#### Operations and tests on sets: Implementation on DFAs

#### **Operations and tests**

Universe of objects U, sets of objects X, Y, object x.

| Operations on | sets |
|---------------|------|
|---------------|------|

| <b>Complement</b> ( <i>X</i> )              | : | returns $U \setminus X$ . |
|---------------------------------------------|---|---------------------------|
| <b>Intersection</b> ( <i>X</i> , <i>Y</i> ) | : | returns $X \cap Y$ .      |
| <b>Union</b> $(X, Y)$                       | : | returns $X \cup Y$ .      |

Tests on sets

| Member(x, X)             | : | returns <b>true</b> if $x \in X$ , <b>false</b> otherwise.       |
|--------------------------|---|------------------------------------------------------------------|
| $\mathbf{Empty}(X)$      | : | returns <b>true</b> if $X = \emptyset$ , <b>false</b> otherwise. |
| Universal(X)             | : | returns <b>true</b> if $X = U$ , <b>false</b> otherwise.         |
| <b>Included</b> $(X, Y)$ | : | returns <b>true</b> if $X \subseteq Y$ , <b>false</b> otherwise. |
| Equal(X, Y)              | : | returns <b>true</b> if $X = Y$ , <b>false</b> otherwise.         |

• Assumption: each object encoded by one word, and vice versa.

- Assumption: each object encoded by one word, and vice versa.
- Membership: trivial algorithm, linear in the length of the word.

- Assumption: each object encoded by one word, and vice versa.
- Membership: trivial algorithm, linear in the length of the word.
- Complement: exchange final and non-final states. Linear (or even constant) time.

- Assumption: each object encoded by one word, and vice versa.
- Membership: trivial algorithm, linear in the length of the word.
- Complement: exchange final and non-final states. Linear (or even constant) time.
- Generic implementation of binary boolean operations based on pairing.

# Pairing

- Definition. Let  $A_1 = (Q_1, \Sigma, \delta_1, q_{01}, F_1)$  and  $A_2 = (Q_2, \Sigma, \delta_2, q_{02}, F_2)$  be DFAs.
- The pairing  $[A_1, A_2]$  of  $A_1$  and  $A_2$  is the tuple  $(Q, \Sigma, \delta, q_0)$  where
- $Q = \{ [q_1, q_2] \mid q_1 \in Q_1, q_2 \in Q_2 \}$
- $\delta = \{ ([q_1, q_2], a, [q'_1, q'_2]) \mid (q_1, a, q'_1) \in \delta_1, (q_2, a, q'_2) \in \delta_2 \}$
- $q_0 = [q_{01}, q_{02}]$

The run of  $[A_1, A_2]$  on a word of  $\Sigma^*$  is defined as for DFAs

#### Pairing











# Pairing

• Another example: DFA for the language of words with an even number of *a*s and even number of *b*s (and even number of *c*s ...).

We assign to a binary boolean operator ⊙ an operation on languages ⊙ as follows:

 $L_1 \widehat{\odot} L_2 = \{ w \in \Sigma^* \mid (w \in L_1) \odot (w \in L_2) \}$ 

We assign to a binary boolean operator ⊙ an operation on languages ⊙ as follows:

 $L_1 \widehat{\odot} L_2 = \{ w \in \Sigma^* \mid (w \in L_1) \odot (w \in L_2) \}$ 

• For example:

| Language operation                                                | $b_1 \odot b_2$                |
|-------------------------------------------------------------------|--------------------------------|
| Union                                                             | $b_1 \lor b_2$                 |
| Intersection                                                      | $b_1 \wedge b_2$               |
| Set difference $(L_1 \setminus L_2)$                              | $b_1 \wedge \neg b_2$          |
| Symmetric difference $(L_1 \setminus L_2 \cup L_2 \setminus L_1)$ | $b_1 \Leftrightarrow \neg b_2$ |

BinOp[ $\odot$ ]( $A_1, A_2$ ) Input: DFAs  $A_1 = (Q_1, \Sigma, \delta_1, Q_{01}, F_1), A_2 = (Q_2, \Sigma, \delta_2, Q_{02}, F_2)$ Output: DFA  $A = (Q, \Sigma, \delta, Q_0, F)$  with  $L(A) = L(A_1) \widehat{\odot} L(A_2)$ 

- $1 \quad Q, \delta, F \leftarrow \emptyset$
- $2 \quad q_0 \leftarrow [q_{01}, q_{02}]$
- 3  $W \leftarrow \{q_0\}$
- 4 while  $W \neq \emptyset$  do
- 5 **pick**  $[q_1, q_2]$  **from** *W*
- 6 **add**  $[q_1, q_2]$  to Q
- 7 **if**  $(q_1 \in F_1) \odot (q_2 \in F_2)$  **then add**  $[q_1, q_2]$  **to** *F*
- 8 for all  $a \in \Sigma$  do

9 
$$q'_1 \leftarrow \delta_1(q_1, a); q'_2 \leftarrow \delta_2(q_2, a)$$

- 10 if  $[q'_1, q'_2] \notin Q$  then add  $[q'_1, q'_2]$  to W
- 11 **add**  $([q_1, q_2], a, [q'_1, q'_2])$  to  $\delta$

- Complexity: the pairing of DFAs with  $n_1$  and  $n_2$  states has  $O(n_1 \cdot n_2)$  states.
- Hence: for DFAs with  $n_1$  and  $n_2$  states over an alphabet with k letters, binary operations can be computed in  $O(k \cdot n_1 \cdot n_2)$  time.
- Further: there is a family of languages for which the computation of intersection takes  $\Theta(k \cdot n_1 \cdot n_2)$  time.

#### Language tests

- Emptiness: a DFA is empty iff it has no final states
- Universality: a DFA is universal iff it has only final states
- Inclusion:  $L_1 \subseteq L_2$  iff  $L_1 \setminus L_2 = \emptyset$
- Equality:  $L_1 = L_2$  iff  $(L_1 \setminus L_2) \cup (L_2 \setminus L_1) = \emptyset$

#### Inclusion test

*InclDFA*( $A_1, A_2$ ) **Input:** DFAs  $A_1 = (Q_1, \Sigma, \delta_1, q_{01}, F_1), A_2 = (Q_2, \Sigma, \delta_2, q_{02}, F_2)$ **Output:** true if  $L(A_1) \subseteq L(A_2)$ , false otherwise

1 
$$Q \leftarrow \emptyset;$$

- $2 \quad W \leftarrow \{[q_{01}, q_{02}]\}$
- 3 while  $W \neq \emptyset$  do
- 4 **pick**  $[q_1, q_2]$  from W
- 5 **add**  $[q_1, q_2]$  to Q
- 6 **if**  $(q_1 \in F_1)$  and  $(q_2 \notin F_2)$  then return false
- 7 **for all**  $a \in \Sigma$  **do**

8 
$$q'_1 \leftarrow \delta_1(q_1, a); q'_2 \leftarrow \delta_2(q_2, a)$$

- 9 if  $[q'_1, q'_2] \notin Q$  then add  $[q'_1, q'_2]$  to W
- 10 return true

#### Operations and tests on sets: Implementation on NFAs

#### Membership



| Prefix read | W                |
|-------------|------------------|
|             |                  |
| $\epsilon$  | {1}              |
| a           | {2}              |
| aa          | {2,3}            |
| aaa         | $\{1, 2, 3\}$    |
| aaab        | $\{2, 3, 4\}$    |
| aaabb       | $\{2, 3, 4\}$    |
| aaabba      | $\{1, 2, 3, 4\}$ |

## Membership

*MemNFA*[*A*](*w*) **Input:** NFA  $A = (Q, \Sigma, \delta, Q_0, F)$ , word  $w \in \Sigma^*$ , **Output:** true if  $w \in \mathcal{L}(A)$ , false otherwise

- 1  $W \leftarrow Q_0;$
- 2 while  $w \neq \varepsilon$  do
- 3  $U \leftarrow \emptyset$
- 4 for all  $q \in W$  do
- 5 **add**  $\delta(q, head(w))$  to U
- $6 \qquad W \leftarrow U$
- 7  $w \leftarrow tail(w)$
- 8 return  $(W \cap F \neq \emptyset)$

Complexity:

- While loop executed |w| times
- For loop executed at most |*Q*| times
- Each execution of the loop body takes
   O(|Q|) time
- Overall:  $O(|Q|^2 \cdot |w|)$  time

#### Complement

- Swapping final and non-final states does not work
- Solution: determinize <u>and then</u> swap states
- Problem: Exponential blow-up in size!!

To be avoided whenever possible!!

• No better way: there are NFAs with n states such that the smallest NFA for their complement has  $\Theta(2^n)$  states.

#### Complement

Let  $\Sigma = \{a, b\}$ . For every  $n \ge 1$ , let  $L_n$  be the language of the regular expression

$$\Sigma^*(a\Sigma^{n-1}b + b\Sigma^{n-1}a)\Sigma^*$$

Proposition: For every  $n \ge 1$ , there exists a NFA for  $L_n$  with at most 2n + 1 states.

Proposition: For every  $n \ge 1$ , every NFA for  $\overline{L_n}$  has at least  $2^n$  states.

$$L_n "=" \Sigma^* (a\Sigma^{n-1}b + b\Sigma^{n-1}a)\Sigma^*$$

Proposition: For every  $n \ge 1$ , there exists a NFA for  $L_n$  with at most 2n + 2 states.

$$L_n "=" \Sigma^* (a\Sigma^{n-1}b + b\Sigma^{n-1}a)\Sigma^*$$

Proposition: For every  $n \ge 1$ , every NFA for  $\overline{L_n}$  has at least  $2^n$  states.

$$L_n "=" \Sigma^* (a\Sigma^{n-1}b + b\Sigma^{n-1}a)\Sigma^*$$

Proposition: For every  $n \ge 1$ , every NFA for  $\overline{L_n}$  has at least  $2^n$  states.

Proof. Observe:  $ww \in \overline{L_n}$ for every  $w \in \Sigma^n$ .

Take an arbitrary NFA for  $\overline{L_n}$ .

For every  $w \in \Sigma^n$  let  $q_u$  be the state reached after reading w in an accepting run of ww.

For every  $w, v \in \Sigma^n$  we have:  $w \neq v \implies q_w \neq q_v$ 

• The pairing construction still works for intersection, with the same complexity.

- The pairing construction still works for intersection, with the same complexity.
- Does it also work for union?

- The pairing construction still works for intersection, with the same complexity.
- It also works for union, but only if the NFAs are complete, i.e., they have at least one run for each word.

- The pairing construction still works for intersection, with the same complexity.
- It also works for union, but only if the NFAs are complete, i.e., they have at least one run for each word.
- Optimal construction for intersection (same example as for DFAs).

- The pairing construction still works for intersection, with the same complexity.
- It also works for union, but only if the NFAs are complete, i.e., they have at least one run for each word.
- Optimal construction for intersection (same example as for DFAs).
- Is the construction optimal for union?

- The pairing construction still works for intersection, with the same complexity.
- It also works for union, but only if the NFAs are complete, i.e., they have at least one run for each word.
- Optimal construction for intersection (same example as for DFAs).
- Non-optimal construction for union. There is another construction which produces an NFA with  $|Q_1| + |Q_2|$  states, instead of  $|Q_1| \cdot |Q_2|$ : just put the automata side by side!

#### Intersection

*IntersNFA*( $A_1, A_2$ ) **Input:** NFA  $A_1 = (Q_1, \Sigma, \delta_1, Q_{01}, F_1), A_2 = (Q_2, \Sigma, \delta_2, Q_{02}, F_2)$ **Output:** NFA  $A_1 \cap A_2 = (Q, \Sigma, \delta, Q_0, F)$  with  $L(A_1 \cap A_2) = L(A_1) \cap L(A_2)$ 

1 
$$Q, \delta, F \leftarrow \emptyset; Q_0 \leftarrow Q_{01} \times Q_{02}$$

2 
$$W \leftarrow Q_0$$

- 3 while  $W \neq \emptyset$  do
- 4 **pick**  $[q_1, q_2]$  from *W*
- 5 **add**  $[q_1, q_2]$  to Q
- 6 **if**  $(q_1 \in F_1)$  and  $(q_2 \in F_2)$  then add  $[q_1, q_2]$  to F
- 7 **for all**  $a \in \Sigma$  **do**
- 8 **for all**  $q'_1 \in \delta_1(q_1, a), q'_2 \in \delta_2(q_2, a)$  **do**
- 9 if  $[q'_1, q'_2] \notin Q$  then add  $[q'_1, q'_2]$  to W
- 10 **add**  $([q_1, q_2], a, [q'_1, q'_2])$  to  $\delta$

#### Intersection



## **Emptiness and Universality**

- Like DFAs, an NFA is empty iff every state is non-final.
- However, contrary to DFAs, it does not hold that an NFA is universal iff every state is final. Both directions fail!
- Emptiness is decidable in linear time.
- Universality is **PSPACE-complete**.

- PSPACE: Class of decision problems for which there is an algorithm that
  - always terminates and returns the correct answer, and
  - only uses polynomial memory in the size of the input.

- PSPACE: Class of decision problems for which there is an algorithm that
  - always terminates and returns the correct answer, and
  - only uses polynomial memory in the size of the input.

•  $P \subseteq NP \subseteq PSPACE$ . It is unknown if the inclusions are strict.

- PSPACE: Class of decision problems for which there is an algorithm that
  - always terminates and returns the correct answer, and
  - only uses polynomial memory in the size of the input.
- $P \subseteq NP \subseteq PSPACE$ . It is unknown if the inclusions are strict.
- NPSPACE: Class of decision problems for which there is a nondeterministic algorithm that
  - does not terminate or terminates and answers "no" for no-inputs,
  - has at least one terminating execution answering "yes" for yes-inputs, and
  - only uses polynomial memory in the size of the input.

- PSPACE: Class of decision problems for which there is an algorithm that
  - always terminates and returns the correct answer, and
  - only uses polynomial memory in the size of the input.
- $P \subseteq NP \subseteq PSPACE$ . It is unknown if the inclusions are strict.
- NPSPACE: Class of decision problems for which there is a nondeterministic algorithm that
  - does not terminate or terminates and answers "no" for no-inputs,
  - has at least one terminating execution answering "yes" for yes-inputs, and
  - only uses polynomial memory in the size of the input.
- Savitch's theorem: PSPACE = NPSPACE

- **PSPACE-complete:** A problem is PSPACE-complete if
  - it belongs to PSPACE, and
  - It is PSPACE-hard, meaning: every problem in PSPACE can be reduced in polynomial time to it.

- **PSPACE-complete**: A problem is PSPACE-complete if
  - it belongs to PSPACE, and
  - It is PSPACE-hard, meaning: every problem in PSPACE can be reduced in polynomial time to it.
- PSPACE-complete problems:
  - Acceptance of linearly bounded automata (LBA): Given a LBA, i.e., a deterministic Turing machine *M* that only visits the cell tapes occupied by the input, and an input *x*, does *M* accept *x*?
  - **QBF**: Is a given quantified boolean formula true?

Universality is in PSPACE

Universality is in PSPACE

By Savitch's theorem it suffices to show that (non)-universality is in NPSPACE.

Universality is in PSPACE

By Savitch's theorem it suffices to show that (non)-universality is in NPSPACE.

So it suffices to give a nondeterministic algorithm that, given an NFA *A* as input:

- does not terminate if *A* is universal,
- has at least one terminating execution answering "non-universal" if A is not universal, and
- only uses polynomial memory in the size of the input.

Universality is in PSPACE

By Savitch's theorem it suffices to show that (non)-universality is in NPSPACE.

So it suffices to give a nondeterministic algorithm that, given an NFA *A* as input:

- does not terminate if *A* is universal,
- has at least one terminating execution answering "non-universal" if A is not universal, and
- only uses polynomial memory in the size of the input.

The algorithm guesses a word letter by letter, simulating the run of the equivalent DFA on it, and stops if at some point the state of the DFA is non-final.

**Universality is PSPACE-hard** 

Universality is PSPACE-hard

By reduction from the acceptance problem for LBA.

• Let *M* be a LBA, let *x* be an input for *M*. We construct in polynomial time a NFA *A* such that

M accepts x iff A is not universal

Universality is PSPACE-hard

By reduction from the acceptance problem for LBA.

• Let *M* be a LBA, let *x* be an input for *M*. We construct in polynomial time a NFA *A* such that

M accepts x iff A is not universal

• Configuration of *M*: sequence of the form  $a_1a_2 \cdots a_i q a_{i+1} \cdots a_n$ where  $a_1, a_2, \dots, a_n \in \Sigma$ ,  $n = |x|, q \in Q$ .

Universality is PSPACE-hard

By reduction from the acceptance problem for LBA.

• Let *M* be a LBA, let *x* be an input for *M*. We construct in polynomial time a NFA *A* such that

*M* accepts x iff *A* is not universal

- Configuration of *M*: sequence of the form  $a_1a_2 \cdots a_i q a_{i+1} \cdots a_n$ where  $a_1, a_2, \dots, a_n \in \Sigma$ ,  $n = |x|, q \in Q$ .
- Encode the run of *M* on *x* as a word  $w = c_0 \# c_1 \# \cdots \# c_n$ where each  $c_i$  encodes a configuration of *M* and  $c_o$  is the initial configuration for *x*.

- Idea: construct A so that it accepts all words that are not the encoding of an accepting run of M on x. Then
  - if *M* accepts *x* then *A* accepts all words but  $w \Rightarrow A$  is not universal
  - if *M* rejects *x* then *A* accepts all words  $\Rightarrow$  *A* is universal

- The run of *M* on *x* is the unique word satisfying the following three properties:
  - 1. *w* is a sequence of configurations separated by #
  - 2. w starts with the initial configuration of M on x
  - 3. every configuration in w is followed by the successor configuration of M
- Further, the run is accepting iff
  - 4. w ends with a final configuration of M

- We construct NFAs  $A_1, ..., A_4$  with polynomially many states recognizing
  - 1. All words that **do not** consist of a sequence of configurations separated by #
  - All words that do not start with the initial configuration of *M* on *x*
  - 3. All words in which some configuration is not followed by the successor configuration
  - 4. All words that **do not** end with a final configuration of *M*
- Let A be a NFA recognizing  $L(A_1) \cup L(A_2) \cup L(A_3) \cup L(A_4)$

- We construct NFAs  $A_1, \dots, A_4$  with polynomially many states recognizing
  - 1. All words that **do not** consist of a sequence of configurations separated by #

- We construct NFAs  $A_1, \dots, A_4$  with polynomially many states recognizing
  - All words that do not start with the initial configuration of *M* on *x*

- We construct NFAs  $A_1, ..., A_4$  with polynomially many states recognizing
  - 3. All words in which some configuration is not followed by the successor configuration

- We construct NFAs  $A_1, \dots, A_4$  with polynomially many states recognizing
  - 4. All words that **do not** end with a final configuration of *M*

# Deciding universality of NFAs

- Complement and check for emptiness
  - Needs exponential time and space.
- Improvements:
  - Check for emptiness <u>while complementing</u> (on-the-fly check).
  - Subsumption test.

- Let A be an NFA and let B = NFAtoDFA(A). A state Q' of B is minimal if no other state Q'' satisfies  $Q'' \subset Q'$ .
- Proposition: A is universal iff every minimal state of B is final.

Proof:

A is universal iff B is universal iff every state of B is final iff every state of B contains a final state of A iff every minimal state of B contains a final state of A iff every minimal state of B is final



*UnivNFA*(*A*) **Input:** NFA  $A = (Q, \Sigma, \delta, Q_0, F)$ **Output:** true if  $L(A) = \Sigma^*$ , false otherwise

- 1  $Q \leftarrow \emptyset;$
- 2  $\mathcal{W} \leftarrow \{ \{q_0\} \}$
- 3 while  $\mathcal{W} \neq \emptyset$  do
- 4 pick Q' from W
- 5 if  $Q' \cap F = \emptyset$  then return false
- 6 add Q' to Q
- 7 **for all**  $a \in \Sigma$  **do**

8 **if**  $\mathcal{W} \cup \mathcal{Q}$  contains no  $Q'' \subseteq \delta(Q', a)$  then add  $\delta(Q', a)$  to  $\mathcal{W}$ 

9 return true

• But is it correct?

By removing a non-minimal state we may be preventing the discovery of a minimal state in the future!

Proposition: Let A be an NFA and let B = NFAtoDFA(A). After termination of UnivNFA(A) the set Q contains all minimal states of B.

**Proof**: Assume the contrary. Then *B* has a shortest path  $Q_1 \rightarrow Q_2 \rightarrow \dots \rightarrow Q_n$  such that

- $-Q_1 \in Q$  (after termination), and
- $Q_n \notin Q$  and  $Q_n$  is minimal.



Proposition: Let A be an NFA and let B = NFAtoDFA(A). After termination of UnivNFA(A) the set Q contains all minimal states of B.

**Proof**: Assume the contrary. Then *B* has a shortest path  $Q_1 \rightarrow Q_2 \rightarrow \dots \rightarrow Q_n$  such that

- $Q_1 \in Q$  (after termination), and
- $Q_n \notin Q$  and  $Q_n$  is minimal.

Since the path is shortest,  $Q_2 \notin Q$  and so when *UnivNFA* processes  $Q_1$ , it does not add  $Q_2$ . This can only be because *UnivNFA* already added some  $Q'_2 \subset Q_2$ .



Proposition: Let A be an NFA and let B = NFAtoDFA(A). After termination of UnivNFA(A) the set Q contains all minimal states of B.

**Proof**: Assume the contrary. Then *B* has a shortest path  $Q_1 \rightarrow Q_2 \rightarrow \dots \rightarrow Q_n$  such that

- $Q_1 \in Q$  (after termination), and
- $Q_n \notin Q$  and  $Q_n$  is minimal.

Since the path is shortest,  $Q_2 \notin Q$  and so when *UnivNFA* processes  $Q_1$ , it does not add  $Q_2$ . This can only be because *UnivNFA* already added some  $Q'_2 \subset Q_2$ .

But then *B* has a path  $Q'_2 \rightarrow \dots \rightarrow Q'_n$  with  $Q'_n \subseteq Q_n$ . Since  $Q_n$  is minimal,  $Q'_n$  is minimal (actually  $Q'_n = Q_n$ ).



Proposition: Let A be an NFA and let B = NFAtoDFA(A). After termination of UnivNFA(A) the set Q contains all minimal states of B.

**Proof**: Assume the contrary. Then *B* has a shortest path  $Q_1 \rightarrow Q_2 \rightarrow \dots \rightarrow Q_n$  such that

- $Q_1 \in Q$  (after termination), and
- $Q_n \notin Q$  and  $Q_n$  is minimal.

Since the path is shortest,  $Q_2 \notin Q$  and so when *UnivNFA* processes  $Q_1$ , it does not add  $Q_2$ . This can only be because *UnivNFA* already added some  $Q'_2 \subset Q_2$ .

But then *B* has a path  $Q'_2 \rightarrow \dots \rightarrow Q'_n$  with  $Q'_n \subseteq Q_n$ . Since  $Q_n$  is minimal,  $Q'_n$  is minimal (actually  $Q'_n = Q_n$ ).

So the path  $Q'_2 \rightarrow \dots \rightarrow Q'_n$  satisfies

-  $Q'_2 \in Q$  (after termination), and

-  $Q'_n$  is minimal.

contradicting that  $Q_1 \rightarrow Q_2 \rightarrow \dots \rightarrow Q_n$  is shortest.



## Inclusion

- **Proposition**: The inclusion problem is PSPACE-complete.
- Proof:

Membership in PSPACE. By Savitch's theorem it suffices to give a nondeterministic algorithm for non-inclusion. For this, guess letter by letter a word, storing the sets of states  $Q'_1, Q'_2$  reached by both NFAs on the word guessed so far. Stop when  $Q'_1$  contains a final state, but  $Q'_2$  does not.

**PSPACE-hardness**. A is universal iff  $L(A) \supseteq L(B)$ , where B is the one-state DFA for  $\Sigma^*$ .

- Algorithm: use  $L(A_1) \subseteq L(A_2)$  iff  $L(A_1) \cap \overline{L(A_2)} = \emptyset$
- Concatenate four algorithms:
  - (1) determinize  $A_2 \implies B_1$
  - (2) complement the result  $\implies B_2$
  - (3) intersect  $B_2$  with  $A_1 \implies B_3$
  - (4) check for emptiness of  $B_3$ .
- State of B<sub>3</sub>: pair (q, Q), with q state of A<sub>1</sub> and Q (sub)set of states of A<sub>2</sub>
- Easy optimizations:
  - store only the states of  $B_3$ , not its transitions;
  - do not fully construct  $B_1$ , then  $B_2$ , then  $B_3$ ; instead, construct directly the states of  $B_3$ ;
  - check for emptiness while constructing  $B_3$ .

• Further optimization: subsumption test.

```
Algorithm 18 NFA inclusion check.
InclNFA(A_1, A_2)
Input: NFAs A_1 = (Q_1, \Sigma, \delta_1, Q_{01}, F_1), A_2 = (Q_2, \Sigma, \delta_2, Q_{02}, F_2)
Output: true if \mathcal{L}(A_1) \subseteq \mathcal{L}(A_2), false otherwise
  1 Q \leftarrow \emptyset;
  2 W \leftarrow \{[q_{01}, Q_{02}] : q_{01} \in Q_{01}\}
  3 while W \neq \emptyset do
  4 pick [q_1, Q'_2] from W
     if (q_1 \in F_1) and (Q'_2 \cap F_2 = \emptyset) then return false
  5
     add [q_1, Q'_2] to Q
  6
     for all a \in \Sigma do
  7
       Q_2'' \leftarrow \bigcup_{q_2 \in Q_2'} \delta_2(q_2, a)
  8
             for all q'_1 \in \delta_1(q_1, a) do
  9
             if W \cup Q contains no [q_1'', Q_2'''] s.t. q_1'' = q_1' and Q_2''' \subseteq Q_2'' then
 10
                add [q'_1, Q''_2] to W
 11
      return true
 12
```

- Complexity:
  - Let  $A_1$ ,  $A_2$  be NFAs with  $n_1$ ,  $n_2$  states over an alphabet with k letters.
  - Without the subsumption test:
    - The while-loop is executed at most  $n_1 \cdot 2^{n_2}$  times.
    - The outer for-loop is executed k times.
    - Line 8 takes  $O(n_2^2)$  time.
    - The inner for-loop is executed at most  $n_1$  times.
    - Line 19 (without subsumption!) takes constant time.
    - Overall:  $O(k \cdot n_1^2 \cdot n_2^2 \cdot 2^{n_2})$  time.
  - With the subsumption case the worst-case complexity is higher. Exercise: give an upper bound.

- Important special case:  $A_1$  is an NFA,  $A_2$  is a DFA.
  - Complementing  $A_2$  is now easy.
  - The while-loop is executed  $O(n_1 \cdot n_2)$  times.
  - The outer for-loop is executed k times.
  - Line 8 takes constant time
  - The inner for-loop is executed  $O(n_1)$  times
  - Line 10 (without subsumption) takes constant time

- Overall:  $O(k \cdot n_1^2 \cdot n_2)$  time.

• Checking equality: check inclusion in both directions.