Automata theory

An algorithmic approach

Automata as data structures

- Data structures allow us to represent sets of objects in a computer.
- Different data structures support different sets of operations (dictionary, stack, queue, priority queue, ...):

Op. set	Operations	Data structures
Dictionary	insert, lookup, remove	Hash tables, arrays, search trees
Stack	push, pop	Linked list, array
Priority queue	insert_with_priority, extract_highest_priority	Heap, binomial heap, Fibonacci heap
Union-find	set union, find set	Linked lists, disjoint forests

Automata as data structures

- In this course we look at automata as a data structure supporting
 - the boolean operations of set theory (union, intersection, complement with respect to a given universe set)
 - property checks (emptiness, universality, inclusion, equality)
 - operations on relations (projections, joins, pre, post)

In more detail

Member(x, X)	:	returns true if $x \in X$, false otherwise.
Complement (<i>X</i>)	:	returns $U \setminus X$.
Intersection (<i>X</i> , <i>Y</i>)	:	returns $X \cap Y$.
Union (X, Y)	:	returns $X \cup Y$.
$\mathbf{Empty}(X)$:	returns true if $X = \emptyset$, false otherwise.
Universal (X)	:	returns true if $X = U$, false otherwise.
Included (X, Y)	:	returns true if $X \subseteq Y$, false otherwise.
Equal(X, Y)	:	returns true if $X = Y$, false otherwise.
Projection _ $1(R)$:	returns the set $\pi_1(R) = \{x \mid \exists y (x, y) \in R\}.$
Projection_2 (<i>R</i>)	:	returns the set $\pi_2(R) = \{y \mid \exists x (x, y) \in R\}.$
$\mathbf{Join}(R, S)$:	returns $R \circ S = \{(x, z) \mid \exists y \in X (x, y) \in R \land (y, z) \in S \}$
$\mathbf{Post}(X, R)$:	returns $post_R(X) = \{y \in U \mid \exists x \in X (x, y) \in R\}.$
$\mathbf{Pre}(X, R)$:	returns $pre_R(X) = \{y \in U \mid \exists x \in X (y, x) \in R\}.$

- U denotes some universe of objects (numbers, names, records, ...)
- X, Y denote subsets of U, x denotes an element of U
- R, S denote binary relations on U, i.e., $R, S \subseteq U \times U$

Basic idea

- Elements of the universe can be encoded as words (strings over some alphabet)
- Sets can be encoded as languages (sets of words)
- Automata recognize languages.

• An automaton for the strings encoding decimal numbers

• An automaton for the multiples of 3 in binary.

• An automaton for the nonnegative solutions of $2x - y \le 2$ in binary (least significant bit first)

• An automaton for the reachable configurations of a program

1 while x = 1 do 2 if y = 1 then 3 $x \leftarrow 0$ 4 $y \leftarrow 1 - x$ 5 end

