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Logics on words

• Regular expressions give operational descriptions 
of regular languages.

• Often the natural description of a language is 
declarative:
 even number of ࢇ's and even number of ࢈'s vs.
ܽܽ + ܾܾ + ܾܽ + ܾܽ ܽܽ + ܾܾ ∗ ܾܽ + ܾܽ ∗

 words not containing ‘hello’ 
• Goal: find a declarative language  able to express 

all the regular languages, and only the regular 
languages.



Logics on words

• Idea: use a logic that has an interpretation on words
• A formula expresses a property that each word may 

satisfy or not, like
– the word contains only ࢇ's
– the word has even length
– between every occurrence of an  ࢇ and a  ࢈ there 

is an occurrence of a  ࢉ
• Every formula (indirectly) defines a language: the 

language of all the words over the given fixed 
alphabet that satisfy it. 



First-order logic on words

• Atomic formulas: for each letter ܽ we 
introduce the formula ܳ(ݔ), with intuitive 
meaning: the letter at position ࢞ is an ࢇ.



First-order logic on words: Syntax

• Formulas constructed out of atomic formulas 
by means of standard “logic machinery”:
– Alphabet Σ = {ܽ, ܾ, … } and position variables       
ܸ = ,ݕ,ݔ} … }

– ܳ ݔ is a formula for every ܽ ∈ Σ and ݔ ∈ ܸ.
– ݔ < ݕ is a formula for every ݔ, ݕ ∈ ܸ
– If ߮,߮ଵ ,߮ଶ are formulas then so are ¬߮ and
߮ଵ ∨ ߮ଶ

– If ߮ is a formula then so is ∃ݔ ߮ for every ݔ ∈ ܸ



Abbreviations

• ߮ଵ ∧ ߮ଶ ≔ ¬ ¬ ߮ଵ ∨ ¬߮ଶ
• ߮ଵ → ߮ଶ  ≔ ¬߮ଵ ∨ ߮ଶ
• ߮ଵ ↔ ߮ଶ  ≔ ߮ଵ ∧ ߮ଶ ∨ ¬߮ଵ ∧ ¬߮ଶ
• ≕ ߮ ݔ∀ ߮¬ ݔ∃ ¬



Abbreviations

• first ݔ ≔ ݕ  ݕ∃¬ < ݔ last ݔ ≔ ݔ  ݕ∃¬ < ݕ

• ݕ = ݔ + 1 ≔ ݔ < ݕ ∧ ݔ) ݖ∃¬ < ݖ ∧ ݖ < (ݕ

• ݕ = ݔ + 2 ≔ ݖ ݖ∃ = ݔ + 1 ∧ ݕ = ݖ + 1
…

• ݕ = ݔ + ݇ ≔ ݖ) ݖ∃ = ݔ + 1 ∧ ݕ = ݖ + (݇ − 1))

• ݔ < ݇ ≔ first) ݖ∀ݕ∀ ݕ ∧ ݖ = ݕ + ݇) → ݔ <  (ݖ

• last < ݇ ≔ last) ݔ∀ ݔ → ݔ < ݇)



Examples (without semantics yet)
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Examples (without semantics yet)



First-order logic on words: Semantics

• Formulas are interpreted on pairs (ݓ,ࣤ) called 
interpretations, where

– ݓ is a word, and

– ࣤ assigns positions to the free variables of the 
formula (and maybe to others too—who cares)

• It does not make sense to say a formula is true or false: 
it can only be true or false for a given interpretation.

• If the formula has no free variables (if it is a sentence), 
then for each word it is either true or false.



• More logic jargon:
 A formula is valid if it is true for all its 

interpretations
 A formula is satisfiable if is is true for at least 

one of its interpretations 

• Satisfaction relation:



The empty word ...

• … satisfies all universally quantified formulas, 
and no existentially quantified formula.



Can FOL express non-regular languages?
Can FOL express all regular languages?

• The language ܮ ߮ of a sentence ߮ is the set of 
words that satisfy ߮.

• A language ܮ is expressible in first-order logic or  FO-
definable if some sentence ߮ satisfies ܮ ߮ = .ܮ

• Proposition: a language over a one-letter alphabet is 
expressible in first-order logic iff it is finite or co-
finite (its complement is finite).

• Consequence: we can only express regular 
languages, but not all, not even the language of 
words of even length.



Proof sketch

1. If ܮ is finite, then it is FO-definable

2. If ܮ is co-finite, then it is FO-definable.



Proof sketch

3. If ܮ is FO-definable (over a one-letter 
alphabet), then it is finite or co-finite.

1) We define a new logic QF (quantifier-free 
fragment)

2) We show that a language is QF-definable iff it is 
finite or co-finite

3) We show that a language is QF-definable iff it is
FO-definable.



1) The logic QF

• ݔ < ݇ ݔ > ݇
ݔ < ݕ + ݇ ݔ > ݕ + ݇
݇ < last ݇ > last
are formulas for every variable ݕ ,ݔ and every 
݇ ≥ 0 .

• If ଵ݂, ଶ݂ are formulas, then so are ଵ݂ ∨ ଶ݂ and 
ଵ݂ ∧ ଶ݂



ܮ (2 is QF-definable iff it is finite or co-finite

(→) Let f be a sentence of QF.
Then f is a positive boolean combination of formulas 
݇ < last and ݇ > last.

݇)ܮ < last) = {݇ + 1, ݇ + 2, … } is co-finite (we identify 
words and numbers)
݇)ܮ > last) = {0,1, … , ݇} is finite
ܮ ଵ݂ ∨ ଶ݂ = ܮ ଵ݂  ∪ ܮ ଶ݂ and so if ܮ( ଵ݂) and ܮ ଶ݂
finite or co-finite then ܮ is finite or co-finite.
ܮ ଵ݂ ∧ ଶ݂ = ܮ ଵ݂  ∩ ܮ ଶ݂ and so if ܮ( ଵ݂) and ܮ ଶ݂
finite or co-finite then ܮ is finite or co-finite.



ܮ (2 is QF-definable iff it is finite or co-finite

(←) If  ܮ =  {݇ଵ, … , ݇} is finite, then
݇ଵ − 1 < last ∧  last < ݇ଵ + 1 ∨ ⋯∨

(݇ − 1 < last ∧  last < ݇ + 1)              

expresses ܮ.

If ܮ is co-finite, then its complement is finite, and so expressed by 
some formula. We show that for every  ݂ some formula  neg(݂)
expresses  ܮ(݂)

• neg ݇ < last = ݇ − 1 < last ∧  last < ݇ + 1 ∨  last < ݇

• neg ଵ݂ ∨ ଶ݂ = neg ଵ݂ ∧ neg ଶ݂

• neg( ଵ݂ ∧ ଶ݂) = neg( ଵ݂) ∨ neg( ଶ݂)



3) Every first-order formula ߮ has an equivalent 
QF-formula ܳܨ(߮)

• ܨܳ ݔ < ݕ = ݔ < ݕ + 0

• ܨܳ ¬߮ = neg ܨܳ ߮
• ܨܳ ߮ଵ ∨ ߮ଶ = ܨܳ ߮ଵ ∨ ܨܳ ߮ଶ  
• ܨܳ ߮ଵ ∧ ߮ଶ = ܨܳ ߮ଵ ∧ ܨܳ ߮ଶ  
• ܨܳ ߮ ݔ∃ =

– Put ܳܨ ߮ in  disjunctive normal form. Assume ܨܳ ߮ = (߮ଵ ∨ ... ∨
߮), where each ߮ is a conjunction of atomic formulas.

– Since ∃x (߮ଵ ∨ ... ∨ ߮) ≡ ∃x ߮ଵ ∨  ... ∨ ∃x ߮, it suffices to define
ܨܳ ߮ ݔ∃ for the case in which ߮ is a conjunction of atomic
formulas of QF

– For this case, see example in the next slide.



• Consider the formula
ݔ     ݔ∃ < ݕ + 3     ∧

ݖ < ݔ + 4     ∧
ݖ < ݕ + 2     ∧
ݕ < ݔ + 1 

• The equivalent QF-formula is
ݖ < ݕ + 8  ∧ ݕ   < ݕ + 5  ∧ ݖ   < ݕ + 2



Monadic second-order logic

• First-order variables: interpreted on positions
• Monadic second-order variables: interpreted 

on sets of positions.
– Diadic second-order variables: interpreted on 

relations over positions
– Monadic third-order variables: interpreted on sets 

of sets of positions
– New atomic formulas:  ݔ ∈ ܺ



Expressing „even length“

• Express 
There is a set ࢄof positions such that
– ࢄ contains exactly the even positions, and
– the last position belongs to ࢄ.

• Express 
ࢄ contains exactly the even positions 

as 
A position is in ࢄ iff it is the second position or 
the second successor of another position of ࢄ



Syntax and semantics of MSO

• New set ܺ,ܻ,ܼ, … of second-order variables
• New syntax:  ݔ ∈ ܺ and ∃ܺ ߮
• New semantics:

– Interpretations now also assign sets of positions to 
the free second-order variables.

– Satisfaction defined as expected.



Expressing „even length“

• second ݔ = first) ݕ∃ ݕ ∧ ݔ = ݕ + 1)

• Even ܺ = ݔ ݕ∀ ∈ ܺ ↔ second ݔ
∨ ݔ ݕ∃ = ݕ + 2 ∧ ݕ ∈ ܺ

• Evenlength = ∃ܺ Even ܺ ∧
last ݔ∀ ݔ → ݔ ∈ ܺ



Expressing ܿ∗ ܾܽ ∗݀∗

• Express: 
There is a block ࢄ of consecutive positions such that 

– before ࢄ there are only ࢉ‘s; 
– after ࢄ there are only  ;s‘ࢊ

–  ;ࢄ s alternate in‘࢈ s and‘ࢇ

– the first letter in ࢄ is an ࢇ, and the last is a ࢈.

• Then we can take the formula
ݏ݊ܥ) ܺ∃ ܺ  ∧ ܿܤ ܺ ∧ ݀ܣ ܺ ∧ ݐ݈ܣ ܺ
∧ ܽܨ ܺ ∧ ܾܮ ܺ  )



• ࢄ is a block of consecutive positions

• Before ࢄ there are only ࢉ‘s

• In ࢄ s alternate‘࢈ s and‘ࢇ



• ࢄ is a block of consecutive positions
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• ࢄ is a block of consecutive positions

• Before ࢄ there are only ࢉ‘s

• In ࢄ s alternate‘࢈ s and‘ࢇ



• ࢄ is a block of consecutive positions

• Before ࢄ there are only ࢉ‘s

• In ࢄ s alternate‘࢈ s and‘ࢇ



Every regular language is expressible in 
MSO logic

• Goal: given an arbitrary regular language ܮ, 
construct an MSO sentence ߮ s.t. ܮ = .(߮)ܮ

• It suffices to construct ߮ s.t. ݓ ∈ iff ܮ
ݓ ∈ ܮ ߮ for every nonempty word ݓ. 
(Avoid the corner-case of the empty word.)

• We use: if ܮ is regular, then there is a DFA ܣ
recognizing ܮ. 

• Idea: construct a formula expressing 
the run of  on this word is accepting



• Fix a regular language ܮ. 
• Fix a DFA ܣ with states ݍ, … , ݍ recognizing ܮ.
• Fix a nonempty word ݓ = ܽଵܽଶ … ܽ. 
• Let ܴ(ݍ) be the set of positions ݅ such that after 

reading ܽଵܽଶ …ܽ the automaton ܣ is in state ݍ.
• We have: 

ܣ accepts ݓ iff ݉ ∈ ܲ for some final state ݍ.





• Assume we can construct a formula 
Visits(ܺ, … ,ܺ)

which  is true for ݓ, ओ  iff
 ओ ܺ = ,(ݍ)ܴ … , ओ ܺ = ܴ ݍ

• Then (ݓ, ओ) satisfies the formula

iff the state after the last position is accepting, 
and we easily get a formula expressing ܮ .



• To construct Visits(ܺ, … ,ܺ) we observe that 
the sets (ݍ)ܴ are the unique sets satisfying
a) 1 ∈ ߜ)ܴ ,ܽଵݍ ) i.e., after reading the first letter 

the DFA is in state ߜ ,ܽଵݍ .
b) The sets ܴ(ݍ) build a partition of the set of 

positions, i.e., the DFA is always in exactly one 
state.

c) If ݅ ∈ (ݍ)ܴ and ߜ ,ݍ ܽାଵ = ′ݍ then ݅ + 1 ∈ ,(ᇱݍ)ܴ
i.e., the sets „match“ ߜ.

• We give formulas for a) , b), and c)





• Formula for c)

• Together:



Every language expressible in MSO logic is 
regular

• Recall: an interpretation of a formula is a pair 
,ݓ) ओ) consisting of a word ݓ and 
assignments ओ to the free first and second 
order variables (and perhaps to others).



• We encode interpretations as words.



• Given a formula with ݊ free variables, we 
encode an interpretation (ݓ, ओ) as a word 
,ݓ)ܿ݊݁ ओ) over the alphabet Σ × 0,1 .

• The language of the formula ߮ , denoted by 
 is given by ,(߮)ܮ

ܮ ߮ :={݁݊ܿ ,ݓ ओ ,ݓ | ओ ⊨ ߮}

• We prove by induction on the structure of ߮
that ܮ ߮ is regular (and explicitely construct 
an automaton for it).



Case  ߮ = ܳ(ݔ)



Case  ߮ = ݔ < ݕ



Case  ߮ = ݔ ∈ ܺ



• Then free ߮ = free(߰) . By i.h. ܮ ߰ is regular.
• ܮ ߮ is equal to ܮ ߰ minus the words that do not encode any 

implementation („the garbage“).
• Equivalently, ܮ ߮ is equal to the intersection of ܮ ߰ and the 

encodings of all interpretations of ߰.
• We show that the set of these encodings is regular.

– Condition for encoding: Let ݔ be a free first-oder variable of 
߰ . The projection of an encoding onto ݔ must belong to 
0∗10∗ (because it represents one position). 

– So we just need an automaton for the words satisfying this 
condition for every free first-order variable.

Case  ߮ = ¬߰



Example: free ߮ = {ݕ,ݔ}



• Then free ߮ = free ߮ଵ ∪ free ߮ଶ . By i.h. ܮ ߮ଵ
and ܮ ߮ଶ  are regular.

• If free ߮ଵ = free ߮ଶ then ܮ ߮ = ܮ ߮ଵ ∪ (ଶ߮)ܮ
and so ܮ ߮ is regular.

• If free ߮ଵ ≠ free ߮ଶ then we extend ܮ ߮ଵ to ଵܮ
encoding all interpretations of free ߮ଵ ∪ free ߮ଶ
whose projection onto free ߮ଵ belongs to ܮ ߮ଵ . 
Similarly we extend ܮ ߮ଶ to ܮଶ. We have

 ଵܮ and ܮଶ are regular.

 ܮ ߮ = ଵܮ ∪ .ଶܮ

Case  ߮ = ߮ଵ ∨ ߮ଶ



Example: ߮ = ܳ ݔ ∨ ܳ(ݕ)

• ଵܮ contains the encodings of all 
interpretations (ݓ, ⟼ ݔ ݊ଵ, ݕ ⟼ ݊ଶ ) such 
that the encoding of (ݓ, ⟼ ݔ ݊ଵ ) belongs 
to ܮ ܳ ݔ .

• Automata for ܮ ܳ ݔ and ܮଵ:



• Then free(߮)= free ߰ {ݔ} ⃥   or 
free(߮)= free ߰   ⃥ {ܺ}

• By i.h. ܮ(߰) is regular. 
• ܮ ߮ is the result of projecting ܮ(߰) onto the 

components for free ߰ {ݔ} ⃥   or for 
free ߰   ⃥ ܺ .

Cases  ߮ = ߰ ݔ∃ and ߮ = ∃ܺ ߰



• Automata for  ܳ ݔ and   ∃ݔ ܳ ݔ

Example: ߮ = ܳ ݔ



The mega-example

• We compute an automaton for
last ݔ∃ ݔ ∧ ܳ ݔ ∧ last¬ ݔ∀ ݔ → ܳ ݔ

• First we rewrite it into
last ݔ∃ ݔ ∧ ܳ ݔ ∧ last¬ ݔ∃¬ ݔ ∧ ¬ܳ ݔ

• In the next slides we 
1. compute a DFA for last ݔ
2. compute DFAs for ∃ݔ (last ݔ ∧ ܳ ݔ ) and 

last¬) ݔ∃¬ ݔ ∧ ¬ܳ ݔ )
3. compute a DFA for the complete formula.

• We denote the DFA for a formula ߰ by [߰].



[last ݔ ]



[last ݔ ]



[last ݔ ]



[last ݔ ]

ݔ ݕ∃] < [ݕ



last ݔ∃] ݔ ∧ ܳ ݔ ]



[ܳ ݔ ]

[¬ܳ ݔ ]



last¬ ݔ∃¬] ݔ ∧ ¬ܳ ݔ ]



last ݔ∃] ݔ ∧ ܳ ݔ ∧ last¬ ݔ∃¬ ݔ ∧ ¬ܳ ݔ ]


