Pattern Matching



Pattern Matching

e Glven
—aword ¢t (the text) of length n, and
— a regular expression p (the pattern) of length m
determine

— the smallest number k' such that some
|k, k' |-factor of w belongs to L(p).



NFA-based solution

PatternMatchingNFA(t, p)
Input: textz = a;...a, € X', pattern p € X*
Output: the first occurrence of p in ¢, or L if no such occurrence exists.
1 A « RegtoNFA(X"p)
2 S« Qo
3 forallk=0ton—-1do
4 if S N F # ( then return k
5 S « 0(S,ars1)
6 return L

Line 1 takes 0(m3) time (0 (m?) for fixed alphabet) , output has 0 (m)
states

Loop is executed at most n times

One iteration takes O(s?) time, where s is the number of states of 4
Since s = 0(m), the total runtime is 0(m?3 + nm?) , and 0 (nm?) for
m<n.



DFA-based solution

PatternMatchingDFA(t, p)

Input: textt = a;...a, € X", pattern p

Output: the first occurrence of p in ¢, or L if no such occurrence exists.
1 A « NFAtoDFA(RegtoNFA(X" p))

2 qg<qo

3 forallk=0ton—-1do

4 if ¢ € F then return k
S

6

q — 5(% ak+1)
return L

Line 1 takes 2°(™ time

Loop is executed at most n times
One iteration takes constant time
Total runtime is 0(n) + 290



The word case

The patternp = b, b, ... b,,, Is a word of length m

Naive algorithm: move a window of size m along
the word one letter at a time, and compare with
p after each step. Runtime: O (nm) for any
alphabet ofsize0 < [Z| < n.

We give an algorithm with O(n + m) runtime for
any alphabet of size0 < |[Z| < n.

First we explore in detail the shape of the DFA for
Xp.



Obvious NFA for X*p and p = nano

B O

Result of applying NFAtoDFA:







Intuition

 Transitions of the ,,spine* correspond to hits: the next letter
IS the one that ,,makes progress“ towards nano.

 Other transitions correspond to misses, I.e., ,wrong letters*
and ,,throw the automaton back".



Observations

other

 Foreverystate i = 0,1, ...,4 of the NFA there is exactly one
state S of the DFA such that i is the largest state of S.

» Forevery state S of the DFA, with the exception of § = {0}, the
result of removing the largest state is again a state of the DFA.



Observations

other

 Foreverystate i = 0,1, ...,4 of the NFA there is exactly one
state S of the DFA such that i is the largest state of S.

» Forevery state S of the DFA, with the exception of § = {0}, the
result of removing the largest state is again a state of the DFA.

e Do these properties hold for every pattern p?



Heads and talls, hits and misses

Head of S, denoted h(S) : largest state of S
Tail of S, denoted ¢(S) : rest of the state
Example: h({3,1,0}) = 3, t({3,1,0}) = {1,0}

Given a state S, the letter leading to the next state In
the ,,spine“ is the (unique) hit letter for S.

All other letters are miss letters for S.

Example: hit for {3,1,0} Is o, whereas n or a are
misses.



Fundamental property of the DFA

* Proposition: Let S, be the k-th state picked from the workset
during the execution of NFAtoDFA(A,).

(1) h(Sk) =k,
(2) Ifk > 0,thent(S,) =S, forsomel <k
Proof Idea:

e (1)and(2) hold for S, = {0} and S; = {1,0}.

e Forthestepk — k + 1 we look at §(Sy, a) for each a, where
d transition relation of 4,, .

 Byi.h.wehave S, ={k}uU S;forsome | <k.

e We distinguish two cases: a is a hit for S;, (thatis, a = by ,1),
and a is a miss for S,.



e S, =1{k}US; forsome [ <k
e &(Sy,a) =6(k,a) U 6(S;,a)
tk} U S

HIt: al al
{k + 1} U S(Sl, Cl)



e S, =1{k}US; forsome [ <k

e &(Sy,a) =6(k,a) U 6(S;,a)

{k} U S

Hit: al al
{k + 1} U 5(51, Cl)

_—

Added earlier to the
workset, and so some S/




e S, =1{k}US; forsome [ <k

e &(Sy,a) =6(k,a) U 6(S;,a)

{k} U S
Hit: al al
{k + 1} U S(Sl, Cl)

tk+1} U Sy



S, ={k}US; forsome [ <k

5(Sy,a) =6(k,a) U 6(S;,a)

HIt: al al
tk+1} U §(S;, a)

tk+1} U Sy =

New state, gets
added to the
workset




e S, =1{k}US; forsome [ <k

e &(Sy,a) =6(k,a) U 6(S;,a)

k} u S 3} u {10}
ol o] o

{k+1} U 6(S;,a) {4} v 6§({1,0},0)

tk+1} u Sy 43 U {0}



e S, =1{k}US; forsome [ <k
e &(Sy,a) =6(k,a) U 6(S;,a)
{k} U S

Miss: al al
@ U S(Sl,a)



e S, =1{k}US; forsome [ <k

e &(Sy,a) =6(k,a) U 6(S;,a)

{k} U S
Miss: al al

@ U S(Sl,a)



e S, =1{k}US; forsome [ <k

e &(Sy,a) =6(k,a) U 6(S;,a)

{k} U S
Miss: al al
(Z) U 5(51, Cl)

Already seen, Is
not added to \ Sl’

the workset




MIsS:

S, ={k}US; forsome [ <k

5(Sy,a) =6(k,a) U 6(S;,a)

k} u s (8 U {10}
Ll pooo

® U 6§(S5,a) ® U §{10}Ln)

Sy {1,0}



Consequences

Prop: The result of applying NFAtoDFA(A), where A IS
the obvious NFA for X*p , yields a minimal DFA with
m + 1 states and |Z|(m + 1) transitions.

Proof: All states of the DFA accept different
languages.

So: concatenating NFAtoDFA and
PatternMatchingDFA yieldsa O(n + |X|m)
algorithm.

— Good enough for constant alphabet

— Not good enough for |Z| = Q(n), then same complexity
as window algorithm



Lazy DFAS

« We Introduce a new data structure: lazy DFAs.
We construct a lazy DFA for Z*p with m + 1
states and 2(m + 1) transitions.

» Lazy DFAs: automata that read the input from
a tape by means of a reading head that can
move one cell to the right or stay put.

e DFA =Lazy DFA whose head never stays put.



Lazy DFA for X" p

* By the fundamental property, the DFA B for 2" p
behaves from state S, as follows:

— If ais a hit, then 65(Sy, a) = Sy 41, i.e., the DFA moves
to the next state in the spine.

— If aisamiss, then 6§5(Sy,a) = 65(t(S), a), i.e., the DFA
moves to the same state it would move to if it were In
state t(Sy).

 When a is a miss for S;, the lazy automaton moves to state
t (S, ) without advancing the head. In other words, it
~adelegates” doing the move to t(S;,).

e So the lazy DFA behaves the same for all misses.






« Formally, for the lazy DFA C:

— 85.(Sy,a) = (Sp.q, R) if ais a hit

—0c(S,,a) = (t(S,),N) if a i1sa miss
e So the lazy DFA has m + 1 states and 2m

transitions.
* |t can be constructed in O(m) space:

— For each O < k < n, compute and store S;, with
¢ S, := {0}, and

* Si+1 = 6(Sk, br41).
— Compute the transitions as at the top of the slide.



e Running the lazy DFA on the text takes O (n) time:

— For every text letter the lazy DFA performs a
sequence of ,,stay put” steps followed by a ,,right*”
step. Call this sequence a macrostep.

—Let §;, be the state after the i-th macrostep. The
number of steps of the i-th macrostep is at most
Ji-1—Jit2.

— S0 the total number of steps is at most

n
Y Gia =i+ =jo—ju+2n <2
1=1



Computing the lazy DFA In O(m) time

e Forthe O(m + n) bound it remains to show that the lazy DFA can
be constructed in O(m) time.

o Let Miss(k) be the head of the state of the lazy DFA reached from
S, by amiss (that is, Miss(k) is the head of the state £ (S},)).

e |tiseasy to compute each of Miss(0),...,Miss(m) in O(m) time,
leading to a O (n + m?) time algorithm.

(Compute the S;, and use Miss(k) = h(t(Sy)).)

e Canwe compute all of Miss(0),..., Miss(m) together in time
O(m)? Looks impossible!

e Itisn‘t though ...



et miss(i) be the state reached by a miss from S; in the lazy
DFA. Then miss(i) = t(S;) and Miss(i) = h(miss(S;)).
~or i > 1 we have

miss(i) = t(S;)

t(65(Si—1,b;))
t(6({i — 1}, b;) U 8(t(Si=1), b))
t( {i}US(t(Si—1), b))
6p (t(Si-1), b;)



et miss(i) be the state reached by a miss from S; in the lazy
DFA. Then miss(i) = t(S;) and Miss(i) = h(miss(S;)).
~or i > 1 we have

miss(i) = t(S;)

t(65(Si—1,b;))
t(6({i — 1}, b;) U 6(t(Si-1), b;))
t( {i}US(t(Si—1), b))
6p(t(Si—1), b;)

and so we get

$5(S5) = ; So ifi=0ori=1
TSRT T Splmiss(Sio1).by)  ifi> 1
(St if b = by (hit)
op(S;,b) = { So itb # bjy (miss) and j =0
_ op(miss(S j),b) 1tb # b (miss)and j # 0



$5(S)) = So ifi=0ori=1
MBSO =\ sp(miss(S;_1), b)) ifi> 1
(S i1 if b = bjy (hit)
o0p(S;,b) = { So it b # bjy (miss)and j =0
 op(miss(S ;),b) 1tb # bjy (miss) and j # 0

With Miss(i) = h(miss(S;)) we get the following algorithm:

CompMiss(p) DeltaB(j, D)

Input: pattern p = by - - - b,,. Input: head j € {0, ...,m}, letter b.

Output: heads of targets of miss transitions.  Qutput: head of the state 55(S j, b).
1 Miss(0) « 0; Miss(1) < 0 1 whileb #bj,y and j # 0do j < Miss(j)
2 fori<2,...,mdo 2 if b =bjy then return j + 1

3 Miss(i) « DeltaB( Miss(i — 1), b;) 3 else return 0



CompMiss(p)
Input: pattern p = by - - - by,.
Output: heads of targets of miss transitions.

1 Miss(0) « 0; Miss(1) < 0O
2 fori<2,...,mdo
3 Miss(i) « DeltaB(Miss(i — 1), b;)

DeltaB(j, b)
Input: head j € {0,...,m}, letter b.
Output: head of the state 65(S ;, b).

1 whileb #b;,1and j # 0do j « Miss(j)
2 ifb=>bj; thenreturn j + 1
3 else return 0

All calls to DeltaB lead together
to O (m) iterations of the while loop.
The call DeltaB(Miss(i — 1), b;)
executes at most
Miss(i —1) — (Miss(i) — 1)
Iterations, because:
 initially j is assigned Miss(i — 1)
(line 3 of CompMiss)
e each iteration decreases j by at
least 1
(line 1 of DeltaB, Miss(j) < )
» the return value assigned to
Miss (i) is at most the final value

of j plus 1.
(line 2 of DeltaB)



e Total number of iterations:

Z(Miss(i ~ 1) — Miss(i) + 1)
=2

Miss(1) — Miss(m) +m —1

m

IA IA



