are defined by the following grammar:

ϕ ::= φ | ¬ϕ | ϕ ∨ ϕ | ϕ ∧ ϕ | Xϕ | ϕU ϕ

where φ is a Presburger formula over Q. We look at φ as an atomic proposition
over the set NQ of configurations. Formulas of LTL are interpreted over runs of
P in the standard way. We abbreviate ♦ϕ ≡ true U ϕ and �ϕ ≡ ¬♦¬ϕ.

Let us now introduce the probabilistic interpretation of LTL. A configuration
C of P satisfies an LTL formula ϕ with probability p if Pr[C,ϕ] = p, where
Pr[C,ϕ] denotes the probability of the set of runs of P starting at C that satisfy
ϕ in the finite-state Markov chain rooted at C. The measurability of this set of
runs for every C and ϕ follows from well-known results [61]. The qualitative model
checking problem consists of, given an LTL formula ϕ and a set of configurations
I, deciding whether Pr[C,ϕ] = 1 for every C ∈ I. We will often work with the
complement problem, i.e., deciding whether Pr[C,¬ϕ] > 0 for some C ∈ I.

In contrast to the action-based qualitative model checking problem of [30],
our version of the problem is undecidable due to adding atomic propositions over
configurations (see the appendix for a proof):

Theorem 1. The qualitative model checking problem is not semi-decidable.

It is known that qualitative model checking problems of finite-state proba-
bilistic systems reduces to model checking of non-probabilistic systems under an
adequate notion of fairness.
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Definition 1. A run of a replicated system P is fair if for every possible step

C
t−→ C ′ of P the following holds: if the run contains infinitely many occurrences

of C, then it also contains infinitely many occurrences of C tC ′.

So, intuitively, if a run can execute a step infinitely often, it eventually will. It
is readily seen that a fair run of a finite-state transition system eventually gets
“trapped” in one of its bottom strongly connected components, and visits each
of its states infinitely often. Hence, fair runs of a finite-state Markov chain have
probability one. The following proposition was proved in [30] for a model slightly
less general than replicated systems; the proof can be generalized without effort:

Proposition 1 ([30, Prop. 7]). Let P be a replicated system, let C be a con-
figuration of P , and let ϕ be an LTL formula. It is the case that Pr[C,ϕ] = 1 iff
every fair run of P starting at C satisfies ϕ.

We implicitly use this proposition from now on. In particular, we define:

Definition 2. A configuration C satisfies ϕ with probability 1, or just satisfies
ϕ, if every fair run starting at C satisfies ϕ, denoted by C |= ϕ. We let JϕK
denote the set of configurations satisfying ϕ. A set C of configurations satisfies
ϕ if C ⊆ JϕK, i.e., if C |= ϕ for every C ∈ C.

Liveness specifications for replicated systems. We focus on a specific class of tem-
poral properties for which the qualitative model checking problem is decidable
and which is large enough to formalize many important specifications. Using well-
known automata-theoretic technology, the verification techniques we develop for
this class can also be extended to all properties describable in action-based LTL,
see e.g. [30].

A stable termination property is given by a pair Π = (ϕpre, Φpost), where
Φpost = {ϕ1

post, . . . , ϕ
k
post} and ϕpre, ϕ

1
post, . . . , ϕ

k
post are Presburger formulas over

Q describing sets of configurations. Whenever k = 1, we sometimes simply write
Π = (ϕpre, ϕpost). The pair Π induces the LTL property

ϕΠ
def
= ♦

k∨
i=1

�ϕipost .

Abusing language, we say that a replicated system P satisfies Π if JϕpreK ⊆ JϕΠK,
that is, if every configuration C satisfying ϕpre satisfies ϕΠ with probability 1.
The stable termination problem is the qualitative model checking problem for
I = JϕpreK and ϕ = ϕΠ given by a stable termination property Π = (ϕpre, Φpost).

Example 2. Let us reconsider the system from Example 1. We can formally spec-
ify that all agents will eventually agree on the majority output Yes or No. Let
ΠY = (ϕY

pre, ϕ
Y
post) and ΠN = (ϕN

pre, ϕ
N
post) be defined by:

ϕY
pre = (AY > AN ∧ PY + PN = 0), ϕY

post = (AN + PN = 0),

ϕN
pre = (AY ≤ AN ∧ PY + PN = 0), ϕN

post = (AY + PY = 0).
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The system satisfies the property specified in Example 1 iff it satisfies ΠY and
ΠN. As an alternative (weaker) property, we could specify that the system always
stabilizes to either output by Π = (ϕY

pre ∨ ϕN
pre, {ϕY

post, ϕ
N
post}). 4

3 Stage graphs

In the rest of the paper, we fix a replicated system P = (Q,T ) and a stable
termination property Π = (ϕpre, Φpost), where Φpost = {ϕ1

post, . . . , ϕ
k
post}, and

address the problem of checking whether P satisfies Π. We start with some basic
definitions on sets of configurations.

Definition 3 (inductive sets, leads to, certificates).

– A set of configurations C is inductive if C ∈ C and C → C ′ implies C ′ ∈ C.
– Let C, C′ be sets of configurations. We say that C leads to C′, denoted C  C′,

if for all C ∈ C, every fair run from C eventually visits a configuration of C′.
– A certificate for C  C′ is a function f : C → N satisfying that for every
C ∈ C \ C′, there exists an execution C

∗−→ C ′ such that f(C) > f(C ′).

Note that certificates only require the existence of some executions decreasing
f , not for all of them to to decrease it. Despite this, we have:

Proposition 2. For all inductive sets C, C′ of configurations, it is the case that:
C leads to C′ iff there exists a certificate for C  C′.

The proof, which can be found in the appendix, depends on two properties
of replicated systems with stochastic scheduling. First, every configuration has
only finitely many descendants. Second, for every fair run and for every finite
execution C

w−→ C ′, if C appears infinitely often in the run, then the run contains
infinitely many occurrences of C

w−→ C ′. We can now introduce stage graphs:

Definition 4 (stage graph). A stage graph of P for the property Π is a
directed acyclic graph whose nodes, called stages, are sets of configurations sat-
isfying the following conditions:

1. every stage is an inductive set;
2. every configuration of JϕpreK belongs to some stage;
3. if C is a non-terminal stage with successors C1, . . . , Cn, then there exists a

certificate for C  (C1 ∪ · · · ∪ Cn);
4. if C is a terminal stage, then C |= ϕipost for some i.

The existence of a stage graph implies that P satisfies Π. Indeed, by con-
ditions 2–3 and repeated application of Proposition 2, every run starting at a
configuration of JϕpreK eventually reaches a terminal stage, say C, and, by con-
dition 1, stays in C forever. Since, by condition 4, all configurations of C satisfy
some ϕipost, after its first visit to C every configuration satisfies ϕipost.
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AY > AN

Cert.: |AY|+ |AN|

AY > 0,AN = 0
Cert.: |PN|

AN + PN = 0

Stage graph for ΠY

AY ≤ AN, PY = 0 ∨ AN + PN > 0
Cert.: |AY|+ |AN|

AY = 0,AN > 0
Cert.: |PY|

AY +AN = 0,PN > 0
Cert.: |PY|

AY + PY = 0

Stage graph for ΠN

Fig. 1: Stage graphs for the system of Example 1.

Example 3. Figure 1 depicts stage graphs for the system of Example 1 and the
properties defined in Example 2. The reader can easily show that every stage C is
inductive by checking that for every C ∈ C and every transition t ∈ {t1, . . . , t4}
enabled at C, the step C

ti−→ C ′ satisfies C ′ ∈ C. For example, if a configuration
satisfies AY > AN, so does any successor configuration. 4

The following proposition shows that stage graphs are a sound and complete
technique for proving stable termination properties.

Proposition 3. System P satisfies Π iff it has a stage graph for Π.

Proposition 3 does not tell us anything about the decidability of the sta-
ble termination problem. To prove that the problem is decidable, we introduce
Presburger stage graphs. Intuitively these are stage graphs whose stages and
certificates can be expressed by formulas of Presburger arithmetic.

Definition 5 (Presburger stage graphs).

– A stage C is Presburger if C = JφK for some Presburger formula φ.
– A bounded certificate for C  C′ is a pair (f, k), where f : C → N and k ∈ N,

satisfying that for every C ∈ C \ C′, there exists an execution C
w−→ C ′ such

that f(C) > f(C ′) and |w| ≤ k.
– A Presburger certificate is a bounded certificate (f, k) satisfying f(C) =
n ⇐⇒ ϕ(C, n) for some Presburger formula ϕ(x, y).

– A Presburger stage graph is a stage graph whose stages and certificates are
all Presburger.

Using a powerful result from [31], we show that: (1) P satisfies Π iff it has
a Presburger stage graph for Π (Theorem 2); (2) there exists a denumerable
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set of candidates for a Presburger stage graph for Π; and (3) there is an algo-
rithm that decides whether a given candidate is a Presburger stage graph for Π
(Theorem 3). Together, (1–3) show that the stable termination problem is semi-
decidable. To obtain decidability, we observe that the complement of the stable
termination problem is also semi-decidable. Indeed, it suffices to enumerate all
initial configurations C |= ϕpre, build for each such C the (finite) graph GC of
configurations reachable from C, and check if some bottom strongly connected
component B of GC satisfies B 6|= ϕipost for all i. This is the case iff some fair run
starting at C visits and stays in B, which in turn is the case iff P violates Π.

Theorem 2. System P satisfies Π iff it has a Presburger stage graph for Π.

We observe that testing whether a given graph is a Presburger stage graph
reduces to Presburger arithmetic satisfiability, which is decidable [58] and whose
complexity lies between 2-NEXP and 2-EXPSPACE [13]:

Theorem 3. The problem of deciding whether an acyclic graph of Presburger
sets and Presburger certificates is a Presburger stage graph, for a given stable
termination property, is reducible in polynomial time to the satisfiability problem
for Presburger arithmetic.

4 Algorithmic construction of stage graphs

At the current state of our knowledge, the decision procedure derived from Theo-
rem 3 has little practical relevance. From a theoretical point of view, the TOWER-
hardness result of [28] implies that the stage graph may have non-elementary size
in the system size. In practice, systems have relatively small stage graphs, but,
even so, the enumeration of all candidates immediately leads to a prohibitive
combinatorial explosion.

For this reason, we present a procedure to automatically construct (not guess)
a Presburger stage graph G for a given replicated system P and a stable termi-
nation property Π = (ϕpre, Φpost). The procedure may fail, but, as shown in the
experimental section, it succeeds for many systems from the literature.

The procedure is designed to be implemented on top of a solver for the ex-
istential fragment of Presburger arithmetic. While every formula of Presburger
arithmetic has an equivalent formula within the existential fragment [58,27],
quantifier-elimination may lead to a doubly-exponential blow-up in the size of
the formula. Thus, it is important to emphasize that our procedure never re-
quires to eliminate quantifiers: If the pre- and postconditions of Π are supplied
as quantifier-free formulas, then all constraints of the procedure remain in the
existential fragment.

We give a high-level view of the procedure (see Algorithm 1), which uses sev-
eral functions, described in detail in the rest of the paper. The procedure main-
tains a workset WS of Presburger stages, represented by existential Presburger
formulas. Initially, the only stage is an inductive Presburger overapproximation
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Algorithm 1: procedure for the construction of stage graphs.

Input: replicated system P = (Q,T ), stable term. property Π = (ϕpre, Φpost)
Result: a stage graph of P for Π

1 WS ← {PotReach(JϕpreK)}
2 while WS 6= ∅ do
3 remove S from WS

4 if ¬Terminal(S , Φpost) then
5 U ← AsDead(S)

6 if U 6= ∅ then
7 WS ←WS ∪ {IndOverapprox(S , U)}
8 else
9 WS ←WS ∪ Split(S)

PotReach(JϕpreK) of the configurations reachable from JϕpreK (PotReach is an ab-
breviation for “potentially reachable”). Notice that we must necessarily use an
overapproximation, since post∗(JϕpreK) is not always expressible in Presburger
arithmetic6. We use a refinement of the overapproximation introduced in [32,17],
equivalent to the overapproximation of [19].

In its main loop (lines 2–9), Algorithm 1 picks a Presburger stage S from
the workset, and processes it. First, it calls Terminal(S, Φpost) to check if S is
terminal, i.e., whether S |= ϕipost for some ϕipost ∈ Φpost . This reduces to checking

the unsatisfiability of the existential Presburger formula φ ∧ ¬ϕipost, where φ is
the formula characterizing S . If S is not terminal, then the procedure attempts to
construct successor stages in lines 5–9, with the help of three further functions:
AsDead, IndOverapprox, and Split. In the rest of this section, we present the
intuition behind lines 5–9, and the specification of the three functions. Sections 5
to 7 present the implementations we use for these functions.

Lines 5–9 are inspired by the behavior of most replicated systems designed
by humans, and are based on the notion of dead transitions:

Definition 6. A transition of a replicated system P is dead at a configuration
C if it is disabled at every configuration reachable from C (including C itself).
A transition is dead at a stage S if it is dead at every configuration of S. Given
a stage S and a set U of transitions, we use the following notations:

– Dead(S): the set of transitions dead at S;
– Jdis(U)K: the set of configurations at which all transitions of U are disabled;
– Jdead(U)K: the set of configurations at which all transitions of U are dead.

Observe that we can compute Dead(S) by checking unsatisfiability of a se-
quence of existential Presburger formulas: as S is inductive, we have Dead(S) =
{t | S |= dis(t)}, and S |= dis(t) holds iff the existential Presburger formula
∃C : φ(C) ∧ C ≥ •t is unsatisfiable, where φ is the formula characterizing S .

6 This follows easily from the fact that post∗(ψ) is not always expressible in Presburger
arithmetic for vector addition systems, even if ψ denotes a single configuration [38].
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Replicated systems are usually designed to run in phases. Initially, all transi-
tions are alive, and the end of a phase is marked by the “death” of one or more
transitions, i.e., by reaching a configuration at which these transitions are dead.
The system keeps “killing transitions” until no transition that is still alive can
lead to a configuration violating the postcondition. The procedure mimics this
pattern. It constructs stage graphs in which if S ′ is a successor of S , then the
set of transitions dead at S ′ is a proper superset of the transitions dead at S .
For this, AsDead(S) computes a set of transitions that are alive at some config-
uration of S , but which will become dead in every fair run starting at S (line 5).
Formally, AsDead(S) returns a set U ⊆ Dead(S) such that S |= ♦dead(U).

The following proposition, whose proof appears in the appendix, shows that
determining whether a given transition will eventually become dead, while de-
cidable, is PSPACE-hard. Therefore, Section 7 describes two implementations
of this function, and a way to combine them, which exhibit a good trade-off
between precision and computation time.

Proposition 4. Given a replicated system P , a stage S represented by an ex-
istential Presburger formula φ and a set of transitions U , determining whether
S |= ♦dead(U) holds is decidable and PSPACE-hard.

If the set U returned by AsDead(S) is nonempty, then we know that every
fair run starting at a configuration of S will eventually reach a configuration
of S ∩ Jdead(U)K. So, this set, or any inductive overapproximation of it, can
be a legal successor of S in the stage graph. Function IndOverapprox(S , U)
returns such an inductive overapproximation (line 7). To be precise, we show
in Section 5 that Jdead(U)K is a Presburger set that can be computed exactly,
albeit in doubly-exponential time in the worst case. The section also shows how
to compute overapproximations more efficiently.

If the set U returned by AsDead(S) is empty, then we cannot yet construct
any successor of S . Indeed, recall that we want to construct stage graphs in
which if S ′ is a successor of S , then Dead(S ′) is a proper superset of Dead(S).
In this case, we proceed differently and try to split S :

Definition 7. A split of some stage S is a set {S1, . . . ,Sk} of (not necessarily
disjoint) stages such that the following holds:

– Dead(Si) ⊃ Dead(S) for every 1 ≤ i ≤ k, and

– S =
⋃k
i=1 Si.

If there exists a split {S1, . . . ,Sk} of S , then we can let S1, . . . ,Sk be the
successors of S in the stage graph. Observe that a stage may indeed have a split.
We have Dead(C1 ∪C2) = Dead(C1)∩Dead(C2), and hence Dead(C1 ∪C2) may be
a proper subset of both Dead(C1) and Dead(C2):

Example 4. Consider the system with states {q1, q2} and transitions ti : qi 7→ qi
for i ∈ {1, 2}. Let S = {C | C(q1) = 0∨C(q2) = 0}, i.e., S is the (inductive) stage
of configurations disabling either t1 or t2. The set {S1,S2}, where Si = {C ∈
S | C(qi) = 0}, is a split of S satisfying Dead(Si) = {ti} ⊃ ∅ = Dead(S). 4
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The canonical split of S , if it exists, is the set {S ∩ Jdead(t)K | t /∈ Dead(S)}.
As mentioned above, Section 5 shows that Jdead(U)K can be computed exactly
for every U , but the computation can be expensive. Hence, the canonical split
can be computed exactly at potentially high cost. Our implementation uses an
underapproximation of Jdead(t)K, described in Section 6.

5 Computing and approximating Jdead(U)K

We show that, given a set U of transitions,

– we can effectively compute an existential Presburger formula describing the
set Jdead(U)K, with high computational cost in the worst case, and

– we can effectively compute constraints that overapproximate or underap-
proximate Jdead(U)K, at a reduced computational cost.

Downward and upward closed sets. We enrich N with the limit element ω in
the usual way. In particular, n < ω holds for every n ∈ N. An ω-configuration is
a mapping Cω : Q→ N∪{ω}. The upward closure and downward closure of a set
Cω of ω-configurations are the sets of configurations ↑ Cω and ↓ Cω, respectively
defined as:

↑ Cω def
= {C ∈ NQ | C ≥ Cω for some Cω ∈ Cω},

↓ Cω def
= {C ∈ NQ | C ≤ Cω for some Cω ∈ Cω}.

A set C of configurations is upward closed if C = ↑ C, and downward closed if
C = ↓ C. These facts are well-known from the theory of well-quasi orderings:

Lemma 1. For every set C of configurations, the following holds:

1. C is upward closed iff C is downward closed (and vice versa);
2. if C is upward closed, then there is a unique minimal finite set of configura-

tions inf(C), called its basis, such that C = ↑ inf(C);
3. if C is downward closed, then there is a unique minimal finite set of ω-

configurations sup(C), called its decomposition, such that C = ↓ sup(C).

Computing Jdead(U)K exactly. It follows immediately from Definition 6
that both Jdis(U)K and Jdead(U)K are downward closed. Indeed, if all transitions
of U are disabled at C, and C ′ ≤ C, then they are also disabled at C ′, and
clearly the same holds for transitions dead at C. Furthermore:

Proposition 5. For every set U of transitions, the (downward) decomposition
of both sup(Jdis(U)K) and sup(Jdead(U)K) is effectively computable.

Proof. For every t ∈ U and q ∈ •t, let Cωt,q be the ω-configuration such that
Cωt,q(q) = •t(q) − 1 and Cωt,q(p) = ω for every p ∈ Q \ {q}. In other words, Cωt,q
is the ω-configuration made only of ω’s except for state q which falls short from
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•t(q) by one. This ω-configurations captures all configurations disabled in t due
to an insufficient amount of agents in state q. We have:

sup(Jdis(U)K) = {Cωt,q : t ∈ U, q ∈ •t}.

The latter can be made minimal by removing superfluous ω-configurations.

For the case of sup(Jdead(U)K), we invoke [40, Prop. 2] which gives a proof for
the more general setting of (possibly unbounded) Petri nets. Their procedure is
based on the well-known backwards reachability algorithm (see, e.g., [34,2]). ut

Since sup(Jdead(U)K) is finite, its computation allows to describe Jdead(U)K
by the following linear constraint7:∨

Cω∈sup(Jdead(U)K)

∧
q∈Q

[C(q) ≤ Cω(q)] .

However, the cardinality of sup(Jdead(U)K) can be exponential [40, Remark for
Prop. 2] in the system size. For this reason, we are interested in constructing
both under- and over-approximations.

Overapproximations of Jdead(U)K. For every i ∈ N, define Jdead(U)Ki as:

Jdead(U)K0 def
= Jdis(U)K and Jdead(U)Ki+1 def

= post(Jdead(U)Ki) ∩ Jdis(U)K.

Loosely speaking, Jdead(U)Ki is the set of configurations C such that every con-
figuration reachable in at most i steps from C disables U . We immediately have:

Jdead(U)K =

∞⋂
i=0

Jdead(U)Ki.

Using Proposition 5 and the following proposition, we obtain that Jdead(U)Ki is
an effectively computable overapproximation of Jdead(U)K.

Proposition 6. For every Presburger set C and every set of transitions U , the
set postU (C) is effectively Presburger.

Recall that function IndOverapprox(S , U) of Algorithm 1 must return an
inductive overapproximation of Jdead(U)K. Since Jdead(U)Ki might not be in-
ductive in general, our implementation uses either the inductive overapproxi-

mations IndOverapproxi(S , U)
def
= PotReach(S ∩ Jdead(U)Ki), or the exact value

IndOverapprox∞(S , U)
def
= S∩Jdead(U)K. The table of results in the experimental

section describes for each benchmark which overapproximation was used.

7 Observe that if Cω(q) = ω, then the term “C(q) ≤ ω” is equivalent to “true”.
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Underapproximations of Jdead(U)K: Death certificates. A death certifi-
cate for U in P is a finite set Cω of ω-configurations such that:

1. ↓ Cω |= dis(U), i.e., every configuration of ↓ Cω disables U , and
2. ↓ Cω is inductive, i.e., post(↓ Cω) ⊆ ↓Cω.

If U is dead at a set C of configurations, then there is always a certificate that
proves it, namely sup(Jdead(U)K). In particular, if Cω is a death certificate for
U then ↓ Cω ⊆ Jdead(U)K, that is, ↓ Cω is an underapproximation of Jdead(U)K

Using Proposition 6, it is straightforward to express in Presburger arithmetic
that a finite set Cω of ω-configurations is a death certificate for U :

Proposition 7. For every k ≥ 1 there is an existential Presburger formula
DeathCertk(U, Cω) that holds iff Cω is a death certificate of size k for U .

6 Splitting a stage

Given a stage S , we try to find a set Cω1 , . . . , Cω` of death certificates for transitions
t1, . . . , t` ∈ T \ Dead(S) such that S ⊆ ↓Cω1 ∪ · · · ∪ ↓ Cω` . This allows us to split

S into S1, . . . ,S`, where Si
def
= S ∩ ↓ Cωi .

For any fixed size k ≥ 1 and any fixed `, we can find death certificates
Cω1 , . . . , Cω` of size at most k by solving a Presburger formula. However, the
formula does not belong to the existential fragment, because the inclusion check
S ⊆ ↓Cω1 ∪· · ·∪↓ Cω` requires universal quantification. For this reason, we proceed
iteratively. For every i ≥ 0, after having found Cω1 , . . . , Cωi we search for a pair
(Ci+1, Cωi+1) such that

(i) Cωi+1 is a death certificate for some ti+1 ∈ T \Dead(S);
(ii) Ci+1 ∈ S ∩ ↓ Cωi+1 \ (↓ Cω1 ∪ · · · ∪ ↓ Cωi ).

An efficient implementation requires to guide the search for (Ci+1, Cωi+1), because
otherwise the search procedure might not even terminate, or might split S into
too many parts, blowing up the size of the stage graph. Our search procedure
employs the following heuristic, which works well in practice. We only consider
the case k = 1, and search for a pair (Ci+1, C

ω
i+1) satisfying (i) and (ii) above,

and additionally:

(iii) all components of Cωi+1 are either ω or between 0 and maxt∈T,q∈Q
•t(q)− 1;

(iv) for every ω-configuration Cω, if (Ci+1, C
ω) satisfies (i)–(iii), then Cωi+1 ≤ Cω;

(v) for every pair (C,Cω), if (C,Cω) satisfies (i)–(iv), then Cω ≤ Cωi+1.

Condition (iii) guarantees termination. Intuitively, Condition (iv) leads to cer-
tificates valid for sets U ⊆ T \ Dead(S) as large as possible. So it allows us to
avoid splits that, loosely speaking, do not make as much progress as they could.
Condition (v) allows us to avoid splits with many elements because each element
of the split has a small intersection with S .



Checking Qualitative Liveness Properties of Stochastic Replicated Systems 15

Example 5. Let P = (Q,T ) be the replicated system where Q = {a1, . . . , an} ∪
{b1, . . . , bn} ∪ {c} and T = U ∪ {tc : c 7→ c} with U = {ti : ai bi 7→ ai+1 bi+1 |
1 ≤ i < n} ∪ {tn : an bn 7→ a1 b1}. Let S be the set of all configurations C where
either C(c) = 0 or C(ai) = C(bi) = 0 for all i. It is easy to see that no transition
is dead at every configuration of S , i.e., Dead(S) = ∅, but every configuration of
S has at least one dead transition: either C(c) = 0 and tc is dead, or C(c) > 0
and all ti ∈ U are dead.

Consider the ω-configurations Cω and Dω defined as follows:

Cω(q)
def
=

{
ω if q = c,

0 otherwise,
Dω(q)

def
=

{
ω if q 6= c,

0 otherwise.

Cω is a death certificate for U , and Dω is a death certificate for {tc}. So the
pairs (HcI, Cω) and (Ha1, . . . , an, b1, . . . , bnI, Dω) satisfy (i)–(iii). It is easy to see
that they also satisfy (iv) and (v), and that the only split that can be returned
by the procedure is {S ∩ ↓Cω,S ∩ ↓Dω}. So S is split into only two parts.

We now show that, if condition (iv) or (v) is dropped, then the splitting
procedure might return splits of cardinality 2n + 1.

Let M def
= {C ∈ NQ | C(c) = 0 ∧ ∀ 1 ≤ i ≤ n : C(ai) + C(bi) = 1} ⊆ S and,

for each X ∈M, define the ω-configurations CωX , D
ω
X as follows:

CωX(q)
def
=

{
ω if q = c or X(q) > 0,

0 otherwise,
Dω
X(q)

def
=

{
ω if X(q) > 0,

0 otherwise.

CωX is a death certificate for U , and Dω
X is a death certificate for {tc} ∪ U . So

for every X ∈M the pairs (X,CωX) and (X,Dω
X) satisfy (i)–(iii). Since we have

Cω ≤ CωX , Dω
X ≤ CωX and Dω

X ≤ Dω for every X ∈M, and otherwise the death
certificates are pairwise incomparable, condition (iv) is satisfied by all the pairs
(X,Dω

X), but it is not satisfied by any of the pairs (X,CωX). It follows that if we
drop condition (iv) (removing the reference to (iv) in (v)), the splitting procedure
might find the split {S ∩ ↓CωX | X ∈ M} ∪ {S ∩ ↓Dω}. Without condition (v),
but with (iv), it might find the split {S ∩ ↓Dω

X | X ∈ M} ∪ {S ∩ ↓Dω}. Both
splits have 2n + 1 elements. 4

7 Computing eventually dead transitions

Recall that the function AsDead(S) takes an inductive Presburger set S as
input, and returns a (possibly empty) set U ⊆ Dead(S) of transitions such that
S |= ♦dead(U). This guarantees S  Jdead(U)K and, since S is inductive, also
S  S ∩ Jdead(U)K.

By Proposition 4, deciding if there exists a non-empty set U of transitions
such that S |= ♦dead(U) holds is PSPACE-hard, which makes a polynomial re-
duction to satisfiability of existential Presburger formulas unlikely. So we design
incomplete implementations of AsDead(S) with lower complexity. Combining
these implementations, the lack of completeness essentially vanishes in practice.
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The implementations are inspired by Proposition 2, which shows that S  
Jdead(U)K holds iff there exists a certificate f such that:

∀C ∈ S \ Jdead(U)K : ∃C ∗−→ C ′ : f(C) > f(C ′). (Cert)

To find such certificates efficiently, we only search for linear functions f(C) =∑
q∈Q a(q) · C(q) with coefficients a(q) ∈ N for each q ∈ Q.

7.1 First implementation: Linear ranking functions

Our first procedure computes the existence of a linear ranking function.

Definition 8. A function r : S → N is a ranking function for S and U if for

every C ∈ S and every step C
t−→ C ′ the following holds:

1. if t ∈ U , then r(C) > r(C ′); and
2. if t /∈ U , then r(C) ≥ r(C ′).

Proposition 8. If r : S → N is a ranking function for S and U , then there
exists k ∈ N such that (r, k) is a bounded certificate for S  Jdead(U)K.

Proof. Let M be the minimal finite basis of the upward closed set Jdead(U)K.
For every configuration D ∈M , let σD be a shortest sequence that enables some

transition of tD ∈ U from D, i.e., such that D
σD−−→ D′

tD−−→ D′′ for some D′, D′′.

Let k
def
= max{|σDtD| : D ∈M}.

Let C ∈ S \ Jdead(U)K. Since C ∈ Jdead(U)K, we have C ≥ D for some

D ∈M . By monotonicity, we have C
σD−−→ C ′

tD−−→ C ′′ for some configurations C ′

and C ′′. By Definition 8, we have r(C) ≥ r(C ′) > r(C ′′), and so condition (Cert)
holds. As |σDtD| ≤ k, we have that (r, k) is a bounded certificate. ut

It follows immediately from Definition 8 that if r1 and r2 are ranking func-

tions for sets U1 and U2 respectively, then r defined as r(C)
def
= r1(C) + r2(C)

is a ranking function for U1 ∪ U2. Therefore, there exists a unique maximal set
of transitions U such that S  Jdead(U)K can be proved by means of a ranking
function. Further, U can be computed by collecting all transitions t ∈ Dead(S)
such that there exists a ranking function rt for {t}. The existence of a linear
ranking function rt can be decided in polynomial time via linear programming,
as follows. Recall that for every step C

u−→ C ′, we have C ′ = C + ∆(u). So, by
linearity, we have rt(C) ≥ rt(C

′) ⇐⇒ rt(C
′ − C) ≤ 0 ⇐⇒ rt(∆(u)) ≤ 0.

Thus, the constraints of Definition 8 can be specified as:

a ·∆(t) < 0 ∧
∧

u∈Dead(S)

a ·∆(u) ≤ 0,

where a : Q → Q≥0 gives the coefficients of rt, that is, rt(C) = a · C, and

a · x def
=
∑
q∈Q a(q) · x(q) for x ∈ NQ. Observe that a solution may yield a

function whose codomain differs from N. However, this is not an issue since we
can scale it with the least common denominator of each a(q).
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7.2 Second implementation: Layers

Transitions layers were introduced in [17] as a technique to find transitions that
will eventually become dead. Intuitively, a set U of transitions is a layer if (1) no
run can contain only transitions of U , and (2) U becomes dead once disabled; the
first condition guarantees that U eventually becomes disabled, and the second
that it eventually becomes dead. We formalize layers in terms of layer functions.

Definition 9. A function ` : S → N is a layer function for S and U if:

C1. `(C) > `(C ′) for every C ∈ S and every step C
t−→ C ′ with t ∈ U ; and

C2. Jdis(U)K = Jdead(U)K.

Proposition 9. If ` : S → N is a layer function for S and U , then (`, 1) is a
bounded certificate for S  Jdead(U)K.

Proof. Let C ∈ S \ Jdead(U)K. By condition C2, we have C 6∈ Jdis(U)K. So there

exists a step C
u−→ C ′ where u ∈ U . By condition C1, we have `(C) > `(C ′), so

condition (Cert) holds and (`, 1) is a bounded certificate.

Let S be a stage. For every set of transitions U ⊆ Dead(S) we can construct a
Presburger formula lin-layer(U,a) that holds iff there there exists a linear layer
function for U , i.e., a layer function of the form `(C) = a · C for a vector of
coefficients a : Q→ Q≥0. Condition C1, for a linear function `(C), is expressed
by the existential Presburger formula

lin-layer-fun(U,a)
def
=
∧
u∈U

a ·∆(u) < 0.

Condition C2 is expressible in Presburger arithmetic because of Proposition 5.
However, instead of computing Jdead(U)K explicitly, there is a more efficient
way to express this constraint. Intuitively, Jdis(U)K = Jdead(U)K is the case if
enabling a transition u ∈ U requires to have previously enabled some transition
u′ ∈ U . This observation leads to:

Proposition 10. A set U of transitions satisfies Jdis(U)K = Jdead(U)K iff it
satisfies the existential Presburger formula

dis-eq-dead(U)
def
=
∧
t∈T

∧
u∈U

∨
u′∈U

•t+ (•u� t•) ≥ •u′

where x�y ∈ NQ is defined by (x�y)(q)
def
= max(x(q)−y(q), 0) for x,y ∈ NQ.

This allows us to give the constraint lin-layer(U,a), which is of polynomial size:

lin-layer(U,a)
def
= lin-layer-fun(U,a) ∧ dis-eq-dead(U).
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7.3 Comparing ranking and layer functions

The ranking and layer functions of Sections 7.1 and 7.2 are incomparable in
power, that is, there are sets of transitions for which a ranking function but no
layer function exists, and vice versa. This is shown by the following two systems:

P1 = ( { A,B,C }, { t1 : A B 7→ C C, t2 : A 7→ B, t3 : B 7→ A } ),

P2 = ( { A,B }, { t4 : A B 7→ A A, t5 : A 7→ B } ).

Consider the system P1, and let S = NQ, i.e., S contains all configurations.
Transitions t2 and t3 never become dead at HAI and can thus never be included
in any U . Transition t1 eventually becomes dead, as shown by the linear ranking
function r(C) = C(A) + C(B) for U = {t1}. But for this U , the condition C2

for layer functions is not satisfied, as Jdis(U)K 3 HA,AI t2−→ HA,BI 6∈ Jdis(U)K,
so Jdis(U)K 6= Jdead(U)K. Therefore no layer function exists for this U .

Consider now the system P2, again with S = NQ, and let U = {t5}. Once
t5 is disabled, there is no agent in A, so both t4 and t5 are dead. So Jdis(U)K =
Jdead(U)K. The linear layer function `(C) = C(A) satisfies lin-layer-fun(U,a),

showing that U eventually becomes dead. As C
t4t5−−→ C for C = HA,BI, there is

no ranking function r for this U , which would need to satisfy r(C) < r(C).
For our implementation of AsDead(S), we therefore combine both approaches.

We first compute (in polynomial time) the unique maximal set U for which there
is a linear ranking function. If this U is non-empty, we return it, and otherwise
compute a set U of maximal size for which there is a linear layer function.

8 Experimental results

We implemented the procedure of Section 4 on top of the SMT solver Z3 [53]. The
resulting tool automatically constructs stage graphs that verify stable termina-
tion properties for replicated systems. We evaluated it on two sets of benchmarks,
described below. The first set contains population protocols, and the second
leader election and mutex exclusion algorithms. All tests where performed on a
machine with an Intel Xeon CPU E5-2630 v4 @ 2.20GHz and 8GB of RAM. The
results are depicted in Figure 2. For parametric families of replicated systems,
we always report the largest instance that we were able to verify with a time-
out of one hour. For IndOverapprox, from the approaches in Section 5, we use
IndOverapprox0 in the examples marked with * and IndOverapprox∞ otherwise.

Population protocols. Population protocols [7,8] are replicated systems that com-
pute Presburger predicates following the computation-as-consensus paradigm [9].
Depending on whether the initial configuration of agents satisfies the predicate
or not, the agents of a correct protocol eventually agree on the output “yes”
or “no”, almost surely. Example 1 can be interpreted as a population protocol
for the majority predicate AY > AN, and the two stable termination properties
that verify its correctness are described in Example 2. To show that a population
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Population protocols (correctness)

Parameters |Q| |T | Time

Broadcast [26,17] *

2 1 < 1s

Majority (Example 1)[17] *

4 4 < 1s

Majority [18, Ex. 3] *

5 6 < 1s

Majority [4] (“fast & exact”)

m=13, d=1 16 136 4s
m=21, d=1 (TO: 23,1) 24 300 466s
m=21, d=20 (TO: 23,22) 62 1953 3301s

Flock-of-birds [23,17] *: x ≥ c
c = 20 21 210 5s
c = 40 41 820 45s
c = 60 61 1830 341s
c = 80 (TO: c = 90) 81 3240 1217s

Flock-of-birds [15, Sect. 3]: x ≥ c
c = 60 8 18 15s
c = 90 9 21 271s
c = 120 (TO: c = 127) 9 21 2551s

Flock-of-birds [26,17, threshold-n] *: x ≥ c
c = 10 11 19 < 1s
c = 15 16 29 1s
c = 20 (TO: c = 25) 21 39 18s

Threshold [7][17, vmax=c+ 1] *: a · x ≥ c
c = 2 28 288 7s
c = 4 44 716 26s
c = 6 60 1336 107s
c = 8 (TO: c = 10) 76 2148 1089s

Threshold [15] (“succinct”): a · x ≥ c
c = 7 13 37 2s
c = 31 17 55 11s
c = 127 21 73 158s
c = 511 (TO: c = 1023) 25 91 2659s

Remainder [17] *: a · x ≡m c

m = 5 7 20 < 1s
m = 15 17 135 34s
m = 20 (TO: m = 25) 22 230 1646s

Population protocols (stable cons.)

Parameters |Q| |T | Time

Approx. majority [22] (Cell cycle sw.) *

3 4 < 1s

Approx. majority [46] (Coin game) *

k = 3 2 4 < 1s

Approx. majority [52] (Moran proc.) *

2 2 < 1s

Leader election/Mutex algorithms

Processes |Q| |T | Time

Leader election [39] (Israeli-Jalfon)

20 40 80 7s
60 120 240 1493s
70 (TO: 80) 140 280 3295s

Leader election [37] (Herman)

21 42 42 9s
51 102 102 300s
81 (TO: 91) 162 162 2800s

Mutex [35] (Array)

2 15 95 2s
5 33 239 5s
10 (TO: 11) 63 479 938s

Mutex [55] (Burns)

2 11 75 1s
4 19 199 119s
5 (TO: 6) 23 279 2232s

Mutex [3] (Dijkstra)

2 19 196 66s
3 (TO: 4) 27 488 3468s

Mutex [45] (Lehmann Rabin)

2 19 135 3s
5 43 339 115s
9 (TO: 10) 75 611 2470s

Mutex [57] (Peterson)

2 13 86 2s

Mutex [60] (Szymanski)

2 17 211 10s
3 (TO: 4) 24 895 667s

Fig. 2: Columns |Q|, |T |, and Time give the number of states and non-silent
transitions, and the time for verification. Population protocols are verified for an
infinite set of configurations. For parametric families, the smallest instance that
could not be verified within one hour is shown in brackets, e.g. (TO: c = 90).
Leader election and mutex algorithms are verified for one configuration. The
number of processes leading to a timeout is given in brackets, e.g. (TO: 10).
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protocol correctly computes a given predicate, we thus construct two Presburger
stage graphs for the two corresponding stable termination properties. In all these
examples, correctness is proved for an infinite set of initial configurations.

Our set of benchmarks contains a broadcast protocol [26], three majority
protocols (Example 1, [18, Ex. 3], [4]), and multiple instances of parameterized
families of protocols, where each protocol computes a different instance of a
parameterized family of predicates8. These include various flock-of-birds protocol
families ([23], [15, Sect. 3], [26, threshold-n]) for the family of predicates x ≥ c
for some constant c ≥ 0; two families for threshold predicates of the form a ·x ≥
c [7,15]; and one family for remainder protocols of the form a · x ≡m c [17].
Further, we check approximate majority protocols ([22], [46, coin game], [52]).
As these protocols only compute the predicate with large probability but not
almost surely, we only verify that they always converge to a stable consensus.

Comparison with [17]. The approach of [17] can only be applied to so-called
strongly-silent protocols. We are able to verify all six protocols reported in [17].
Further, we are also able to verify the protocols Majority [4], Flock-of-birds
[15, Sect. 3] and Threshold [15], which are not strongly-silent. Although our
approach is more general and complete, the time to verify many strongly-silent
protocol does not differ significantly between the two approaches. Exceptions are
the Flock-of-birds [23] protocols where we are faster ([17] reaches the timeout at
c = 55) as well as the Remainder and the Flock-of-birds-threshold-n protocols
where we are substantially slower ([17] reaches the timeout at m = 80 and
c = 350, respectively). Loosely speaking, the approach of [17] can be faster
because they compute inductive overapproximations using an iterative procedure
instead of PotReach. In some instances already a very weak overapproximation,
much less precise than PotReach, suffices to verify the result. Our procedure
can be adapted to accommodate this (it essentially amounts to first running the
procedure of [17], and if it is inconclusive then run ours).

Other distributed algorithms. We have also used our approach to verify arbi-
trary LTL liveness properties of non-parameterized systems with arbitrary com-
munication structure. To verify arbitrary LTL properties we apply standard
automata-theoretic techniques. We construct a product of the system and a
limit-deterministic Büchi automaton that accepts the negation of the property.
Checking that the runs of the product accepted by the automaton have positive
probability reduces to checking a stable termination property.

Since we only check correctness of one single finite-state system, we can also
apply a probabilistic model checker based on state-space exploration. However,
our technique delivers a stage graph, which plays two roles. First, it gives an
explanation of why the property holds in terms of invariants and ranking func-
tions, and second, it is a certificate of correctness that can be efficiently checked
by independent means.

8 Notice that for each protocol we check correctness for all inputs; we cannot yet
automatically verify that infinitely many protocols are correct, each of them for all
possible inputs.
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We verify liveness properties for several leader election and mutex algorithms
from the literature [39,37,35,55,3,45,57,60] under the assumption of a probabilis-
tic scheduler. For the leader election algorithms, we check that a leader is even-
tually chosen; for the mutex algorithms, we check that the first process enters
its critical section infinitely often.

Comparison with PRISM [44]. We compared execution times for verification by
our technique and by PRISM on the same models. While PRISM only needs a few
seconds to verify a single instance of the mutex algorithms [35,55,3,45,57,60] up
to the point where we reach the timeout, it reaches the memory limit for the two
leader election algorithms [39,37] already for 70 and 71 processes, respectively,
which we can still verify.

9 Conclusion and further work

We have presented stage graphs, a sound and complete technique for the ver-
ification of stable termination properties of replicated systems, an important
class of parameterized systems. Using deep results of the theory of Petri nets,
we have shown that Presburger stage graphs, a class of stage graphs whose cor-
rectness can be reduced to the satisfiability problem of Presburger arithmetic,
are also sound and complete. This provides a decision procedure for the verifica-
tion of termination properties, which is of theoretical nature since it involves a
blind enumeration of candidates for Presburger stage graphs. For this reason, we
have presented a technique for the algorithmic construction of Presburger stage
graphs, designed to exploit the strengths of SMT-solvers for existential Pres-
burger formulas, i.e., integer linear constraints. Loosely speaking, the technique
searches for linear functions certifying the progress between stages, even though
only the much larger class of Presburger functions guarantees completeness.

We have conducted extensive experiments on a large set of benchmarks. In
particular, our approach is able to prove correctness of nearly all the standard
protocols described in the literature, including several protocols that could not
be proved by the technique of [17], which only worked for so-called strongly-
silent protocols. We have also successfully applied the technique to some self-
stabilization algorithms, leader election and mutual exclusion algorithms.

Our technique is based on the mechanized search for invariants and ranking
functions. It avoids the use of state-space exploration as much as possible. For
this reason, it also makes sense as a technique for the verification of liveness
properties of non-parameterized systems with a finite but very large state space.
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A Appendix

A.1 Missing proofs for Section 2

We show that the qualitative model checking problem is not semi-decidable.
The result holds even for the subclass of replicated systems of arity 2 (i.e., for
population protocols) and when I = Jϕ1K and the LTL formula is of the form
ϕ = �ϕ2 ∨ ♦ϕ3, where ϕ1, ϕ2 and ϕ3 are quantifier-free Presburger predicates
with atomic formulas of the form q=0, q=1, or q≥1 for q ∈ Q.

Theorem 1. The qualitative model checking problem is not semi-decidable.

Proof. A two-counter Minsky machine M is a finite sequence of labeled instruc-
tions

`1 : ins1, . . . , `m : insm, `m+1 : halt

where every insi is either a Type I instruction of the form

inc cj ; goto `k

where j ∈ {1, 2} and 1 ≤ k ≤ m+ 1, or a Type II instruction of the form

if cj=0 then goto `k else dec cj ; goto `n

where j ∈ {1, 2} and 1 ≤ k, n ≤ m+ 1.
A computation ofM starts by executing the first instruction with both coun-

ters c1 and c2 initialized to zero. The problem of determining whether M halts,
i.e., eventually executes the halt instruction, is undecidable [51]. Consequently,
the problem of whether M does not halt is not even semi-decidable.

We prove our theorem by reducing the non-halting problem for two-counter
Minsky machines to the qualitative model checking problem. For a given Minsky
machine M, let LI and LII be the sets of all indices i ∈ {1, . . . ,m} such that
insi is a Type I and Type II instruction, respectively. We construct a replicated
system P = (Q,T ) where

Q
def
= {q1, . . . , qm+1, Z1, O1, Z2, O2} ∪ {q̂i | i ∈ LII},

and T is the (least) set of transitions satisfying the following:

– For every Type I instruction of the form

`i : inc cj ; goto `k

there is a transition qi Zj 7→ qk Oj .
– For every Type II instruction of the form

`i : if cj=0 then goto `k else dec cj ; goto `n

there are transitions qi Zj 7→ q̂i Zj , q̂i Zj 7→ qk Zj , and qiOj 7→ qn Zj .
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Consider the following Presburger formulas:

Init
def
= q1=1 ∧ Z1≥1 ∧ Z2≥1 ∧

∧
q∈Q\{q1,Z1,Z2}

q=0

Overflow
def
=

∨
i∈LI

(qi=1 ∧ Zji=0)

Cheat
def
=

∨
i∈LII

(q̂i=1 ∧Oji≥1)

In the above formulas, we use ji ∈ {1, 2} to denote the counter used by instruc-

tion insi. Furthermore, let I def
= JInitK and

ϕ
def
= �(qm+1=0) ∨ ♦(Overflow ∨ Cheat).

We claim that M does not halt iff Pr[C,ϕ] = 1 for every configuration C ∈ I.
Suppose M does not halt. Let C ∈ I. As C satisfies the formula Init , it has

precisely one agent in state q1, at least one agent in each state Z1 and Z2, and
no agents elsewhere. The transitions of P are constructed so that they allow
for simulating M from C. In every configuration C ′ reachable from C, there is
precisely one agent in a state of {q1, . . . , qm+1} ∪ {q̂i | i ∈ LII}, and the values
of c1 and c2 are represented by C ′(O1) and C ′(O2), respectively. Since C ′(O1)
and C ′(O2) are bounded, the simulation may fail due to a counter overflow
when some Type I instruction tries to increase a counter cj (i.e., rewrite Zj into
Oj) but no agent in Zj is available. This is captured by the formula Overflow .
Furthermore, the simulation of a Type II instruction is not necessarily faithful,
because the transition qi Zj 7→ q̂i Zj can be executed even if there is an agent
in state Oj in the current configuration (i.e., the corresponding counter value
is positive). This is detected by the formula Cheat . Hence, if M does not halt,
then every run initiated in C either does not correspond to a faithful simulation
of M, i.e., visits a configuration satisfying Overflow or Cheat , or simulates M
faithfully, i.e., the state qm+1 does not occur in any configuration visited by the
run. Hence, all runs initiated in C satisfy the formula ϕ.

If M halts, then the instruction halt is executed after a finite computation
along which the counters are increased only to some finite values. Hence, for all
sufficiently large n, there exist a configuration C ∈ I with C(Z1) = C(Z2) = n
and a finite path initiated in C corresponding to a faithful simulation ofM. Note
that the last configuration C ′ of this path (where C ′(qm+1) = 1) has only one
successor C ′, i.e., the self-loop C ′ −→ C ′ is inevitably selected with probability 1.
The probability of executing this path (and the associated run) is positive, and
the run does not satisfy the formula ϕ. Hence, Pr[C,ϕ] < 1.

A.2 Missing proofs for Section 3

Proposition 2. For all inductive sets C, C′ of configurations, it is the case that:
C leads to C′ iff there exists a certificate for C  C′.
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Proof. (⇒): Assume C leads to C′. By definition of the “leads to” relation, for

every C ∈ C, there exists C ′ ∈ C′ such that C
∗−→ C ′. Hence, the function defined

by f(C) = 1 if C ∈ C \ C′, and f(C) = 0 otherwise is a certificate for C  C′.

(⇐): Assume there is a certificate for C  C′. We claim that for every C ∈ C,
there exists C ′ ∈ C′ such that C

∗−→ C ′. Assume the contrary. By assump-
tion, the definition of certificates and as C is inductive, there are configurations
C0, C1, . . . ∈ C\C′ such that C = C0

∗−→ C1
∗−→ · · · and f(Ci) > f(Ci+1) for every

i ≥ 0. This is impossible as the codomain of f is N, which proves the claim.
We may now prove that C leads to C′. Let ρ be a fair run starting at some

configuration of C. Since C is inductive, ρ only visits configurations of C. Further,
since all configurations visited by ρ have the same size, some configuration C ∈ C
is visited infinitely often. By the claim, there exists a sequence C

σ−→ C ′ such
that C ′ ∈ C′. We show that ρ visits C ′, by induction on |σ|. If |σ| = 0, then

C ′ = C and we are done. Assume σ = tτ and C
t−→ D

τ−→ C ′, where t ∈ T . By
fairness, D occurs infinitely often in ρ. Since |τ | = |σ| − 1, we can apply the
induction hypothesis to τ and conclude that C ′ occurs infinitely often in ρ. ut

Proposition 3. System P satisfies Π iff it has a stage graph for Π.

Proof. (⇐): Assume P has a stage graph for Π. Let B be a terminal stage of
the stage graph. By condition 4, B |= ϕipost for some i, and by inductiveness

B |= �ϕipost Let L be the union of the terminal stages of the stage graph.

We have L |=
∨k
i=1�ϕ

i
post. By Proposition 2 and conditions 1 and 3 of the

definition of a stage graph, every stage C satisfies C  L. Therefore every stage
C satisfies ♦

∨k
i=1�ϕ

i
post. By condition 2, we have that JϕpreK |= ♦

∨k
i=1�ϕ

i
post.

Thus C |= ♦
∨k
i=1�ϕ

i
post for any configuration C ∈ JϕpreK, and hence P |= ϕΠ .

(⇒): Assume P satisfies Π. Consider a stage graph with k+ 1 stages: an initial
stage Cin containing the set of all configurations reachable from JϕpreK, and a
terminal stage Cfi , for every 1 ≤ i ≤ k, containing all configurations satisfying
�ϕipost. Conditions 1, 2, and 4 hold by definition. Since P satisfies Π, every
fair run from a configuration of the initial stage Cin eventually visits a terminal
stage Cfi , and therefore Cin leads to (Cf1∪ . . .∪Cfk). Consequently, Proposition 2
yields a certificate for Cin  (Cf1 ∪ . . . ∪ Cfk). ut

Theorem 2. System P satisfies Π iff it has a Presburger stage graph for Π.

Proof. We say that a configuration C is bottom if C
∗−→ D implies D

∗−→ C.
Let B be the set of all bottom configurations of P. Let

∗←→ denote the mutual

reachability relation defined by C
∗←→ D

def⇐⇒ (C
∗−→ D ∧D ∗−→ C). It is known

from [31, Thm. 13 and Prop. 14] that both
∗←→ and B are (effectively) Presburger.

Let Si
def
= B ∩ J�ϕipostK for every i ∈ [n]. Note that Si is Presburger since it can

be written as

Si =
{
C ∈ B : ∀D [(C

∗←→ D) =⇒ (D |= ϕipost)]
}
.
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Let S def
= S1 ∪ · · · ∪ Sn and let I def

= JϕpreK. Note that S and I are Presburger.
Since P satisfies Π, we have post∗(I)∩ (B \S) = ∅. Therefore, by [47, Lem. 9.1],
there exists an inductive Presburger set I ′ ⊇ I such that post∗(I ′)∩ (B\S) = ∅.
Since any set of configurations leads to B, this implies I ′  S.

The directed acyclic graph made of I ′ with S1, . . . ,Sn as its successors is a
stage graph for Π. Indeed:

1. I ′ and Si are inductive, where the latter follows by definition;
2. JϕpreK = I is a subset of stage I ′;
3. I ′  S = (S1 ∪ · · · ∪ Sn) holds, by the above; and
4. Si |= ϕipost by definition of Si.

It remains to exhibit a Presburger certificate. Since I ′ and S are both Pres-
burger, [48, Cor. XI.3] yields a bounded language L = w∗1w

∗
2 · · ·w∗k ⊆ T ∗ such

that I ′ ⊆ preL(S). Let preL(S) be the set of configurations C such that C
w−→ C ′

for some C ′ ∈ S and w ∈ L, and L′ be the language made of all sequences of
L and their suffixes. We have I ′ ⊆ preL(S) ⊆ preL′(S). For every C ∈ I ′, let

f(C)
def
= |σC | where σC ∈ L′ is a shortest sequence such that:

C
σC−−→ D for some D ∈ S.

Since I ′ is inductive and since L′ is closed under suffixes, if σC = tτ and C
t−→ C ′,

then we have f(C) = f(C ′)+1. Hence, (f, 1) is a bounded certificate for I ′  S.
It remains to construct a Presburger formula ϕ(C, `) that holds iff ` = f(C).

We only consider the case where L = w∗ for some finite sequence w; the gener-
alization to L = w∗1w

∗
2 · · ·w∗k being straightforward.

A simple induction on the length of w shows that the set of configurations
that enable w has a unique minimal configuration Cw. Further, also by induction
on w there exists a vector ∆(w) ∈ ZQ such that C

w−→ C + ∆(w) for every

C ≥ Cw. More precisely, ∆(w) =
∑|w|
i=1∆(wi). It follows that a configuration C

enables sequence wk iff C + i ·∆(w) ≥ Cw for every 0 ≤ i < k. Furthermore, if
C enables wk, then we have:

C
wk

−−→ C + k ·∆(w).

This condition is expressible by a Presburger formula enabw(C, k). Let suff(w)
denote the set of sufffixes of w, and let

FS(C, `)
def
=

∨
w′∈suff(w)

enabw′(C, 1) ∧ ∃k : enabw(C +∆(w′), k) ∧
C +∆(w′) + k ·∆(w) ∈ S ∧
` = |w′|+ k.

Formula FS(C, `) holds iff there exists a sequence σ ∈ L′ of length ` such that

C
σ−→ C ′ and C ′ ∈ S. Let

ϕ(C, `)
def
= FS(C, `) ∧ ∀`′ : FS(C, `′)→ (`′ ≥ `).

Formula ϕ(C, `) holds iff ` is the length of a shortest sequence σ ∈ L′ such that

C
σ−→ C ′ and C ′ ∈ S, as desired. ut
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Theorem 3. The problem of deciding whether an acyclic graph of Presburger
sets and Presburger certificates is a Presburger stage graph, for a given stable
termination property, is reducible in polynomial time to the satisfiability problem
for Presburger arithmetic.

Proof. First we observe that for any two configurations C,C ′, we have C −→
C ′ iff there exists a transition t such that C ≥ •t and C ′ = C + ∆(t). With
that, checking the inductiveness of a Presburger stage S reduces to checking
satisfiability of this sentence:

∀C : C ∈ S →
∧
t∈T

(C ≥ •t→ (C +∆(t)) ∈ S) .

Checking whether JϕpreK is included in the union of all stages reduces to checking
satisfiability of this sentence:

∀C : ϕpre(C)→
∨

stage S
C ∈ S .

Let S be a terminal stage of the graph. Checking that S |= ϕipost for some i
reduces to checking satisfiablity of this sentence:

k∨
i=1

∀C : C ∈ S → ϕipost(C).

Let (f, k) be a Presburger certificate and ϕ(x, y) be the existential Presburger
formula given for f . Checking that ϕ actually describes some function f reduces
to checking satisfiability of this sentence:

(∀C : ∃y : ϕ(C, y)) ∧ (∀C, y, y′ : (ϕ(C, y) ∧ ϕ(C, y′))→ y = y′) .

Since we have the silent transition (HI, HI) ∈ T that is always enabled, it suffices
to check (f, k) for sequences of length exactly k instead of at most k. We now
obtain that (f, k) is a Presburger certificate for S  (S1 ∪ . . . ∪ Sn) iff the
following sentence is satisfiable:

∀C0, y : ∃C1, . . . , Ck, y
′ :

[
ϕ(C, y) ∧ C ∈ S ∧ ¬

n∨
i=1

C ∈ Si

]
→[

ϕ(Ck, y
′) ∧ y > y′ ∧

k−1∧
i=0

∨
t∈T

(Ci ≥ •t ∧ Ci+1 = Ci +∆(t))

]
.

Determining if the given graph is a Presburger stage for Π now amounts to
determining satisfiability of the conjunction of all the constructed Presburger
sentences. We note that if all Presburger formulas for stages and certificates are
quantifier-free and the bounds k on the certificates are given in unary, then the
constructed Presburger sentences are of polynomial size and in the ∀∃ fragment.

ut
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A.3 Missing proofs for Section 4

Proposition 4. Given a replicated system P , a stage S represented by an ex-
istential Presburger formula φ and a set of transitions U , determining whether
S |= ♦dead(U) holds is decidable and PSPACE-hard.

Proof. Let us first establish decidability. It suffices to show decidability of S 6|=
♦dead(U), i.e., whether C 6|= ♦dead(U) for some C ∈ S. Observe that

C 6|= ♦dead(U) ⇐⇒ C 6|= ♦
∧
t∈U

dead(t)

⇐⇒ C |= �
∨
t∈U
¬dead(t).

In other words, C 6|= ♦dead(U) holds iff at every configuration C ′ reachable from
C, some transition from U is enabled at C ′. It has been observed in [40, Sect. 4]
that this notion of liveness is equivalent to liveness of a single transition. Indeed,
it suffices to introduce a new transition t† and two new states p†, q† such that:

– a single agent is initially in state p†, while none is in state q†;
– each transition from U is altered so that it takes an agent in state p† and

moves it to state q†;
– t† moves an agent in state q† to state p†.

This way, C |= �
∨
t∈U ¬dead(t) holds in the original system iff C |= �¬dead(t†)

holds in the altered system. Moreover, the alteration of S remains semilinear as
one can simply add the conjunct (p† = 1 ∧ q† = 0) to φ.

By [40, Thm. 2], the problem of determining whether C |= �¬dead(t†) holds
for some C ∈ S, is decidable. Although the statement of [40, Thm. 2] only covers
the specific case of S = NQ, its proof explicitly handles any effective semilinear
set S. Therefore, this establishes decidability of our problem.

Let us now show PSPACE-hardness. Observe that replicated systems are Petri
nets where states correspond to places and where transitions correspond to tran-
sitions and arcs. In fact, replicated systems amount precisely to the class of
1-conservative Petri nets, i.e., where every transition produces as many tokens
as it consumes. Since the reachability problem for 1-conservative Petri nets is
PSPACE-complete [41], the same holds for the reachability problem for replicated
systems defined as:

Input: a replicated system P = (Q,T ) and configurations C,C ′ ∈ NQ,

Output: does C
∗−→ C ′ hold?

We give a (many-one) reduction from this problem to the following variant of
the partial structural liveness problem for replicated systems:

Input: a replicated system P = (Q,T ) and a transition t ∈ T ,

Output: does NQ 6|= ♦dead(t) hold?
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Let us fix a replicated system P = (Q,T ) and configurations Cinit, Ctgt ∈ NQ.
We design a replicated system P ′ = (Q′, T ′) and a transition ttgt ∈ T such that:

Cinit
∗−→ Ctgt in P ⇐⇒ NQ

′
6|= ♦dead(ttgt) in P ′.

The validity of this equivalence proves the proposition as it is a special case of
the problem we wish to show PSPACE-hard. Note that we are implicitly using
the fact that PSPACE = NPSPACE as we deal with “6|=” instead of “|=”.

Construction. Let us describe P ′. Its set of states is defined as

Q′
def
= Q ∪ {qfree, qout},

where qfree indicates that a “retired” agent is “free” to move to a state of Q, and
where qout indicates that a “retired” agent is permanently retired.

Let k
def
= |Cinit|. Let tinit

def
= Hk · qfreeI 7→ Cinit and let ttgt

def
= Ctgt 7→ Ctgt. The

purpose of these transitions is respectively to generate the initial configuration
Cinit, and to check whether the target configuration Ctgt is present. Let

tclean
def
= Hk · qfree, qfreeI 7→ Hk · qfree, qoutI.

The purpose of transition tclean is to permanently retire agents until there are at

most k remaining. Let S
def
= {sq : q ∈ Q} where sq

def
= HqI 7→ HqfreeI. Transitions

S make the system “lossy” in the sense that agents can non deterministically
retire from Q, either temporarily or eventually permanently. Overall, the set of
transitions of P ′ is defined as

T ′
def
= T ∪ S ∪ {tclean, tinit, ttgt}.

General idea. Let us explain the idea behind the construction of P ′, which is
illustrated in Figure 3. If Ctgt is reachable from Cinit in P, then this is also
the case in P ′, as it can simulate the former. Moreover, if P ′ gets stuck by
choosing the wrong transitions, then this does not yield a dead configuration, as
lossy transitions S can temporarily retire agents so that tinit resets the system
to Cinit. This way, transition ttgt can occur infinitely often from any reachable
configuration.

Since P ′ could in principle start from a configuration that differs from Cinit,
there is a risk that ttgt occurs infinitely often even though Cinit

∗−→ Ctgt does not
hold in P. Thus, the role of tclean is to permanently retire agents until at most k
can move to Q. This ensures that P ′ eventually either sets its non retired agents
to Cinit, or gets stuck. The latter only happens if there are less that k agents.

Proof of the reduction. Let us prove the claim formally.

⇒) Assume Cinit
∗−→ Ctgt holds in P. Let us show that Cinit 6|= ♦dead(ttgt) in P ′.

Let D be some configuration of P ′ such that Cinit
∗−→ D. We must show that D
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· · ·Q :

· · ·S :

qfree

tclean

qout

k + 1 k

P

tinit

k

Cinit

ttgt

Ctgt

Fig. 3: Replicated system P ′ depicted as a (1-conservative) Petri net.

can reach Ctgt, which allows ttgt to occur. Since D is arbitrary, the validity of
this claim implies that ttgt is not dead at any reachable configuration.

Observe that tclean cannot occur at any reachable configuration as there
are k agents, while tclean requires k + 1 agents. By definition of S and since
D(Q′ \{qout}) = k, we have D

∗−→ Hk · qfreeI. Since tinit can occur from the latter,

we have D
∗−→ Cinit. As P ′ contains all transitions from P, this implies that

D
∗−→ Ctgt in P ′. Hence, ttgt can occur from there.

⇐) Assume Cinit
∗−→ Ctgt does not hold in P. Let us show that NQ′ |= ♦dead(ttgt)

in P ′. Let Dinit ∈ NQ′
. We must argue “adversarially” that Dinit can reach a

configuration D at which ttgt is dead.
By using “lossy” transitions S repeatedly, we can remove all agents from Q.

Hence, Dinit
∗−→ Ha ·qfree, b ·qoutI for some a, b ∈ N. If a > k, then using transition

tclean repeatedly, we obtain k agents in state qfree and b+ (a− k) agents in state
qout. In other words, we have

Dinit
∗−→ Ha′ · qfree, b′ · qoutI where a′ ≤ k and b′ ∈ N.

If a′ < k, then all transitions are dead and we are done. Hence, let us assume
that a′ = k. The only enabled transition at this point is tinit, which forces P ′ to

move to configuration D
def
= Cinit + Hb′ · qoutI. Note that tclean is dead at D. Since

Ctgt is not reachable from Cinit in P, system P ′ cannot reach Ctgt + Hb′ · qoutI
either. Moreover, it cannot reach any configuration larger than Ctgt + Hb′ · qoutI
as the number of agents never changes. Thus, ttgt is dead at D, which completes
the proof. ut
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A.4 Missing proofs for Section 5

Proposition 6. For every Presburger set C and every set of transitions U , the
set postU (C) is effectively Presburger.

Proof. We use the fact that C
t−→ C ′ iff C ∈ Jdis(t)K and C ′ = C + ∆(t), for

every C,C ′ ∈ NQ and t ∈ T . Then C ′ ∈ postU (C) holds iff the following holds:

∃C ∈ C :
∨
t∈U

(
C ∈ Jdis(t)K ∧ C ′ = C +∆(t)

)
≡
∨
t∈U

(
(C ′ −∆(t)) ∈ C ∧ (C ′ −∆(t)) ∈ Jdis(t)K

)
.

Proposition 7. For every k ≥ 1 there is an existential Presburger formula
DeathCertk(U, Cω) that holds iff Cω is a death certificate of size k for U .

Proof. Let Cω = {Cω1 , . . . , Cωk }. By definition, we have that Cω is a death cer-
tificate for U iff ↓ Cω |= dis(U) and postT (↓ Cω) ⊆ ↓Cω. We easily have

↓ Cω |= dis(U) ≡
k∧
i=1

∧
u∈U
¬ (Cωi ≥ •u) .

Using the constraint from the proof of Proposition 6, we rewrite the inductivity
constraint as follows:

postT (↓ Cω) ⊆ ↓Cω

≡ ∀C ′ : C ′ ∈ postT (↓ Cω)⇒ C ′ ∈ ↓Cω

≡ ∀C ′ :

(∨
t∈T

(
(C ′ −∆(t)) ∈ ↓Cω ∧ (C ′ −∆(t)) ∈ Jdis(t)K

))
⇒ C ′ ∈ ↓Cω

≡ ∀C :
∧
t∈T

((
C ∈ ↓Cω ∧ C ∈ Jdis(t)K

)
⇒ (C +∆(t)) ∈ ↓Cω

)
As ↓ Cω is downward closed, it suffices to check the constraint for all elements in
the decomposition of ↓ Cω, i.e., Cω1 to Cωk . This gives us the following formula:

k∧
i=1

∧
t∈T

(
Cωi ∈ Jdis(t)K⇒ (Cωi +∆(t)) ∈ ↓Cω

)

≡
k∧
i=1

∧
t∈T

Cωi ≥ •t⇒ k∨
j=1

(Cωi +∆(t)) ≤ Cωj

 .

Together we obtain the following Presburger formula for DeathCertk(U, Cω):(
k∧
i=1

∧
u∈U
¬ (Cωi ≥ •u)

)
∧

 k∧
i=1

∧
t∈T

Cωi ≥ •t⇒ k∨
j=1

(Cωi +∆(t)) ≤ Cωj

 .

For a fixed k, the size of the formula is polynomial w.r.t. the size of the system.
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A.5 Missing proofs for Section 7

Proposition 10. A set U of transitions satisfies Jdis(U)K = Jdead(U)K iff it
satisfies the existential Presburger formula

dis-eq-dead(U)
def
=
∧
t∈T

∧
u∈U

∨
u′∈U

•t+ (•u� t•) ≥ •u′

where x�y ∈ NQ is defined by (x�y)(q)
def
= max(x(q)−y(q), 0) for x,y ∈ NQ.

Proof. We have that Jdis(U)K = Jdead(U)K iff Jdis(U)K is inductive, that is
postT (Jdis(U)K) ⊆ Jdis(U)K. We show that

postT (Jdis(U)K) ⊆ Jdis(U)K ≡
∧
t∈T

∧
u∈U

∨
u′∈U

•t+ (•u� t•) ≥ •u′.

We start by rewriting the formula as follows:

postT (Jdis(U)K) ⊆ Jdis(U)K

≡ ∀C ′ : C ′ ∈ postT (Jdis(U)K)⇒ C ′ ∈ Jdis(U)K

≡ ∀C ′ :

(∨
t∈T

(
(C ′ −∆(t)) ∈ Jdis(U)K ∧ (C ′ −∆(t)) ∈ Jdis(t)K

))
⇒ C ′ ∈ Jdis(U)K

≡ ∀C :
∧
t∈T

((
C ∈ Jdis(U)K ∧ C ∈ Jdis(t)K

)
⇒ (C +∆(t)) ∈ Jdis(U)K

)
≡ ∀C :

∧
t∈T

((
C ∈ Jdis(t)K ∧ (C +∆(t)) ∈ Jdis(U)K

)
⇒ C ∈ Jdis(U)K

)
.

Let Y(U, t)
def
= {C | C ∈ Jdis(t)K ∧ (C + ∆(t)) ∈ Jdis(U)K}. The above formula

can be rewritten as:

∀C :
∧
t∈T

(
C ∈ Y(U, t)⇒ C ∈ Jdis(U)K

)
≡
∧
t∈T
Y(U, t) ⊆ Jdis(U)K.

Observe that Y(U, t) is upward closed, as both Jdis(t)K and Jdis(U)K are upward
closed. Therefore, the inclusion check is between two upward closed sets, which
amounts to a comparison of their bases. We claim that ↑X (U, t) = Y(U, t) where

X (U, t)
def
= {•t+ (•u� t•) | u ∈ U} .

Let us prove the claim. Let C = •t + (•u � t•) ∈ X (U, t) for some u ∈ U .
Clearly, C ∈ Jdis(t)K since C ≥ •t. Note that C + ∆(t) = t• + (•u � t•) ≥ •u.
Therefore, C + ∆(t) ∈ Jdis(U)K and consequently C ∈ Y(U, t). Since this also
holds for any configuration C ′ ≥ C, we obtain ↑X (U, t) ⊆ Y(U, t).

For the other inclusion, let C ∈ Y(U, t). We have C + ∆(t) ≥ •u for some
u ∈ U and hence follows Y(U, t) ⊆ ↑X (U, t) by

C = C +∆(t)−∆(t) ≥ •u+ •t− t• ≥ •t+ (•u� t•) ∈ X (U, t).



36 M. Blondin et al.

We now get the following final formula:∧
t∈T

∧
C∈X (U,t)

C ∈ Jdis(U)K ≡
∧
t∈T

∧
u∈U

∨
u′∈U

•t+ (•u� t•) ≥ •u′.


	Checking Qualitative Liveness Properties of Replicated Systems with Stochastic Scheduling
	Introduction
	Preliminaries
	Replicated systems
	Qualitative model checking

	Stage graphs
	Algorithmic construction of stage graphs
	Computing and approximating "494A971 dead(U)"594B979 
	Splitting a stage
	Computing eventually dead transitions
	First implementation: Linear ranking functions
	Second implementation: Layers
	Comparing ranking and layer functions

	Experimental results
	Conclusion and further work
	Appendix
	Missing proofs for sec:preliminaries
	Missing proofs for sec:stagegraphs
	Missing proofs for sec:stagegraphconstruction
	Missing proofs for sec:setconfdead
	Missing proofs for sec:evdead



