
Implementing boolean
operations for

generalized Büchi automata

Generalized Büchi Automata

• An acceptance condition is a generalized Büchi
condition if there are sets ,ଵܨ … ܨ, ⊆ ܳ of
accepting states such that a run ߩ is accepting
iff it visits each of ,ଵܨ … ܨ, infinitely often.

ࡲ = ݍ
ࡲ = {ݎ}

From NGAs to NBAs

• Important fact:

All the sets ܨଵ, … are visited infinitely oftenܨ,

is equivalent to

ଵܨ is eventually visited
and for every 1 ≤ ݅ ≤ ݇

every visit to ܨ is eventually followed by a visit to “ܨ⊕ଵ”

From NGAs to NBAs

ଵܨ

ଶܨ

ଷܨ

NGA with 3 sets
of accepting
states

ଵܨ
ଶܨ

ଷܨ

ଵܨ
ଶܨ

ଷܨ

ଵܨ
ଶܨ

ଷܨ

Equivalent NBA
with 3 copies of
the NGA

ࡲ = ݍ
ࡲ = {ݎ}

NGA NBA

• Let ଵܣ = (ଵܵ, ଵܨ) and ܣଶ = (ܵଶ, ଶܨ)

• Let ܵ be the result of putting ଵܵ and ܵଶ „side by side“

ܵ ≔ (ܳଵ ∪ ܳଶ, Σ, ଵߜ ∪ ଶ,ܳଵߜ ∪ ܳଶ)

• Which NGA recognizes ܮ ଵܣ ∪ ܮ ଶܣ ?

• ܵ, ଵܨ ∪ ଶܨ

• ܵ, ଶܨ,ଵܨ

Union of NGA: The NBA case

• Let ܣଵ = (ଵܵ, ଵଶܨ,ଵଵܨ) and ܣଶ = (ܵଶ, ଶଶܨ,ଶଵܨ)

• Let ܵ be the result of putting ଵܵ and ܵଶ „side by side“

ܵ ≔ (ܳଵ ∪ ܳଶ, Σ, ଵߜ ∪ ଶ,ܳଵߜ ∪ ܳଶ)

• Which NGA recognizes ܮ ଵܣ ∪ ܮ ଶܣ ?

• ܵ, ଵଵܨ ∪ ଶଵܨ ∪ ଵଶܨ ∪ ଶଶܨ

• ܵ, ଵଵܨ ∪ ଵଶܨ,ଶଵܨ ∪ ଶଶܨ

• ܵ, ଵଵܨ ∪ ଵଵܨ,ଶଵܨ ∪ ଵଶܨ,ଶଶܨ ∪ ଵଶܨ,ଶଵܨ ∪ ଶଶܨ

Union of NGA: Another case

• Let ܣଵ = ଵܵ, ,ଵଵܨ } … {ଵܨ,

ଶܣ = ܵଶ, ,ଶଵܨ … ଶܨ, ,ଶାଵܨ, … ଶାܨ,

• Let ܵ be the result of putting ଵܵ and ܵଶ „side by side“

ܵ ≔ (ܳଵ ∪ ܳଶ,Σ, ଵߜ ∪ ଶ,ܳଵߜ ∪ ܳଶ)

• The following NGA recognizes ܮ ଵܣ ∪ ܮ ଶܣ

ܣ = ܵ,
ଵଵܨ
∪
ଶଵܨ

 , … ,
ଵܨ
∪
ଶܨ

 ,
ܳଵ
∪

ଶାଵܨ
 , … ,

ܳଵ
∪

ଶାܨ

Union of NGA: The general case

Intersection of NGA: The NBA case

• Let ଵܣ = (ଵܵ, ଵܨ) and ܣଶ = (ܵଶ, ଶܨ)

• Let ܵ be the pairing of ଵܵ and ܵଶ
ܵ ≔ ܳଵ × ܳଶ ,Σ , ଵܳ, ߜ × ܳଶ

where ߜ ,ଵݍ ଶݍ ,ܽ = ߜ ,ଵݍ ܽ × ߜ ܽ,ଶݍ

• Which NGA recognizes ܮ ଵܣ ∩ ܮ ଶܣ ?

• ܵ, ଵܨ × ଶܨ

• ܵ, ଵܨ × ܳଶ,ܳଵ × ଶܨ

Intersection of NGA: The general case

• Let ܣଵ = ଵܵ, ,ଵଵܨ } … {ଵܨ, ଶܣ , = ܵଶ, ,ଶଵܨ } … {ଵܨ,

• Let ܵ be the pairing of ଵܵ and ܵଶ
ܵ ≔ ܳଵ × ܳଶ ,Σ , ଵܳ, ߜ × ܳଶ

where ߜ ,ଵݍ ଶݍ ,ܽ = ߜ ,ଵݍ ܽ × ߜ ܽ,ଶݍ

• The following NGA recognizes ܮ ଵܣ ∩ ܮ ଶܣ :

 ܵ , ×ଵଵܨ } ܳଶ , … ଵܨ, × ܳଶ ,ܳଵ × , ଶଵܨ … ,ܳଵ × {ଶܨ
ା

Intersection of NGA: The general case

Special case

• The intersection of (ଵܵ, ଵܨ) and (ܵଶ, ଶܨ) is

 [ଵܵ, ܵଶ], ଵܨ × ܳଶ,ܳଵ × ଶܨ

• Not a NBA in general.

• However, if ଵܨ = ܳଵ then ܨଵ × ܳଶ,ܳଵ × ଶܨ can

be replaced by ܳଵ × ଶܨ , and so the result is

again a NBA.

Complementation of NGA

• Given a NBA ܣ, we construct a NBA ܤ such
that ܮఠ ܤ = (ܣ)ఠܮ

• We can then complement a NGA by
transforming it first into a NBA

• Complementation construction radically
different from the one for NFAs.

Problems

• The powerset construction does not work.

• Exchanging final and non-final states in DBAs
also fails.

Solution

• Extend the idea used to determinize co-Büchi
automata with a new component.

• Recall: a NBA accepts a word ݓ iff some path of
݀ܽ݃ ݓ visits final states infinitely often.

• Goal: given NBA ܣ, construct NBA ̅ܣ such that:

ܣ rejects ݓ
iff

no path of ݀ܽ݃ ݓ visits accepting states of ܣ i.o.
iff

some run of ̅ܣ visits accepting states of ̅ܣ i.o.
iff

ܣ̅ accepts ݓ

Running example

Rankings
• Mappings that associate to every node of
(ݓ)݃ܽ݀ a rank (a natural number) such that
– ranks never increase along a path, and
– ranks of accepting nodes are even.

Odd rankings

• A ranking is odd if every infinite path of
݀ܽ݃ ݓ visits nodes of odd rank i.o.

Goal: given NBA ܣ, construct NBA ̅ܣ such that:

ܣ rejects ݓ
iff

no path of ݀ܽ݃ ݓ visits accepting states of ܣ i.o.
iff

݀ܽ݃ ݓ has an odd ranking
iff

some run of ̅ܣ visits accepting states of ̅ܣ i.o.
iff

ܣ̅ accepts ݓ

Odd rankings

Prop:

Further, all ranks of the odd ranking are in the range 0,2݊ , and all
states of the first level rank have rank 2݊.

Proof:
(⇐): In an odd ranking of ݀ܽ݃ ݓ , ranks along infinite paths stabilize
to odd values.
Therefore, since accepting nodes have even rank, no path of ݀ܽ݃ ݓ
visits accepting nodes i.o.

no path of ݀ܽ݃ ݓ visits accepting states of ܣ i.o.
iff

݀ܽ݃ ݓ has an odd ranking

Odd rankings

(⇒): Assume no path of ݀ܽ݃ ݓ visits accepting states of ܣ i.o.
Define an odd ranking of ݀ܽ݃ ݓ as follows:

• Construct a sequence ܦ ⊇ ଵܦ ⊇ ⋯ଶܦ ⊇ ଶܦ ⊇ ଶାଵܦ of
dags, where

a) ܦ = ݀ܽ݃ ݓ
b) ଶାଵܦ is the result of removing from ଶܦ all nodes with

finitely many descendants.
c) ଶାଶܦ is the result of removing all nodes of ଶାଵܦ with no

accepting descendants (a node is a descendant of itself).
• We define the rank of a node of ݀ܽ݃ ݓ as the index of the

unique dag ܦ in the sequence such that the node belongs to
ܦ but not to .ାଵܦ

Odd rankings

• Even step: remove all nodes
having only finitely many
successors.

• Odd step: remove nodes with no
accepting descendants

• This definition of rank guarantees :
1. Ranks along a path cannot increase.
2. Accepting states get even ranks, because they can

only be removed from dags with even index.

• It remains to prove:
– every node gets a rank, i.e., ܦଶାଵ = ∅.

• A round consists of two steps, an even step from
ଶܦ to ܦଶାଵ, and an odd step from ܦଶାଵto ܦଶାଶ.

• Each level of a dag has a width

• We define the width of a dag as the largest level
width that appears infinitely often.

• Each round decreases the width of the dag by at
least 1.

• Since the initial width is at most ݊, after at most ݊
rounds the width is 0, and then a last step removes
all nodes.

• Goal: ݀ܽ݃ ݓ has an odd ranking
iff

some run of ̅ܣ visits accepting states of ̅ܣ i.o.

• Idea: design ̅ܣ so that
 its runs on ݓ are the rankings of ݀ܽ݃(ݓ), and
 its accepting runs on ݓ are the odd rankings of

݀ܽ݃ ݓ .

Representing rankings

2
⊥

→ 1

2

→ 1

⊥

→ 1

0

→ 1

0 …

1
⊥

→ 1

0

→ 0

⊥

→ 0

0

→ 0

⊥ …

Representing rankings

1
⊥

→ 1

0

→ 0

⊥

→ 0

0

→ 0

⊥ …

We can determine if
݊ଵ
݊ଶ

→ ݊ଵᇱ

݊ଶᇱ
may appear in a

ranking by just looking at ݊ଵ,݊ଶ,݊ଵᇱ ,݊ଶᇱ and ݈ : ranks
should not increase.

Representing rankings

• ܣ̅ for or a two-state ܣ (more states analogous):

– States: all
ଵݔ
ଶݔ where 0 ≤ ݔ ≤ 2݊ = 4 or ݔ =⊥ and

accepting states of get ܣ even rank or ⊥.

– Initial state: all states of the form
݊ଵ
⊥

– Transitions: all
݊ଵ
݊ଶ

→ ݊ଵᇱ

݊ଶᇱ
s.t . ranks do not increase

• The runs of the automaton on a word ݓ correspond
to all the rankings of ݀ܽ݃ ݓ .

• Observe: ̅ܣ is a NBA even if ܣ is a DBA, because
there are many rankings for the same word.

First draft for ̅ܣ

Accepting states?

• The accepting states should be chosen so that
a run is accepted iff its corresponding ranking
is odd.

• Problem: no way to do so when the only
information of a state is the ranking.

Owing states and breakpoints

• We use owing states and breakpoints again:
– A breakpoint of a ranking is now a level of the

ranking such that no node of the level owes a visit
to a node of odd rank.

– We have again: a ranking is odd iff it has infinitely
many breakpoints.

– We enrich the states of ܣ̅ with a set of owing
states, and choose the accepting states as those in
which the set is empty.

Owing states

2
⊥

→ 1

2

→ 1

⊥

→ 1

0

→ 1

0 …

∅ {ଵݍ} ∅ {ଵݍ} ∅

Owing states

1
⊥

→ 1

0

→ 0

⊥

→ 0

0

→ 0

⊥ …

∅ {ଵݍ} {ݍ} ,ݍ} {ଵݍ {ݍ}

• For our two-state ܣ (the case of more states is
analogous):

– States: pairs
ଵݔ
ଶݔ ,ܱ where

ଵݔ
ଶݔ as in the first

draft, and ܱ is a set of owing states (of even rank)

– Initial states: all states of the form
ଵݔ
⊥ ,∅

– Transitions: all
ଵݔ
ଶݔ

,ܱ

→ ଵᇱݔ

ଶᇱݔ
,ܱ′ s.t. ranks don‘t

increase and owing states are correctly updated

– Final states: all states
ଵݔ
ଶݔ ,∅

Second draft for ̅ܣ

• The runs of ̅ܣ on a word ݓ correspond to all
the rankings of ݀ܽ݃ ݓ .

• The accepting runs of ̅ܣ on a word ݓ
correspond to all the odd rankings of
݀ܽ݃ ݓ .

• Therefore: ܮ ܣ̅ = (ܣ)ܮ

Second draft for ̅ܣ

• We can reduce the number of initial states.
• For every ranking with ranks in the range

[0,2݊], changing the rank of all nodes of the
first level to 2݊ yields again a ranking.
Further, if the old ranking is odd then the new
ranking is also odd.
So we can simplify the definition of the initial
states to:

– Initial state: 2݊
⊥ ,∅

Final ̅ܣ (the final touch …)

An example

• We construct the complements of

ଵܣ = (ݍ , ܽ , ,ߜ ݍ , ݍ) with ߜ ܽ,ݍ = {ݍ}

ଶܣ = (ݍ , ܽ , ,ߜ ݍ ,∅) with ߜ ܽ,ݍ = {ݍ}

• States of ∅,ଵ: 0ܣ̅ , 2,∅ , 0, {ݍ} , 2, {ݍ}

• States of ∅,ଶ: 0ܣ̅ , 1,∅ , 2,∅ , 0, {ݍ} , 2, {ݍ}

• Initial state of ̅ܣଵ and ̅ܣଶ: 2,∅

• Final states of ∅,ଵ: 2ܣ̅ , 0,∅ (unreachable)

• Final states of ∅,ଶ: 2ܣ̅ , 1,∅ , 0,∅ (unreachable)

An example

ଵܣ ଶܣ

Complexity

• A state consists of a level of a ranking and a
set of owing states.

• A level assigns to each state a number of
[0,2݊] or the symbol ⊥.

• So the complement NBA has at most
2݊ + 2 ȉ 2 ∈ ݊ை = 2ை ୪୭ states.

• Compare with 2 for the NFA case.
• We show that the log ݊ factor is unavoidable.

We define a family ܮ ஹଵ of ߱-languages s.t.
– ܮ is accepted by a NBA with ݊ + 2 states.
– Every NBA accepting ܮ has at least ݊! ∈ 2 ୪୭

states.

• The alphabet of ܮ is Σ = {1,2, … ,݊, #}.
• Assign to a word ݓ ∈ Σ a graph (ݓ)ܩ as

follows:
– Vertices: the numbers 1,2, … ,݊ .
– Edges: there is an edge ݅ → ݆ iff ݓ contains infinitely

many occurrences of ݆݅.
• Define: ݓ ∈ ܮ iff (ݓ)ܩ has a cycle.

• ܮ is accepted by a NBA with ݊ + 2 states.

Every NBA accepting ܮ has at least ݊! ∈
2 ୪୭ states.
• Let ߬ denote a permutation of 1,2, … ,݊ .
• We have:

a) For every ߬, the word ߬ # ఠ belongs to ܮ
(i.e., its graph contains no cycle).

b) For every two distinct ߬ଵ, ߬ଶ, every word
containing inf. many occurrences of ߬ଵ and
inf. many occurrences of ߬ଶ belongs to ܮ.

Every NBA accepting ܮ has at least ݊! ∈
2 ୪୭ states.
• Assume ܣ recognizes ܮ and let ߬ଵ, ߬ଶ distinct.

By (a), ܣ has runs ߩଵ, # ଶ accepting ߬ଵߩ ఠ,
߬ଶ # ఠ. The sets of accepting states visited

i.o. by ߩଵ, ଶߩ are disjoint.
– Otherwise we can ``interleave‘‘ߩଵ,ߩଶ to yield an

acepting run for a word with inf. many occurrences
of ߬ଵ, ߬ଶ , contradicting (b).

• So ܣ has at least one accepting state for each
permutation, and so at least ݊! states.

