Finite Universes

Finite Universes

When the universe is finite (e.g., the interval
[0,234 — 1]), all objects can be encoded by words
of the same length.

A language L has lengthn = O If
— L=0,o0r
— every word of L has length n.
L is a fixed-length language if it has length n for some
n=0.
Observe:
— Fixed-length languages contain finitely many words.

— @ and {&} are the only two languages of length O.
— @ 1s a language of any length!

The fixed-length master automaton

laaa, aab, aba, baa, bab, bba, bbb) laab, abb, baa, bab, bbb}
a b a b

4

The fixed-length master automaton

* The fixed-length master automaton over X is the tuple
M= (Qy,Z, 6y, Fy), Where

— @y, Is the set of all fixed-length languages;
— Oy Qu X X > Qyisgivenby 6,,(L,a) = L%;
— Fyyisthe set { {e} } (the only final state is the language {&}).

* Prop: The language recognized from state L of the master
automaton is L.
Proof: By induction on the length n of L.
n = 0. Then either L = @ or L = {e}, and result follows by inspection.

n > 0.Then 6,,(L,a) = L* for every a € X, and L% has smaller length than
L. By induction hypothesis the state L® recognizes the language L%,
and so the state L recognizes the language L.

The fixed-length master automaton

* \We denote the ,fragment” of the master automaton

reachable from state L by A4; :

e [nitial stateis L.
e States and transitions are those reachable from L.

e Prop: A; Is the minimal DFA recognizing L.
Proof: By definition, all states of A; are reachable

from its initial state.
Since every state of the master automaton recognizes

Its ,,own* language, distinct states of A; recognize
distinct languages.

Data structure for fixed-length languages

e The structure representing the set of languages

L={Lq,..,Ly,}Isthe fragment of the master automaton
containing states L4, ..., L,,, and their descendants.

o Itisamulti-DFA, i.e., a DFA with multiple initial states.

Data structure for fixed-length languages

* We represent multi-DFAs as tables of nodes.
e Anodeisapair{q,s)where

— g Is a state identifier, and

— s =1(qq,...,q.) ISasuccessor tuple.

 The table for a multi-DFA contains a node for each state but the
states for @ and {&}.

Ident. | a-succ b-succ
2 | 0

N AW
PO O~
BWN = =

Data structure for fixed-length languages

e The procedure make[T](s)

— returns the state identifier of the node of table T having s
as successor tuple, if such a node exists;

— otherwise it adds a new node {q,s) to T, where g is a
fresh identifier, and returns q.

 make|[T](s) assumes that T contains a node for every
identifier in s.

Implementing union and intersection

* We give a recursive algorithm inter|T (g4, q>):
— Input: state identifiers g4, g, from table T of the same length.

— Output: identifier of the state recognizing L(g,) N L(g,) In
the multi-DFA for T.

— Side-effect: if the identifier is not in T, then the algorithm
adds new nodes to T, i.e., after termination the table T may
have been extended.

* The algorithm follows immediately from the following properties
(HIfL;=0orL,=0thenL;NL, =0;
(2) if Ly ={¢} =L, thenL; N L, ={¢&};
B) IfLy #@®and L, # @, then (L N L,)* = LT n LY for every
a e .

Implementing union and intersection

inter(qi,q»)
Input: states g1, g2 recognizing languages of the same length

Output: state recognizing L(g1) N L(g>2)

1
2
3
4
5
6
7

if G(¢q1,¢2) 1s not empty then return G(q1, g2)

if g1 = gg or g» = gp then return g

else if g = ¢g. and ¢, = g, then return g,

else /* q1,q2 ¢ {q0.qc} */
foralli=1,...,mdor; < inter(q}.q5)
G(ql,qQ) — make(rl, c ey Fm)
return G(q1, q2)

Implementing union and intersection

Implementing union and intersection

12,13 15
8,11 — 8 9,10 — 14
575 0,70 57— 5 7,6 > 6
2,45 2] 3,43 4,202 Aot 24
\ / N
L1=1[10,1—=0/|0,1—=0 1,11 L1~ 11,0 0||1,1—1]|1,1~1

Implementing fixed-length complement

e Ifaset X € U isencoded by a language L of length n, then the set
U \ X is encoded by the fixed-length complement =™ \ L,
denoted by L™. Thisis different from L!

* Since the empty language has all lengths, we have @™ = 2™ for
every n > 0, in particular ° = 2° = {¢},

* The algorithm follows immediately from the following properties
1. If L haslengthOand L = @ then L° = {¢}.
2. If L haslengthOand L = {¢} then L° = @.

3. If L haslengthn > 1, then (L")% = at

Implementing fixed-length complement

comp(n, q)
Input: length n, state g of length n

Output: state recognizing L(q) "
if G(n, g) 1s not empty then return G(n, g)
if » = 0 and g = gy then return ¢,

1

2

3 elseifn =0 and g = g, then return g

4 else /xn>1 %/

5 foralli=1,...,mdor; « comp(n—1,q")
6 G(n,qg) « make(ry,...,ry)

7 return G(n, q)

Implementing fixed-length complement

Implementing fixed-length complement

4: 12+ 17
3: 815 3: 916
2:5+ 14 2:007 2:5- 14
1: 23 1: 04 1: 0 4

0:1=0] [0;01 0;0— 11001

Implementing fixed-length universality

» Alanguage L of length n is fixed-length universal if L = Z".

 The algorithm for universality follows immediately from the
following properties

(1) If L = @ then L is not universal.
(2) If L ={e&} then L is universal.

(3) If @ = L # {e} then L is universal iff L* is universal for every
a € .

Implementing fixed-length universality

univ(q)
Input: state g
Output: true if L(g) is fixed-length universal,
false otherwise
if G(g) 1s not empty then return G(g)

1

2 if g = gp then return false

3 elseif g = g, then return true

4 else /xqg+qpand q # qec*/

5 G(g) < and(univ(g™),...,univ(g))
6 return G(g)

Implementing fixed-length equality

* If two languages L, L, of the same length are represented by
nodes g4, g, of the same table thenwe have L, =L, iffqg; = q,,
and so equality can be checked in constant time.

« If the languages are represented by nodes from different tables,
then equality amounts to isomorphism of the DFAs rooted at the
nodes.

eq2(q1, q2)
Input: states g, g, of different tables
Output: true if L(g,) = L(q>), false otherwise
I if G(q1, g2) is not empty then return G(q, g2)
if g1 = gp1 and g2 = ggo then G(q1, q2) « true
else if ¢; = gp; and g2 # gg> then G(q,, g2) «— false
else if ¢; # qp; and ¢» = gg> then G(q,, g2) «— false
else /*q # qo1 and g2 # g * /

[£]] (3] [[

G(q1,q2) < and(eq(q, .4,),....ea(g,",q,"))
return G(q, g2)

-~ o bh R W 2

NFAs as starting point

« Given: Acyclic NFA A accepting a fixed-length language.
Goal: Simultaneously determinize and minimize A

» Each state of A accepts a fixed-length language.

* We give an algorithm state(S):

— Input: a subset S of states of A accepting languages of the
same length.

— Qutput: the state of the master automaton accepting
UqES L(CI)-

» Goalis achieved by calling state(Q,)

NFAs as starting point

* The algorithm follows from the following observations:
1) IfS =@ then L(S) = 0.
2) fSNF #@then L(S) = {e}.

) fS+@andSNF + @then L(S) = Ui, a; - L(S;),
where L(S;) = §(S, a;).
 This leads directly to a recursive algorithm:

NFAs as starting point

det&min(A)

Input: NFA A = (0, %, 9, Oy, F)

Output: master state recognizing L(A)
1 return state(Qy)

state(§)
Input: set § C Q recognizing languages of the same length
Output: state recognizing L(S)
| if G(S) 1s not empty then return G(§)
else if S = () then return g
else if S N F # (0 then return ¢,
else /S #0and S NF =0/
foralli=1,...,mdo §; « o(5,a;)
G(S) « make(state(S),...,state(S,,)),
return G(S5)

~ O b B W

NFAs as starting point

-E,{l—):‘;

ne 1 n,0-1

a5

e 2

B,y 4

0,6,{—3

n 1 n,0m—1

€2

VANV

00 ne 1

Implementing operations on relations

e Assumptions:
— Objects are encoded as words of X" (one word for each object)

— Pairs of objects are encoded as words of (X x X)".
Recall: ¥™ x X™ and (X x X)™ are isomorphic.

— Observe: objects and pairs of objects are both encoded as
words of length n, but over different alphabets.

 Notation: Given R € X" x " we denote
Rlabl = £ (w,,w,) € 2" 1 x 21| (aw,,bw,) ER}.

 Master transducer: Master automaton over the
alphabet £ % X.

Implementing fixed-length join

 The algorithm follows from:
1) DoR=Ro(@=0

2) {le €]} o {le €]} = le €l}
3) If R{, R, have length at least 1, then

R, oR, = U [a,b] - (R o R

a,b,cex

Implementing fixed-length join

join(ry, ra)

Input: states ry, r, of transducer table
Output: state recognizing L(ry) o L(r)
1 if G(ry, rp) 1s not empty then return G(r;,)

2 if r| = gg or rn = gy then return g

3 else if | = g and r; = g, then return g,

4 else /xqp#r #qgeand qp # r2 # ge * /

5 for all (a;,a;) e X x X do

6 rij < union (join (r[l”*"“l], rg?"ﬂ“"]) ..., join (r[l”*' Am] rg?"“a""]))
7 G(ri,rp) = make(ri1,-.. ... Fmm)

3

return G(ry,)

Implementing fixed-length pre and post

e The algorithm for pre (post is analogous) follows from:
1) fR=0orL =0Qthenpregy) =0
2) IfR ={[e €]} and L = {e} then preg) = {€}
3) Ifd R # {[le,e]}and @ + L + {e} then
prea() = | | a-pregun(?)

a,bex

Proof of 3): awy € prep(L)

dbw, € L: [aw;,bws] € R

db € X Aw, € LP: [wy, wy] € RI#P]
b € X: wy € pregun(L?)

awy € U a * prepiab) (L")
beX

g ¢0°¢

Implementing fixed-length pre and post

pre(r, q)
Input: state r of transducer table, state g of automaton table
Output: state recognizing pre;,,(L(q))
if G(r, g) 1s not empty then return G(r, q)
if ¥ = rp or g = gy then return g
else if r = r. and g = ¢, then return ¢,
else
for all a; € X do
q; < union (pre (r[”"*“'], q“') ... pre (r[“f m] q””’))
G(q,r) < make(q,,...,q,,)
return G(q, r)

o ~1 O W B W N =

Implementing projection

* \We reduce projection to pre.

* The projection of a language R < ™ x X" onto the first
component is the language pregz(Z™).

 Specializing the algorithm for pre we obtain:

proy(r)

Input: state r of transducer table

Qutput: state recognizing proj,(L(r))
1 if G(r) is not empty then return G(r)
2 if = rp then return g
3 else if » = r. then return ¢,
4 else

5 for all ¢; € X do

6 q: < union (pm l (r[""’”']) pro, (r[“’f’“*"}))

7 G(r) « make(q, ..., qn.)

8 return G(r)

Decision Diagrams (DDs)

Decision Diagrams (DDs)

A decision diagram iIs an automaton
= whose transitions are labeled by regular expressions of the
formaX™, n = 0, and
= satisfies the following determinacy condition for every
state g and letter a: there is exactly one k = 0 such that

5(q,azk) = @, and for this k there is a state q’ such that
5(q,az¥) ={q'}.
Observe: Every DFA is a DD.
A fixed-length language L isa kernel if L = @, L = {e}, or there
are a,b € X such that L* # L.
The kernel (L) of a fixed-length language L is the unique kernel
satisfying L = =*(L) for some k > 0. Observe: k and (L)
uniquely determine L for every L # Q.

The fixed-length master decision diagram

« All kernels as states, {€} as final state, transitions (K, aZ’, (K%))

laaa, aab, aba, baa, bab, bba, bbb} laab, abb, baa, bab, bbb)

Reduction rule

* Proposition: The unigue minimal DD for a kernel is the
fragment of the fixed-length master DD rooted at the kernel
(modulo labels of transitions leaving the states @ and {e}).

* Proposition: The minimal DD for a kernel is obtained from its
minimal DFA by exhaustively applying the following ,,reduction
rule®:

Data structure for kernels

e The structure representing the set of kernels
L={Lq,...,L,}Is the fragment of the master DD containing
states Lq, ..., L,,, and their descendants.

o Itisamulti-DD, I.e., a DD with multiple initial states.

Data structure for kernels

We represent multi-DDs as tables of kernodes .
A kernode is a triple (g, L, s) where

— g Is a state identifier,

— lisalength, and

— s =1(qq,...,q,,) IS asuccessor tuple.

The table for a multi-DD contains a node for each state but the states
for @ and €.

Ident. | Length | a-succ b-succ

2 1 1 0
4 1 0 1
b 6 2 2]

Implementing intersection

» Given kernels K3, K, of languages L4, L,, we wish to compute
Ki MK, =(L; NLy).

* We have
1. fK,=0orK, =@thenK, NnK, = 0.
2. If Ky # @ + K, then

(27K Nk, ifl <1,

Ki MK, =k, n272K,) ifl, <1y

k (Kl ﬂ Kz) |f ll — lz
3. If I, < I, then ((271K, N K,)) = Ky M (KY)
4. 1f 1, <1 then ((K; N 272K,y = (K9) n K,
5. Ifl; =1, then ((K; N K,)%) = (K{) N (K

e 3.-5.lead to a recursive algorithm

Implementing intersection

kinter(q,, q2)
Input: states g, g2 recognizing (L), {Lz)
Output: state recognizing (L; N L)
1 if G(gy,q>) 1s not empty then return G(q;, g>)

2 if g, = gp or g2 = gp then return gy

3 ifg) # gp and g2 # gp then

4 if [y <[> /* lengths of the kernodes for ¢y, g> */ then
5 foralli=1,....mdor; « ﬁ:inrfr(qhqg"]
6 G(q1,q2) < kmake(ls, ry, ... " m)

7 else if /; [then

8 foralli=1,....mdo r; « kinter(q{'. q2)
9 G(q1,q2) « kmake(ly,ry,..., 1)
10 else /¥ [, =, #/
11 foralli=1,..., mdor « kinmr(q‘:"j qg")
12 Gl(gy,q2) « kmake(ly,ry, ..., 1)

13 return G(qi,q>)

Implementing intersection

a a b b ax’

@oo

b a
a

oy
=
. i

Implementing intersection

12,1315

