Logic



Logics on words

* Regular expressions give operational descriptions
of regular languages.

« Often the natural description of a language Is
declarative:

—even number of a's and even number of b's vs.
(aa + bb + (ab + ba)(aa + bb)*(ba + ab))*
—words not containing ‘hello’

* Goal: find a declarative language able to express
all the regular languages, and only the regular
languages.



Logics on words

 |dea: use a logic that has an interpretation on words

» A formula expresses a property that each word may
satisfy or not, like

— the word contains only a's
— the word has even length

— between every occurrence of an a and a b there
IS an occurrenceofa c¢

« Every formula (indirectly) defines a language: the
language of all the words over the given fixed
alphabet that satisfy it.



First-order logic on words

e Atomic formulas: for each letter a we
Introduce the formula Q, (x), with intuitive
meaning: the letter at position x is an a.



First-order logic on words: Syntax

« Formulas constructed out of atomic formulas
by means of standard “logic machinery”:
— Alphabet £ = {a, b, ... } and position variables
V={xy .}
—Q,(x)isaformulaforeverya e Xandx € V.
—x < yisaformulaforeveryx,y eV
—If @, @, @, are formulas then so are —¢ and

PV @,
— If @ iIsaformulathensois3dx ¢ foreveryx € V



Abbreviations

* P1 A @y = (0 @V ;)
P17 Py =PV Py

* 1 < @y = (@1 AP2) V(291 A—y)
e Vx @ = —dx @



Abbreviations

o first(x) =—-3Jy y<x last(x):=—-3Jy x <y
cy=x+1 =x<yA-Jz(x<zAz<Yy)

.y:x+2 ;ZHZ(Z:x+1/\y:Z+1)
cy=x+k =3z(z=x+1ANy=z+(k—1))

e x <k =VvVyVz(firsty)A\z=y+k) - x<2z)
e last < k := Vx (last(x) - x < k)



Examples (without semantics yet)

“The last letter 1s a b and before it there are only a’s.”

“Every a 1s immediately followed by a 5.”

“Every a 1s immediately followed by a b, unless it 1s the last letter.”

“Between every a and every later b there is a ¢.”



Examples (without semantics yet)

“The last letter 1s a b and before it there are only a’s.”

dx Op(x) A ¥Yx (last(x) = Op(x) A =last(x) = O,(x))

“Every a 1s immediately followed by a 5.”

“Every a 1s immediately followed by a b, unless it 1s the last letter.”

“Between every a and every later b there is a ¢.”



Examples (without semantics yet)

“The last letter 1s a b and before it there are only a’s.”

dx Op(x) A ¥Yx (last(x) = Op(x) A =last(x) = O,(x))

“Every a 1s immediately followed by a 5.”

Vx(Qa(x) = dy(y=x+ 1A Qp(y))

“Every a 1s immediately followed by a b, unless it 1s the last letter.”

“Between every a and every later b there is a ¢.”



Examples (without semantics yet)

e “The last letter is a b and before it there are only a’s.”

dx Op(x) A ¥Yx (last(x) = Op(x) A =last(x) = O,(x))

e “Every a is immediately followed by a b.”

Vx(Qa(x) = dy(y=x+ 1A Qp(y))

e “Every a i1s immediately followed by a b, unless it is the last letter.”

Vx(Qu(x) » Vy(y=x+1- 0Op(y))

e “Between every a and every later b there is a ¢.”



Examples (without semantics yet)

“The last letter 1s a b and before it there are only a’s.”

dx Op(x) A ¥Yx (last(x) = Op(x) A =last(x) = O,(x))

“Every a 1s immediately followed by a 5.”

Vx(Qa(x) = dy(y=x+ 1A Qp(y))

“Every a 1s immediately followed by a b, unless it 1s the last letter.”

Vx(Qa(x) = Vy(y=x+1 - 0p(y)

“Between every a and every later b there is a ¢.”

VxVy (Qu(x) A Qp(M Ax<y—o dz(x <zAz<yA Q.(2))



First-order logic on words: Semantics

e Formulas are interpreted on pairs (w, () called
Interpretations, where

—w Is aword, and

— /J assigns positions to the free variables of the
formula (and maybe to others too—who cares)

* It does not make sense to say a formula is true or false:
It can only be true or false for a given interpretation.

o If the formula has no free variables (if it is a sentence),
then for each word it is either true or false.



o Satisfaction relation:

(w,J)
(w,J)
(w,J)
(w,J)
(w,J)

e More logic jargon:

Qu(x)
X<y
P

@l V¢
dx ¢

wll(x)] = a

J(x) <J(y)

(w,J) F ¢

w,J) E @1 or(w,J) E ¢

w| > 1 and some i € {1,...,|w|}

satisfies (w,J[i/x]) E ¢

— A formulais valid if it 1s true for all its
Interpretations

— A formula is satisfiable if is is true for at least
one of its interpretations



The empty word ...

o ... satisfies all universally quantified formulas,
and no existentially quantified formula.



Can FOL express non-regular languages?
Can FOL express all regular languages?

* The language L(¢) of a sentence ¢ is the set of
words that satisfy ¢.

e Alanguage L is expressible in first-order logic or FO-
definable if some sentence ¢ satisfies L(¢p) = L.

e Proposition: a language over a one-letter alphabet is
expressible in first-order logic iff it is finite or co-
finite (its complement is finite).

« Consequence: we can only express regular

languages, but not all, not even the language of
words of even length.



Proof sketch

1. If L 1s finite, then it i1s FO-definable

2. If L Is co-finite, then it i1s FO-definable.



Proof sketch

3. If L Is FO-definable (over a one-letter
alphabet), then it is finite or co-finite.

1) We define a new logic QF (quantifier-free
fragment)

2) We show that a language is QF-definable iff it is
finite or co-finite

3) We show that a language is QF-definable iff it is
FO-definable.



1) The logic QF

e x <k x>k
x<y+k x>y+k
k < last k > last

are formulas for every variable x, y and every
k=>0.

e If f1, f, are formulas, thenso are f; Vv f, and

finf



2) L 1s QF-definable iff it is finite or co-finite

(=) Let f be a sentence of QF.

Then f Is a positive boolean combination of formulas
k < last and k > last.

L(k <last) ={k+ 1,k + 2, ..}Iisco-finite (we identify
words and numbers)

L(k > last) ={0,1, ..., k}is finite
L(f1V f2) = L(f1) U L(f;) and so if L(f;) and L(f3)

finite or co-finite then L is finite or co-finite.

L(fi A f2) = L(f1) N L(fz) and so if L(f;) and L(f>)

finite or co-finite then L is finite or co-finite.



2) L 1s QF-definable iff it is finite or co-finite

(<) If L = {kq,.. k,}is finite, then
(ki —1<last A last< k;+1)V:-V
(k, —1<last A last <k, + 1)
expresses L.

If L Is co-finite, then its complement is finite, and so expressed by
some formula. We show that for every f some formula neg(f)
expresses L(f)

* neg(k <last) = (k—1<last A last<k +1)V last <k
* neg(fy Vv f2) = neg(f1) A neg(f3)
* neg(fi A f2) = neg(f1) v neg(fz)



3) Every first-order formula ¢ has an equivalent
QF-formula QF (¢)

* QF(x<y)=x<y+0

« QF (=) =neg(QF (¢))
* QF(p1V @) = QF(91) V QF (¢3)
* QF (@1 A @3) = QF(91) A QF (¢3)

* QF(3x ¢) =

— Put QF (@) in disjunctive normal form. Assume QF (¢)= (¢, V ...V
@.,), Where each ¢; is a conjunction of atomic formulas.

— dince IX (@, V...V @) =3IX @1 V ... VIX@,, Itsufficesto define
QF (3x @) for the case in which 1, is a conjunction of atomic
formulas of QF

— For this case, see example in the next slide.



e Consider the formula
dx x<y+3 A

z<x+4 A
z<y+2 A
y<x+1

* The equivalent QF-formula is
z<y+8 AN y<y+5HbH A z<y+?2



Monadic second-order logic

 First-order variables: interpreted on positions

* Monadic second-order variables: interpreted
on sets of positions.

— Diadic second-order variables: interpreted on
relations over positions

— Monadic third-order variables: interpreted on sets
of sets of positions

— New atomic formulas: x € X



Expressing ,,even length®

e EXpress
There Is a set Xof positions such that
— X contains exactly the even positions, and
— the last position belongs to X.

e EXpress
X contains exactly the even positions
as

A position is In X Iff it Is the second position or
the second successor of another position of X



Syntax and semantics of MSO

e Newset{X,Y, Z, ..} of second-order variables
« Newsyntax: x € X and 3X ¢

 New semantics:

— Interpretations now also assign sets of positions to
the free second-order variables.

— Satisfaction defined as expected.



Expressing ,,even length®

e second(x) =3Iy (first(y) Ax =y +1)

e Even(X) =Vy (x cEX o ( second(x) ))

Viy(x=y+2Ay€EX)

e Evenlength = EIX( Even(X) A )

Vx (last(x) - x € X)



Expressing c*(ab)*d*

e EXpress:
There is a block X of consecutive positions such that
— before X there are only c's;
— after X there are only d's;
— a'‘sand b‘s alternate in X;
— the first letter in X is an a, and the last is a b.

e Then we can take the formula
3X (Cons(X) ANBoc(X) AAod(X) AN Alt(X)
ANFa(X)ALb(X))



e X Is a block of consecutive positions

o Before X there are only c's

e |In X a's and b‘s alternate



e X Is a block of consecutive positions

Cons(X) =VxeXVyeX (x<y-> Vz(x<zAz<y) - z€X))

o Before X there are only c's

e |In X a's and b‘s alternate



e X Is a block of consecutive positions

Cons(X) =VxeXVyeX (x<y-> Vz(x<zAz<y) - z€X))

o Before X there are only c's

Before(x, X) :=Vye X x<y
Before_only_c(X) := VYx Before(x, X) — Q.(x)

e |In X a's and b‘s alternate



e X Is a block of consecutive positions

Cons(X) =VxeXVyeX (x<y-> Vz(x<zAz<y) - z€X))

o Before X there are only c's

Before(x, X) :=Vye X x<y
Before_only_c(X) := VYx Before(x, X) — Q.(x)

e |In X a's and b‘s alternate

Alternate(X) := Vxe X (Qux) > VveX(=x+1- 0u0y))
A
Op(x) = VyeX(y=x+1-=04y)))



Every regular language Is expressible In
MSO logic

e (Goal: given an arbitrary regular language L,
construct an MSO sentence ¢ s.t. L = L(¢).

e |tsuffices to construct ¢ s.t. w € L Iff
w € L(g) for every nonempty word w.
(Avolid the corner-case of the empty word.)

 We use: If L is regular, then there isa DFA A
recognizing L.
 |dea: construct a formula expressing
the run of 4 on this word Is accepting



-1X a regular language L.

-Ix a DFA A with states q,, ..., g,, recognizing L.
-IX a nonempty word w = aqa, ... a,,.

et R(q) be the set of positions i such that after
reading a,a, ... a; the automaton 4 is in state q.

We have:
A accepts w Iff m € P, for some final state q.




a a b b b
Run: Qo —>q1 —> 1 —> 42 —> o — (2

Position: 1 P 3 < )

R, (qo) = {4}
Ru(q) = {1,2}
R.(q2) = 13,5}

E



e Assume we can construct a formula
Visits(X,, ..., X))
which is true for (w, 7) iff

I(Xo) = R(qo), ..., I(Xn) = R(qn)
Then (w, 7) satisfies the formula

q; € F

VXo+-¥X, Vi ((Visits(Xo,...,Xn) A last(x)) — \/ T € Xi)

Iff the state after the last position Is accepting,
and we easlly get a formula expressing L .



e To construct Visits(X,, ..., X,,) we observe that
the sets R(q) are the unique sets satisfying

a) 1€ R(6(qy, aq)) l.e., after reading the first letter
the DFA is in state 6 (g, a4).

b) The sets R(q) build a partition of the set of
positions, I.e., the DFA is always in exactly one
state.

¢c) Ifi e R(g)and6(q,a;.1) =q theni+1 € R(q"),
l.e., the sets ,,match” §.

* \We give formulas for a) , b), and ¢)



Iit( Xg, oo s Xp) = A% [ﬁrst(x) A [\/(Qﬁ(x) AXE X;”))]

aex

4 3
n n
Partition(Xp, . . ., X,) = Vx \/ xeX; A /\ (xeXi—>x¢ X))
i=0 i,j=0
\ [ # ] y



e Formula for c)

Respect(Xy, ..., X,) =

Yx¥y | y=x+1— \/ (XEX,-ﬂQﬁ(x)hyEXj)
ae
LB ... n}
\ o(gi,a) = q,

 Together:

VASIES( Xgioou X ) = TN 00500 )
Partibon(Xs. . .., Xa ) X
Respect{ X, vvs.X,)




Every language expressible in MSO logic Is
regular

 Recall: an interpretation of a formula is a pair
(w, 7) consisting of a word w and
assignments 7 to the free first and second
order variables (and perhaps to others).

( x— 1 \ ( xH—2 )
aab y 3 ba y
" X - {2,3) T X0
\ Y = {1,2} ) \ Y - {1} )



* \We encode interpretations as words.

( x— 1 \ ( Xx—2 )
y+ 3 y i
aab, v 5.3 ba, s 0
\ Y = {1,2} \ Y= {1} )
a a b b a
X 1 0 0O X 0 1
y 0O 0 1 y 1 O
X 0O 1 1 X 0 0O
Y 1 1 0 Y 1 0O



e Glven a formula with n free variables, we
encode an interpretation (w, ) as a word
enc(w,J) over the alphabet X < {0,1}".

* The language of the formula ¢ , denoted by
L(¢), Is given by
L(g):={enc(w,7)| (w,7) = ¢}
« We prove by induction on the structure of ¢

that L(¢) Is regular (and explicitely construct
an automaton for Iit).



Case @ = Q,(x)

e ¢ = Q,(x). Then free(¢) = x, and the interpretations of ¢ are encoded as words over
2 X {0, 1}. The language L(y) 1s given by

k>0,
L(p) = Iz'} I;ﬂ a; € X and b; € {0, 1} forevery i € {1,...,k}, and
e PR = for exactly one index i € {1, ..., k} such that a; = a
and 1s recognized by
al |b al |b
it oo




Case p =x <y

e ¢ = x <y. Then free(¢) = {x,y}, and the interpretations of ¢ are encoded as words
over X X {0, 1}>. The language L(y) is given by

( k>0, )
aj ai|| a; € Xand b;,c; € {0, 1} foreveryi e {l,...,k},
L(¢) ={|bi| " |bi|| bi =1 forexactly one index i € {1,...,k}, >

c; = 1 for exactly one index j € {1,...,k}, and
\ [ < _] J




Case p = x € X

e ¢ = x € X. Then free(¢) = {x, X}, and interpretations are encoded as words over
T x {0, 1}%. The language L(¢) is given by
. 1] k=20 “’
L(o) = | bl bk a; € Zand b;,c; € {0, 1} forevery i € {1,...,k},
¥)= o b= | for exactly one index i € {I,...,k}, and
foreveryie{l,..., k},if b; = 1thenc; = 1




Case ¢ =

Then free(¢) = free(y)) . By i.h. L(y) is regular.

L(¢g) is equal to L(xp) minus the words that do not encode any
Implementation (,,the garbage®).

Equivalently, L(¢) is equal to the intersection of L(y) and the
encodings of all interpretations of .

We show that the set of these encodings is regular.

— Condition for encoding: Let x be a free first-oder variable of
Y . The projection of an encoding onto x must belong to
0"10" (because it represents one position).

— S0 we just need an automaton for the words satisfying this
condition for every free first-order variable.



Example: free(p) = {x, y}




Case ¢ = @1V @,

* Then free(p) = free(¢p,) U free(p,). By i.h. L(¢p,)
and L(¢p-) are regular.

o Iffree(p,) = free(¢,) then L(¢) = L(¢1) U L(¢3)
and so L(¢) is regular.

o If free(¢,) + free(¢,) then we extend L(¢,) to L,
encoding all interpretations of free(¢,) U free(¢,)
whose projection onto free(¢,) belongs to L(¢,).
Similarly we extend L(¢-) to L,. We have

— L, and L, are regular.
— L(p) =Ly ULs,.



Example: ¢ = Q,(x) V Q, (V)

e L, contains the encodings of all
interpretations (w, {x — nq,y +— n,}) such
that the encoding of (w, {x — n,}) belongs

to L(Qa (x)).
e Automata for L(Q,(x)) and L;:

a b a b
al |b al |b 0], .10 0 .10
01710 01710 0 0] |1 Of (1] 10

8 : 8 i 6

b

i




Cases @ = dx ¢ andp = 3IX ¢

e Then free(p)= free(y)\ {x} or
free(p)= free(y)\ {X}
By L.h. L(3) Is regular.

* L(¢) Isthe result of projecting L(y) onto the
components for free(y)\ {x} or for

free(y)\ {X}.



Example: ¢ = Q,(x)

o Automata for Q,(x) and 3Ix Q,(x)
H1 1 T

TR




The mega-example

* We compute an automaton for
Jx (Iast(x) A Qy (x)) A VX (—-Iast(x) — Qa(x))
e First we rewrite it into
Jx (Iast(x) A Qy (x)) A —3x (—-Iast(x) A —-Qa(x))
e In the next slides we

1. compute a DFA for last(x)

2. compute DFAs for 3x (last(x) A Q,(x)) and
—3x (—last(x) A =Q,(x))

3. compute a DFA for the complete formula.
* \We denote the DFA for a formula y by [y].









Enc(dy x < y)






[3x (Iast(x) A Qy, (x))]

il o

B0

[Op(X)] [dx (last(x) A Op(x))]



Enc(Qq(x))

Tl




[—3x (—-Iast(x) Al —-Qa(x))]
it il 1 R

m@ Fomn
- §

[3x (=last(x) A =Qa(x))]

[—3x (=last(x) A 2 Qu(x))]




[Gx (Iast(x) A Qyp (x)) A —3Ix (—-Iast(x) A —-Qa(x))]

8.0 B0

[dx (Iast(x) A Qp(x))] [—3x (=last(x) A ~Q(x))]

B0

[dx (last(x) A Op(x)) A —dx (—last(x) A =Q,(x))]




