
Operations and tests on sets: 
Implementation on DFAs



Operations and tests

Universe of objects ܷ, sets of objects ܺ,ܻ, object ݔ.



Implementation on DFAs

• Assumption: each object encoded by one word, and
vice versa.

• Membership: trivial algorithm, linear in the length of
the word.

• Complement: exchange final and non-final states. 
Linear (or even constant) time.

• Generic implementation of binary boolean operations
based on pairing.
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Pairing

Definition. Let ଵܣ = (ܳଵ,Σ, ,ଵߜ (ଵܨ,଴ଵݍ and 
ଶܣ = (ܳଶ,Σ, (ଶܨ,଴ଶݍ,ଶߜ be DFAs. 

The pairing ܣଵ,ܣଶ of ܣଵ and ܣଶ is the tuple (ܳ,Σ, ,ߜ (଴ݍ
where
• ܳ = ,ଵݍ } ଶݍ ∣ ଵݍ ∈ ܳଵ, ଶݍ ∈ ܳଶ}

• ߜ = ଶݍ,ଵݍ ,ܽ, ଵᇱݍ , ଶᇱݍ ,ܽ,ଵݍ ଵᇱݍ ∈ ,ଵߜ ,ܽ,ଶݍ ଶᇱݍ ∈ ଶߜ
• ଴ݍ = ,଴ଵݍ ଴ଶݍ

The run of ଶܣ,ଵܣ on a word of Σ∗ is defined as for DFAs



Pairing



Pairing
• Another example:  DFA for the language of words

with an even number of ܽs and even number of ܾs 
(and even number of ܿs …).



Generic algorithm for binary boolean
operations

• We assign to a binary boolean operator⊙ an 
operation on languages ⊙෢ as follows:

ଵܮ ⊙෢ ଶܮ  = ݓ  ∈ Σ∗ ݓ ∈ ଵܮ ⊙ ݓ ∈ ଶܮ

• For example:
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Generic algorithm for binary boolean
operations

• Complexity: the pairing of DFAs with ݊ଵ and 
݊ଶ states has ܱ ݊ଵ ⋅ ݊ଶ states.

• Hence: for DFAs with ݊ଵ and ݊ଶ states over an 
alphabet with ݇ letters, binary operations can 
be computed in ܱ ݇ ⋅ ݊ଵ ⋅ ݊ଶ time.

• Further: there is a family of languages for
which the computation of intersection takes
Θ(݇ ⋅ ݊ଵ ⋅ ݊ଶ) time.



Language tests

• Emptiness: a DFA is empty iff 
it has no final states

• Universality: a DFA is universal iff 
it has only final states

• Inclusion: ܮଵ ⊆ ଶܮ iff ܮଵ  ⃥ ܮଶ = Ø

• Equality: ܮଵ = ଶܮ iff  (ܮଵ  ⃥ ܮଶ)  ∪ (ଵܮ ⃥  ଶܮ) = Ø



Inclusion test



Operations and tests on sets: 
Implementation on NFAs



Membership



Membership

Complexity: 
• While loop executed ݓ times
• For loop executed at most |ܳ| times
• Each execution of the loop body takes
ܱ ܳ time

• Overall: ܱ( ܳ ଶ ⋅ ݓ ) time



Complement

• Swapping final and non-final states does not work

• Solution: determinize and then swap states

• Problem: Exponential blow-up in size!!

To be avoided whenever possible!!

• No better way: there are NFAs with ݊ states such 
that the smallest NFA for their 
complement has Θ 2௡ states.



Complement

Let Σ = ܽ, ܾ . For every ݊ ≥ 1, let ௡ܮ be the language

of the regular expression

Σ∗ ܽΣ௡ିଵܾ + ܾΣ௡ିଵܽ Σ∗ 

Proposition: For every ݊ ≥ 1, there exists a NFA for ௡ܮ
with at most 2݊ + 1 states.

Proposition: For every ݊ ≥ 1, every NFA for ௡ܮ has at 
least 2௡states.



∗௡  "="  Σܮ ܽΣ௡ିଵܾ + ܾΣ௡ିଵܽ Σ∗ 

Proposition: For every ݊ ≥ 1, there exists a NFA for ௡ܮ
with at most 2݊ + 2 states.



Proposition: For every ݊ ≥ 1, every NFA for ௡ܮ has at 
least 2௡ states.

∗௡  "="  Σܮ ܽΣ௡ିଵܾ + ܾΣ௡ିଵܽ Σ∗ 



Proof. Observe: ݓݓ ∈ ௡ܮ
for everyݓ ∈ Σ௡.
Take an arbitrary NFA  for .௡ܮ
For every ݓ ∈ Σ௡ let ݍ௨ be the
state reached after reading ݓ
in an accepting run of .ݓݓ
For every ݒ,ݓ ∈ Σ௡ we have: 
ݓ ≠ ௪ݍ⟹ ݒ ≠  ௩ݍ

Proposition: For every ݊ ≥ 1, every NFA for ௡ܮ has at 
least 2௡ states.

∗௡  "="  Σܮ ܽΣ௡ିଵܾ + ܾΣ௡ିଵܽ Σ∗ 



Union and intersection

• The pairing construction still works for intersection, 
with the same complexity.

• It also works for union, but only if the NFAs are complete, 
i.e., they have at least one run for each word.

• Optimal construction for intersection (same example as
for DFAs).

• Non-optimal construction for union. There is another
construction which produces an NFA with ܳଵ + ܳଶ
states, instead of ܳଵ ⋅ ܳଶ : just put the automata side
by side!
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Intersection



Emptiness and Universality

• Like DFAs, an NFA is empty iff every state is
non-final.

• However, contrary to DFAs, it does not hold 
that an NFA is universal iff every state is final. 
Both directions fail!

• Emptiness is decidable in linear time.
• Universality is PSPACE-complete.
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algorithm that
• always terminates and returns the correct answer, and
• only uses polynomial memory in the size of the input. 
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• PSPACE-complete: A problem is PSPACE-complete if

• it belongs to PSPACE, and

• It is PSPACE-hard, meaning: every problem in PSPACE can
be reduced in polynomial time to it.

Crash course on PSPACE



• PSPACE-complete: A problem is PSPACE-complete if

• it belongs to PSPACE, and

• It is PSPACE-hard, meaning: every problem in PSPACE can
be reduced in polynomial time to it.

• PSPACE-complete problems: 

• Acceptance of linearly bounded automata (LBA):
Given a LBA, i.e., a deterministic Turing machine ܯ that
only visits the cell tapes occupied by the input,  and an 
input does ,ݔ ܯ accept ݔ ?

• QBF: Is a given quantified boolean formula true?

Crash course on PSPACE
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• has at least one terminating execution answering

„non-universal“ if ܣ is not universal, and
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Universality is PSPACE complete
Universality is in PSPACE

By Savitch‘s theorem it suffices to show that (non)-universality
is in NPSPACE.

So it suffices to give a nondeterministic algorithm that, given
an NFA ܣ as input:

• does not terminate if ܣ is universal,
• has at least one terminating execution answering

„non-universal“ if ܣ is not universal, and
• only uses polynomial memory in the size of the input. 

The algorithm guesses a word letter by letter, simulating the
run of the equivalent DFA on it, and stops if at some point the
state of the DFA is non-final.
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Universality is PSPACE-hard

By reduction from the acceptance problem for LBA.

• Let ܯ be a LBA, let ݔ be an input for We construct .ܯ in 
polynomial time a NFA ܣ such that

ܯ accepts ݔ iff ܣ is not universal
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where ܽଵ,ܽଶ, … ,ܽ௡ ∈ Σ, ݊ = ݔ , ݍ  ∈ ܳ.

• Encode the run of ܯ on ݔ as a word ݓ = ܿ଴ # ܿଵ #⋯# ܿ௡
where each ܿ௜ encodes a configuration of ܯ and ܿ௢ is the initial 
configuration for .ݔ
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Universality is PSPACE complete

• Idea: construct ܣ so that it accepts all words that are not the
encoding of an accepting run of ܯ on ݔ. Then

• if ܯ accepts ݔ then ܣ accepts all words but ݓ
ܣ⟹ is not universal

• if ܯ rejects ݔ then ܣ accepts all words
ܣ⟹ is universal



Universality is PSPACE complete
• The run of ܯ on ݔ is the unique word satisfying the following

three properties:

1. ݓ is a sequence of configurations separated by #

2. ݓ starts with the initial configuration of ܯ on ݔ

3. every configuration in ݓ is followed by the successor
configuration of ܯ

• Further, the run is accepting iff

4. ݓ ends with a final configuration of ܯ



Universality is PSPACE complete
• We construct NFAs ܣଵ, … ସܣ, with polynomially many states

recognizing

1. All words that do not consist of a sequence of
configurations separated by #

2. All words that do not start with the initial configuration of
ܯ on ݔ

3. All words in which some configuration is not followed by
the successor configuration

4. All words that do not end with a final configuration of ܯ

• Let ܣ be a NFA recognizing (ଵܣ)ܮ ∪ (ଶܣ)ܮ ∪ (ଷܣ)ܮ ∪ (ସܣ)ܮ
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Universality is PSPACE complete
• We construct NFAs ܣଵ, … ସܣ, with polynomially many states

recognizing

4. All words that do not end with a final configuration of ܯ



• Complement and check for emptiness
– Needs exponential time and space.

• Improvements:
– Check for emptiness while complementing

(on-the-fly check).
– Subsumption test.

Deciding universality of NFAs



Subsumption test

• Let ܣ be an NFA and let ܤ = ′ܳ A state .(ܣ)ܣܨܦ݋ݐܣܨܰ
of ܤ is minimal if no other state ܳ′′ satisfies ܳᇱᇱ ⊂ ܳᇱ.

• Proposition: ܣ is universal iff every minimal state of ܤ is 
final.
Proof: 
ܣ is universal 

iff ܤ is universal 
iff every state of ܤ is final  
iff every state of ܤ contains a final state of ܣ
iff every minimal state of ܤ contains a final state of ܣ
iff every minimal state of ܤ is final



Subsumption test



Subsumption test



Subsumption test

• But is it correct ?
By removing a non-minimal state we may be
preventing the discovery of a minimal state in 
the future!



Proposition: Let ܣ be an NFA and let ܤ =  .(ܣ)ܣܨܦ݋ݐܣܨܰ
After termination of UnivNFA(A) the set ࣫ contains all 
minimal states of ܤ.
Proof:  Assume the contrary. Then ܤ has a shortest path 
ܳଵ → ܳଶ →  …  → ܳ௡ such that 

- ܳଵ ∈  ࣫ (after termination), and 
- ܳ௡ ∉  ࣫ and  ܳ௡ is minimal.

Since the path is shortest,  ܳଶ∉ ࣫ and so when UnivNFA
processes ܳଵ,  it does not add ܳଶ. This can only be 
because UnivNFA already added some ܳଶᇱ ⊂ ܳଶ .
But then ܤ has a path ܳଶᇱ →  …  → ܳ௡ᇱ with ܳ௡ᇱ ⊆ ܳ௡ . 
Since ܳ௡ is minimal, ܳ௡ᇱ is minimal (actually ܳ௡ᇱ = ܳ௡).
So the path ܳଶᇱ →  …  → ܳ௡ᇱ satisfies

- ܳଶᇱ ∈ ࣫ (after termination), and 
- ܳ௡ᇱ is minimal.

contradicting that ܳଵ → ܳଶ →  …  → ܳ௡ is shortest.

Subsumption test

ܳଵ

ܳଶ

ܳଷ

ܳ௡

࣫
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Inclusion

• Proposition: The inclusion problem is PSPACE-complete.
• Proof: 

Membership in PSPACE. By Savitch´s theorem it suffices to
give a nondeterministic algorithm for non-inclusion. For this, 
guess letter by letter a word, storing the sets of states ܳଵᇱ ,ܳଶᇱ
reached by both NFAs on the word guessed so far. Stop when
ܳଵᇱcontains a final state, but ܳଶᇱ does not.
PSPACE-hardness. ܣ is universal iff ܮ ܣ ⊇ where ,(ܤ)ܮ ܤ is
the one-state DFA for Σ∗.



• Algorithm: use  ܮ(ܣଵ) ⊆ (ଶܣ)ܮ iff  ܮ ଵܣ ∩ (ଶܣ)ܮ  = Ø
• Concatenate four algorithms:

(1) determinize ଵܤ⟹ ଶܣ
(2) complement the result ଶܤ⟹
(3) intersect ܤଶ with ܣଵ ଷܤ⟹
(4) check for emptiness of ܤଷ.

• State of ܤଷ: pair (ݍ,ܳ), with ݍ state of ܣଵ and ܳ (sub)set 
of states of ܣଶ

• Easy optimizations:
– store only the states of ܤଷ, not its transitions;
– do not fully construct  ܤଵ, then ܤଶ , then ܤଷ; 

instead, construct directly the states of ܤଷ;
– check for emptiness while constructing ܤଷ.

Deciding inclusion



Deciding inclusion
• Further optimization: subsumption test.



• Complexity:
– Let ܣଵ,ܣଶ be NFAs with ݊ଵ,݊ଶ states over an alphabet with 
݇ letters.

– Without the subsumption test:
• The while-loop is executed at most  ݊ଵ ȉ 2௡మ times.

• The outer for-loop is executed ݇ times.

• Line 8 takes ܱ ݊ଶଶ time.

• The inner for-loop is executed at most ݊ଵ times.

• Line 19 (without subsumption!) takes constant time.

• Overall: ܱ(݇ ȉ  ݊ଵଶ ȉ ݊ଶଶ ȉ 2௡మ) time.

– With the subsumption case the worst-case complexity is 
higher. Exercise: give an upper bound.

Deciding inclusion



• Important special case: ଵܣ is an NFA, ܣଶ is a DFA.
– Complementing  ܣଶ is now easy.

– The while-loop is executed ܱ(݊ଵ ȉ ݊ଶ ) times.
– The outer for-loop is executed ݇ times.
– Line 8 takes constant time
– The inner for-loop is executed ܱ(݊ଵ) times
– Line 10 (without subsumption) takes constant time

– Overall: ܱ(݇ ȉ ݊ଵଶȉ ݊ଶ ) time.

• Checking equality: check inclusion in both 
directions.

Deciding inclusion


