
Implementing boolean
operations for

generalized Büchi automata

Generalized Büchi Automata

• An acceptance condition is a generalized Büchi
condition if there are sets ,ଵܨ … ௞ܨ, ⊆ ܳ of
accepting states such that a run ߩ is accepting
iff it visits each of ,ଵܨ … ௞ܨ, infinitely often.

૚ࡲ = ݍ
૛ࡲ = {ݎ}

From NGAs to NBAs

• Important fact:

All the sets ܨଵ, … ௞ are visited infinitely oftenܨ,

is equivalent to

ଵܨ is eventually visited
and for every 1 ≤ ݅ ≤ ݇

every visit to ܨ௜ is eventually followed by a visit to “ܨ௜⊕ଵ”

From NGAs to NBAs

ଵܨ

ଶܨ

ଷܨ

NGA with 3 sets
of accepting
states

ଵܨ
ଶܨ

ଷܨ

ଵܨ
ଶܨ

ଷܨ

ଵܨ
ଶܨ

ଷܨ

Equivalent NBA
with 3 copies of
the NGA

૚ࡲ = ݍ
૛ࡲ = {ݎ}

NGA NBA

• Let ଵܣ = (ଵܵ, ଵܨ) and ܣଶ = (ܵଶ, ଶܨ)

• Let ܵ be the result of putting ଵܵ and ܵଶ „side by side“

ܵ ≔ (ܳଵ ∪ ܳଶ, Σ, ଵߜ ∪ ଶ,ܳ଴ଵߜ ∪ ܳ଴ଶ)

• Which NGA recognizes ܮ ଵܣ ∪ ܮ ଶܣ ?

• ܵ, ଵܨ ∪ ଶܨ

• ܵ, ଶܨ,ଵܨ

Union of NGA: The NBA case

• Let ܣଵ = (ଵܵ, ଵଶܨ,ଵଵܨ) and ܣଶ = (ܵଶ, ଶଶܨ,ଶଵܨ)

• Let ܵ be the result of putting ଵܵ and ܵଶ „side by side“

ܵ ≔ (ܳଵ ∪ ܳଶ, Σ, ଵߜ ∪ ଶ,ܳ଴ଵߜ ∪ ܳ଴ଶ)

• Which NGA recognizes ܮ ଵܣ ∪ ܮ ଶܣ ?

• ܵ, ଵଵܨ ∪ ଶଵܨ ∪ ଵଶܨ ∪ ଶଶܨ

• ܵ, ଵଵܨ ∪ ଵଶܨ,ଶଵܨ ∪ ଶଶܨ

• ܵ, ଵଵܨ ∪ ଵଵܨ,ଶଵܨ ∪ ଵଶܨ,ଶଶܨ ∪ ଵଶܨ,ଶଵܨ ∪ ଶଶܨ

Union of NGA: Another case

• Let ܣଵ = ଵܵ, ,ଵଵܨ } … {ଵ௞ܨ,

ଶܣ = ܵଶ, ,ଶଵܨ … ଶ௞ܨ, ,ଶ௞ାଵܨ, … ଶ௞ା௟ܨ,

• Let ܵ be the result of putting ଵܵ and ܵଶ „side by side“

ܵ ≔ (ܳଵ ∪ ܳଶ,Σ, ଵߜ ∪ ଶ,ܳ଴ଵߜ ∪ ܳ଴ଶ)

• The following NGA recognizes ܮ ଵܣ ∪ ܮ ଶܣ

ܣ = ܵ,
ଵଵܨ
∪
ଶଵܨ

 , … ,
ଵ௞ܨ
∪
ଶ௞ܨ

 ,
ܳଵ
∪

ଶ௞ାଵܨ
 , … ,

ܳଵ
∪

ଶ௞ା௟ܨ

Union of NGA: The general case

Intersection of NGA: The NBA case

• Let ଵܣ = (ଵܵ, ଵܨ) and ܣଶ = (ܵଶ, ଶܨ)

• Let ܵ be the pairing of ଵܵ and ܵଶ
ܵ ≔ ܳଵ × ܳଶ ,Σ , ଴ଵܳ, ߜ × ܳ଴ଶ

where ߜ ,ଵݍ ଶݍ ,ܽ = ߜ ,ଵݍ ܽ × ߜ ܽ,ଶݍ

• Which NGA recognizes ܮ ଵܣ ∩ ܮ ଶܣ ?

• ܵ, ଵܨ × ଶܨ

• ܵ, ଵܨ × ܳଶ,ܳଵ × ଶܨ

Intersection of NGA: The general case

• Let ܣଵ = ଵܵ, ,ଵଵܨ } … {ଵ௞ܨ, ଶܣ , = ܵଶ, ,ଶଵܨ } … {ଵ௟ܨ,

• Let ܵ be the pairing of ଵܵ and ܵଶ
ܵ ≔ ܳଵ × ܳଶ ,Σ , ଴ଵܳ, ߜ × ܳ଴ଶ

where ߜ ,ଵݍ ଶݍ ,ܽ = ߜ ,ଵݍ ܽ × ߜ ܽ,ଶݍ

• The following NGA recognizes ܮ ଵܣ ∩ ܮ ଶܣ :

 ܵ , ×ଵଵܨ } ܳଶ , … ଵ௞ܨ, × ܳଶ ,ܳଵ × , ଶଵܨ … ,ܳଵ × {ଶ௟ܨ
௞ା௟

Intersection of NGA: The general case

Special case

• The intersection of (ଵܵ, ଵܨ) and (ܵଶ, ଶܨ) is

 [ଵܵ, ܵଶ], ଵܨ × ܳଶ,ܳଵ × ଶܨ

• Not a NBA in general.

• However, if ଵܨ = ܳଵ then ܨଵ × ܳଶ,ܳଵ × ଶܨ can

be replaced by ܳଵ × ଶܨ , and so the result is

again a NBA.

Complementation of NGA

• Given a NBA ܣ, we construct a NBA ܤ such
that ܮఠ ܤ = (ܣ)ఠܮ

• We can then complement a NGA by
transforming it first into a NBA

• Complementation construction radically
different from the one for NFAs.

Problems

• The powerset construction does not work.

• Exchanging final and non-final states in DBAs
also fails.

Solution

• Extend the idea used to determinize co-Büchi
automata with a new component.

• Recall: a NBA accepts a word ݓ iff some path of
݀ܽ݃ ݓ visits final states infinitely often.

• Goal: given NBA ܣ, construct NBA ̅ܣ such that:

ܣ rejects ݓ
iff

no path of ݀ܽ݃ ݓ visits accepting states of ܣ i.o.
iff

some run of ̅ܣ visits accepting states of ̅ܣ i.o.
iff

ܣ̅ accepts ݓ

Running example

Rankings
• Mappings that associate to every node of
(ݓ)݃ܽ݀ a rank (a natural number) such that
– ranks never increase along a path, and
– ranks of accepting nodes are even.

Odd rankings

• A ranking is odd if every infinite path of
݀ܽ݃ ݓ visits nodes of odd rank i.o.

Goal: given NBA ܣ, construct NBA ̅ܣ such that:

ܣ rejects ݓ
iff

no path of ݀ܽ݃ ݓ visits accepting states of ܣ i.o.
iff

݀ܽ݃ ݓ has an odd ranking
iff

some run of ̅ܣ visits accepting states of ̅ܣ i.o.
iff

ܣ̅ accepts ݓ

Odd rankings

Prop:

Further, all ranks of the odd ranking are in the range 0,2݊ , and all
states of the first level rank have rank 2݊.

Proof:
(⇐): In an odd ranking of ݀ܽ݃ ݓ , ranks along infinite paths stabilize
to odd values.
Therefore, since accepting nodes have even rank, no path of ݀ܽ݃ ݓ
visits accepting nodes i.o.

no path of ݀ܽ݃ ݓ visits accepting states of ܣ i.o.
iff

݀ܽ݃ ݓ has an odd ranking

Odd rankings

(⇒): Assume no path of ݀ܽ݃ ݓ visits accepting states of ܣ i.o.
Define an odd ranking of ݀ܽ݃ ݓ as follows:

• Construct a sequence ܦ଴ ⊇ ଵܦ ⊇ ⋯ଶܦ ⊇ ଶ௡ܦ ⊇ ଶ௡ାଵܦ of
dags, where

a) ଴ܦ = ݀ܽ݃ ݓ
b) ଶ௜ାଵܦ is the result of removing from ଶ௜ܦ all nodes with

finitely many descendants.
c) ଶ௜ାଶܦ is the result of removing all nodes of ଶ௜ାଵܦ with no

accepting descendants (a node is a descendant of itself).
• We define the rank of a node of ݀ܽ݃ ݓ as the index of the

unique dag ௝ܦ in the sequence such that the node belongs to
௝ܦ but not to .௝ାଵܦ

Odd rankings

• Even step: remove all nodes
having only finitely many
successors.

• Odd step: remove nodes with no
accepting descendants

• This definition of rank guarantees :
1. Ranks along a path cannot increase.
2. Accepting states get even ranks, because they can

only be removed from dags with even index.

• It remains to prove:
– every node gets a rank, i.e., ܦଶ௡ାଵ = ∅.

• A round consists of two steps, an even step from
ଶ௜ܦ to ܦଶ௜ାଵ, and an odd step from ܦଶ௜ାଵto ܦଶ௜ାଶ.

• Each level of a dag has a width

• We define the width of a dag as the largest level
width that appears infinitely often.

• Each round decreases the width of the dag by at
least 1.

• Since the initial width is at most ݊, after at most ݊
rounds the width is 0, and then a last step removes
all nodes.

• Goal: ݀ܽ݃ ݓ has an odd ranking
iff

some run of ̅ܣ visits accepting states of ̅ܣ i.o.

• Idea: design ̅ܣ so that
 its runs on ݓ are the rankings of ݀ܽ݃(ݓ), and
 its accepting runs on ݓ are the odd rankings of

݀ܽ݃ ݓ .

Representing rankings

2
⊥

௔
→ 1

2
௕
→ 1

⊥
௔
→ 1

0
௔
→ 1

0 …

1
⊥

௔
→ 1

0
௕
→ 0

⊥
௔
→ 0

0
௕
→ 0

⊥ …

Representing rankings

1
⊥

௔
→ 1

0
௕
→ 0

⊥
௔
→ 0

0
௕
→ 0

⊥ …

We can determine if
݊ଵ
݊ଶ

௟
→ ݊ଵᇱ

݊ଶᇱ
may appear in a

ranking by just looking at ݊ଵ,݊ଶ,݊ଵᇱ ,݊ଶᇱ and ݈ : ranks
should not increase.

Representing rankings

• ܣ̅ for or a two-state ܣ (more states analogous):

– States: all
ଵݔ
ଶݔ where 0 ≤ ௜ݔ ≤ 2݊ = 4 or ݔ௜ =⊥ and

accepting states of get ܣ even rank or ⊥.

– Initial state: all states of the form
݊ଵ
⊥

– Transitions: all
݊ଵ
݊ଶ

௔
→ ݊ଵᇱ

݊ଶᇱ
s.t . ranks do not increase

• The runs of the automaton on a word ݓ correspond
to all the rankings of ݀ܽ݃ ݓ .

• Observe: ̅ܣ is a NBA even if ܣ is a DBA, because
there are many rankings for the same word.

First draft for ̅ܣ

Accepting states?

• The accepting states should be chosen so that
a run is accepted iff its corresponding ranking
is odd.

• Problem: no way to do so when the only
information of a state is the ranking.

Owing states and breakpoints

• We use owing states and breakpoints again:
– A breakpoint of a ranking is now a level of the

ranking such that no node of the level owes a visit
to a node of odd rank.

– We have again: a ranking is odd iff it has infinitely
many breakpoints.

– We enrich the states of ܣ̅ with a set of owing
states, and choose the accepting states as those in
which the set is empty.

Owing states

2
⊥

௔
→ 1

2
௕
→ 1

⊥
௔
→ 1

0
௔
→ 1

0 …

∅ {ଵݍ} ∅ {ଵݍ} ∅

Owing states

1
⊥

௔
→ 1

0
௕
→ 0

⊥
௔
→ 0

0
௕
→ 0

⊥ …

∅ {ଵݍ} {଴ݍ} ,଴ݍ} {ଵݍ {଴ݍ}

• For our two-state ܣ (the case of more states is
analogous):

– States: pairs
ଵݔ
ଶݔ ,ܱ where

ଵݔ
ଶݔ as in the first

draft, and ܱ is a set of owing states (of even rank)

– Initial states: all states of the form
ଵݔ
⊥ ,∅

– Transitions: all
ଵݔ
ଶݔ

,ܱ
௔
→ ଵᇱݔ

ଶᇱݔ
,ܱ′ s.t. ranks don‘t

increase and owing states are correctly updated

– Final states: all states
ଵݔ
ଶݔ ,∅

Second draft for ̅ܣ

• The runs of ̅ܣ on a word ݓ correspond to all
the rankings of ݀ܽ݃ ݓ .

• The accepting runs of ̅ܣ on a word ݓ
correspond to all the odd rankings of
݀ܽ݃ ݓ .

• Therefore: ܮ ܣ̅ = (ܣ)ܮ

Second draft for ̅ܣ

• We can reduce the number of initial states.
• For every ranking with ranks in the range

[0,2݊], changing the rank of all nodes of the
first level to 2݊ yields again a ranking.
Further, if the old ranking is odd then the new
ranking is also odd.
So we can simplify the definition of the initial
states to:

– Initial state: 2݊
⊥ ,∅

Final ̅ܣ (the final touch …)

An example

• We construct the complements of

ଵܣ = (ݍ , ܽ , ,ߜ ݍ , ݍ) with ߜ ܽ,ݍ = {ݍ}

ଶܣ = (ݍ , ܽ , ,ߜ ݍ ,∅) with ߜ ܽ,ݍ = {ݍ}

• States of ∅,ଵ: 0ܣ̅ , 2,∅ , 0, {ݍ} , 2, {ݍ}

• States of ∅,ଶ: 0ܣ̅ , 1,∅ , 2,∅ , 0, {ݍ} , 2, {ݍ}

• Initial state of ̅ܣଵ and ̅ܣଶ: 2,∅

• Final states of ∅,ଵ: 2ܣ̅ , 0,∅ (unreachable)

• Final states of ∅,ଶ: 2ܣ̅ , 1,∅ , 0,∅ (unreachable)

An example

ଵܣ ଶܣ

Complexity

• A state consists of a level of a ranking and a
set of owing states.

• A level assigns to each state a number of
[0,2݊] or the symbol ⊥.

• So the complement NBA has at most
2݊ + 2 ௡ ȉ 2௡ ∈ ݊ை ௡ = 2ை ௡ ୪୭୥ ௡ states.

• Compare with 2௡ for the NFA case.
• We show that the log ݊ factor is unavoidable.

We define a family ܮ௡ ௡ஹଵ of ߱-languages s.t.
– ௡ܮ is accepted by a NBA with ݊ + 2 states.
– Every NBA accepting ܮ௡ has at least ݊! ∈ 2஀ ௡ ୪୭୥ ௡

states.

• The alphabet of ܮ௡ is Σ௡ = {1,2, … ,݊, #}.
• Assign to a word ݓ ∈ Σ௡ a graph (ݓ)ܩ as

follows:
– Vertices: the numbers 1,2, … ,݊ .
– Edges: there is an edge ݅ → ݆ iff ݓ contains infinitely

many occurrences of ݆݅.
• Define: ݓ ∈ ௡ܮ iff (ݓ)ܩ has a cycle.

• ௡ܮ is accepted by a NBA with ݊ + 2 states.

Every NBA accepting ܮ௡ has at least ݊! ∈
2஀ ௡ ୪୭୥ ௡ states.
• Let ߬ denote a permutation of 1,2, … ,݊ .
• We have:

a) For every ߬, the word ߬ # ఠ belongs to ௡ܮ
(i.e., its graph contains no cycle).

b) For every two distinct ߬ଵ, ߬ଶ, every word
containing inf. many occurrences of ߬ଵ and
inf. many occurrences of ߬ଶ belongs to ܮ௡.

Every NBA accepting ܮ௡ has at least ݊! ∈
2஀ ௡ ୪୭୥ ௡ states.
• Assume ܣ recognizes ௡ܮ and let ߬ଵ, ߬ଶ distinct.

By (a), ܣ has runs ߩଵ, # ଶ accepting ߬ଵߩ ఠ,
߬ଶ # ఠ. The sets of accepting states visited

i.o. by ߩଵ, ଶߩ are disjoint.
– Otherwise we can ``interleave‘‘ߩଵ,ߩଶ to yield an

acepting run for a word with inf. many occurrences
of ߬ଵ, ߬ଶ , contradicting (b).

• So ܣ has at least one accepting state for each
permutation, and so at least ݊! states.

