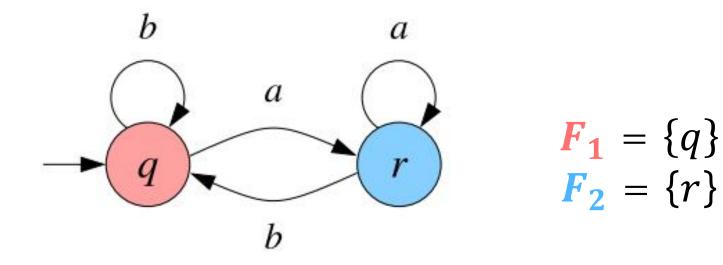
Implementing boolean operations for generalized Büchi automata

Generalized Büchi Automata

• An acceptance condition is a generalized Büchi condition if there are sets $F_1, \ldots, F_k \subseteq Q$ of accepting states such that a run ρ is accepting iff it visits each of F_1, \ldots, F_k infinitely often.

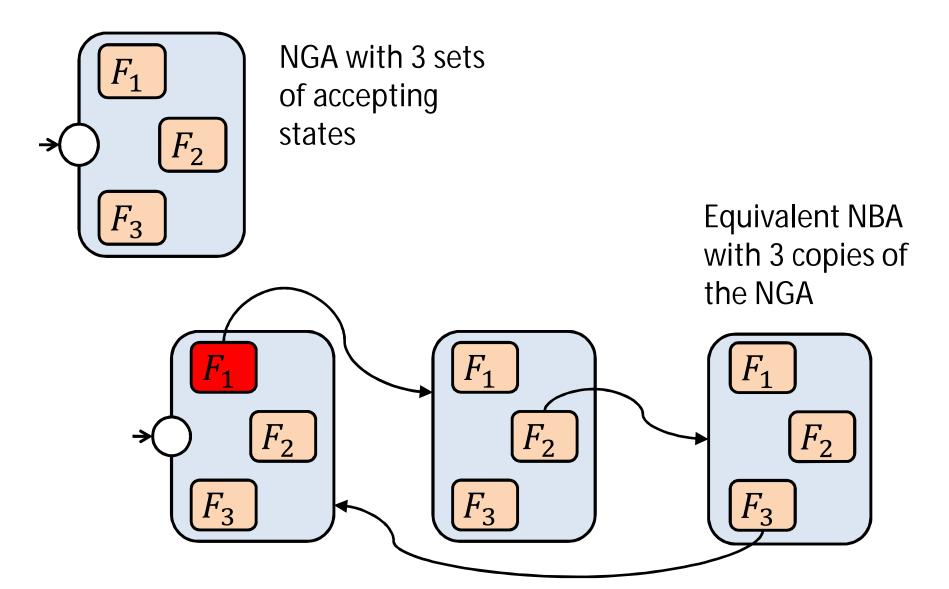


From NGAs to NBAs

• Important fact:

All the sets $F_1, ..., F_k$ are visited infinitely often is equivalent to F_1 is eventually visited and for every $1 \le i \le k$ every visit to F_i is eventually followed by a visit to " $F_{i \bigoplus 1}$ "

From NGAs to NBAs



NGAtoNBA(A)

Input: NGA $A = (Q, \Sigma, Q_0, \delta, \mathcal{F})$, where $\mathcal{F} = \{F_0, \dots, F_{m-1}\}$ **Output:** NBA $A' = (Q', \Sigma, \delta', Q'_0, F')$

$$1 \quad Q', \delta', F' \leftarrow \emptyset; \, Q'_0 \leftarrow \{[q_0, 0] \mid q_0 \in Q_0\}$$

2
$$W \leftarrow Q'_0$$

3 while $W \neq \emptyset$ do

5 add
$$[q, i]$$
 to Q'

6 **if**
$$q \in F_0$$
 and $i = 0$ then add $[q, i]$ to F'

for all
$$a \in \Sigma, q' \in \delta(q, a)$$
 do

8 **if**
$$q \notin F_i$$
 then

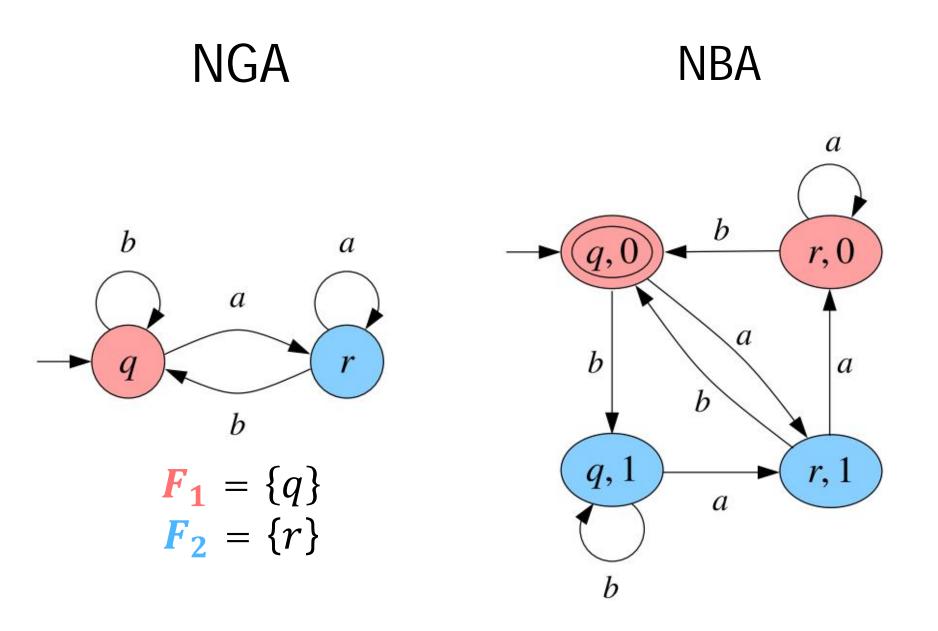
9 **if**
$$[q', i] \notin Q'$$
 then add $[q', i]$ to W

10 **add**
$$([q, i], a, [q', i])$$
 to δ'

11 else /*
$$q \in F_i$$
 */

- 12 **if** $[q', i \oplus 1] \notin Q'$ then add $[q', i \oplus 1]$ to W
- 13 **add** $([q, i], a, [q', i \oplus 1])$ to δ'

14 return $(Q', \Sigma, \delta', Q'_0, F')$



Union of NGA: The NBA case

- Let $A_1 = (S_1, \{F_1\})$ and $A_2 = (S_2, \{F_2\})$
- Let *S* be the result of putting S_1 and S_2 "side by side" $S \coloneqq (Q_1 \cup Q_2, \Sigma, \delta_1 \cup \delta_2, Q_{01} \cup Q_{02})$
- Which NGA recognizes $L(A_1) \cup L(A_2)$?
 - ($S, \{F_1 \cup F_2\}$)
 - ($S, \{F_1, F_2\}$)

Union of NGA: Another case

- Let $A_1 = (S_1, \{F_1^1, F_1^2\})$ and $A_2 = (S_2, \{F_2^1, F_2^2\})$
- Let *S* be the result of putting S_1 and S_2 "side by side" $S \coloneqq (Q_1 \cup Q_2, \Sigma, \delta_1 \cup \delta_2, Q_{01} \cup Q_{02})$
- Which NGA recognizes $L(A_1) \cup L(A_2)$?
 - $(S, \{F_1^1 \cup F_2^1 \cup F_1^2 \cup F_2^2\})$
 - ($S, \{F_1^1 \cup F_2^1, F_1^2 \cup F_2^2\}$)
 - ($S, \{F_1^1 \cup F_2^1, F_1^1 \cup F_2^2, F_1^2 \cup F_2^1, F_1^2 \cup F_2^2\}$)

Union of NGA: The general case

• Let
$$A_1 = (S_1, \{F_1^1, \dots, F_1^k\})$$

$$A_{2} = \left(S_{2}, \left\{F_{2}^{1}, \dots, F_{2}^{k}, F_{2}^{k+1}, \dots, F_{2}^{k+l}\right\}\right)$$

- Let *S* be the result of putting S_1 and S_2 "side by side" $S \coloneqq (Q_1 \cup Q_2, \Sigma, \delta_1 \cup \delta_2, Q_{01} \cup Q_{02})$
- The following NGA recognizes $L(A_1) \cup L(A_2)$

$$A = \left(S_{i} \left\{ \begin{array}{cccc} F_{1}^{1} & F_{1}^{k} & Q_{1} & Q_{1} \\ \cup & \dots & \cup & 0 & \dots & 0 \\ F_{2}^{1} & F_{2}^{k} & F_{2}^{k+1} & F_{2}^{k+l} \end{array} \right\} \right)$$

Intersection of NGA: The NBA case

- Let $A_1 = (S_1, \{F_1\})$ and $A_2 = (S_2, \{F_2\})$
- Let S be the pairing of S_1 and S_2

 $S \coloneqq (Q_1 \times Q_2 , \Sigma, \delta, Q_{01} \times Q_{02})$

where $\delta([q_1, q_2], a) = \delta(q_1, a) \times \delta(q_2, a)$

- Which NGA recognizes $L(A_1) \cap L(A_2)$?
 - $(S, \{F_1 \times F_2\})$
 - $(S, \{F_1 \times Q_2, Q_1 \times F_2\})$

Intersection of NGA: The general case

• Let
$$A_1 = (S_1, \{F_1^1, \dots, F_1^k\}), A_2 = (S_2, \{F_2^1, \dots, F_1^l\})$$

• Let S be the pairing of S_1 and S_2

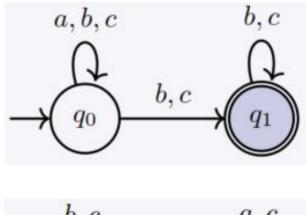
 $S \coloneqq (Q_1 \times Q_2 , \Sigma, \delta, Q_{01} \times Q_{02})$

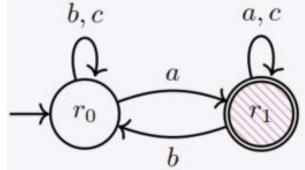
where $\delta([q_1, q_2], a) = \delta(q_1, a) \times \delta(q_2, a)$

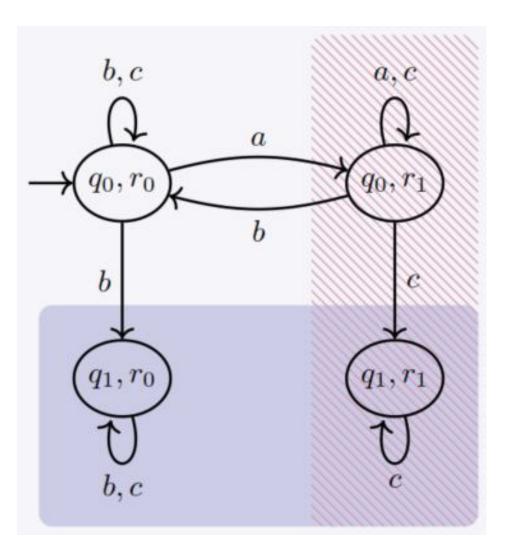
• The following NGA recognizes $L(A_1) \cap L(A_2)$:

$$\left(S,\underbrace{\{F_1^1 \times Q_2, \ldots, F_1^k \times Q_2, Q_1 \times F_2^1, \ldots, Q_1 \times F_2^l\}}_{k+l}\right)$$

Intersection of NGA: The general case







Special case

- The intersection of $(S_1, \{F_1\})$ and $(S_2, \{F_2\})$ is $([S_1, S_2], \{F_1 \times Q_2, Q_1 \times F_2\})$
- Not a NBA in general.
- However, if F₁ = Q₁ then {F₁ × Q₂, Q₁ × F₂} can be replaced by {Q₁ × F₂}, and so the result is again a NBA.

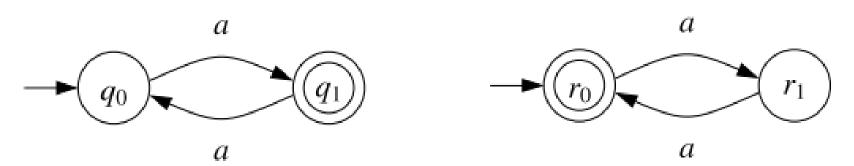
Complementation of NGA

- Given a NBA A, we construct a NBA B such that $L_{\omega}(B) = \overline{L_{\omega}(A)}$
- We can then complement a NGA by transforming it first into a NBA
- Complementation construction radically different from the one for NFAs.

Problems

• The powerset construction does not work.

• Exchanging final and non-final states in DBAs also fails.

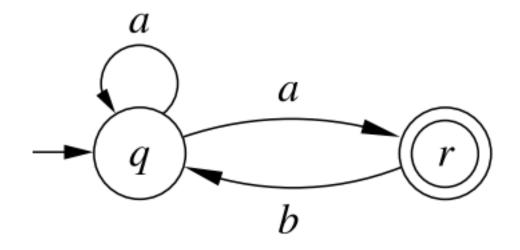


Solution

- Extend the idea used to determinize co-Büchi automata with a new component.
- Recall: a NBA accepts a word w iff some path of dag(w) visits final states infinitely often.
- Goal: given NBA A, construct NBA \overline{A} such that:

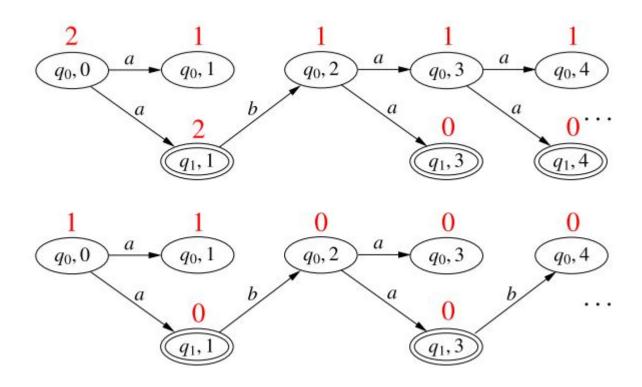
```
\begin{array}{c} A \text{ rejects } w \\ \text{iff} \\ \text{no path of } dag(w) \text{ visits accepting states of } A \text{ i.o.} \\ \text{iff} \\ \text{some run of } \bar{A} \text{ visits accepting states of } \bar{A} \text{ i.o.} \\ \text{iff} \\ \bar{A} \text{ accepts } w \end{array}
```

Running example

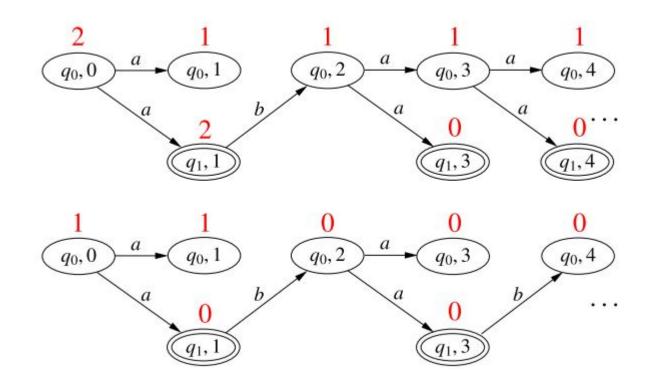


Rankings

- Mappings that associate to every node of dag(w) a rank (a natural number) such that – ranks never increase along a path, and
 - ranks of accepting nodes are even.



 A ranking is odd if every infinite path of dag(w) visits nodes of odd rank i.o.



Goal: given NBA A, construct NBA \overline{A} such that:

A rejects w iff no path of dag(w) visits accepting states of A i.o. iff dag(w) has an odd ranking iff some run of \overline{A} visits accepting states of \overline{A} i.o. iff \overline{A} accepts w

Prop:

no path of *dag(w)* visits accepting states of *A* i.o. iff *dag(w)* has an odd ranking

Further, all ranks of the odd ranking are in the range [0,2n], and all states of the first level rank have rank 2n.

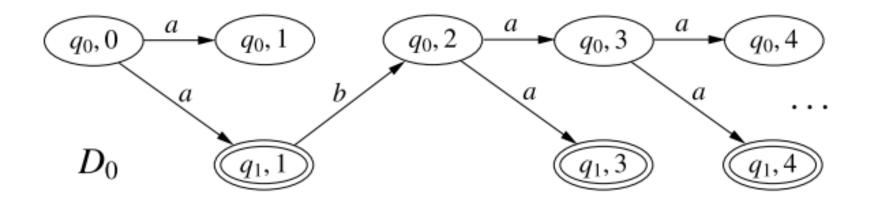
Proof:

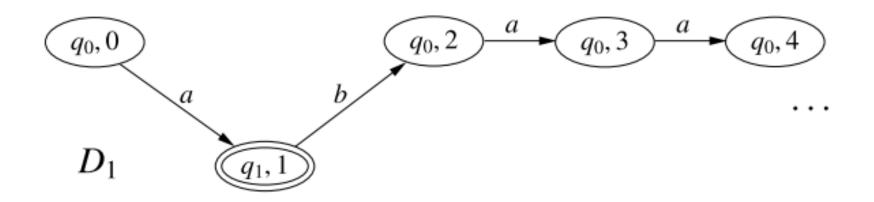
(\Leftarrow): In an odd ranking of dag(w), ranks along infinite paths stabilize to odd values.

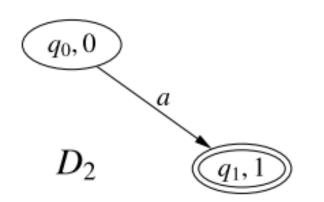
Therefore, since accepting nodes have even rank, no path of dag(w) visits accepting nodes i.o.

(⇒): Assume no path of dag(w) visits accepting states of A i.o. Define an odd ranking of dag(w) as follows:

- Construct a sequence $D_0 \supseteq D_1 \supseteq D_2 \cdots \supseteq D_{2n} \supseteq D_{2n+1}$ of dags, where
- a) $D_0 = dag(w)$
- b) D_{2i+1} is the result of removing from D_{2i} all nodes with finitely many descendants.
- c) D_{2i+2} is the result of removing all nodes of D_{2i+1} with no accepting descendants (a node is a descendant of itself).
- We define the rank of a node of dag(w) as the index of the unique dag D_j in the sequence such that the node belongs to D_j but not to D_{j+1}.







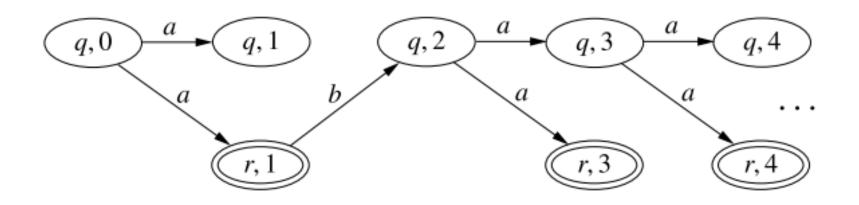
- Even step: remove all nodes having only finitely many successors.
- Odd step: remove nodes with no accepting descendants

- This definition of rank guarantees :
 - 1. Ranks along a path cannot increase.
 - 2. Accepting states get even ranks, because they can only be removed from dags with even index.
- It remains to prove:

- every node gets a rank, i.e., $D_{2n+1} = \emptyset$.

• A round consists of two steps, an even step from D_{2i} to D_{2i+1} , and an odd step from D_{2i+1} to D_{2i+2} .

• Each level of a dag has a width



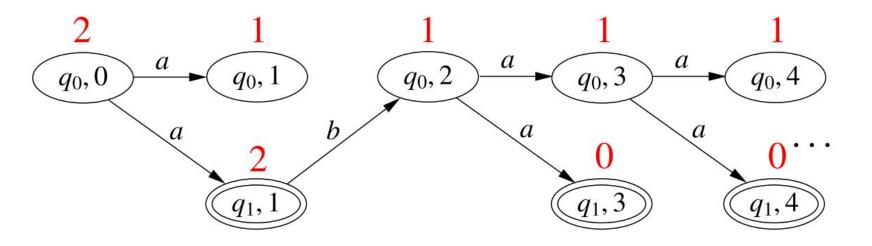
- We define the width of a dag as the largest level width that appears infinitely often.
- Each round decreases the width of the dag by at least 1.
- Since the initial width is at most n, after at most n rounds the width is 0, and then a last step removes all nodes.

• Goal:

 $\frac{dag(w)}{iff}$ has an odd ranking iff some run of \overline{A} visits accepting states of \overline{A} i.o.

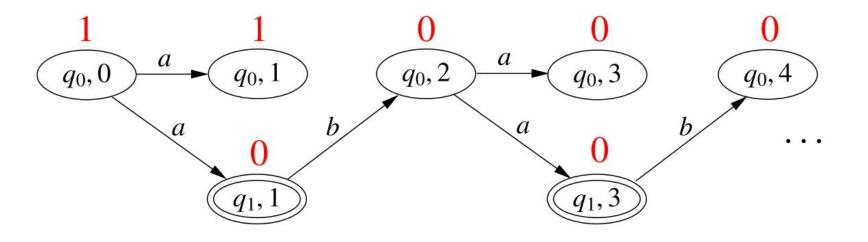
- Idea: design \overline{A} so that
 - its runs on w are the rankings of dag(w), and
 - its accepting runs on w are the odd rankings of dag(w).

Representing rankings



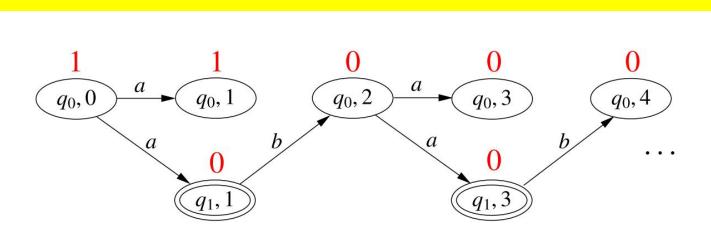
$\begin{bmatrix} 2 \\ 1 \end{bmatrix} \xrightarrow{a} \begin{bmatrix} 1 \\ 2 \end{bmatrix} \xrightarrow{b} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \xrightarrow{a} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \xrightarrow{a} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \xrightarrow{a} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \cdot$

Representing rankings



$\begin{bmatrix} 1 \\ 1 \end{bmatrix} \xrightarrow{a} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \xrightarrow{b} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \xrightarrow{a} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \xrightarrow{b} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \dots$

Representing rankings



$\begin{bmatrix} 1 \\ 1 \end{bmatrix} \xrightarrow{a} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \xrightarrow{b} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \xrightarrow{a} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \xrightarrow{b} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \dots$

We can determine if $\begin{bmatrix} n_1 \\ n_2 \end{bmatrix} \xrightarrow{l} \begin{bmatrix} n'_1 \\ n'_2 \end{bmatrix}$ may appear in a ranking by just looking at n_1, n_2, n'_1, n'_2 and l : ranks should not increase.

First draft for \overline{A}

- \overline{A} for or a two-state A (more states analogous):
 - States: all $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ where $0 \le x_i \le 2n = 4$ or $x_i = \bot$ and accepting states of *A* get even rank or \bot .
 - Initial state: all states of the form $\begin{bmatrix} n_1 \\ 1 \end{bmatrix}$
 - Transitions: all $\begin{bmatrix} n_1 \\ n_2 \end{bmatrix} \xrightarrow{a} \begin{bmatrix} n'_1 \\ n'_2 \end{bmatrix}$ s.t . ranks do not increase
- The runs of the automaton on a word *w* correspond to all the rankings of *dag(w)*.
- Observe: \overline{A} is a NBA even if A is a DBA, because there are many rankings for the same word.

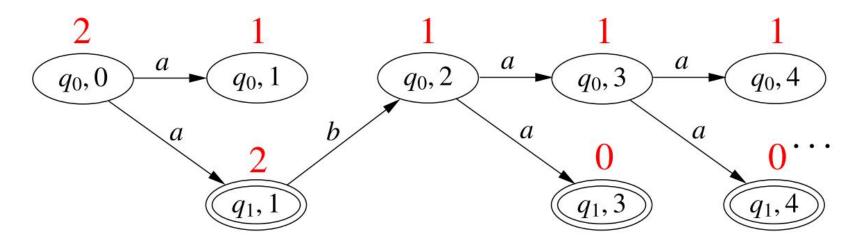
Accepting states?

- The accepting states should be chosen so that a run is accepted iff its corresponding ranking is odd.
- Problem: no way to do so when the only information of a state is the ranking.

Owing states and breakpoints

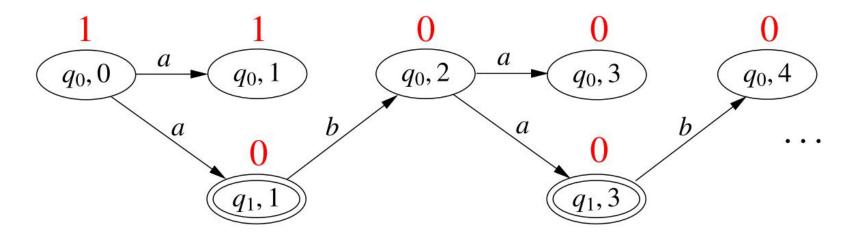
- We use owing states and breakpoints again:
 - A breakpoint of a ranking is now a level of the ranking such that no node of the level owes a visit to a node of odd rank.
 - We have again: a ranking is odd iff it has infinitely many breakpoints.
 - We enrich the states of \overline{A} with a set of owing states, and choose the accepting states as those in which the set is empty.

Owing states



$\begin{bmatrix} 2 \\ 1 \end{bmatrix} \xrightarrow{a} \begin{bmatrix} 1 \\ 2 \end{bmatrix} \xrightarrow{b} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \xrightarrow{a} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \xrightarrow{a} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \xrightarrow{a} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \cdots$

Owing states



$\begin{bmatrix} 1 \\ 1 \end{bmatrix} \xrightarrow{a} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \xrightarrow{b} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \xrightarrow{a} \begin{bmatrix} 0 \\ 0 \end{bmatrix} \xrightarrow{b} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \dots$

 $\emptyset \qquad \{q_1\} \qquad \{q_0\} \qquad \{q_0, q_1\} \qquad \{q_0\}$

Second draft for *A*

- For our two-state *A* (the case of more states is analogous):
 - States: pairs $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$, *O* where $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ as in the first draft, and *O* is a set of owing states (of even rank) – Initial states: all states of the form $\begin{bmatrix} x_1 \\ 1 \end{bmatrix}$, Ø - Transitions: all $\begin{vmatrix} x_1 \\ x_2 \end{vmatrix}$, $O \xrightarrow{a} \begin{vmatrix} x'_1 \\ x'_2 \end{vmatrix}$, O' s.t. ranks don't increase and owing states are correctly updated - Final states: all states $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$, Ø

Second draft for *A*

- The runs of \overline{A} on a word w correspond to all the rankings of dag(w).
- The accepting runs of *Ā* on a word *w* correspond to all the odd rankings of *dag(w)*.
- Therefore: $L(\overline{A}) = \overline{L(A)}$

Final \overline{A} (the final touch ...)

- We can reduce the number of initial states.
- For every ranking with ranks in the range

 [0,2n], changing the rank of all nodes of the
 first level to 2n yields again a ranking.
 Further, if the old ranking is odd then the new
 ranking is also odd.

So we can simplify the definition of the initial states to:

– Initial state:
$$\begin{bmatrix} 2n \\ \bot \end{bmatrix}$$
, Ø

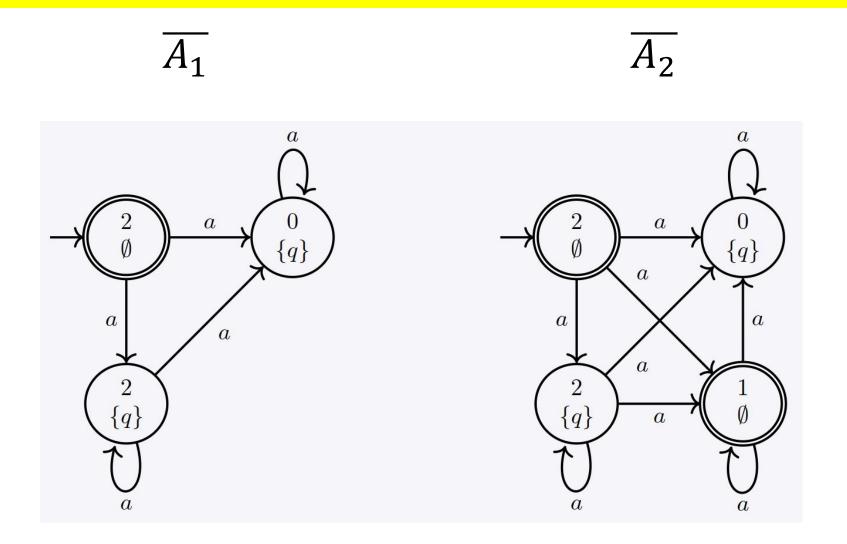
An example

- We construct the complements of
 - $A_1 = (\{q\}, \{a\}, \delta, \{q\}, \{q\}) \text{ with } \delta(q, a) = \{q\}$

 $A_2 = (\{q\}, \{a\}, \delta, \{q\}, \emptyset) \text{ with } \delta(q, a) = \{q\}$

- States of \bar{A}_1 : $\langle 0, \emptyset \rangle$, $\langle 2, \emptyset \rangle$, $\langle 0, \{q\} \rangle$, $\langle 2, \{q\} \rangle$
- States of \bar{A}_2 : $\langle 0, \emptyset \rangle$, $\langle 1, \emptyset \rangle$, $\langle 2, \emptyset \rangle$, $\langle 0, \{q\} \rangle$, $\langle 2, \{q\} \rangle$
- Initial state of \overline{A}_1 and \overline{A}_2 : $\langle 2, \emptyset \rangle$
- Final states of \overline{A}_1 : $\langle 2, \emptyset \rangle$, $\langle 0, \emptyset \rangle$ (unreachable)
- Final states of \overline{A}_2 : $\langle 2, \emptyset \rangle$, $\langle 1, \emptyset \rangle$, $\langle 0, \emptyset \rangle$ (unreachable)

An example



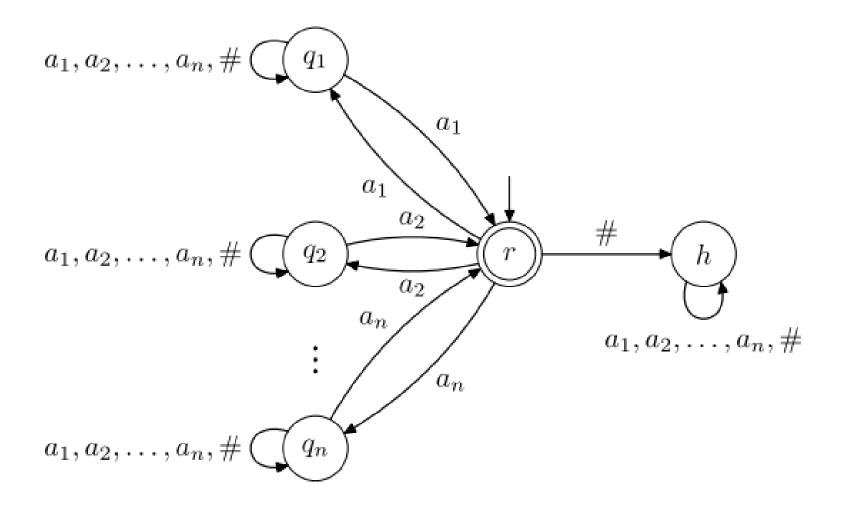
Complexity

- A state consists of a level of a ranking and a set of owing states.
- A level assigns to each state a number of
 [0,2n] or the symbol ⊥.
- So the complement NBA has at most $(2n + 2)^n \cdot 2^n \in n^{O(n)} = 2^{O(n \log n)}$ states.
- Compare with 2^n for the NFA case.
- We show that the log *n* factor is unavoidable.

We define a family $\{L_n\}_{n\geq 1}$ of ω -languages s.t.

- $-L_n$ is accepted by a NBA with n + 2 states.
- Every NBA accepting $\overline{L_n}$ has at least $n! \in 2^{\Theta(n \log n)}$ states.
- The alphabet of L_n is $\Sigma_n = \{1, 2, \dots, n, \#\}$.
- Assign to a word $w \in \Sigma_n$ a graph G(w) as follows:
 - Vertices: the numbers 1, 2, ..., n.
 - Edges: there is an edge $i \rightarrow j$ iff w contains infinitely many occurrences of ij.
- Define: $w \in L_n$ iff G(w) has a cycle.

• L_n is accepted by a NBA with n + 2 states.



Every NBA accepting $\overline{L_n}$ has at least $n! \in 2^{\Theta(n \log n)}$ states.

- Let τ denote a permutation of 1, 2, ..., n.
- We have:
 - a) For every τ , the word $(\tau \#)^{\omega}$ belongs to $\overline{L_n}$ (i.e., its graph contains no cycle).
 - b) For every two distinct τ_1, τ_2 , every word containing inf. many occurrences of τ_1 and inf. many occurrences of τ_2 belongs to L_n .

Every NBA accepting $\overline{L_n}$ has at least $n! \in 2^{\Theta(n \log n)}$ states.

- Assume A recognizes L_n and let τ₁, τ₂ distinct. By (a), A has runs ρ₁, ρ₂ accepting (τ₁ #)^ω, (τ₂ #)^ω. The sets of accepting states visited i.o. by ρ₁, ρ₂ are disjoint.
 - Otherwise we can ``interleave'' ρ_1 , ρ_2 to yield an acepting run for a word with inf. many occurrences of τ_1 , τ_2 , contradicting (b).
- So *A* has at least one accepting state for each permutation, and so at least *n*! states.