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Finite Universes

• When the universe is finite (e.g., the interval
0, 2ଷଶ − 1 ), all objects can be encoded by words

of the same length.
• A language ܮ has length ݊ ≥ 0 if

 ܮ = ∅, or
 every word of ܮ has length ݊.

• ܮ is a fixed-length language if it has length ݊ for some 
݊ ≥ 0 .

• Observe:
– Fixed-length languages contain finitely many words.
– ∅ and {ߝ} are the only two languages of length 0.
– ∅ is a language of any length!



The fixed-length master automaton



• The fixed-length master automaton over Σ is the tuple 
M = ܳெ,Σ, ெܨ,ெߜ , where
– ܳெ is the set of all fixed-length languages;
– :ெߜ  ܳெ ×  Σ → ܳெ is given by ߜெ ܽ,ܮ = ;ܮ
– ெܨ is the set { ߝ  } (the only final state is the language ߝ ).

• Prop: The language recognized from state ܮ of the master 
automaton is ܮ.
Proof: By induction on the length ݊ of ܮ.
݊ = 0. Then either ܮ = ∅ or ܮ = ߝ , and result follows by inspection.
݊ > 0. Then ߜெ ,ܮ ܽ = ܮ for every  ܽ ∈ Σ, and ܮ has smaller length than 

ܮ By induction hypothesis the state .ܮ recognizes the language ܮ, 
and so the state ܮ recognizes the language ܮ.

The fixed-length master automaton



• We denote the  „fragment“ of the master automaton 
reachable from state ܮ by ܣ :
• Initial state is ܮ.
• States and transitions are those reachable from ܮ.

• Prop: ܣ is the minimal DFA recognizing ܮ.
Proof: By definition, all states of ܣare reachable 
from its initial state. 
Since every state of the master automaton recognizes 
its „own“ language, distinct states of ܣ recognize 
distinct languages. 

The fixed-length master automaton



• The structure representing the set of languages                     
ख = ,ଵܮ} … , {ܮ is the fragment of the master automaton 
containing states ܮଵ, … , ܮ and their descendants.

• It is a multi-DFA , i.e., a DFA with multiple initial states.

Data structure for fixed-length languages



• We represent multi-DFAs as tables of nodes .
• A node is a pair ݍ, ݏ where

– ݍ is a state identifier, and 
– ݏ = ,ଵݍ … , ݍ is a successor tuple.

• The table for a multi-DFA contains a node for each state but the
states for ∅ and .{ߝ}

Data structure for fixed-length languages



• The procedure ݉ܽ݇݁[ܶ](ݏ)
– returns the state identifier of the node of table ܶ having s 

as successor tuple, if such a node exists; 
– otherwise it adds a new node ݍ, ݏ to ܶ, where ݍ is a 

fresh identifier, and returns ݍ.
• (ݏ)[ܶ]݁݇ܽ݉ assumes that ܶ contains a node for every 

identifier in ݏ.

Data structure for fixed-length languages



Implementing union and intersection
• We give a recursive algorithm ݅݊ݎ݁ݐ ܶ ଶݍ,ଵݍ :

– Input: state identifiers ݍଵ, ଶݍ from table ܶ of the same length.
– Output: identifier of the state recognizing ܮ ଵݍ ∩ ܮ ଶݍ in 

the multi-DFA for ܶ.
– Side-effect: if the identifier is not in ܶ, then the algorithm 

adds new nodes to ܶ, i.e., after termination the table ܶ may 
have been extended.

• The algorithm follows immediately from the following properties
(1) if ܮଵ = ∅ or ܮଶ = ∅ then ܮଵ ∩ ଶܮ = ∅ ;
(2) if ܮଵ = ߝ = ଶܮ then ܮଵ ∩ ଶܮ = {ߝ} ;
(3) If ܮଵ ≠ ∅ and ܮଶ ≠ ∅ , then ܮଵ ∩ ଶܮ  = ଵܮ ∩ ଶܮ for every 

ܽ ∈ Σ.



Implementing union and intersection
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Implementing union and intersection



Implementing fixed-length complement
• If a set ܺ ⊆ ܷ is encoded by a language ܮ of length ݊, then the set
ܷ ∖ ܺ is encoded by the fixed-length complement Σ ∖  ,ܮ
denoted by ത.  This isܮ different from !തܮ

• Since the empty language has all lengths, we have ∅ഥ = Σ for
every ݊ ≥ 0, in particular ∅ഥ = Σ = {߳}, 

• The algorithm follows immediately from the following properties
1. If ܮ has length 0 and ܮ = ∅ then  ܮത = ߳ .
2. If ܮ has length 0 and ܮ = {ߝ} then  ܮത = ∅.

3. If ܮ has length ݊ ≥ 1, then തܮ  = .ିଵܮ 



Implementing fixed-length complement
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Implementing fixed-length complement



Implementing fixed-length universality
• A language ܮ of length ݊ is fixed-length universal if ܮ = Σ. 

• The algorithm for universality follows immediately from the 
following properties
(1) If ܮ = ∅ then ܮ is not universal.
(2) If ܮ = {ߝ} then ܮ is universal.
(3) If ∅ ≠ ܮ ≠ {ߝ} then ܮ is universal iff ܮ is universal for every

ܽ ∈ Σ. 



Implementing fixed-length universality



Implementing fixed-length equality
• If two languages ଶܮ ,ଵܮ of the same length are represented by

nodes ,ଵݍ ଶݍ of the same table then we have ଵܮ = ଶܮ iff ଵݍ =  , ଶݍ
and so equality can be checked in constant time.

• If the languages are represented by nodes from different tables, 
then equality amounts to isomorphism of the DFAs rooted at the
nodes.



• Given: Acyclic NFA ܣ accepting a fixed-length language.
Goal: Simultaneously determinize and minimize ܣ

• Each state of ܣ accepts a fixed-length language.
• We give an algorithm state(S):

– Input: a subset ܵ of states of ܣ accepting languages of the 
same length.

– Output: the state of the master automaton accepting 
⋃ ∈ௌ(ݍ)ܮ .

• Goal is achieved by calling state(ܳ)

NFAs as starting point



• The algorithm follows from the following observations:
1) If ܵ = ∅ then ܮ ܵ = ∅.
2) If ܵ ∩ ܨ ≠ ∅ then ܮ ܵ = {߳}.
3) If ܵ ≠ ∅ and ܵ ∩ ܨ ≠ ∅ then ܮ ܵ = ⋃ ܽ

ୀଵ ⋅ ܮ ܵ , 
where ܮ ܵ = .(ܽ,ܵ)ߜ

• This leads directly to a recursive algorithm:

NFAs as starting point



NFAs as starting point



NFAs as starting point



Implementing operations on relations
• Assumptions: 

– Objects are encoded as words of Σ (one word for each object)

– Pairs of objects are encoded as words of Σ × Σ . 
Recall:  Σ × Σ and Σ × Σ  are isomorphic.

– Observe: objects and pairs of objects are both encoded as
words of length ݊, but over different alphabets.

• Notation: Given ܴ ⊆ Σ × Σ, we denote

ܴ , = ଶݓ,ଵݓ ∈ Σିଵ × Σିଵ ,ଵݓܽ ଶݓܾ ∈ ܴ .

• Master transducer:  Master automaton over the
alphabet Σ × Σ.



Implementing fixed-length join
• The algorithm follows from:

1) ∅ ∘ ܴ = ܴ ∘ ∅ = ∅
2) ߳, ߳ ∘ ߳, ߳ = ߳, ߳
3) If ܴଵ,ܴଶ have length at least 1, then

ܴଵ ∘ ܴଶ = ራ ܽ, ܾ ⋅ ܴଵ
, ∘ ܴଶ

,

,,∈ஊ



Implementing fixed-length join



Implementing fixed-length pre and post
• The algorithm for pre (post is analogous) follows from:

1) If ܴ = ∅ or ܮ = ∅ then ோ݁ݎ  = ∅

2) If ܴ = { ߳, ߳ } and ܮ = ߳ then ோ݁ݎ  = {߳}

3) If ∅ ≠ ܴ ≠ { ߳, ߳ } and ∅ ≠ ܮ  ≠ {߳} then 

(ܮ)ோ݁ݎ  = ራ ܽ ⋅ ோ݁ݎ ೌ,್ (ܮ)
,∈ஊ

Proof of 3):



Implementing fixed-length pre and post



Implementing projection
• We reduce projection to pre.
• The projection of a language ܴ ⊆ Σ × Σ onto the first

component is the language .ோ(Σ)݁ݎ
• Specializing the algorithm for pre we obtain:



Decision Diagrams (DDs)



Decision Diagrams (DDs)
• A decision diagram is an automaton
 whose transitions are labeled by regular expressions of the

form ܽΣ, ݊ ≥ 0, and
 satisfies the following determinacy condition for every

state ݍ and letter ܽ: there is exactly one ݇ ≥ 0 such that
ߜ Σܽ,ݍ ≠ ∅, and for this ݇ there is a state ′ݍ such that
ߜ Σܽ,ݍ = .{ᇱݍ}

• Observe: Every DFA is a DD.
• A fixed-length language ܮ is a kernel if ܮ = ܮ ,∅ = {߳}, or there

are ܽ, ܾ ∈ Σ such that ܮ ≠ .ܮ
• The kernel 〈ܮ〉 of a fixed-length language ܮ is the unique kernel

satisfying ܮ = Σ ܮ for some ݇ ≥ 0. Observe: ݇ and 〈ܮ〉
uniquely determine ܮ for every ܮ ≠ ∅.



The fixed-length master decision diagram

• All kernels as states, {߳} as final state, transitions ,Σܽ,ܭ) ܭ )



Reduction rule
• Proposition: The unique minimal DD for a kernel is the

fragment of the fixed-length master DD rooted at the kernel
(modulo labels of transitions leaving the states ∅ and {߳}).

• Proposition: The minimal DD for a kernel is obtained from its
minimal DFA by exhaustively applying the following „reduction
rule“:



• The structure representing the set of kernels
ख = ,ଵܮ} … , {ܮ is the fragment of the master DD containing 
states ܮଵ, … , ܮ and their descendants.

• It is a multi-DD , i.e., a DD with multiple initial states.

Data structure for kernels



• We represent multi-DDs as tables of kernodes .
• A kernode is a triple ,ݍ ݈, ݏ where

– ݍ is a state identifier,
– ݈ is a length, and
– ݏ = ,ଵݍ … , ݍ is a successor tuple.

• The table for a multi-DD contains a node for each state but the states
for ∅ and ߳.

Data structure for kernels



Implementing intersection
• Given kernels ଶܭ,ଵܭ of languages ܮଵ,ܮଶ, we wish to compute
ଵܭ ⊓ ଶܭ = ଵܮ〉 ∩ .〈ଶܮ

• We have
1. If ଵܭ = ∅ or ܭଶ = ∅ then ܭଵ ⊓ ଶܭ = ∅.
2. If ଵܭ ≠ ∅ ≠ ଶܭ then

ଵܭ ⊓ ଶܭ =
〈Σమିభܭଵ ∩ 〈ଶܭ if ݈ଵ < ݈ଶ
ଵܭ〉 ∩ Σ

భିమܭଶ〉 if ݈ଶ < ݈ଵ
ଵܭ〉 ∩ 〈ଶܭ if ݈ଵ = ݈ଶ

3. If ݈ଵ < ݈ଶ then  (Σమିభܭଵ ∩ ଶܭ

〉 = ଵܭ ⊓ 〈ଶܭ〉

4. If ݈ଶ < ݈ଵ then  (Kଵ ∩ Σ
భିమܭଶ


〉 = ଵܭ  ⊓ ଶܭ

5. If ݈ଵ = ݈ଶ then ଵܭ ∩ ଶܭ  = ଵܭ ⊓ 〈ଶܭ〉
• 3.-5. lead to a recursive algorithm



Implementing intersection
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