
Pattern Matching



Pattern Matching

• Given
 a word ݐ (the text) of length ݊, and
 a regular expression p (the pattern) of length ݉

determine
 the smallest number ݇′ such that some 

݇,݇ᇱ -factor of ݓ belongs to (݌)ܮ.



• Line 1 takes  ܱ(݉ଷ) time (ܱ ݉ଶ for fixed alphabet) , output has ܱ(݉)
states 

• Loop is executed  at most  ݊ times
• One iteration takes  ܱ(ݏଶ) time , where ݏ is the number of states of ܣ
• Since ݏ = ܱ(݉), the total runtime is ܱ ݉ଷ + ݊݉ଶ , and ܱ(݊݉ଶ) for
݉ ≤ ݊ .

NFA-based solution



• Line 1 takes  2ை(௠) time
• Loop is executed  at most  ݊ times
• One iteration takes constant time
• Total runtime is  ܱ ݊ + 2ை(௠)

DFA-based solution



The word case

• The pattern ݌ = ܾଵܾଶ … ܾ௠ is a word of length ݉
• Naive algorithm: move a window of size m along 

the word one letter at a time, and compare with 
p after each step. Runtime: ܱ(݊݉) for any
alphabet of size 0 ≤ Σ ≤ ݊ .

• We give an algorithm with ܱ(݊ + ݉) runtime for 
any alphabet of size 0 ≤ Σ ≤ ݊ .

• First we explore in detail the shape of the DFA for 
Σ∗݌ .



Obvious NFA for Σ∗݌ and ݌ = ݋݊ܽ݊

Result of applying NFAtoDFA:





• Transitions of the „spine“ correspond to hits: the next letter 
is the one  that „makes progress“ towards nano.

• Other transitions correspond to misses, i.e., „wrong letters“ 
and „throw the automaton back“.

Intuition



• For every state  ݅ =  0,1, … , 4 of the NFA  there is exactly one 
state ܵ of the DFA such that ݅ is the largest state of ܵ.

• For every state ܵ of the DFA, with the exception of ܵ = {0}, the 
result of removing the largest state is again a state of the DFA.

Observations



• For every state  ݅ =  0,1, … , 4 of the NFA  there is exactly one 
state ܵ of the DFA such that ݅ is the largest state of ܵ.

• For every state ܵ of the DFA, with the exception of ܵ = {0}, the 
result of removing the largest state is again a state of the DFA.

• Do these properties hold for every pattern  ݌?

Observations



• Head of ܵ, denoted ℎ(ܵ) : largest state of ܵ
• Tail of ܵ, denoted  ݐ ܵ : rest of the state
• Example: ℎ({3,1,0}) =  3, ({3,1,0})ݐ =  {1,0}

• Given a state ܵ, the letter leading to the next state in 
the „spine“  is the (unique) hit letter for ܵ.

• All other letters are miss letters for ܵ.
• Example: hit for {3,1,0} is ݋, whereas ݊ or ܽ are

misses.

Heads and tails, hits and misses



• Proposition: Let ܵ௞ be the ݇-th state picked from the workset
during the execution of NFAtoDFA(ܣ௣).

(1) ℎ ܵ௞ = ݇,
(2) If ݇ > 0, then ݐ ܵ௞ = ௟ܵ for some ݈ < ݇

Proof Idea: 

• (1) and (2) hold for ܵ଴ = {0} and ଵܵ = {1,0}.

• For the step ݇ → ݇ + 1 we look at ߜ ܵ௞ ,ܽ for each ܽ, where 
ߜ transition relation of ܣ௣ .

• By i.h. we have  ܵ௞ = ݇ ∪  ௟ܵ for some  ݈ < ݇.

• We distinguish two cases: ܽ is a hit for ܵ௞ (that is, ܽ = ܾ௞ାଵ), 
and ܽ is a miss for ܵ௞.

Fundamental property of the DFA



• δ ܵ௞ ,ܽ = ߜ ݇, ܽ  ∪ )ߜ  ௟ܵ , ܽ)

• ܵ௞ = ݇ ∪ ௟ܵ for some  ݈ < ݇

Hit:
݇  ∪ ௟ܵ

݇ + 1 ∪ )ߜ ௟ܵ ,ܽ)

a a



• δ ܵ௞ ,ܽ = ߜ ݇, ܽ  ∪ )ߜ  ௟ܵ , ܽ)

Hit:
݇  ∪ ௟ܵ

݇ + 1 ∪ )ߜ ௟ܵ ,ܽ)

a a

Added earlier to the
workset, and so some ܵ௟ᇲ

• ܵ௞ = ݇ ∪ ௟ܵ for some  ݈ < ݇



• δ ܵ௞ ,ܽ = ߜ ݇, ܽ  ∪ )ߜ  ௟ܵ , ܽ)

Hit:
݇  ∪ ௟ܵ

݇ + 1 ∪ )ߜ ௟ܵ ,ܽ)

a a

݇ + 1 ∪ ܵ௟ᇲ
= =

• ܵ௞ = ݇ ∪ ௟ܵ for some  ݈ < ݇



• δ ܵ௞ ,ܽ = ߜ ݇, ܽ  ∪ )ߜ  ௟ܵ , ܽ)

Hit:
݇  ∪ ௟ܵ

݇ + 1 ∪ )ߜ ௟ܵ ,ܽ)

a a

݇ + 1 ∪ ܵ௟ᇲ
= =

• ܵ௞ = ݇ ∪ ௟ܵ for some  ݈ < ݇

New state, gets
added to the
workset



• δ ܵ௞ ,ܽ = ߜ ݇, ܽ  ∪ )ߜ  ௟ܵ , ܽ)

Hit:

݇  ∪ ௟ܵ

݇ + 1 ∪ )ߜ ௟ܵ ,ܽ)

a a

݇ + 1 ∪ ܵ௟ᇲ
= =

• ܵ௞ = ݇ ∪ ௟ܵ for some  ݈ < ݇

3  ∪ {1,0}

4 ∪ (݋,{1,0})ߜ

o o

4 ∪ {0}
= =



• δ ܵ௞ ,ܽ = ߜ ݇, ܽ  ∪ )ߜ  ௟ܵ , ܽ)

Miss:
݇  ∪ ௟ܵ

∅ ∪ )ߜ ௟ܵ ,ܽ)

a a

• ܵ௞ = ݇ ∪ ௟ܵ for some  ݈ < ݇



• δ ܵ௞ ,ܽ = ߜ ݇, ܽ  ∪ )ߜ  ௟ܵ , ܽ)

Miss:
݇  ∪ ௟ܵ

∅ ∪ )ߜ ௟ܵ ,ܽ)

a a

ܵ௟ᇲ
=

• ܵ௞ = ݇ ∪ ௟ܵ for some  ݈ < ݇



• δ ܵ௞ ,ܽ = ߜ ݇, ܽ  ∪ )ߜ  ௟ܵ , ܽ)

Miss:
݇  ∪ ௟ܵ

∅ ∪ )ߜ ௟ܵ ,ܽ)

a a

ܵ௟ᇲ
=

• ܵ௞ = ݇ ∪ ௟ܵ for some  ݈ < ݇

Already seen, is
not added to
the workset



• δ ܵ௞ ,ܽ = ߜ ݇, ܽ  ∪ )ߜ  ௟ܵ , ܽ)

Miss:

݇  ∪ ௟ܵ

∅ ∪ )ߜ ௟ܵ ,ܽ)

a a

ܵ௟ᇲ
=

• ܵ௞ = ݇ ∪ ௟ܵ for some  ݈ < ݇

3  ∪ {1,0}

∅ ∪ (݊,{1,0})ߜ

n n

{1,0}
=



Prop: The result of applying NFAtoDFA(ܣ), where ܣ is 
the obvious NFA for Σ∗݌ , yields a minimal DFA with 
݉ + 1 states and Σ (݉ + 1) transitions.
Proof: All states of the DFA accept different 
languages.

So: concatenating NFAtoDFA and 
PatternMatchingDFA yields a ܱ(݊ + Σ ݉)
algorithm. 

 Good enough for constant alphabet 
 Not good enough for Σ = Ω(݊), then same complexity 

as window algorithm

Consequences



Lazy DFAs

• We introduce a new data structure: lazy DFAs. 
We construct a lazy DFA for Σ∗݌ with ݉ + 1
states and 2(݉ + 1) transitions. 

• Lazy DFAs: automata that read the input from 
a tape by means of a reading head that can 
move one cell to the right or stay put.

• DFA = Lazy DFA whose head never stays put.



Lazy DFA for Σ∗݌
• By the fundamental property, the DFA ܤ for ݌∗ߑ

behaves from state ܵ௞ as follows:
– If ܽ is a hit, then ஻ߜ ܵ௞ , ܽ = ܵ௞ାଵ , i.e., the DFA moves 

to the next state in the spine.
– If ܽ is a miss, then ߜ஻ ܵ௞ , ܽ = ஻ߜ ܽ,(௞ܵ)ݐ , i.e., the DFA 

moves to the same state it would move to if it were in 
state ݐ(ܵ௞).

• When ܽ is a miss for ܵ௞, the lazy automaton moves to state 
ݐ ܵ௞ without advancing the head. In other words, it 
„delegates“ doing the move to ݐ ܵ௞ .

• So the lazy DFA behaves the same for all misses.





• Formally, for the lazy DFA ܥ:
– ஼ߜ ܵ௞, ܽ = (ܵ௞ାଵ,ܴ) if ܽ is a hit
– ஼ߜ ܵ௞, ܽ = ܰ,(௞ܵ)ݐ if ܽ is a miss

• So the lazy DFA has ݉ + 1 states and 2݉
transitions.

• It can be constructed in ܱ(݉) space: 
– For each 0 ≤ ݇ ≤ ݊, compute and store ܵ௞ with

• ܵ଴ ≔ 0 , and
• ܵ௞ାଵ ≔ ߜ ܵ௞, ܾ௞ାଵ .

– Compute the transitions as at the top of the slide. 



• Running the lazy DFA on the text takes ܱ ݊ time:
– For every text letter the lazy DFA performs a 

sequence of „stay put“ steps followed by a „right“ 
step. Call this sequence a macrostep.

– Let  ௝ܵ೔ be the state after the ݅-th macrostep. The 
number of steps of the ݅-th macrostep is at most 
݆௜ିଵ − ݆௜ + 2 . 

– So the total number of steps is at most 

෍ ݆௜ିଵ − ݆௜ + 2 = ݆଴ − ݆௡ + 2݊ ≤ 2݊  
௡

௜ୀଵ



Computing the lazy DFA in ܱ(݉) time

• For the ܱ(݉ + ݊) bound it remains to show that the lazy DFA can 
be constructed in ܱ(݉) time.

• Let M݅ݏݏ(݇) be the head of the state of the lazy DFA reached from 
ܵ௞ by a miss (that is, M݅ݏݏ(݇) is the head of the state ݐ ܵ௞ ).

• It is easy to compute each of  ݏݏ݅ܯ 0 , … ݏݏ݅ܯ, ݉ in ܱ(݉) time, 
leading to a ܱ(݊ + ݉ଶ) time algorithm.

(Compute the ܵ௞ and use ݏݏ݅ܯ ݇ = ℎ(ݐ ܵ௞ ).)

• Can we compute all of ݏݏ݅ܯ 0 , … ݏݏ݅ܯ, ݉ together in time 
ܱ ݉ ? Looks impossible!

• It isn‘t  though ...



Let m݅ݏݏ(݅) be the state reached by a miss from ௜ܵ in the lazy
DFA. Then m݅ݏݏ ݅ = ݐ ୧ܵ  and ݏݏ݅ܯ ݅ = ℎ(݉݅ݏݏ ௜ܵ ). 
For ݅ > 1 we have

m݅ݏݏ ݅ = )ݐ   ௜ܵ) = ݐ ஻ߜ  ௜ܵିଵ, ܾ௜  
= ݐ ߜ ݅ − 1 , ܾ௜ ∪ ݐ)ߜ ௜ܵିଵ ,ܾ௜)
= ݐ  ݅ ∪ ߜ ݐ ௜ܵିଵ , ܾ௜
= ஻ߜ ݐ ௜ܵିଵ , ܾ௜

and so we get



Let m݅ݏݏ(݅) be the state reached by a miss from ௜ܵ in the lazy
DFA. Then m݅ݏݏ ݅ = ݐ ୧ܵ  and ݏݏ݅ܯ ݅ = ℎ(݉݅ݏݏ ௜ܵ ). 
For ݅ > 1 we have

m݅ݏݏ ݅ = )ݐ   ௜ܵ) = ݐ ஻ߜ  ௜ܵିଵ, ܾ௜  
= ݐ ߜ ݅ − 1 , ܾ௜ ∪ ݐ)ߜ ௜ܵିଵ ,ܾ௜)
= ݐ  ݅ ∪ ߜ ݐ ௜ܵିଵ , ܾ௜
= ஻ߜ ݐ ௜ܵିଵ , ܾ௜

and so we get



• With ݏݏ݅ܯ ݅ = ℎ(݉݅ݏݏ ௜ܵ ) we get the following algorithm: 



All calls to DeltaB lead  together
to ܱ(݉) iterations of the while loop.
The call  ݏݏ݅ܯ)ܤܽݐ݈݁ܦ(݅ − 1), ܾ௜)
executes at most 

݅)ݏݏ݅ܯ − 1) − (݅)ݏݏ݅ܯ) − 1) 
iterations, because:
• initially ݆ is assigned ݏݏ݅ܯ ݅ − 1

(line 3 of CompMiss)
• each iteration decreases ݆ by at 

least 1
(line 1 of ݏݏ݅ܯ ,ܤܽݐ݈݁ܦ ݆ < ݆)

• the return value assigned to
ݏݏ݅ܯ ݅ is at most the final value
of ݆ plus 1.
(line 2 of (ܤܽݐ݈݁ܦ



• Total number of iterations:

෍ ݏݏ݅ܯ ݅ − 1 ݏݏ݅ܯ− ݅ + 1  
௠

௜ୀଶ
≤ ݏݏ݅ܯ  1 ݏݏ݅ܯ− ݉ + ݉ − 1
≤ ݉


