
Operations and tests on sets:
Implementation on DFAs

Operations and tests

Universe of objects ܷ, sets of objects ܺ,ܻ, object ݔ.

Implementation on DFAs

• Assumption: each object encoded by one word, and
vice versa.

• Membership: trivial algorithm, linear in the length of
the word.

• Complement: exchange final and non-final states.
Linear (or even constant) time.

• Generic implementation of binary boolean operations
based on pairing.

Implementation on DFAs

• Assumption: each object encoded by one word, and
vice versa.

• Membership: trivial algorithm, linear in the length of
the word.

• Complement: exchange final and non-final states.
Linear (or even constant) time.

• Generic implementation of binary boolean operations
based on pairing.

Implementation on DFAs

• Assumption: each object encoded by one word, and
vice versa.

• Membership: trivial algorithm, linear in the length of
the word.

• Complement: exchange final and non-final states.
Linear (or even constant) time.

• Generic implementation of binary boolean operations
based on pairing.

Implementation on DFAs

• Assumption: each object encoded by one word, and
vice versa.

• Membership: trivial algorithm, linear in the length of
the word.

• Complement: exchange final and non-final states.
Linear (or even constant) time.

• Generic implementation of binary boolean operations
based on pairing.

Pairing

Definition. Let ଵܣ = (ܳଵ,Σ, ,ଵߜ (ଵܨ,଴ଵݍ and
ଶܣ = (ܳଶ,Σ, (ଶܨ,଴ଶݍ,ଶߜ be DFAs.

The pairing ܣଵ,ܣଶ of ܣଵ and ܣଶ is the tuple (ܳ,Σ, ,ߜ (଴ݍ
where
• ܳ = ,ଵݍ } ଶݍ ∣ ଵݍ ∈ ܳଵ, ଶݍ ∈ ܳଶ}

• ߜ = ଶݍ,ଵݍ ,ܽ, ଵᇱݍ , ଶᇱݍ ,ܽ,ଵݍ ଵᇱݍ ∈ ,ଵߜ ,ܽ,ଶݍ ଶᇱݍ ∈ ଶߜ
• ଴ݍ = ,଴ଵݍ ଴ଶݍ

The run of ଶܣ,ଵܣ on a word of Σ∗ is defined as for DFAs

Pairing

Pairing
• Another example: DFA for the language of words

with an even number of ܽs and even number of ܾs
(and even number of ܿs …).

Generic algorithm for binary boolean
operations

• We assign to a binary boolean operator⊙ an
operation on languages ⊙෢ as follows:

ଵܮ ⊙෢ ଶܮ = ݓ ∈ Σ∗ ݓ ∈ ଵܮ ⊙ ݓ ∈ ଶܮ

• For example:

Generic algorithm for binary boolean
operations

• We assign to a binary boolean operator⊙ an
operation on languages ⊙෢ as follows:

ଵܮ ⊙෢ ଶܮ = ݓ ∈ Σ∗ ݓ ∈ ଵܮ ⊙ ݓ ∈ ଶܮ

• For example:

Generic algorithm for binary boolean
operations

Generic algorithm for binary boolean
operations

• Complexity: the pairing of DFAs with ݊ଵ and
݊ଶ states has ܱ ݊ଵ ⋅ ݊ଶ states.

• Hence: for DFAs with ݊ଵ and ݊ଶ states over an
alphabet with ݇ letters, binary operations can
be computed in ܱ ݇ ⋅ ݊ଵ ⋅ ݊ଶ time.

• Further: there is a family of languages for
which the computation of intersection takes
Θ(݇ ⋅ ݊ଵ ⋅ ݊ଶ) time.

Language tests

• Emptiness: a DFA is empty iff
it has no final states

• Universality: a DFA is universal iff
it has only final states

• Inclusion: ܮଵ ⊆ ଶܮ iff ܮଵ ⃥ ܮଶ = Ø

• Equality: ܮଵ = ଶܮ iff (ܮଵ ⃥ ܮଶ) ∪ (ଵܮ ⃥ ଶܮ) = Ø

Inclusion test

Operations and tests on sets:
Implementation on NFAs

Membership

Membership

Complexity:
• While loop executed ݓ times
• For loop executed at most |ܳ| times
• Each execution of the loop body takes
ܱ ܳ time

• Overall: ܱ(ܳ ଶ ⋅ ݓ) time

Complement

• Swapping final and non-final states does not work

• Solution: determinize and then swap states

• Problem: Exponential blow-up in size!!

To be avoided whenever possible!!

• No better way: there are NFAs with ݊ states such
that the smallest NFA for their
complement has Θ 2௡ states.

Complement

Let Σ = ܽ, ܾ . For every ݊ ≥ 1, let ௡ܮ be the language

of the regular expression

Σ∗ ܽΣ௡ିଵܾ + ܾΣ௡ିଵܽ Σ∗

Proposition: For every ݊ ≥ 1, there exists a NFA for ௡ܮ
with at most 2݊ + 1 states.

Proposition: For every ݊ ≥ 1, every NFA for ௡ܮ has at
least 2௡states.

∗௡ "=" Σܮ ܽΣ௡ିଵܾ + ܾΣ௡ିଵܽ Σ∗

Proposition: For every ݊ ≥ 1, there exists a NFA for ௡ܮ
with at most 2݊ + 2 states.

Proposition: For every ݊ ≥ 1, every NFA for ௡ܮ has at
least 2௡ states.

∗௡ "=" Σܮ ܽΣ௡ିଵܾ + ܾΣ௡ିଵܽ Σ∗

Proof. Observe: ݓݓ ∈ ௡ܮ
for everyݓ ∈ Σ௡.
Take an arbitrary NFA for .௡ܮ
For every ݓ ∈ Σ௡ let ݍ௨ be the
state reached after reading ݓ
in an accepting run of .ݓݓ
For every ݒ,ݓ ∈ Σ௡ we have:
ݓ ≠ ௪ݍ⟹ ݒ ≠ ௩ݍ

Proposition: For every ݊ ≥ 1, every NFA for ௡ܮ has at
least 2௡ states.

∗௡ "=" Σܮ ܽΣ௡ିଵܾ + ܾΣ௡ିଵܽ Σ∗

Union and intersection

• The pairing construction still works for intersection,
with the same complexity.

• It also works for union, but only if the NFAs are complete,
i.e., they have at least one run for each word.

• Optimal construction for intersection (same example as
for DFAs).

• Non-optimal construction for union. There is another
construction which produces an NFA with ܳଵ + ܳଶ
states, instead of ܳଵ ⋅ ܳଶ : just put the automata side
by side!

Union and intersection

• The pairing construction still works for intersection,
with the same complexity.

• Does it also work for union ?
• Optimal construction for intersection (same example

as for DFAs).
• Non-optimal construction for union. There is another

construction which produces an NFA with ܳଵ + ܳଶ
states, instead of ܳଵ ⋅ ܳଶ : just put the automata
side by side!

Union and intersection

• The pairing construction still works for intersection,
with the same complexity.

• It also works for union, but only if the NFAs are
complete, i.e., they have at least one run for each
word.

• Optimal construction for intersection (same example
as for DFAs).

• Non-optimal construction for union. There is another
construction which produces an NFA with ܳଵ + ܳଶ
states, instead of ܳଵ ⋅ ܳଶ : just put the automata

Union and intersection

• The pairing construction still works for intersection,
with the same complexity.

• It also works for union, but only if the NFAs are
complete, i.e., they have at least one run for each
word.

• Optimal construction for intersection (same example
as for DFAs).

• Non-optimal construction for union. There is another
construction which produces an NFA with ܳଵ + ܳଶ
states, instead of ܳଵ ⋅ ܳଶ : just put the automata
side by side!

Union and intersection

• The pairing construction still works for intersection,
with the same complexity.

• It also works for union, but only if the NFAs are
complete, i.e., they have at least one run for each
word.

• Optimal construction for intersection (same example
as for DFAs).

• Is the construction optimal for union ?

Union and intersection

• The pairing construction still works for intersection,
with the same complexity.

• It also works for union, but only if the NFAs are
complete, i.e., they have at least one run for each
word.

• Optimal construction for intersection (same example
as for DFAs).

• Non-optimal construction for union. There is another
construction which produces an NFA with ܳଵ + ܳଶ
states, instead of ܳଵ ⋅ ܳଶ : just put the automata
side by side!

Intersection

Intersection

Emptiness and Universality

• Like DFAs, an NFA is empty iff every state is
non-final.

• However, contrary to DFAs, it does not hold
that an NFA is universal iff every state is final.
Both directions fail!

• Emptiness is decidable in linear time.
• Universality is PSPACE-complete.

Crash course on PSPACE
• PSPACE: Class of decision problems for which there is an

algorithm that
• always terminates and returns the correct answer, and
• only uses polynomial memory in the size of the input.

Crash course on PSPACE
• PSPACE: Class of decision problems for which there is an

algorithm that
• always terminates and returns the correct answer, and
• only uses polynomial memory in the size of the input.

• P ⊆ NP ⊆ PSPACE. It is unknown if the inclusions are strict.

Crash course on PSPACE
• PSPACE: Class of decision problems for which there is an

algorithm that
• always terminates and returns the correct answer, and
• only uses polynomial memory in the size of the input.

• P ⊆ NP ⊆ PSPACE. It is unknown if the inclusions are strict.

• NPSPACE: Class of decision problems for which there is a
nondeterministic algorithm that

• does not terminate or terminates and answers „no“
for no-inputs,

• has at least one terminating execution answering „yes“
for yes-inputs, and

• only uses polynomial memory in the size of the input.

Crash course on PSPACE
• PSPACE: Class of decision problems for which there is an

algorithm that
• always terminates and returns the correct answer, and
• only uses polynomial memory in the size of the input.

• P ⊆ NP ⊆ PSPACE. It is unknown if the inclusions are strict.

• NPSPACE: Class of decision problems for which there is a
nondeterministic algorithm that

• does not terminate or terminates and answers „no“
for no-inputs,

• has at least one terminating execution answering „yes“
for yes-inputs, and

• only uses polynomial memory in the size of the input.

• Savitch´s theorem: PSPACE = NPSPACE

• PSPACE-complete: A problem is PSPACE-complete if

• it belongs to PSPACE, and

• It is PSPACE-hard, meaning: every problem in PSPACE can
be reduced in polynomial time to it.

Crash course on PSPACE

• PSPACE-complete: A problem is PSPACE-complete if

• it belongs to PSPACE, and

• It is PSPACE-hard, meaning: every problem in PSPACE can
be reduced in polynomial time to it.

• PSPACE-complete problems:

• Acceptance of linearly bounded automata (LBA):
Given a LBA, i.e., a deterministic Turing machine ܯ that
only visits the cell tapes occupied by the input, and an
input does ,ݔ ܯ accept ݔ ?

• QBF: Is a given quantified boolean formula true?

Crash course on PSPACE

Universality is PSPACE complete
Universality is in PSPACE

Universality is PSPACE complete
Universality is in PSPACE

By Savitch‘s theorem it suffices to show that (non)-universality
is in NPSPACE.

Universality is PSPACE complete
Universality is in PSPACE

By Savitch‘s theorem it suffices to show that (non)-universality
is in NPSPACE.

So it suffices to give a nondeterministic algorithm that, given
an NFA ܣ as input:

• does not terminate if ܣ is universal,
• has at least one terminating execution answering

„non-universal“ if ܣ is not universal, and
• only uses polynomial memory in the size of the input.

Universality is PSPACE complete
Universality is in PSPACE

By Savitch‘s theorem it suffices to show that (non)-universality
is in NPSPACE.

So it suffices to give a nondeterministic algorithm that, given
an NFA ܣ as input:

• does not terminate if ܣ is universal,
• has at least one terminating execution answering

„non-universal“ if ܣ is not universal, and
• only uses polynomial memory in the size of the input.

The algorithm guesses a word letter by letter, simulating the
run of the equivalent DFA on it, and stops if at some point the
state of the DFA is non-final.

Universality is PSPACE complete
Universality is PSPACE-hard

Universality is PSPACE complete
Universality is PSPACE-hard

By reduction from the acceptance problem for LBA.

• Let ܯ be a LBA, let ݔ be an input for We construct .ܯ in
polynomial time a NFA ܣ such that

ܯ accepts ݔ iff ܣ is not universal

Universality is PSPACE complete
Universality is PSPACE-hard

By reduction from the acceptance problem for LBA.

• Let ܯ be a LBA, let ݔ be an input for We construct .ܯ in
polynomial time a NFA ܣ such that

ܯ accepts ݔ iff ܣ is not universal

• Configuration of sequence :ܯ of the form ܽଵܽଶ⋯ܽ௜ ݍ ܽ௜ାଵ⋯ܽ௡
where ܽଵ,ܽଶ, … ,ܽ௡ ∈ Σ, ݊ = ݔ , ݍ ∈ ܳ.

• Encode the run of ܯ on ݔ as a word ݓ = ܿ଴ # ܿଵ #⋯# ܿ௡
where each ܿ௜ encodes a configuration of ܯ and ܿ௢ is the initial
configuration for .ݔ

Universality is PSPACE complete
Universality is PSPACE-hard

By reduction from the acceptance problem for LBA.

• Let ܯ be a LBA, let ݔ be an input for We construct .ܯ in
polynomial time a NFA ܣ such that

ܯ accepts ݔ iff ܣ is not universal

• Configuration of sequence :ܯ of the form ܽଵܽଶ⋯ܽ௜ ݍ ܽ௜ାଵ⋯ܽ௡
where ܽଵ,ܽଶ, … ,ܽ௡ ∈ Σ, ݊ = ݔ , ݍ ∈ ܳ.

• Encode the run of ܯ on ݔ as a word ݓ = ܿ଴ # ܿଵ #⋯# ܿ௡
where each ܿ௜ encodes a configuration of ܯ and ܿ௢ is the initial
configuration for .ݔ

Universality is PSPACE complete

• Idea: construct ܣ so that it accepts all words that are not the
encoding of an accepting run of ܯ on ݔ. Then

• if ܯ accepts ݔ then ܣ accepts all words but ݓ
ܣ⟹ is not universal

• if ܯ rejects ݔ then ܣ accepts all words
ܣ⟹ is universal

Universality is PSPACE complete
• The run of ܯ on ݔ is the unique word satisfying the following

three properties:

1. ݓ is a sequence of configurations separated by #

2. ݓ starts with the initial configuration of ܯ on ݔ

3. every configuration in ݓ is followed by the successor
configuration of ܯ

• Further, the run is accepting iff

4. ݓ ends with a final configuration of ܯ

Universality is PSPACE complete
• We construct NFAs ܣଵ, … ସܣ, with polynomially many states

recognizing

1. All words that do not consist of a sequence of
configurations separated by #

2. All words that do not start with the initial configuration of
ܯ on ݔ

3. All words in which some configuration is not followed by
the successor configuration

4. All words that do not end with a final configuration of ܯ

• Let ܣ be a NFA recognizing (ଵܣ)ܮ ∪ (ଶܣ)ܮ ∪ (ଷܣ)ܮ ∪ (ସܣ)ܮ

Universality is PSPACE complete
• We construct NFAs ܣଵ, … ସܣ, with polynomially many states

recognizing

1. All words that do not consist of a sequence of
configurations separated by #

Universality is PSPACE complete
• We construct NFAs ܣଵ, … ସܣ, with polynomially many states

recognizing

2. All words that do not start with the initial configuration of
ܯ on ݔ

Universality is PSPACE complete
• We construct NFAs ܣଵ, … ସܣ, with polynomially many states

recognizing

3. All words in which some configuration is not followed by
the successor configuration

Universality is PSPACE complete
• We construct NFAs ܣଵ, … ସܣ, with polynomially many states

recognizing

4. All words that do not end with a final configuration of ܯ

• Complement and check for emptiness
– Needs exponential time and space.

• Improvements:
– Check for emptiness while complementing

(on-the-fly check).
– Subsumption test.

Deciding universality of NFAs

Subsumption test

• Let ܣ be an NFA and let ܤ = ′ܳ A state .(ܣ)ܣܨܦ݋ݐܣܨܰ
of ܤ is minimal if no other state ܳ′′ satisfies ܳᇱᇱ ⊂ ܳᇱ.

• Proposition: ܣ is universal iff every minimal state of ܤ is
final.
Proof:
ܣ is universal

iff ܤ is universal
iff every state of ܤ is final
iff every state of ܤ contains a final state of ܣ
iff every minimal state of ܤ contains a final state of ܣ
iff every minimal state of ܤ is final

Subsumption test

Subsumption test

Subsumption test

• But is it correct ?
By removing a non-minimal state we may be
preventing the discovery of a minimal state in
the future!

Proposition: Let ܣ be an NFA and let ܤ = .(ܣ)ܣܨܦ݋ݐܣܨܰ
After termination of UnivNFA(A) the set ࣫ contains all
minimal states of ܤ.
Proof: Assume the contrary. Then ܤ has a shortest path
ܳଵ → ܳଶ → … → ܳ௡ such that

- ܳଵ ∈ ࣫ (after termination), and
- ܳ௡ ∉ ࣫ and ܳ௡ is minimal.

Since the path is shortest, ܳଶ∉ ࣫ and so when UnivNFA
processes ܳଵ, it does not add ܳଶ. This can only be
because UnivNFA already added some ܳଶᇱ ⊂ ܳଶ .
But then ܤ has a path ܳଶᇱ → … → ܳ௡ᇱ with ܳ௡ᇱ ⊆ ܳ௡ .
Since ܳ௡ is minimal, ܳ௡ᇱ is minimal (actually ܳ௡ᇱ = ܳ௡).
So the path ܳଶᇱ → … → ܳ௡ᇱ satisfies

- ܳଶᇱ ∈ ࣫ (after termination), and
- ܳ௡ᇱ is minimal.

contradicting that ܳଵ → ܳଶ → … → ܳ௡ is shortest.

Subsumption test

ܳଵ

ܳଶ

ܳଷ

ܳ௡

࣫

Proposition: Let ܣ be an NFA and let ܤ = .(ܣ)ܣܨܦ݋ݐܣܨܰ
After termination of UnivNFA(A) the set ࣫ contains all
minimal states of ܤ.
Proof: Assume the contrary. Then ܤ has a shortest path
ܳଵ → ܳଶ → … → ܳ௡ such that

- ܳଵ ∈ ࣫ (after termination), and
- ܳ௡ ∉ ࣫ and ܳ௡ is minimal.

Since the path is shortest, ܳଶ∉ ࣫ and so when UnivNFA
processes ܳଵ, it does not add ܳଶ. This can only be
because UnivNFA already added some ܳଶᇱ ⊂ ܳଶ .
But then ܤ has a path ܳଶᇱ → … → ܳ௡ᇱ with ܳ௡ᇱ ⊆ ܳ௡ .
Since ܳ௡ is minimal, ܳ௡ᇱ is minimal (actually ܳ௡ᇱ = ܳ௡).
So the path ܳଶᇱ → … → ܳ௡ᇱ satisfies

- ܳଶᇱ ∈ ࣫ (after termination), and
- ܳ௡ᇱ is minimal.

contradicting that ܳଵ → ܳଶ → … → ܳ௡ is shortest.

Subsumption test

ܳଵ

ܳଶ

ܳଷ

ܳ௡

࣫

ܳଶᇱ ⊆

Proposition: Let ܣ be an NFA and let ܤ = .(ܣ)ܣܨܦ݋ݐܣܨܰ
After termination of UnivNFA(A) the set ࣫ contains all
minimal states of ܤ.
Proof: Assume the contrary. Then ܤ has a shortest path
ܳଵ → ܳଶ → … → ܳ௡ such that

- ܳଵ ∈ ࣫ (after termination), and
- ܳ௡ ∉ ࣫ and ܳ௡ is minimal.

Since the path is shortest, ܳଶ∉ ࣫ and so when UnivNFA
processes ܳଵ, it does not add ܳଶ. This can only be
because UnivNFA already added some ܳଶᇱ ⊂ ܳଶ .
But then ܤ has a path ܳଶᇱ → … → ܳ௡ᇱ with ܳ௡ᇱ ⊆ ܳ௡ .
Since ܳ௡ is minimal, ܳ௡ᇱ is minimal (actually ܳ௡ᇱ = ܳ௡).
So the path ܳଶᇱ → … → ܳ௡ᇱ satisfies

- ܳଶᇱ ∈ ࣫ (after termination), and
- ܳ௡ᇱ is minimal.

contradicting that ܳଵ → ܳଶ → … → ܳ௡ is shortest.

Subsumption test

ܳଵ

ܳଶ

ܳଷ

ܳ௡

࣫

ܳଶᇱ

ܳଷᇱ

⊆

⊆

Proposition: Let ܣ be an NFA and let ܤ = .(ܣ)ܣܨܦ݋ݐܣܨܰ
After termination of UnivNFA(A) the set ࣫ contains all
minimal states of ܤ.
Proof: Assume the contrary. Then ܤ has a shortest path
ܳଵ → ܳଶ → … → ܳ௡ such that

- ܳଵ ∈ ࣫ (after termination), and
- ܳ௡ ∉ ࣫ and ܳ௡ is minimal.

Since the path is shortest, ܳଶ∉ ࣫ and so when UnivNFA
processes ܳଵ, it does not add ܳଶ. This can only be
because UnivNFA already added some ܳଶᇱ ⊂ ܳଶ .
But then ܤ has a path ܳଶᇱ → … → ܳ௡ᇱ with ܳ௡ᇱ ⊆ ܳ௡ .
Since ܳ௡ is minimal, ܳ௡ᇱ is minimal (actually ܳ௡ᇱ = ܳ௡).
So the path ܳଶᇱ → … → ܳ௡ᇱ satisfies

- ܳଶᇱ ∈ ࣫ (after termination), and
- ܳ௡ᇱ is minimal.

contradicting that ܳଵ → ܳଶ → … → ܳ௡ is shortest.

Subsumption test

ܳଵ

ܳଶ

ܳଷ

ܳ௡

࣫

ܳଶᇱ

ܳଷᇱ

⊆

⊆

Inclusion

• Proposition: The inclusion problem is PSPACE-complete.
• Proof:

Membership in PSPACE. By Savitch´s theorem it suffices to
give a nondeterministic algorithm for non-inclusion. For this,
guess letter by letter a word, storing the sets of states ܳଵᇱ ,ܳଶᇱ
reached by both NFAs on the word guessed so far. Stop when
ܳଵᇱcontains a final state, but ܳଶᇱ does not.
PSPACE-hardness. ܣ is universal iff ܮ ܣ ⊇ where ,(ܤ)ܮ ܤ is
the one-state DFA for Σ∗.

• Algorithm: use ܮ(ܣଵ) ⊆ (ଶܣ)ܮ iff ܮ ଵܣ ∩ (ଶܣ)ܮ = Ø
• Concatenate four algorithms:

(1) determinize ଵܤ⟹ ଶܣ
(2) complement the result ଶܤ⟹
(3) intersect ܤଶ with ܣଵ ଷܤ⟹
(4) check for emptiness of ܤଷ.

• State of ܤଷ: pair (ݍ,ܳ), with ݍ state of ܣଵ and ܳ (sub)set
of states of ܣଶ

• Easy optimizations:
– store only the states of ܤଷ, not its transitions;
– do not fully construct ܤଵ, then ܤଶ , then ܤଷ;

instead, construct directly the states of ܤଷ;
– check for emptiness while constructing ܤଷ.

Deciding inclusion

Deciding inclusion
• Further optimization: subsumption test.

• Complexity:
– Let ܣଵ,ܣଶ be NFAs with ݊ଵ,݊ଶ states over an alphabet with
݇ letters.

– Without the subsumption test:
• The while-loop is executed at most ݊ଵ ȉ 2௡మ times.

• The outer for-loop is executed ݇ times.

• Line 8 takes ܱ ݊ଶଶ time.

• The inner for-loop is executed at most ݊ଵ times.

• Line 19 (without subsumption!) takes constant time.

• Overall: ܱ(݇ ȉ ݊ଵଶ ȉ ݊ଶଶ ȉ 2௡మ) time.

– With the subsumption case the worst-case complexity is
higher. Exercise: give an upper bound.

Deciding inclusion

• Important special case: ଵܣ is an NFA, ܣଶ is a DFA.
– Complementing ܣଶ is now easy.

– The while-loop is executed ܱ(݊ଵ ȉ ݊ଶ) times.
– The outer for-loop is executed ݇ times.
– Line 8 takes constant time
– The inner for-loop is executed ܱ(݊ଵ) times
– Line 10 (without subsumption) takes constant time

– Overall: ܱ(݇ ȉ ݊ଵଶȉ ݊ଶ) time.

• Checking equality: check inclusion in both
directions.

Deciding inclusion

