
Verification with ߱-automata

Programs and ߱-executions

• Recall: a full execution of a program is an
execution that cannot be extended (either infinite
or ending at a configuration without successors).

• We consider programs that may have
߱-executions.

• We assume w.l.o.g. that every full execution of
the program is infinite (see next slide).

• Therefore: full executions = ߱-executions

Handling finite full executions

We artificially ensure that every full
execution is infinite by adding a self-
loop to every state without successors.

Verifying a program

• Goal: automatically check if some ߱-execution violates a
property.

• Safety property: “nothing bad happens”
– No configuration satisfies ݔ = 1.
– No configuration is a deadlock.
– Along an execution the value of ݔ cannot decrease.

• Liveness property: “something good eventually happens”
– Eventually ݔ has value 1.
– Every message sent during the execution is eventually

received.

Safety and liveness: more precisely

• A finite execution ݓ is bad for a given property if every
potential ߱-execution of the form ݓ ݓ′ violates the
property.

• A property is a safety property if every ߱-execution
that violates the property has a bad prefix.
(Intuitively: after finite time we can already say that the
property does not hold)

• A property is a liveness property if some ߱-execution
that violates the property has no bad prefix.
(We can only tell that the property is a violation ``after
seeing the complete ߱-execution’’.)

Approach to automatic verification

• Represent the set of ߱-executions of the program
as a NBA. (The system NBA).

• Represent the set of possible ߱-executions that
violate the property as a NBA (or an ߱-regular
expression). (The property NBA).

• Check emptiness of the intersection of the two
NBAs.

Problem: Fairness

• We may want to exclude some ߱-executions
because they are “unfair”.

• Example: finite waiting property in Lamport‘s
mutex algorithm.

Lamport´s algorithm

Asynchronous product

Finite waiting property

• Finite waiting: If a process is trying to access the critical
section, it eventually will.

• Formalization: Let ܰܥ௜ , ௜ܶ ௜ܥ , be atomic propositions
mapped to the sets of configurations where process ݅
is in the non-critical section, trying to access it, and in
the critical section, respectively.
The full executions that violate finite waiting for
process ݅ are

Σ∗ ௜ܶ Σ ∖ ௜ܥ ఠ

• Observe: all states of the system NBA are final, and so
we can intersect NBAs using the algorithm for NFAs

Finite waiting property

• The finite waiting property does not hold because of

0,0,݊ܿ଴,݊ܿଵ 1,0, ଴,݊ܿଵݐ 1,1, ,଴ݐ ଵݐ ఠ

• Is this a real problem of the algorithm?
No! We have not specified correctly.

• Fairness assumption: both processes execute infinitely
many actions.
(Usually a weaker assumption is used: if a process can execute
actions infinitely often, it executes infinitely many actions.)

• Reformulation: in every fair ߱-execution, if a process is
trying to access the critical section, it will eventually
access it.

Finite waiting property

• The violations of the property under fairness are the
intersection of Σ∗ ௜ܶ Σ ∖ ௜ܥ ఠand the ߱-executions
in which both processes make a move infinitely
often.

• Problem: how do we represent this condition as an
߱-regular language?

• Solution: enrich the alphabet of the NBA
Letter: pair (ܿ, ݅) where ܿ is a configuration and ݅ is
the index of the process making the move.

Finite waiting property

• Denote by ଴ܯ and ܯଵ the set of letters with
index 0 and 1, respectively.

• The possible ߱-executions where both processes
move infinitely often is given by

଴ܯ + ଵܯ
ଵܯ଴ܯ∗

ఠ

• Finite waiting holds under fairness for process 0
but not for process 1 because of

(0,0,݊ܿ଴,݊ܿଵ 0,1,݊ܿ଴, ଵݐ 1,1, ,଴ݐ ଵݐ 1,1, ,଴ݐ ଵݍ
1,0, ,଴ݐ ଵᇱݍ 1,0, ܿ଴, ଵᇱݍ 0,0,݊ܿ଴, ଵᇱݍ)ఠ

Temporal logic

• Writing property NBAs or ߱-regular expressions
requires training in automata theory

• We search for a more intuitive (but still formal)
description language: Temporal Logic.

• Temporal logic extends propositional logic with
temporal operators like always and eventually.

• Linear Temporal Logic (LTL) is a temporal logic
interpreted over linear structures.

Linear Temporal Logic (LTL)

• We are given:
– A set ܲܣ of atomic propositions (names for basic

properties)
– A valuation assigning to each atomic proposition a

set of configurations (intended meaning: the set of
configurations that satisfy the property).

Example

• ܲܣ : atଵ, atଶ, … , atହ, x=0, x=1, y=0, y=1

• ܸ at୧ = ℓ, ,ݔ ݕ ∈ ℓ ܥ = ݅} for every ݅ ∈ {1, … , 5}

• ܸ(x=0)= ℓ, ݕ,ݔ ∈ x ܥ = 0}

Computations

• A computation is an infinite sequence of subsets of ܲܣ.
• Examples for ܲܣ = ,݌} {ݍ

∅ఠ ݌ ,݌ ݍ ఠ ݌ ,݌ ݍ ݌ ∅ ∅ ఠ

• We map every possible execution to a computation by
mapping each configuration to the set of atomic
propositions it satisfies.

• A computation is executable if some ߱-execution maps
to it.

Example

݁ଵ = 1,0,0 5,0,0 ఠ

݁ଶ = 1,1,0 2,1,0 4,1,0 ఠ

݁ଷ = 1,0,1 5,0,1 ఠ

݁ସ = 1,1,1 2,1,1 3,1,1 4,0,1 1,0,1 5,0,1 ఠ

߱-executions:

From executions to computations

݁ଵ = 1,0,0 5,0,0 ఠ

݁ଶ = 1,1,0 2,1,0 4,1,0 ఠ

ଵߪ = {at1, x=0, y=0} {at5, x=0, y=0}ఠ

ଶߪ = (at1, x=0, y=0 at2, x=1, y=0 at4, x=1, y=0)ఠ

Syntax of LTL

• Given: set ܲܣ of atomic propositions, valuation
assigning to each atomic proposition a set
configurations.

• The formulas of LTL are given by the syntax:

߮ ∷= ଵ ߮ଵ߮¬ ݌ ܍ܝܚܜ ∧ ߮ଶ X߮ଵ| ߮ଵU߮ଶ

where ݌ ∈ ܲܣ

Semantics of LTL

• Formulas are interpreted on computations (executable
or not).

• The satisfaction relation ߪ ⊨ ߮ is given by:

ߪ ⊨ ܍ܝܚܜ
ߪ ⊨ ݌ iff ݌ ∈ ߪ 0
ߪ ⊨ ¬߮ iff not ߪ ⊨ ߮
ߪ ⊨ ߮ଵ ∧ ߮ଶ iff ߪ ⊨ ߮ଵ and ߪ ⊨ ߮ଶ
ߪ ⊨ X߮ iff ߪଵ ⊨ ߮
ߪ ⊨ ߮ଵU߮ଶ iff there is ݇ ≥ 0 s. t. ௞ߪ: ⊨ ߮ଶ and

௜ߪ ⊨ ߮ଵ for all 0 ≤ ݅ < ݇

Abbreviations

• The boolean abbreviations false, ∨,→,↔ etc. are
defined as usual.

• F߮ ≔ true U ߮ (eventually ߮).

According to the semantics:

ߪ ⊨ F߮ iff there is ݇ ≥ 0 s. t. ௞ߪ ⊨ ߮
• G߮ ≔ ¬ F¬߮ (always ߮ or globally ߮).

According to the semantics:

ߪ ⊨ G߮ iff ߪ௞ ⊨ ߮ for every ݇ ≥ 0

Getting used to LTL

• Express in natural language FG݌, GF݌
• Are these pairs of formulas equivalent?

FF݌ F݌
FG݌ GF݌
ݍ U ݌ ݌) U ݌ ∧ (ݍ

GG݌ G݌
FGF݌ GF݌

F݌ ݌ ∨ XF݌
G݌ ݌ ∨ XG݌

F݌ ݌ ∧ XF݌
G݌ ݌ ∧ XG݌

ݍ U ݌ ݌ ∨ X ݌ U ݍ
ݍ U ݌ ݍ ∨ X ݌ U ݍ
ݍ U ݌ ݍ ∨ ݌) ∧ X ݌ U ݍ

ݍ U ݌ ݌ ∧ X ݌ U ݍ
ݍ U ݌ ݍ ∧ X ݌ U ݍ
ݍ U ݌ ݍ ∧ ݌) ∨ X ݌ U ݍ

Expressing properties of a program

• ܲܣ : atଵ, atଶ, … , atହ, x=0, x=1, y=0, y=1

ܸ at୧ = ℓ,ݕ,ݔ ∈ ℓ ܥ = ݅} for every ݅ ∈ {1, … , 5}

ܸ(x=0)= ℓ, ,ݔ ݕ ∈ {x=0 ܥ

• ߮଴ = x=1 ∧ X y=1 ∧ X X at3

• ߮ଵ = F x=0

• ߮ଶ = x=0 U at5

• ߮ଷ = y=1 ∧ F(x=0 ∧ at5) ∧ ¬(F y=0 ∧ X y=1)

Expressing properties of Lamport´s algorithm

• ܲܣ = ,଴ܥܰ } ଴ܶ,ܥ଴,ܰܥଵ, ଵܶ,ܥଵ,ܯ଴,ܯଵ}

Valuation as expected.

• Mutual exclusion: G (¬ܥ଴ ∨ (ଵܥ¬

• Finite waiting: G ଴ܶ → Fܥ଴ ∧ G ଵܶ → Fܥଵ
• Fair finite waiting:

(GF ܯ଴ ∧ GF ܯଵ) → G ଴ܶ → Fܥ଴ ∧ G ଵܶ → Fܥଵ

Expressing properties of Lamport´s algorithm

• Bounded overtaking:

G ଴ܶ → ଴ܥ ଵUܥ¬ ଵUܥ ଵ Uܥ¬
Whenever ଴ܶ holds, the computation continues with

a (possibly empty) interval at which ¬ܥଵ holds,

followed by

a (possibly empty) interval at which ܥଵ holds,

followed by

a point at which ܥ଴ holds.

From formulas to NBAs

• Given: set ܲܣ of atomic propositions
• Language ܮ ߮ of a formula ߮ : set of

computations satisfying ߮.
• Examples for ܲܣ = ,݌} {ݍ

– ܮ F݌ = computations ݏଵݏଶݏଷ … such that ݌ ∈ ௜ݏ for
some ݅ ≥ 1

– ܮ G ݌ ∧ ݍ = ,݌ } ݍ ఠ }

• (߮)ܮ is an ߱-language over the alphabet 2஺௉

• For ܲܣ = ,݌} {ݍ we get 2஺௉ = {∅, ݌ , ݍ , ,݌ ݍ }

NBAs for some formulas

ܲܣ = ,݌} {ݍ

• F݌

• G݌

• ݍ U ݌

• GF݌

From LTL formulas to NGAs

We present an algorithm that takes a formula ߮ over a
fixed set ܲܣ of atomic propositions as input and returns
a NGA ܣఝ such that ܮ ఝܣ = ܮ ߮ .

Closure of a formula

• Define neg ߮ = ቊ ߰ if ߮ = ¬߰
¬߮ otherwise

• The closure ݈ܿ(߮) of ߮ is the set containing ߰ and
neg ߰ for every subformula ߰ of ߮

• Example:

݈ܿ ݍ¬U ݌ = ,݌} ,݌¬ ,ݍ¬ ,ݍ¬U݌,ݍ ¬ ݍ¬U݌ }

Satisfaction sequence

• The satisfaction sequence of a computation
ଶݏଵݏ଴ݏ … with respect to ߮ is the sequence
ଶߙଵߙ଴ߙ … where ߙ௜ contains the formulas of
݈ܿ(߮) satisfied by ݏ௜ݏ௜ାଵݏ௜ାଶ …

• The satisfaction sequence of ݌ ఠ w.r.t. ݍ ܷ ݌ is:

,݌ ,ݍ¬ ¬ ݍ ܷ ݌ ఠ

• The satisfaction sequence of (݌ ݍ)ఠ w.r.t.
ݍ ܷ ݌ is:

,݌ ,ݍ¬ ݍ ܷ ݌ ,݌¬ ,ݍ ݍ ܷ ݌ ఠ

Satisfaction sequence

• The satisfaction sequence of a computation
ଶݏଵݏ଴ݏ … with respect to ߮ is the sequence
ଶߙଵߙ଴ߙ … where ߙ௜ contains the formulas of
݈ܿ(߮) satisfied by ݏ௜ݏ௜ାଵݏ௜ାଶ …

• The satisfaction sequence of ݌ ఠ w.r.t. ݌ U ݍ is:

,݌ ,ݍ¬ ¬ ݍ ܷ ݌ ఠ

• The satisfaction sequence of (݌ ݍ)ఠ w.r.t.
ݍ ܷ ݌ is:

,݌ ,ݍ¬ ݍ ܷ ݌ ,݌¬ ,ݍ ݍ ܷ ݌ ఠ

Satisfaction sequence

• The satisfaction sequence of a computation
ଶݏଵݏ଴ݏ … with respect to ߮ is the sequence
ଶߙଵߙ଴ߙ … where ߙ௜ contains the formulas of
݈ܿ(߮) satisfied by ݏ௜ݏ௜ାଵݏ௜ାଶ …

• The satisfaction sequence of ݌ ఠ w.r.t. ݌ U ݍ is:

,݌ ,ݍ¬ ¬ ݍ U ݌ ఠ

• The satisfaction sequence of (݌ ݍ)ఠ w.r.t.
ݍ ܷ ݌ is:

,݌ ,ݍ¬ ݍ ܷ ݌ ,݌¬ ,ݍ ݍ ܷ ݌ ఠ

Satisfaction sequence

• The satisfaction sequence of a computation
ଶݏଵݏ଴ݏ … with respect to ߮ is the sequence
ଶߙଵߙ଴ߙ … where ߙ௜ contains the formulas of
݈ܿ(߮) satisfied by ݏ௜ݏ௜ାଵݏ௜ାଶ …

• The satisfaction sequence of ݌ ఠ w.r.t. ݌ U ݍ is:

,݌ ,ݍ¬ ¬ ݍ U ݌ ఠ

• The satisfaction sequence of (݌ ݍ)ఠ w.r.t.
ݍ U ݌ is:

,݌ ,ݍ¬ ݍ ܷ ݌ ,݌¬ ,ݍ ݍ ܷ ݌ ఠ

Satisfaction sequence

• The satisfaction sequence of a computation
ଶݏଵݏ଴ݏ … with respect to ߮ is the sequence ߙ଴ߙଵߙଶ …
where ߙ௜ contains the formulas of ݈ܿ(߮) satisfied by
௜ାଶݏ௜ାଵݏ௜ݏ …

• The satisfaction sequence of ݌ ఠ w.r.t. ݌ U ݍ is:

,݌ ,ݍ¬ ¬ ݍ U ݌ ఠ

• The satisfaction sequence of (݌ ݍ)ఠ w.r.t. ݌ U ݍ is:

,݌ ݍ U ݌,ݍ¬ ,݌¬ ,ݍ ݍ U ݌ ఠ

• Goal for the next slides: give a syntactic characterization
of the satisfaction sequence

Atoms

• Intuition: an atom is a “maximal set of formulas of ݈ܿ(߮) that can be
simultaneously true if one only knows the meaning of ¬ and ∧”

• A set ߙ ⊆ ݈ܿ(߮) is an atom if it satisfies the following conditions:

– If ܍ܝܚܜ ∈ ݈ܿ(߮), then ܍ܝܚܜ ∈ ࢻ

– For every ߰ ∈ ݈ܿ ߮ , exactly one of ߰ and neg(߰) belong to ߙ

– For every ߰ଵ ∧ ߰ଶ ∈ ݈ܿ(߮), ߰ଵ ∧ ߰ଶ ∈ ߙ iff ߰ଵ ∈ ߙ and ߰ଶ ∈ ߙ

• Examples of atoms for ߮ = ݌)¬ ∧ : ݌U F (ݍ
,݌¬ ,ݍ¬ ¬ ݌ ∧ ݍ , F݌,߮ ,݌ ,ݍ ݌ ∧ ݍ , ¬F݌, ¬߮

• Examples of non-atoms for ߮ = ݌)¬ ∧ : ݌U F (ݍ
,݌ ݌,ݍ ∧ ,ݍ F݌ ,݌¬ ݌,ݍ ∧ ,ݍ F݌,߮

• We have: all elements of a satisfaction sequence are atoms

Atoms

• Intuition: an atom is a “maximal set of formulas of ݈ܿ(߮) that can be
simultaneously true if one only knows the meaning of ¬ and ∧”

• A set ߙ ⊆ ݈ܿ(߮) is an atom if it satisfies the following conditions:

– If ܍ܝܚܜ ∈ ݈ܿ(߮), then ܍ܝܚܜ ∈ ࢻ

– For every ߰ ∈ ݈ܿ ߮ , exactly one of ߰ and neg(߰) belong to ߙ

– For every ߰ଵ ∧ ߰ଶ ∈ ݈ܿ(߮), ߰ଵ ∧ ߰ଶ ∈ ߙ iff ߰ଵ ∈ ߙ and ߰ଶ ∈ ߙ

• Examples of atoms for ߮ = ݌)¬ ∧ : ݌U F (ݍ
,݌¬ ,ݍ¬ ¬ ݌ ∧ ݍ , F݌,߮ ,݌ ,ݍ ݌ ∧ ݍ , ¬F݌, ¬߮

• Examples of non-atoms for ߮ = ݌)¬ ∧ : ݌U F (ݍ
,݌ ݌,ݍ ∧ ,ݍ F݌ ,݌¬ ݌,ݍ ∧ ,ݍ F݌,߮

• We have: all elements of a satisfaction sequence are atoms

Atoms

• Intuition: an atom is a “maximal set of formulas of ݈ܿ(߮) that can be
simultaneously true if one only knows the meaning of ¬ and ∧”

• A set ߙ ⊆ ݈ܿ(߮) is an atom if it satisfies the following conditions:

– If ܍ܝܚܜ ∈ ݈ܿ(߮), then ܍ܝܚܜ ∈ ࢻ

– For every ߰ ∈ ݈ܿ ߮ , exactly one of ߰ and neg(߰) belong to ߙ

– For every ߰ଵ ∧ ߰ଶ ∈ ݈ܿ(߮), ߰ଵ ∧ ߰ଶ ∈ ߙ iff ߰ଵ ∈ ߙ and ߰ଶ ∈ ߙ

• Examples of atoms for ߮ = ݌)¬ ∧ : ݌U F (ݍ
,݌¬ ,ݍ¬ ¬ ݌ ∧ ݍ , F݌,߮ ,݌ ,ݍ ݌ ∧ ݍ , ¬F݌, ¬߮

• Examples of non-atoms for ߮ = ݌)¬ ∧ : ݌U F (ݍ
,݌ ݌,ݍ ∧ ,ݍ F݌ ,݌¬ ݌,ݍ ∧ ,ݍ F݌,߮

• We have: all elements of a satisfaction sequence are atoms

Atoms

• Intuition: an atom is a “maximal set of formulas of ݈ܿ(߮) that can be
simultaneously true if one only knows the meaning of ¬ and ∧”

• A set ߙ ⊆ ݈ܿ(߮) is an atom if it satisfies the following conditions:

– If ܍ܝܚܜ ∈ ݈ܿ(߮), then ܍ܝܚܜ ∈ ࢻ

– For every ߰ ∈ ݈ܿ ߮ , exactly one of ߰ and neg(߰) belong to ߙ

– For every ߰ଵ ∧ ߰ଶ ∈ ݈ܿ(߮), ߰ଵ ∧ ߰ଶ ∈ ߙ iff ߰ଵ ∈ ߙ and ߰ଶ ∈ ߙ

• Examples of atoms for ߮ = ݌)¬ ∧ : ݌U F (ݍ
,݌¬ ,ݍ¬ ¬ ݌ ∧ ݍ , F݌,߮ ,݌ ,ݍ ݌ ∧ ݍ , ¬F݌, ¬߮

• Examples of non-atoms for ߮ = ݌)¬ ∧ : ݌U F (ݍ
,݌ ݌,ݍ ∧ ,ݍ F݌ ,݌¬ ݌,ݍ ∧ ,ݍ F݌,߮

• We have: all elements of a satisfaction sequence are atoms

Atoms

• Intuition: an atom is a “maximal set of formulas of ݈ܿ(߮) that can be
simultaneously true if one only knows the meaning of ¬ and ∧”

• A set ߙ ⊆ ݈ܿ(߮) is an atom if it satisfies the following conditions:

– If ܍ܝܚܜ ∈ ݈ܿ(߮), then ܍ܝܚܜ ∈ ࢻ

– For every ߰ ∈ ݈ܿ ߮ , exactly one of ߰ and neg(߰) belong to ߙ

– For every ߰ଵ ∧ ߰ଶ ∈ ݈ܿ(߮), ߰ଵ ∧ ߰ଶ ∈ ߙ iff ߰ଵ ∈ ߙ and ߰ଶ ∈ ߙ

• Examples of atoms for ߮ = ݌)¬ ∧ : ݌U F (ݍ
,݌¬ ,ݍ¬ ¬ ݌ ∧ ݍ , F݌,߮ ,݌ ,ݍ ݌ ∧ ݍ , ¬F݌, ¬߮

• Examples of non-atoms for ߮ = ݌)¬ ∧ : ݌U F (ݍ
,݌ ݌,ݍ ∧ ,ݍ F݌ ,݌¬ ݌,ݍ ∧ ,ݍ F݌,߮

• We have: all elements of a satisfaction sequence are atoms

Pre-Hintikka sequences

• A pre-Hinttika sequence for ߮ is a sequence ߙ଴ߙଵߙଶ … of
atoms satisfying the following conditions for every ݅ ≥ 0:
– For every X߰ ∈ ݈ܿ ߮ :
X߰ ∈ ௜ߙ iff ߰ ∈ ௜ାଵߙ

– For every ߰ଵU ߰ଶ ∈ ݈ܿ(߮) :
߰ଵU ߰ଶ ∈ ௜ߙ iff ߰ଶ ∈ ௜ߙ or ߰ଵ ∈ ௜ߙ and ߰ଵ U ߰ଶ ∈ ௜ାଵߙ

• A pre-Hinttika sequence is a Hinttika sequence if it also
satisfies:
– For every ߰ଵܷ ߰ଶ ∈ ݈ܿ(߮) :

there exists ݆ ≥ ݅ such that ߰ଶ ∈ ௝ߙ

Pre-Hintikka sequences

• A pre-Hinttika sequence for ߮ is a sequence ߙ଴ߙଵߙଶ … of
atoms satisfying the following conditions for every ݅ ≥ 0:
– For every X߰ ∈ ݈ܿ ߮ :
X߰ ∈ ௜ߙ iff ߰ ∈ ௜ାଵߙ

– For every ߰ଵU ߰ଶ ∈ ݈ܿ(߮) :
߰ଵU ߰ଶ ∈ ௜ߙ iff ߰ଶ ∈ ௜ߙ or ߰ଵ ∈ ௜ߙ and ߰ଵ U ߰ଶ ∈ ௜ାଵߙ

• We have: every satisfaction sequence is a pre-Hintikka
sequence.
– For every ߰ଵܷ ߰ଶ ∈ ݈ܿ(߮) :

there exists ݆ ≥ ݅ such that ߰ଶ ∈ ௝ߙ

Hintikka sequences

• A pre-Hinttika sequence ߙ଴ߙଵߙଶ …is a Hinttika sequence
if it satisfies for every ݅ ≥ 0:
– For every ߰ଵU ߰ଶ ∈ ݈ܿ(߮): if ߰ଵU ߰ଶ ∈ ௜ߙ then

there exists ݆ ≥ ݅ such that ߰ଶ ∈ ௝ߙ
• We have: every satisfaction sequence is a Hintikka

sequence.

Hintikka sequences: An example

• Let ߮ = ¬ ݌ ∧ ݍ U (ݎ ∧ (ݏ . Which of the following are
pre-Hintikka and Hintikka sequences ?
1. ,݌ ,ݍ¬ ,ݎ ߮,ݏ ఠ

2. ,݌¬ ,ݎ ¬߮ ఠ

3. ,݌¬ ,ݍ ,ݎ¬ ݎ ∧ ,ݏ ¬߮ ఠ

4. ,݌} ,ݍ ݌ ∧ ,ݍ ,ݎ ,ݏ ݎ ∧ ,ݏ ¬߮}

5. ,݌ ,ݍ¬ ¬ ݌ ∧ ݍ , ,ݎ¬ ,ݏ ¬ ݎ ∧ ݏ ,߮ ఠ

6. ,݌ ,ݍ ݌ ∧ ݍ , ,ݎ ,ݏ ݎ) ∧ ,ݏ) ߮ ఠ

Hintikka sequences: An example

• Let ߮ = ¬ ݌ ∧ ݍ U (ݎ ∧ (ݏ . Which of the following are
pre-Hintikka and Hintikka sequences ?
1. ,݌ ,ݍ¬ ,ݎ ߮,ݏ ఠ

2. ,݌¬ ,ݎ ¬߮ ఠ

3. ,݌¬ ,ݍ ,ݎ¬ ݎ ∧ ,ݏ ¬߮ ఠ

4. ,݌} ,ݍ ݌ ∧ ,ݍ ,ݎ ,ݏ ݎ ∧ ,ݏ ¬߮}

5. ,݌ ,ݍ¬ ¬ ݌ ∧ ݍ , ,ݎ¬ ,ݏ ¬ ݎ ∧ ݏ ,߮ ఠ

6. ,݌ ,ݍ ݌ ∧ ݍ , ,ݎ ,ݏ ݎ) ∧ ,ݏ) ߮ ఠ

Hintikka sequences: An example

• Let ߮ = ¬ ݌ ∧ ݍ U (ݎ ∧ (ݏ . Which of the following are
pre-Hintikka and Hintikka sequences ?
1. ,݌ ,ݍ¬ ,ݎ ߮,ݏ ఠ

2. ,݌¬ ,ݎ ¬߮ ఠ

3. ,݌¬ ,ݍ ,ݎ¬ ݎ ∧ ,ݏ ¬߮ ఠ

4. ,݌} ,ݍ ݌ ∧ ,ݍ ,ݎ ,ݏ ݎ ∧ ,ݏ ¬߮}

5. ,݌ ,ݍ¬ ¬ ݌ ∧ ݍ , ,ݎ¬ ,ݏ ¬ ݎ ∧ ݏ ,߮ ఠ

6. ,݌ ,ݍ ݌ ∧ ݍ , ,ݎ ,ݏ ݎ) ∧ ,ݏ) ߮ ఠ

Hintikka sequences: An example

• Let ߮ = ¬ ݌ ∧ ݍ U (ݎ ∧ (ݏ . Which of the following are
pre-Hintikka and Hintikka sequences ?
1. ,݌ ,ݍ¬ ,ݎ ߮,ݏ ఠ

2. ,݌¬ ,ݎ ¬߮ ఠ

3. ,݌¬ ,ݍ ,ݎ¬ ݎ) ∧ ,(ݏ ¬߮ ఠ

4. ,݌} ,ݍ ݌ ∧ ,ݍ ,ݎ ,ݏ ݎ ∧ ,ݏ ¬߮}

5. ,݌ ,ݍ¬ ¬ ݌ ∧ ݍ , ,ݎ¬ ,ݏ ¬ ݎ ∧ ݏ ,߮ ఠ

6. ,݌ ,ݍ ݌ ∧ ݍ , ,ݎ ,ݏ ݎ) ∧ ,ݏ) ߮ ఠ

Hintikka sequences: An example

• Let ߮ = ¬ ݌ ∧ ݍ U (ݎ ∧ (ݏ . Which of the following are
pre-Hintikka and Hintikka sequences ?
1. ,݌ ,ݍ¬ ,ݎ ߮,ݏ ఠ

2. ,݌¬ ,ݎ ¬߮ ఠ

3. ,݌¬ ,ݍ ,ݎ¬ ݎ) ∧ ,(ݏ ¬߮ ఠ

4. ,݌ ,ݍ ݌ ∧ ݍ , ,ݎ ,ݏ ݎ ∧ ݏ , ¬߮ ఠ

5. ,݌ ,ݍ¬ ¬ ݌ ∧ ݍ , ,ݎ¬ ,ݏ ¬ ݎ ∧ ݏ ,߮ ఠ

6. ,݌ ,ݍ ݌ ∧ ݍ , ,ݎ ,ݏ ݎ) ∧ ,ݏ) ߮ ఠ

Hintikka sequences: An example

• Let ߮ = ¬ ݌ ∧ ݍ U (ݎ ∧ (ݏ . Which of the following are
pre-Hintikka and Hintikka sequences ?
1. ,݌ ,ݍ¬ ,ݎ ߮,ݏ ఠ

2. ,݌¬ ,ݎ ¬߮ ఠ

3. ,݌¬ ,ݍ ,ݎ¬ ݎ) ∧ ,(ݏ ¬߮ ఠ

4. ,݌ ,ݍ ݌ ∧ ݍ , ,ݎ ,ݏ ݎ ∧ ݏ , ¬߮ ఠ

5. ,݌ ,ݍ¬ ¬ ݌ ∧ ݍ , ,ݎ¬ ,ݏ ¬ ݎ ∧ ݏ ,߮ ఠ

6. ,݌ ,ݍ ݌ ∧ ݍ , ,ݎ ,ݏ ݎ) ∧ ,ݏ) ߮ ఠ

Hintikka sequences: An example

• Let ߮ = ¬ ݌ ∧ ݍ U (ݎ ∧ (ݏ . Which of the following are
pre-Hintikka and Hintikka sequences ?
1. ,݌ ,ݍ¬ ,ݎ ߮,ݏ ఠ

2. ,݌¬ ,ݎ ¬߮ ఠ

3. ,݌¬ ,ݍ ,ݎ¬ ݎ) ∧ ,(ݏ ¬߮ ఠ

4. ,݌ ,ݍ ݌ ∧ ݍ , ,ݎ ,ݏ ݎ ∧ ݏ , ¬߮ ఠ

5. ,݌ ,ݍ¬ ¬ ݌ ∧ ݍ , ,ݎ¬ ,ݏ ¬ ݎ ∧ ݏ ,߮ ఠ

6. ,݌ ,ݍ ݌ ∧ ݍ , ,ݎ ,ݏ ݎ ∧ ݏ ,߮ ఠ

Main theorem

• Definition: A Hintikka sequence ଶߙଵߙ଴ߙ … extends a
computation ଶݏଵݏ଴ݏ … if ௜ݏ ∩ ݈ܿ ߮ = ௜ߙ ∩ ܲܣ for every
݅ ≥ 0.

• Theorem: Every computation ݏ଴ݏଵݏଶ … can be extended
to a unique Hintikka sequence, and this extension is the
satisfaction sequence.

Strategy for the NGA of a formula

• Let ߪ be a computation over ܲܣ.
• We have: ߪ ⊨ ߮

iff ߮ belongs to the first set of the
satisfaction sequence for ߪ

iff ߮ belongs to the first set of the
Hintikka sequence for ߪ

• Strategy: design the NGA so that for every ߪ
– The runs on ߪ correspond to the pre-Hintikka sequences

ଶߙଵߙ଴ߙ … such that ߮ ∈ ଴ߙ
– A run is accepting iff its corresponding pre-Hintikka

sequence is also a Hintikka sequence.

Strategy for the NGA of a formula

• Let ߪ be a computation over ܲܣ.
• We have: ߪ ⊨ ߮

iff ߮ belongs to the first set of the
satisfaction sequence for ߪ

iff ߮ belongs to the first set of the
Hintikka sequence for ߪ

• Strategy: design the NGA so that for every ߪ
– The runs on ߪ correspond to the pre-Hintikka sequences

ଶߙଵߙ଴ߙ … such that ߮ ∈ ଴ߙ
– A run is accepting iff its corresponding pre-Hintikka

sequence is also a Hintikka sequence.

Strategy for the NGA of a formula

• Let ߪ be a computation over ܲܣ.
• We have: ߪ ⊨ ߮

iff ߮ belongs to the first set of the
satisfaction sequence for ߪ

iff ߮ belongs to the first set of the
Hintikka sequence for ߪ

• Strategy: design the NGA so that for every ߪ
– The runs on ߪ correspond to the pre-Hintikka sequences

ଶߙଵߙ଴ߙ … that extend ߪ and satisfy ߮ ∈ ଴ߙ
– A run is accepting iff its corresponding pre-Hintikka

sequence is also a Hintikka sequence.

The NGA ܣఝ

• Alphabet: 2஺௉

• States: atoms of ߮.
• Initial states: atoms containing ߮.

• Transitions: triples ߙ
௦
ߚ→ such that ߙ ∩ ,݌} ݌¬ ∣ ݌ ∈

{ܲܣ = ݏ and ߚ,ߙ satisfies the conditions of a pre-
Hintikka sequence.

• Sets of accepting states: A set ܨటభ௎టమ for every
until-subformula߰ଵܷ߰ଶ of ߮.
ߙ టభ௎టమcontains the atomsܨ such that ߰ଵܷ߰ଶ ∉ ߙ
or ߰ଶ ∈ .ߙ

The NGA ܣఝ

• Alphabet: 2஺௉

• States: atoms of ߮.
• Initial states: atoms containing ߮.

• Transitions: triples ߙ
௦
ߚ→ such that ߙ ∩ ,݌} ݌¬ ∣ ݌ ∈

{ܲܣ = ݏ and ߚ,ߙ satisfies the conditions of a pre-
Hintikka sequence.

• Sets of accepting states: A set ܨటభ௎టమ for every
until-subformula߰ଵܷ߰ଶ of ߮.
ߙ టభ௎టమcontains the atomsܨ such that ߰ଵܷ߰ଶ ∉ ߙ
or ߰ଶ ∈ .ߙ

The NGA ܣఝ

• Alphabet: 2஺௉

• States: atoms of ߮.
• Initial states: atoms containing ߮.

• Transitions: triples ߙ
௦
ߚ→ such that ߙ ∩ ,݌} ݌¬ ∣ ݌ ∈

{ܲܣ = ݏ and ߚ,ߙ satisfies the conditions of a pre-
Hintikka sequence.

• Sets of accepting states: A set ܨటభ௎టమ for every
until-subformula߰ଵܷ߰ଶ of ߮.
ߙ టభ௎టమcontains the atomsܨ such that ߰ଵܷ߰ଶ ∉ ߙ
or ߰ଶ ∈ .ߙ

The NGA ܣఝ

• Alphabet: 2஺௉

• States: atoms of ߮.
• Initial states: atoms containing ߮.

• Transitions: triples ߙ
௦
ߚ→ such that ߙ ∩ ,݌} ݌¬ ∣ ݌ ∈

{ܲܣ = ݏ and ߚ,ߙ satisfies the conditions of a pre-
Hintikka sequence.

• Sets of accepting states: A set ܨటభ௎టమ for every
until-subformula߰ଵܷ߰ଶ of ߮.
ߙ టభ௎టమcontains the atomsܨ such that ߰ଵܷ߰ଶ ∉ ߙ
or ߰ଶ ∈ .ߙ

The NGA ܣఝ

• Alphabet: 2஺௉

• States: atoms of ߮.
• Initial states: atoms containing ߮.

• Transitions: triples ߙ
௦
ߚ→ such that ߙ ∩ ܲܣ = ݏ and

ߚ ߙ satisfies the conditions of a pre-Hintikka
sequence.

• Sets of accepting states: A set ܨటభ௎టమ for every
until-subformula߰ଵܷ߰ଶ of ߮.
ߙ టభ௎టమcontains the atomsܨ such that ߰ଵܷ߰ଶ ∉ ߙ
or ߰ଶ ∈ .ߙ

The NGA ܣఝ

• Alphabet: 2஺௉
• States: atoms of ߮.
• Initial states: atoms containing ߮.
• Transitions: triples ߙ

௦
ߚ→ such that ߙ ∩ ܲܣ = ݏ and

ߚ ߙ satisfies the conditions of a pre-Hintikka
sequence.

• Sets of accepting states: A set ܨటభ௎టమ for every
until-subformula߰ଵU߰ଶ of ߮.
ߙ టభ௎టమcontains the atomsܨ such that ߰ଵU߰ଶ ∉ ߙ
or ߰ଶ ∈ .ߙ

Example: The NGA ܣ௣ ୙ ௤

(Labels of transitions omitted. The label of a transition from
atom ߙ is the set {݌ ∈ ܲܣ ∣ ݌ ∈ There is only one set of .{ߙ
accepting states.)

Some observations

• All transitions leaving a state carry the same label.
• For every computation ݏ଴ݏଵݏଶ … satisfying߮ there is a

unique accepting run ߙ଴
௦బ→ߙଵ

௦భ→ߙଶ
௦మ→⋯, namely the

one such that ߙ଴ߙଵߙଶ … is the satisfaction sequence for
ଶݏଵݏ଴ݏ … .

• The sets of computations accepted from each initial
state are pairwise disjoint.

• The number of states is bounded by 2 ఝ .

