
Implementing boolean 
operations for

generalized Büchi automata 



Generalized Büchi Automata

• An acceptance condition is a generalized Büchi
condition if there are sets ,ଵܨ … ௞ܨ, ⊆ ܳ of
accepting states such that a run ߩ is accepting
iff it visits each of ,ଵܨ … ௞ܨ, infinitely often.

૚ࡲ = ݍ
૛ࡲ = {ݎ}



From NGAs to NBAs

• Important fact: 

All the sets ܨଵ, … ௞ are visited  infinitely oftenܨ,

is equivalent to  

ଵܨ is eventually visited
and for every 1 ≤ ݅ ≤ ݇

every visit  to ܨ௜ is eventually followed by a visit to “ܨ௜⊕ଵ”



From NGAs to NBAs
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૚ࡲ = ݍ
૛ࡲ = {ݎ}

NGA NBA



• Let ଵܣ = ( ଵܵ, ଵܨ  ) and  ܣଶ = (ܵଶ, ଶܨ  )

• Let ܵ be the result of putting ଵܵ and  ܵଶ „side by side“ 

ܵ ≔ (ܳଵ ∪ ܳଶ, Σ, ଵߜ ∪ ଶ,ܳ଴ଵߜ ∪ ܳ଴ଶ)

• Which NGA recognizes ܮ ଵܣ ∪ ܮ ଶܣ  ?

•  ܵ, ଵܨ ∪ ଶܨ  

•  ܵ, ଶܨ,ଵܨ  

Union of NGA: The NBA case



• Let  ܣଵ = ( ଵܵ, ଵଶܨ,ଵଵܨ   ) and  ܣଶ = (ܵଶ, ଶଶܨ,ଶଵܨ   )

• Let ܵ be the result of putting ଵܵ and  ܵଶ „side by side“ 

ܵ ≔ (ܳଵ ∪ ܳଶ, Σ, ଵߜ ∪ ଶ,ܳ଴ଵߜ ∪ ܳ଴ଶ)

• Which NGA recognizes ܮ ଵܣ ∪ ܮ ଶܣ  ?

•  ܵ, ଵଵܨ ∪ ଶଵܨ ∪ ଵଶܨ ∪ ଶଶܨ  

•  ܵ, ଵଵܨ ∪ ଵଶܨ,ଶଵܨ ∪ ଶଶܨ  

•  ܵ, ଵଵܨ ∪ ଵଵܨ,ଶଵܨ ∪ ଵଶܨ,ଶଶܨ ∪ ଵଶܨ,ଶଵܨ ∪ ଶଶܨ  

Union of NGA: Another case



• Let ܣଵ = ଵܵ, ,ଵଵܨ } … {ଵ௞ܨ,

ଶܣ = ܵଶ, ,ଶଵܨ  … ଶ௞ܨ, ,ଶ௞ାଵܨ, … ଶ௞ା௟ܨ,

• Let ܵ be the result of putting ଵܵ and  ܵଶ „side by side“ 

ܵ ≔ (ܳଵ ∪ ܳଶ,Σ, ଵߜ ∪ ଶ,ܳ଴ଵߜ ∪ ܳ଴ଶ)

• The following NGA recognizes ܮ ଵܣ ∪ ܮ ଶܣ

ܣ = ܵ,  
ଵଵܨ
∪
ଶଵܨ

 , … ,
ଵ௞ܨ
∪
ଶ௞ܨ

 ,
ܳଵ
∪

ଶ௞ାଵܨ
 , … ,

ܳଵ
∪

ଶ௞ା௟ܨ
 

Union of NGA: The general case



Intersection of NGA: The NBA case

• Let ଵܣ = ( ଵܵ, ଵܨ  ) and  ܣଶ = (ܵଶ, ଶܨ  )

• Let ܵ be the pairing of ଵܵ and  ܵଶ
ܵ ≔ ܳଵ × ܳଶ ,Σ , ଴ଵܳ, ߜ × ܳ଴ଶ

where ߜ ,ଵݍ ଶݍ ,ܽ = ߜ ,ଵݍ ܽ × ߜ ܽ,ଶݍ

• Which NGA recognizes ܮ ଵܣ ∩ ܮ ଶܣ  ?

•  ܵ, ଵܨ × ଶܨ  

•  ܵ, ଵܨ × ܳଶ,ܳଵ × ଶܨ  



Intersection of NGA: The general case

• Let ܣଵ = ଵܵ, ,ଵଵܨ } … {ଵ௞ܨ, ଶܣ , = ܵଶ, ,ଶଵܨ } … {ଵ௟ܨ,

• Let ܵ be the pairing of ଵܵ and  ܵଶ
ܵ ≔ ܳଵ × ܳଶ ,Σ , ଴ଵܳ, ߜ × ܳ଴ଶ

where ߜ ,ଵݍ ଶݍ ,ܽ = ߜ ,ଵݍ ܽ × ߜ ܽ,ଶݍ

• The following NGA recognizes ܮ ଵܣ ∩ ܮ ଶܣ :

  ܵ , ×ଵଵܨ } ܳଶ  , … ଵ௞ܨ, × ܳଶ ,ܳଵ × , ଶଵܨ … ,ܳଵ × {ଶ௟ܨ
௞ା௟ 

 



Intersection of NGA: The general case



Special case

• The intersection of ( ଵܵ, ଵܨ  ) and  (ܵଶ, ଶܨ  ) is

 [ ଵܵ, ܵଶ], ଵܨ ×  ܳଶ,ܳଵ × ଶܨ  

• Not a NBA in general.

• However, if ଵܨ = ܳଵ then ܨଵ ×  ܳଶ,ܳଵ × ଶܨ can 

be replaced by ܳଵ × ଶܨ , and so the result is 

again a NBA.



Complementation of NGA

• Given a NBA ܣ, we construct a NBA ܤ such 
that ܮఠ ܤ = (ܣ)ఠܮ 

• We can then complement a NGA by 
transforming it first into a NBA

• Complementation construction radically 
different from the one for NFAs.



Problems

• The powerset construction does not work.

• Exchanging final and non-final states in DBAs 
also fails.



Solution

• Extend the idea used to determinize co-Büchi 
automata with a new component.

• Recall: a NBA accepts a word ݓ iff some path of 
݀ܽ݃ ݓ visits final states infinitely often.

• Goal: given NBA ܣ, construct NBA ̅ܣ such that:

ܣ rejects ݓ
iff

no path of ݀ܽ݃ ݓ visits accepting states of ܣ i.o.
iff

some run of ̅ܣ visits accepting states of ̅ܣ i.o.
iff

ܣ̅ accepts ݓ



Running example



Rankings
• Mappings that associate to every node of 
(ݓ)݃ܽ݀ a rank (a natural number) such that
– ranks never increase along a path, and
– ranks of accepting nodes are even. 



Odd rankings

• A ranking is odd if every infinite path of 
݀ܽ݃ ݓ visits nodes of odd rank i.o. 



Goal: given NBA ܣ, construct NBA ̅ܣ such that:

ܣ rejects ݓ
iff

no path of ݀ܽ݃ ݓ visits accepting states of ܣ i.o.
iff

݀ܽ݃ ݓ has an odd ranking
iff

some run of ̅ܣ visits accepting states of ̅ܣ i.o.
iff

ܣ̅ accepts ݓ

Odd rankings



Prop: 

Further, all ranks of the odd ranking are in the range 0,2݊ , and all 
states of the first level rank have rank 2݊.

Proof:  
(⇐): In an odd ranking of ݀ܽ݃ ݓ , ranks along infinite paths stabilize
to odd values. 
Therefore, since accepting nodes have even rank, no path of ݀ܽ݃ ݓ
visits accepting nodes i.o.

no path of ݀ܽ݃ ݓ visits accepting states of ܣ i.o.
iff 

݀ܽ݃ ݓ has an odd ranking

Odd rankings



(⇒): Assume no path of ݀ܽ݃ ݓ visits accepting states of ܣ i.o.
Define an odd ranking of ݀ܽ݃ ݓ as follows:

• Construct a sequence ܦ଴ ⊇ ଵܦ ⊇ ⋯ଶܦ ⊇ ଶ௡ܦ ⊇ ଶ௡ାଵܦ of 
dags, where 

a) ଴ܦ = ݀ܽ݃ ݓ
b) ଶ௜ାଵܦ is the result of removing from ଶ௜ܦ all nodes with

finitely many descendants.
c) ଶ௜ାଶܦ is the result of removing all nodes of ଶ௜ାଵܦ with no

accepting descendants (a node is a descendant of itself).
• We define the rank of a node of ݀ܽ݃ ݓ as the index of the

unique dag ௝ܦ in the sequence such that the node belongs to
௝ܦ but not to .௝ାଵܦ

Odd rankings



• Even step: remove all nodes 
having only finitely many 
successors.

• Odd step: remove nodes with no
accepting descendants



• This definition of rank guarantees : 
1. Ranks along a path cannot increase.
2. Accepting states get even ranks, because they can 

only be removed from dags with even index.

• It remains to prove: 
– every node gets a rank, i.e., ܦଶ௡ାଵ = ∅.

• A round consists of two steps, an even step from
ଶ௜ܦ to ܦଶ௜ାଵ, and an odd step from ܦଶ௜ାଵto ܦଶ௜ାଶ.



• Each level of a dag has a width

• We define the width of a dag as the largest level 
width that appears infinitely often.

• Each round decreases the width of the dag by at 
least 1.

• Since the initial width is at most ݊, after at most ݊
rounds the width is 0, and then a last step removes
all nodes.



• Goal: ݀ܽ݃ ݓ has an odd ranking
iff

some run of ̅ܣ visits accepting states of ̅ܣ i.o.

• Idea: design ̅ܣ so that
 its runs on ݓ are the rankings of ݀ܽ݃(ݓ), and
 its accepting runs on ݓ are the odd rankings of 

݀ܽ݃ ݓ .



Representing rankings
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Representing rankings
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We can determine if
݊ଵ
݊ଶ

௟
→ ݊ଵᇱ

݊ଶᇱ
may appear in a 

ranking by just looking at ݊ଵ,݊ଶ,݊ଵᇱ ,݊ଶᇱ and ݈ : ranks 
should not increase.

Representing rankings



• ܣ̅ for or a two-state ܣ (more states analogous): 

– States: all 
ଵݔ
ଶݔ where 0 ≤ ௜ݔ ≤ 2݊ = 4 or ݔ௜ =⊥ and 

accepting states of get ܣ even rank or ⊥.

– Initial state: all states of the form 
݊ଵ
⊥

– Transitions: all 
݊ଵ
݊ଶ

௔
→ ݊ଵᇱ

݊ଶᇱ
s.t . ranks do not increase

• The runs of the automaton on a word ݓ correspond 
to all the rankings of ݀ܽ݃ ݓ .

• Observe: ̅ܣ is a NBA even if ܣ is a DBA, because 
there are many rankings for the same word.

First draft for ̅ܣ



Accepting states?

• The accepting states should be chosen so that 
a run is accepted iff its corresponding ranking
is odd.

• Problem: no way to do so when the only
information of a state is the ranking.



Owing states and breakpoints

• We use owing states and breakpoints again:
– A breakpoint of a ranking is now a level of the 

ranking such that no node of the level owes a visit 
to a node of odd rank.

– We have again: a ranking is odd iff it has infinitely 
many breakpoints.

– We enrich the states of ܣ̅ with a set of owing 
states, and choose the accepting states as those in 
which the set is empty. 



Owing states
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Owing states
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• For our two-state ܣ (the case of more states is 
analogous): 

– States: pairs
ଵݔ
ଶݔ ,ܱ where 

ଵݔ
ଶݔ as in the first

draft, and ܱ is a set of owing states (of even rank)

– Initial states: all states of the form 
ଵݔ
⊥ ,∅

– Transitions: all 
ଵݔ
ଶݔ

,ܱ 
௔
→ ଵᇱݔ

ଶᇱݔ
,ܱ′ s.t. ranks don‘t 

increase and owing states are correctly updated

– Final states: all states 
ଵݔ
ଶݔ ,∅

Second draft for ̅ܣ



• The runs of ̅ܣ on a word ݓ correspond to all 
the rankings of ݀ܽ݃ ݓ .

• The accepting runs of ̅ܣ on a word ݓ
correspond to all the odd rankings of 
݀ܽ݃ ݓ .

• Therefore:  ܮ ܣ̅ =   (ܣ)ܮ

Second draft for ̅ܣ



• We can reduce the number of initial states.
• For every ranking with ranks in the range

[0,2݊], changing the rank of all nodes of the
first level to 2݊ yields again a ranking.  
Further, if the old ranking is odd then the new
ranking is also odd.
So we can simplify the definition of the initial 
states to:

– Initial state: 2݊
⊥ ,∅

Final ̅ܣ (the final touch …) 



An example

• We construct the complements of 

ଵܣ = ( ݍ , ܽ , ,ߜ ݍ , ݍ ) with ߜ ܽ,ݍ = {ݍ}

ଶܣ = ( ݍ , ܽ , ,ߜ ݍ ,∅) with ߜ ܽ,ݍ = {ݍ}

• States of ∅,ଵ:  0ܣ̅ , 2,∅ , 0, {ݍ} , 2, {ݍ}

• States of ∅,ଶ:  0ܣ̅ , 1,∅ , 2,∅ , 0, {ݍ} , 2, {ݍ}

• Initial state of ̅ܣଵ and ̅ܣଶ: 2,∅

• Final states of ∅,ଵ: 2ܣ̅ ,  0,∅ (unreachable)

• Final states of ∅,ଶ: 2ܣ̅ , 1,∅ , 0,∅ (unreachable)



An example

ଵܣ ଶܣ



Complexity

• A state consists of a level of a ranking and a 
set of owing states.

• A level assigns to each state a number of
[0,2݊] or the symbol ⊥.

• So the complement NBA has at most 
2݊ + 2 ௡ ȉ 2௡ ∈ ݊ை ௡ = 2ை ௡ ୪୭୥ ௡ states. 

• Compare with 2௡ for the NFA case.
• We show that the log ݊ factor is unavoidable.



We define a family ܮ௡ ௡ஹଵ of ߱-languages s.t.
– ௡ܮ is accepted by a NBA with ݊ + 2 states.
– Every NBA accepting ܮ௡ has at least ݊! ∈ 2஀ ௡ ୪୭୥ ௡

states.

• The alphabet of ܮ௡ is Σ௡ = {1,2, … ,݊, #}.
• Assign to a word ݓ ∈ Σ௡ a graph (ݓ)ܩ as 

follows:
– Vertices: the numbers 1,2, … ,݊ .
– Edges: there is an edge ݅ → ݆ iff ݓ contains infinitely 

many occurrences of  ݆݅.
• Define: ݓ ∈ ௡ܮ iff (ݓ)ܩ has a cycle.



• ௡ܮ is accepted by a NBA with ݊ + 2 states.



Every NBA accepting ܮ௡ has at least ݊! ∈
2஀ ௡ ୪୭୥ ௡ states.
• Let ߬ denote a permutation of 1,2, … ,݊ . 
• We have:

a) For every ߬, the word ߬ # ఠ belongs to ௡ܮ
(i.e., its graph contains no cycle).

b) For every two distinct  ߬ଵ, ߬ଶ, every word 
containing  inf. many occurrences of ߬ଵ and
inf. many occurrences of ߬ଶ belongs to ܮ௡.



Every NBA accepting ܮ௡ has at least ݊! ∈
2஀ ௡ ୪୭୥ ௡ states.
• Assume ܣ recognizes ௡ܮ and let ߬ଵ, ߬ଶ distinct. 

By (a), ܣ has runs ߩଵ, # ଶ accepting ߬ଵߩ ఠ, 
߬ଶ # ఠ.  The sets of accepting states visited 

i.o. by ߩଵ, ଶߩ are disjoint.
– Otherwise we can ``interleave‘‘ߩଵ,ߩଶ to yield an 

acepting run for a word with inf. many occurrences 
of ߬ଵ, ߬ଶ , contradicting (b).

• So ܣ has at least one accepting state for each 
permutation, and so at least ݊! states.


