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Preface

Why This Book?

There are excellent textbooks on automata theory, ranging from course books for under-
graduates to research monographs for specialists. Why another one?
During the 1960s and 1970s, the main application of automata theory was the develop-

ment of lexicographic analyzers, parsers, and compilers. Analyzers and parsers determine
whether an input string conforms to a given syntax, while compilers transform strings con-
forming to a syntax into equivalent strings conforming to another.With these applications in
mind, it was natural to look at automata as abstract machines that accept, reject, or transform
input strings, and this view deeply influenced the textbook presentation of automata theory.
The expressive power of machines (which languages are recognized by finite automata or
pushdown automata), equivalences between models (are nondeterministic and determinis-
tic automata equivalent?), or closure properties (are context-free languages closed under
intersection?) received much attention, while constructions on automata, like the powerset
or product constructions, often played a subordinate role.
This can already be observed in the article “Finite Automata and Their Decision Prob-

lems” by Rabin and Scott, a foundational paper published in the IBM Journal of Research
and Development in 1959. The paper introduces a large part of the theory of finite automata
taught in current undergraduate courses: deterministic finite automata (DFAs) and nondeter-
ministic finite automata (NFAs), the powerset construction, closure of the regular languages
under boolean operations and others, decision algorithms for emptiness and finiteness of
the language recognized by a given automaton, and uniqueness of the minimal DFA for a
given language. Much of the presentation style of this paper survives in today’s textbooks,
and the style is not algorithmically oriented. For example, the powerset construction is not
introduced as an algorithm that, given an NFA as input, produces an equivalent DFA as
output but as a mathematical definition (definition 11): a DFA whose states are all the sub-
sets of states of the original automaton. The simple but computationally important fact that
only the states of the DFA reachable from the initial state need to be constructed is not
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mentioned. Another example can be found in section 4, which studies the emptiness pro-
blem for DFAs. It contains a corollary (corollary 7.1) stating that, “given an automaton A,
there is an effective procedure whereby in a finite number of steps it can be decided whether
L (A) is empty.” The effective procedure, which is only sketched, consists of checking for
all words of length up to the number of states of Awhether they are accepted; this procedure
has exponential complexity, while the problem can be solved in linear time.
We claim that this presentation style, summarized by the slogan automata are abstract

machines, is no longer adequate. In particular, during the second half of the 1980s and in
the 1990s, program verification emerged as a new and exciting application of automata the-
ory. Automata were used to describe the behavior of hardware and software systems, not
their syntax, and this shift from syntax to semantics had important consequences. While
automata for lexical or syntactical analysis typically have at most some thousands of states,
automata for semantic descriptions can easily have tens of millions. In order to handle
automata of this size, it became imperative to pay special attention to efficient construc-
tions and algorithmic issues, and research in this direction made great progress. Moreover,
automata on infinite words, a class of automata models originally introduced in the 1960s
to solve abstract problems in logic, became the model of choice to specify and verify live-
ness properties of software. These automata run over words of infinite length, and so they
can hardly be seen as machines accepting or rejecting an input; they could only do so after
infinite time!
This book intends to reflect this evolution of automata theory. The modern change of

focus, from expressivity to algorithmic questions, is captured by the new slogan automata
as data structures. Hash tables and Fibonacci heaps are adequate data structures for repre-
senting sets when one needs the operations of a dictionary and a priority queue, respectively.
Similarly, automata are the right data structure for representing sets and relations when the
required operations are union, intersection, complement, projections, and joins. From this
point of view, it is the algorithmic implementation of the operations that gets the limelight,
and it constitutes the spine of this book.
The shape of the book is also very influenced by two further design decisions. First,

automata-theoretic constructions are best explained by means of examples, and examples
are best presented with the help of pictures. Automata on words are blessed with a graphical
representation of instantaneous appeal. We have invested much effort into finding illus-
trative, nontrivial examples whose graphical representation still fits in one page. Second,
students learning directly from a book often find solved exercises more illustrative than any
written explanation and essential to self-evaluate their progress. This book contains a large
number of solved exercises, ranging from mechanic applications of algorithms to relatively
involved proofs.
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0 Overview

0.1 Introduction

Courses on data structures show how to represent sets of objects in a computer so that
operations like insertion, deletion, lookup, and many others can be efficiently implemented.
Typical representations are hash tables, search trees, or heaps.
This textbook also deals with the problem of representing and manipulating sets of

objects but with respect to a different family of operations: the boolean operations of set
theory (union, intersection, and complement with respect to some universe set), some tests
that check basic properties (whether a set is empty, contains all elements of the universe,
or is contained in another set), and operations on relations between objects, like joins and
projections. Table 0.1 defines the operations we would like to support, where U denotes
some universe of objects, X ,Y are subsets ofU , x is an element ofU , and R, S⊆U ×U are
binary relations on U . Note that many other operations, like set difference, can be reduced
to the ones in the table and that operations on n-ary relations for n≥ 3 can be reduced to
operations on binary relations.
Wewant a data structure that is able to represent infinite subsets of an infinite universe set,

like infinite sets of natural numbers. For example, the constraint x> 5 is a finite representa-
tion of the infinite set {6, 7, 8, . . .}, and the logical formula ∃y 3y= x is a finite representation
of the set of multiples of 3—that is, of the set {0, 3, 6, 9, . . .}. It is easy to see that no data
structure can finitely represent every infinite set.1 Because of this limitation, every good data
structure for infinite sets must find a reasonable compromise between expressivity (which
sets it can finitely represent) and manipulability (which operations can be carried out and
at which cost). This book introduces the compromise offered by finite automata, which, as
shown by more than sixty years of research on the theory of formal languages, is the best

1. An infinite universe, like the set of natural numbers, has uncountably many subsets. However, a data structure
only has a countable number of instances; indeed, an instance of a data structure—say, a tree—can always be
encoded as a string, and there are only a countable number of strings over a finite alphabet. So, loosely speaking,
we do not have enough instances for all sets.
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Table 0.1
Operations and tests for manipulation of sets and relations.

Operation on sets Returns

Complement(X ) U \X
Intersection(X , Y ) X ∩Y
Union(X , Y ) X ∪Y

Test on sets Returns

Member(x,X ) true if x∈X , false otherwise
Empty(X ) true if X =∅, false otherwise
Universal(X ) true if X =U , false otherwise
Included(X ,Y ) true if X ⊆Y , false otherwise
Equal(X ,Y ) true if X =Y , false otherwise

Operation on relations Returns

Projection_1(R) π1(R)={x : ∃y (x, y)∈R}
Projection_2(R) π2(R)={y : ∃x (x, y)∈R}
Join(R, S) R ◦ S={(x, z) : ∃y∈X (x, y)∈R∧ (y, z)∈ S}
Post(X , R) postR(X )={y∈U : ∃x∈X (x, y)∈R}
Pre(X , R) preR(X )={y∈U : ∃x∈X (y, x)∈R}

one available for many practical purposes. Finite automata, as we will call them through-
out the book, represent and manipulate sets whose elements are encoded as words (i.e., as
sequences of symbols).2

Any kind of object can be represented by a word, at least in principle. Natural numbers,
for instance, are represented as sequences of digits, that is, as words over the alphabet of
digits. Vectors and lists can also be represented as words by concatenating the word repre-
sentations of their elements. As a matter of fact, whenever a computer stores an object in a
file, the computer is representing it as a word over some alphabet, like ASCII or Unicode.
So, automata are a very general data structure. However, while any object can be repre-
sented by a word, not every object can be represented by a finite word, that is, a word of
finite length. Typical examples are real numbers and nonterminating executions of a pro-
gram.When objects cannot be represented by finite words, computers usually only represent
some approximation: a float instead of a real number or a finite prefix instead of a nonter-
minating computation. In the second part of the book, we show how to represent sets of
infinite objects exactly using automata on infinite words. While the theory of automata on
finite words is often considered a “gold standard” of theoretical computer science—a pow-
erful and beautiful theory with lots of important applications in many fields—automata on

2. There are generalizations of word automata in which objects are encoded as trees. The theory of tree automata
is also very well developed but not the subject of this book.
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infinite words are more demanding, and their theory does not achieve the same degree of
“perfection.” The structure of part II reflects this: we follow the same steps as in part I,
always comparing the solutions for infinite words with the “gold standard.”

0.2 Outline and Structure

Part I presents data structures and algorithms for regular languages of finite words.

Chapter 1 introduces the classical data structures for the representation of regular lan-
guages: regular expressions, deterministic finite automata (DFAs), nondeterministic finite
automata (NFAs), and nondeterministic automata with ε-transitions. We refer to all of them
as automata. The chapter presents some examples showing how to use automata to finitely
represent sets of words, numbers, or program states and describes conversion algorithms
between the representations. All algorithms are well known (and can also be found in other
textbooks) with the exception of the algorithm for the elimination of ε-transitions.

Chapter 2 addresses the issue of finding small representations for a given set. It shows that
there is a unique minimal representation of a language as a DFA and introduces the classical
minimization algorithms. It also presents algorithms to reduce the size of NFAs.

Chapter 3 describes algorithms that implement boolean operations on sets, like union,
intersection, and complement, using automata as data structure. It then presents implemen-
tations of test operations on sets, like testing inclusion or equality between sets.

Chapter 4 presents a first, classical application of the techniques and results of chapter 3:
pattern matching. Even this well-known problem gets a new twist when examined from the
automata-as-data-structures point of view. The chapter presents the Knuth–Morris–Pratt
algorithm as the design of a new data structure, lazy DFAs, for which the membership
operation can be performed very efficiently.

Chapter 5 shows how to implement operations on relations, in particular the join operation
using length-preserving transducers (i.e., automata over an alphabet consisting of pairs of
letters), as data structure. It discusses in detail how to encode relations as words.

Chapter 6 presents specific data structures, that is, automata, for the important special case
in which the universeU of objects is finite. In this case, all objects can be encoded by words
of the same length, and the set and relation operations can be optimized. In particular, one
can then use minimal DFAs as data structure and directly implement algorithms for all
operations, without having to introduce extra minimization operations after each interme-
diate step. The second part of the chapter introduces (ordered) binary decision diagrams
as a class of automata that can represent finite sets even more succinctly than minimal
DFAs.
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Chapter 7 applies nearly all of the constructions and algorithms of previous chapters to
the problem of verifying safety properties of sequential and concurrent programs with
bounded-range variables. In particular, the chapter shows how to model concurrent pro-
grams as networks of automata, how to express safety properties using automata or regular
expressions, and how to automatically verify them using the algorithmic constructions of
previous chapters.

Chapter 8 presents first-order logic (FOL) and monadic-second order logic (MSOL) on
words as languages for the declarative specification of regular languages. Intuitively, logic
formulas are used to specify a language by describing a property that a word may satisfy
or not, and defining the language as the set of words that satisfy the property. The chapter
shows that FOL cannot describe all regular languages and that MSOL does.

Chapter 9 introduces Presburger arithmetic, a language to define sets of (tuples of) natural
numbers. As in the previous chapter, formulas of Presburger arithmetic describe properties
that a tuple of numbers may satisfy or not. The chapter presents an algorithm to compute
an automaton encoding all the tuples satisfying a given formula.

Part II presents data structures and algorithms for regular languages of infinite words, also
called ω-regular languages.

Chapter 10 introduces ω-regular expressions and several classes of ω-automata: determin-
istic and nondeterministic Büchi, co-Büchi, Rabin, Street, parity, and Muller automata. It
explains the advantages and disadvantages of each class, in particular whether the automata
in the class can be determinized, and presents conversion algorithms between the classes.

Chapter 11 presents implementations of the set operations (union, intersection, and com-
plementation) for Büchi and generalized Büchi automata. In particular, it presents in detail
a complementation algorithm for Büchi automata.

Chapter 12 presents different implementations of the emptiness test for Büchi and gen-
eralized Büchi automata (i.e., the problem of deciding whether the automaton recognizes
the empty language). The first part of the chapter presents two linear-time implementations
based on depth-first-search (DFS): the algorithm known as nested-DFS and a modification
of Tarjan’s algorithm for the computation of strongly connected components. The second
part presents further implementations based on breadth-first-search.

Chapter 13 applies the algorithms of previous chapters to the problem of verifying liveness
properties of programs. After an introductory example, the chapter presents linear temporal
logic (LTL) as property specification formalism and shows how to algorithmically translate
a formula into an equivalent generalized Büchi automaton recognizing the language of all
words satisfying the formula. It then uses the operations implemented in chapter 12 to derive
an algorithm for the automatic verification of LTL properties.



Overview 5

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Chapter 5

Chapter 6

Chapter 7 Chapter 8

Chapter 9

Chapter 10

Chapter 11

Chapter 12

Chapter 13 Chapter 14

Part I

Part II

Figure 0.1
Chapter dependencies.

Chapter 14 extends the logic approach to regular languages studied in chapters 8 and 9 to
ω-words. The first part of the chapter introduces monadic second-order logic on ω-words
and shows how to construct a Büchi automaton recognizing the set of ω-words satisfying
a given formula. The second part introduces linear arithmetic, the first-order theory of the
real numbers with addition, and shows how to construct a Büchi automaton recognizing the
encodings of all the real numbers satisfying a given formula.
Dependencies between chapters are depicted graphically in figure 0.1. The “spine” of the

book, containing chapters 1–3, chapter 5, and chapters 10–12, presents the implementations
of the operations on sets and relations. The rest of the chapters contain applications, which,
in the case of chapter 4 and chapter 6, also introduce some special automata classes.
Chapters 1–5 are an introduction to finite automata at bachelor level, similar in content to

the ones found in introductory books to the theory of computation, but with more examples
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and greater emphasis on algorithms. (A few sections, marked with “�” in the table of con-
tents, require background that bachelor students typically do not yet have, for example, in
computational complexity theory; they can be skipped.) This material can be complemented
with any subset of the applications presented in chapters 6–9.
A master course, like the ones we teach at the Technical University of Munich and the

Université de Sherbrooke, can cover the full spine (presenting chapters 1–5 at higher speed)
and a selection of applications.

0.3 On the Exercises

Each chapter ends with exercises. About a third of the solutions appear only in a version
intended for instructors. The rest (and hence the majority) of the solutions appear in an
appendix at the end of the book. Each exercise is marked by its difficulty, (dominant) type,
and solution availability, with these symbols:

Difficulty Symbol

Standard �
Harder �
Challenging �

Type Symbol

Construction �
Algorithm design �
Algorithm execution �
Proofs �
Extra material 	

Solution Symbol

Available in appendix 

Not available in appendix �



I AUTOMATA ON FINITE WORDS





1 Automata Classes and Conversions

In section 1.2, we define basic notions, like words and languages, and introduce regu-
lar expressions, a textual notation for the finite representation of languages. Section 1.3
introduces increasingly larger classes of finite automata: deterministic, nondeterministic,
with ε-transitions, and with transitions labeled by regular expressions. Section 1.4 presents
conversion algorithms that transform a regular expression into an equivalent automaton,
an automaton into an equivalent regular expression, or an automaton of one kind into an
equivalent automaton of another.

1.1 Alphabets, Letters, Words, and Languages

An alphabet is a finite nonempty set. The elements of an alphabet are called letters or
symbols. A finite, possibly empty, sequence of letters is a word. A word a1a2 · · · an has
length n. The empty word is the only word of length 0 and it is written ε. The concatenation
of two words u= a1 · · · an and v= b1 . . . bm is the word uv= a1 · · · anb1 · · · bm, sometimes
also denoted by u · v. Observe that ε ·w=w=w · ε. For every word w, we define w0= ε

and wk+1=wwk for every k≥ 0.

Remark 1.1 The formal definition of a word differs from the one used in daily life, accord-
ing to which this sentence has twenty-two words. This is so because in (modern) natural
languages, words are defined as sequences of letters with a special symbol on each side,
the blank, except at the beginning or end of a sentence. On the contrary, the mathematical
definition treats all symbols the same. It sees a whole English text, sayHamlet, as one single
word of length (about) 186,400 over a sixty-seven-symbol alphabet containing twenty-six
lower case letters, twenty-six upper case letters, the blank, and fourteen punctuation marks.
This word is a concatenation of the form

w1 u w2 u · · · u wn,

where n≈ 32,000, the word u has length 1 and consists of just a blank, and w1, . . . ,wn are
English words, possibly with punctuation marks at the end. In particular, we have
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w1=ACT w2= I w3=SCENE w4= I. w5=ELSINORE.

w6=A w7= platform w8= before w9= the w10= castle.

Given an alphabet�, we denote by�∗ the set of all words over�. A set L⊆�∗ of words
is a language over �. We define three operations on languages over a given alphabet �:

• The complement of a language L is the language �∗ \L, which we often denote L. Notice
that the notation L implicitly assumes that the alphabet � is fixed. For example, consider
the language L={an : n≥ 0}. If �={a}, then L=∅, but if �={a, b}, then L contains all
words over {a, b} with at least one occurrence of b.
• The concatenation of two languages L1 and L2 is L1 L2={w1w2 :w1 ∈L1,w2 ∈L2} also
denoted by L1 ·L2. Observe that ∅ L=L ∅=∅, because no word is the concatenation of a
word of ∅ and a word of L, since ∅ contains no words.
• The iteration of a language L is the language L∗ =⋃i≥0 Li, where L0={ε} and
Li+1=Li ·L for every i≥ 0.

Example 1.2 Here is an assorted collection of languages, where �={a, b}.
• {ab, a}{ab, b}= {abab, abb, aab, ab}.
• {a}∗ = {ε, a, aa, aaa, . . .}.
• {a, b}3={a, b}{a, b}{a, b}= {aaa, aab, aba, abb, baa, bab, bba, bbb}.
• {a, b, ε}2={ε, a, b, aa, ab, ba, bb}.
• ({a, b}{a, b})∗ is the set of all words over � of even length.
• {a, b}{a, b} is the set of all words over � of length different from 2.
• {ε}∗ = {ε}.
• ∅∗ = {ε}. (Indeed, ∅0={ε} by definition, and ∅i=∅ for every i≥ 1.)

1.2 Regular Expressions: A Language to Describe Languages

Finite languages can be described by explicit enumeration of the words they contain, but
this no longer works for infinite languages. We introduce regular expressions, a language to
describe languages. They are a suitable notation for the concise description of many infinite
languages.

Definition 1.3 Regular expressions r over an alphabet � are generated by the following
grammar, where a∈�:

r ::=∅ | ε | a | r1r2 | r1+ r2 | r∗

The set of all regular expressions over � is writtenRE(�).
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Remark 1.4 Definition 1.3 assumes that the reader is familiar with the Backus–Naur
form and some standard conventions concerning parentheses. For a definition from scratch,
let �={∅, ε, (, ),+, ∗} and let � be an alphabet disjoint from �. We denote by RE(�)⊆
(� ∪�)∗ the language over the alphabet � ∪� defined inductively as follows:

• ∅, ε ∈RE(�) and �⊆RE(�).
• If r1, r2 ∈RE(�), then (r1r2)∈RE(�) and (r1+ r2)∈RE(�).
• If r∈RE(�) then (r)∗ ∈RE(�).

Intuitively, a regular expression can be seen as a “recipe” for generating words. For exam-
ple, the regular expression (ab)∗c corresponds to the recipe “concatenate as many copies
of ab as you wish (including zero copies), and then add c at the end.” This recipe produces
words like abc, ababc, or just c. The expression a∗ + b∗ corresponds to “choose one of
these two: concatenate as many copies of a as you want (including zero); or, concatenate
as many copies of b as you want (including zero).” It produces words like aa or bbbb but
not ab. Observe the difference with the recipe (a+ b)∗, “concatenate as many letters as you
want (including zero), where each letter can be an a or a b.” This recipe can produce ab,
and in fact, it can produce any word.
Let us give a precise definition of the language generated by a regular expression.

Definition 1.5 The language L (r)⊆�∗ of a regular expression r∈RE(�) is defined
inductively by

L (∅)=∅ L (r1r2)=L (r1) ·L (r2)

L (ε)={ε} L (r1+ r2)=L (r1)∪L (r2)

L (a)={a} L (r∗)=L (r)∗

A language L is regular if there is a regular expression r such that L=L (r).

When there is no risk of confusion, we write “the language r” instead of “the language
L (r).” In the same vein, we call r1r2 the concatenation of r1 and r2, r1+ r2 the union of r1
and r2, and r∗ the iteration of r. Sometimes, we write r1 · r2 instead of r1r2 and rk instead
of rr · · · r︸ ︷︷ ︸

k times

.

Example 1.6 Let �={0, 1}. Some languages expressible by regular expressions are:

• The set of all words: (0+ 1)∗. We often use � as an abbreviation of (0+ 1) and so �∗ as
an abbreviation of (0+ 1)∗.
• The set of all words of length at most 4: (0+ 1+ ε)4.
• The set of all words that begin and end with 0: 0�∗0.
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Table 1.1
Some equivalence laws for regular expressions.

Laws for union

r+ (s+ t)≡ (r+ s)+ t (associativity)
r+ s≡ s+ r (commutativity)
∅+ r≡ r (left neutrality)
r+∅≡ r (right neutrality)
r+ r≡ r (idempotence)

Laws for concatenation

r(st)≡ (rs)t (associativity)
εr≡ r (left neutrality)
rε≡ r (right neutrality)
∅r≡∅ (left annihilation)
r∅≡∅ (right annihilation)

Laws for iteration

∅∗ ≡ ε∗ ≡ ε
r∗ ≡ ε+ rr∗ (expansion)
(r∗)∗ ≡ r∗ (idempotence)

Other laws

r(s+ t)≡ rs+ rt (left distributivity)
(r+ s)t≡ rt+ st (right distributivity)
(r+ s)∗ ≡ (r∗s∗)∗

• The set of all words containing at least one pair of 0s exactly five letters apart:�∗0�40�∗.
• The set of all words containing an even number of 0s: 1∗ + (1∗01∗01∗)∗.
• The set of all words containing an even number of 0s and an even number of 1s: (00+
11+ (01+ 10)(00+ 11)∗(01+ 10))∗.

Two regular expressions r1 and r2 are equivalent, denoted r1≡ r2, if L (r1)=L (r2).
For example, we have a(b+ c)≡ ab+ ac because L (a(b+ c))={ab, ac}=L (ab+ ac).
Table 1.1 presents a list of useful equivalence laws, valid for arbitrary regular expressions
r, s, and t.

1.3 Automata Classes

We introduce deterministic finite automata, abstract machines that receive a word as
input, and either reject or accept it. Then we present several generalizations of this basic
model: nondeterministic finite automata, nondeterministic automata with ε-transitions, and
nondeterministic automata with transitions labeled by regular expressions.
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b a n a n a n o n a

q7

Figure 1.1
Tape with reading head.

1.3.1 Deterministic Finite Automata

Intuitively, a deterministic automaton can be seen as the control unit of a machine that reads
an input from a tape divided into cells by means of a reading head (see figure 1.1). Initially,
the automaton is in the initial control state, the tape contains the word to be read, and the
reading head is positioned on the first cell of the tape.
At each step, the machine reads the contents of the cell occupied by the reading head,

updates the current control state according to a transition function, and advances the head
one cell to the right. The machine accepts a word if the state reached after reading it
completely belongs to a set of final states.

Definition 1.7 A deterministic automaton (DA) is a tuple A= (Q,�, δ, q0,F), where

• Q is a nonempty set of states,
• � is an alphabet,
• δ : Q×�→Q is a transition function,
• q0 ∈Q is the initial state, and
• F⊆Q is the set of final states.

A run of A on input a0a1 · · · an−1 is a sequence q0
a0−−→ q1

a1−−→· · · an−1−−−→ qn, such that qi ∈
Q for all 0≤ i≤ n, and δ(qi, ai)= qi+1 for all 0≤ i< n. A run is accepting if qn ∈F. The
automaton A accepts a word w∈�∗ if it has an accepting run on input w. The language
recognized by A is the set L (A)={w∈�∗ :w is accepted by A}.

A deterministic finite automaton (DFA) is a DA with a finite set of states.

Notice that a DA has exactly one run on a given word. Given a DA, we often say “the
word w leads from q0 to q,” meaning that the unique run of the DA on the word w ends at
the state q, and write q0

w−→ q.
Graphically, nonfinal states of a DFA are represented by circles and final states by double

circles (see example 1.8). The transition function is represented by labeled directed edges:
if δ(q, a)= q′, then we draw an edge from q to q′ labeled by a. We also draw an edge into
the initial state to denote that the DFA starts there.
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q0 q1

q2q3

a

a

a

a

bb bb

Figure 1.2
A DFA.

Example 1.8 Figure 1.2 shows the graphical representation of the DFA A= (Q,�, δ,
q0,F), where Q={q0, q1, q2, q3}, �={a, b}, F={q0}, and δ is given by

δ(q0, a)= q1 δ(q1, a)= q0 δ(q2, a)= q3 δ(q3, a)= q2,

δ(q0, b)= q3 δ(q1, b)= q2 δ(q2, b)= q1 δ(q3, b)= q0.

The runs of A on aabb and abbb are

q0
a−→ q1

a−→ q0
b−→ q3

b−→ q0,

q0
a−→ q1

b−→ q2
b−→ q1

b−→ q2.

The first one is accepting, but the second one is not. It is not difficult to see that the DFA
recognizes the language of all words over alphabet {a, b} that contain an even number of as
and an even number of bs. Indeed, the DFA is in the states on the left if it has read an even
number of as, and in the states on the right if it has read an odd number of as. The same
holds for bottom and top states w.r.t. the number of bs.

Trap states. Consider the DFA depicted in figure 1.3 over alphabet {a, b, c}. It recog-
nizes the language {ε, ab, ba}. The colored state on the right is often called a trap state or
a garbage collector: if a run reaches this state, it gets trapped in it, and so the run cannot
be accepting. DFAs often have a trap state with several ingoing transitions, and this makes
it difficult to find a nice graphical representation. So, when drawing DFAs, we often omit
the trap state. For instance, we only draw the uncolored part of the automaton depicted in
figure 1.3. Note that no information is lost: if a state q has no outgoing transition labeled
by a, then we know that δ(q, a)= qt, where qt is the unique trap state.

1.3.2 Using DFAs as Data Structures

We think of regular expressions as word generators and of DFAs (and the automata classes
we will introduce soon) as word acceptors. These mental images are useful to guide our
intuition, but there is a more general and fruitful view: DFAs are finite representations of
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a

b

b

a

c

a, c

b, c

a, b, c
a, b, c

Figure 1.3
A DFA with a trap state.

1, . . . , 9

0

−

0

1, . . . , 9

·

·

·

0, . . . , 9 0 1, . . . , 9

1, . . . , 9

0

Figure 1.4
A DFA for decimal numbers.

possibly infinite languages. In applications, a suitable encoding is used to represent objects
(like numbers, programs, relations, and tuples) as words. Via this encoding, a DFA is a
finite representation of a possibly infinite set of objects. Let us see four examples of DFAs
representing interesting sets, which also illustrate the theory and applications described in
the coming chapters.

Example 1.9 The DFA of figure 1.4 (drawn without the trap state) recognizes the strings
over alphabet {−, ·, 0, 1, . . . , 9} that encode real numbers with a finite decimal part. We wish
to exclude 002, −0, or 3.10000000 but accept 37, 10.503, or −0.234 as correct encodings.
An English description of the correct encodings is rather long:

• a string encoding a number consists of an integer part, followed by a possibly empty
fractional part;
• the integer part consists of an optional minus sign, followed by a nonempty sequence of
digits;
• if the first digit of the integer part is 0, then it is the only digit of the integer part;
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1

1

0

0

0 1

Figure 1.5
A DFA for the multiples of 3 encoded in binary.

0 1 2

1

1

0

0

0 1

Figure 1.6
Same DFA, after naming the states.

• if the fractional part is nonempty, then it starts with “.”, followed by a nonempty sequence
of digits that does not end with 0; and
• if the integer part is −0, then the fractional part is nonempty.

In chapters 2 and 3, we will see how to obtain this DFA algorithmically, by applying con-
structions to small automata corresponding to each of the items in the above description. In
chapter 4, we will describe how to use a DFA to find occurrences of decimal numbers in a
given text.

Example 1.10 The DFA of figure 1.5 recognizes the binary encodings of the multiples of
3. For instance, it recognizes 11, 110, 1001, and 1100 (which are, respectively, the binary
encodings of 3, 6, 9, and 12) but not, say, 10 or 111 (which, respectively, encode 2 and 7).
Observe that if the DFA accepts a word, say 110, then it also accepts the words
0110, 00110, . . . which encode the same number. We let ε encode 0, and so in particular,
the DFA accepts ε.
To see why the DFA recognizes this language, let us call the left, middle, and right state

0, 1, and 2, respectively, as depicted in figure 1.6.
Given a word w, let nw denote the number encoded by w. Further, let rw ∈ {0, 1, 2} be the
remainder of dividing nw by 3, and let rw ∈ {0, 1, 2} be the corresponding state of the DFA.
For example, if w= 1000, then nw= 8, rw= 2, and rw= 2. A word w encodes a multiple
of 3 iff rw= 0 and is accepted by the DFA iff 0

w−→ 0. So, it suffices to show that 0
w−→ rw

holds for every word w. We claim that this is the case. Consider first the particular case
w= 1000. We have

0
1−→ 1

0−→ 2
0−→ 1

0−→ 2,

and so, since rw= 2, we indeed get 0
w−→ rw.
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Figure 1.7
A DFA for the solutions of 2x− y≤ 2.

To prove the claim for every word w, we proceed by induction on the length of w. For
w= ε, we have rε = 0 and 0

ε−→ 0, and we are done. Assume now that |w|> 0 and w=w′0
(the case w=w′1 is similar).

Assume further that 0
w′−−→ 2 (again, the cases 0

w′−−→ 0 and 0
w′−−→ 1 are analogous). We

have nw′0= 2nw′ , because adding a 0 to a binary number amounts to doubling it. Thus, rw′0
is the remainder of dividing 2 · rw′ by 3. Since rw′ = 2 by induction hypothesis, we have

rw′0= 1. Finally, since 0
w′−−→ 2

0−→ 1, we get 0
w′0−−→ 1, and so 0

w′0−−→ rw′0.
Finding this DFA seems to require some ingenuity, but actually that is not the case. By

definition, themultiples of 3 are the numbers x satisfying the formula ∃y 3y= x. In chapter 9,
we present an algorithm that takes a formula like this as input and returns a DFA recognizing
the encodings of the numbers that satisfy it.

Example 1.11 The inequality 2x− y≤ 2 has infinitely many nonnegative integer solu-
tions, like (x, y)= (0, 0) or (x, y)= (7, 20). Let us encode solutions as words over the
alphabet {[0, 0], [0, 1], [1, 0], [1, 1]}. We explain the encoding by example. Consider the
word [

1
0

] [
0
1

] [
1
0

] [
1
0

] [
0
1

] [
0
1

]
where we have written the letters vertically. The top row 101100 encodes the number
1 · 20+ 0 · 21+ 1 · 22+ 1 · 23+ 0 · 24+ 0 · 25= 13, and the bottom row 010011 the number
21+ 24+ 25= 50. That is, each row represents a number in binary, starting with the least
significant bit. Using an algorithm presented in Chapter 9, we can algorithmically construct
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the DFA of Figure 1.7 (drawn without the trap state), which recognizes the set of solutions
of 2x− y≤ 2. In other words, the DFA accepts a word if and only if its corresponding pair
of numbers satisfies the inequality.

Example 1.12 Consider the following program foo with two boolean variables x and y:

1 while x= 1 do
2 if y= 1 then
3 x← 0
4 y← 1− x
5 end

A configuration of the program is a triple [	, nx, ny], where 	∈ {1, 2, 3, 4, 5} is the current
value of the program counter, and nx, ny ∈ {0, 1} are the current values of x and y. The initial
configurations are

[1, 0, 0], [1, 0, 1], [1, 1, 0], [1, 1, 1],
that is, all configurations in which control is at line 1. The DFA of figure 1.8 recognizes all
reachable configurations of the program. For instance, the DFA accepts [5, 0, 1], indicating
that it is possible to reach the last line of the program with values x= 0 and y= 1. The DFA
shows, for example, that after termination, the value of x is always 0.

Chapter 7 describes different algorithms that, given such a program, automatically con-
struct a DFA for its reachable configurations. As we will see, this allows for the automatic
detection of bugs.

4

2

1

5

3

1

01

0, 1

0

1

0

0, 1

1

Figure 1.8
A DFA for the reachable configurations of program foo.
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1.3.3 Nondeterministic Finite Automata

In a deterministic automaton, the next state is completely determined by the current state
and the letter read by the head. In particular, this implies that the automaton has exactly one
run for each word. Nondeterministic automata have the possibility to choose the next state
out of a set of candidates (possibly empty), and so they may have zero, one, or many runs
on the same word. Such an automaton is said to accept a word if at least one of these runs
is accepting.

Definition 1.13 A nondeterministic automaton (NA) is a tuple A= (Q,�, δ,Q0,F),
where

• Q, �, and F are as for DAs;
• Q0 is a nonempty set of initial states; and
• δ : Q×�→P(Q) is a transition relation.

A run of A on input a0a1 · · · an is a sequence p0
a0−−→ p1

a1−−→· · · an−1−−−→ pn, such that pi ∈Q
for every 0≤ i≤ n, p0 ∈Q0, and pi+1 ∈ δ(pi, ai) for every 0≤ i< n. A run is accepting if
pn ∈F.

A word w∈�∗ is accepted by A if at least one run of A on w is accepting. The language
recognized by A is the set L (A)={w∈�∗ :w is accepted by A}.

A nondeterministic finite automaton (NFA) is an NA with a finite set of states.

We often identify the transition function δ of a DA with the set of triples (q, a, q′) such
that q′ = δ(q, a) and the transition relation δ of an NFA with the set of triples (q, a, q′) such
that q′ ∈ δ(q, a). Consequently, we often write (q, a, q′)∈ δ, meaning q′ = δ(q, a) for a DA
or q′ ∈ δ(q, a) for an NA.
If an NA has several initial states, then, by definition, its language is the union of the sets

of words accepted by runs starting at each initial state.

Example 1.14 Figure 1.9 depicts an NFA A= (Q,�, δ,Q0,F) where Q={q0, q1, q2, q3},
�={a, b}, Q0={q0}, F={q3}, and the transition relation δ is given by

δ(q0, a)={q1} δ(q1, a)={q1} δ(q2, a)=∅ δ(q3, a)={q3},
δ(q0, b)=∅ δ(q1, b)={q1, q2} δ(q2, b)={q3} δ(q3, b)={q3}.

q0 q1 q2 q3
a b b

a, b a, b

Figure 1.9
An NFA.
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0 1 2

ε ε

Figure 1.10
An NFA-ε.

Automaton A has no run for any word starting with letter b. It has exactly one run for aa
and four runs for abbb, namely,

q0
a−→ q1

b−→ q1
b−→ q1

b−→ q1 q0
a−→ q1

b−→ q1
b−→ q1

b−→ q2,

q0
a−→ q1

b−→ q1
b−→ q2

b−→ q3 q0
a−→ q1

b−→ q2
b−→ q3

b−→ q3.

Two of these runs are accepting; the other two are not. Language L (A) is the set of words
that start with a and contain two consecutive bs.

After a DA reads a word, we know whether it belongs to the language or not. This is
no longer the case for NAs: if a run on the word is not accepting, then we do not know
anything; there might be a different run leading to a final state. Hence, NAs are not very
useful as language acceptors. However, they are very important. From an operational point
of view, it is often easier to find an NFA for a given language than to find a DFA. More-
over, as we will see later in this chapter, NFAs can be automatically transformed into DFAs.
From a data structure point of view, there are two further reasons to study NAs. First, many
sets can be represented far more compactly as NFAs than as DFAs. So, using NFAs may
save memory. Second, in chapter 5, we will describe how to implement operations on rela-
tions, and we will see that the implementation of the projection operation (see table 0.1 of
section 0.1) may return an NFA, even if its input is a DFA. Therefore, NFAs are not only
convenient but also necessary to obtain a data structure implementing all operations of
table 0.1.

1.3.4 Nondeterministic Finite Automata with ε-Transitions

Recall that the state of an NA can only change by reading a letter. We consider NAs with
ε-transitions that may also change their state “spontaneously” by executing an “internal”
transition without reading any input. To emphasize this, we label these transitions with the
empty word ε (see figure 1.10).

Definition 1.15 A nondeterministic automaton with ε-transitions (NA-ε) is a tuple
A= (Q,�, δ,Q0,F), where

• Q, �, Q0, and F are as for NAs, and
• δ : Q× (� ∪ {ε})→P(Q) is a transition relation.
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q0 q1

q2

q3 q4
ε ε d

c

a∗ b∗

Figure 1.11
An NFA with transitions labeled by regular expressions.

The runs and accepting runs of an NA-ε are defined as for NAs. We say that A accepts a
word a1 · · · an ∈�∗ if there exist numbers k0, k1, . . . , kn≥ 0 such that A has an accepting
run on the word

εk0a1εk1 · · · εkn−1anεkn ∈ (� ∪ {ε})∗.
A nondeterministic finite automaton with ε-transitions (NFA-ε) is an NA-ε with a finite

set of states.

Notice that, unlike for NAs, the number of accepting runs of an NA-ε on a word may
be infinite. This is the case when some cycle of the NA-ε only contains ε-transitions, and
some final state is reachable from the cycle.
NA-εs are useful as intermediate representations. In particular, later in this chapter, we

will see how to automatically transform a regular expression into an NFA in two steps; first
we convert the expression into an NFA-ε, and then we convert the NFA-ε into an NFA.

1.3.5 Nondeterministic Finite Automata with Regular Expressions

We generalize the notion of NA-ε even further. Both letters and the empty word ε are
instances of regular expressions. Now we allow arbitrary regular expressions as transition
labels (see figure 1.11). A run leading to a final state accepts all the words of the regular
expression obtained by concatenating all the labels of the transitions of the run into a single
regular expression. For example,

q0
ε−→ q1

a∗−−→ q2
b∗−−→ q1

a∗−−→ q2
b∗−−→ q1

ε−→ q3
d−→ q4

is a run of the automaton of figure 1.11 leading to an accepting state, and so the automaton
accepts, among others, all words of the regular expression εa∗b∗a∗b∗εd≡ a∗b∗a∗b∗d.
We call these automata NA-reg. They are useful to formulate conversion algorithms

between automata and regular expressions, because they generalize both. Indeed, a reg-
ular expression can be seen as a NA-reg with only one transition leading from the initial
state to a final state and labeled by the regular expression.
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Definition 1.16 A nondeterministic automaton with regular expression transitions (NA-
reg) is a tuple A= (Q,�, δ,Q0,F), where

• Q, �, Q0, and F are as for NAs, and
• δ : Q×RE(�)→P(Q) is a relation such that δ(q, r)=∅ for all but a finite number of
pairs (q, r)∈Q×RE(�).

Accepting runs are defined as for NAs. Automaton A accepts a word w∈�∗ if A has an
accepting run on r1 · · · rk such that w∈L (r1) · · ·L (rk).
A nondeterministic finite automaton with regular expression transitions (NFA-reg) is an

NA-reg with a finite set of states.

1.3.6 A Normal Form for Automata

For any of the automata classes we have introduced, if a state is not reachable from any
initial state, then removing it does not change the language accepted by the automaton. We
say that an automaton is in normal form if each state is reachable from an initial one.

Definition 1.17 Let A= (Q,�, δ,Q0,F) be an automaton. A state q∈Q is reachable from
state q′ ∈Q if either q= q′, or there exists a run q′ a1−−→· · · an−−→ q on some word a1 · · · an ∈
�∗. Automaton A is in normal form if every state is reachable from some initial state.

Obviously, for every automaton, there is an equivalent automaton of the same kind in normal
form. In this book, we follow this convention:

Unless otherwise stated, we assume that automata are in normal form. In particular, we
assume that if an automaton A is an input to an algorithm, then A is in normal form. If
the output of an algorithm is an automaton, then the algorithm is expected to produce an
automaton in normal form. This condition is a proof obligation when showing that the
algorithm is correct.

1.4 Conversion Algorithms

We show that all our data structures represent exactly the same class of languages—namely,
the regular languages. The solid edges of figure 1.12 show the relations between the for-
malisms that follow immediately from the definitions: DFAs are a special case of NFAs,
which are a special case of NFA-εs, which are a special case of NFA-regs; further, regular
expressions can also be seen as a special case of NFA-regs. Indeed, a regular expression r
“is” the NFA-reg Ar having two states, one initial and the other final, and a single transition
labeled r leading from the initial to the final state.
In the next sections, we present four conversion algorithms corresponding to the dashed

arrows of figure 1.12. A dashed arrow from a source to a target node indicates that for every
instance of the source, there is an equivalent instance of the target. The algorithms allow us
to convert any representation of a language into any other.
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Figure 1.12
Our data structures for languages.

1.4.1 From NFA to DFA

The powerset construction transforms an NFA A into a DFA B recognizing the same lan-
guage.We first give an informal idea of the construction. Recall that an NFAmay havemany
different runs on a word w, possibly leading to different states, while a DFA has exactly one
run on w. Denote by Qw the set of states q such that some run of A on w leads from some
initial state to q. Intuitively, B “keeps track” of the set Qw: its states are sets of states of A,
with Q0 as initial state (A starts at some initial state), and its transition function is defined
to ensure that the run of B on w leads from Q0 to Qw (see below). It is then easy to ensure
that A and B recognize the same language: it suffices to choose the final states of B as the
sets of states of A containing at least one final state, because for every word w:

B accepts w
iff Qw is a final state of B
iff Qw contains at least a final state of A
iff some run of A on w leads to a final state of A
iff A accepts w.

Let us now define the transition function 
 of B. “Keeping track of the set Qw” amounts
to satisfying 
(Qw, a)=Qwa for every word w. Since we have Qwa=⋃q∈Qw

δ(q, a), we
define


(Q′, a)=
⋃
q∈Q′

δ(q, a) for every Q′ ⊆Q.

Note that we may haveQ′ = ∅; in this case, ∅ is a state of B, and since 
(∅, a)=∅ for every
a∈
, it is a “trap” state.

Summarizing, given A= (Q,�, δ,Q0,F), we define the DFA B= (Q,�,
, q0,F) as
follows:
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• Q=P(Q),
• 
(Q′, a)=⋃q∈Q′ δ(q, a) for every Q′ ⊆Q and every a∈�,
• q0=Q0, and
• F ={Q′ ∈Q :Q′ ∩F �= ∅}.

Observe, however, that B may not be in normal form: many states may not be reachable
fromQ0. For instance, assumeA happens to be a DFAwith states {q0, . . . , qn−1}. ThenB has
2n states, but only the singletons {q0}, . . . , {qn−1} are reachable. The conversion procedure
of algorithm 1 constructs only the reachable states.
The algorithm iswritten in pseudocode, with abstract sets as data structure. Like nearly all

the algorithms presented in the next chapters, it is a workset algorithm. These maintain a set
of objects, the workset, waiting to be processed. The elements of the workset are unordered,
and the workset contains at most one copy of an element (i.e., if an element already in the
workset is added to it again, the workset does not change). For most algorithms in this book,
the workset can be implemented as a hash table.
In NFAtoDFA, the workset is calledW , in other algorithms justW (we use a calligraphic

font to emphasize that in this case, the objects of the workset are sets). Workset algorithms
repeatedly pick an object from the workset (instruction pick Q from W) and process it.
Picking an object removes it from the workset. Processing an object may generate new
objects that are added to the workset. The algorithm terminates when the workset is empty.
Since objects removed from the list may generate new objects, workset algorithms may
potentially fail to terminate. Even if the set of all objects is finite, the algorithm may not

Algorithm 1 Conversion from NFA to DFA.

NFAtoDFA(A)
Input: NFA A= (Q,�, δ,Q0,F)

Output: DFA B= (Q,�,
, q0,F) with L (B)=L (A)

1 Q,
,F←∅; q0←Q0

2 W ={Q0}
3 while W �= ∅ do
4 pick Q′ from W
5 add Q′ to Q
6 if Q′ ∩F �= ∅ then add Q′ to F
7 for all a∈� do
8 Q′′ ←⋃q∈Q′ δ(q, a)
9 if Q′′ /∈Q then add Q′′ to W
10 add (Q′, a,Q′′) to 
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Figure 1.13
Conversion of an NFA into a DFA.

terminate because an object is added to and removed from theworkset infinitelymany times.
Termination is guaranteed by making sure that no object that has been removed from the
workset once is ever added to it again. For this, objects picked from the workset are stored
(in NFAtoDFA, they are stored inQ), and objects are added to the workset only if they have
not been stored yet.

Example 1.18 Consider the NFA A at the top of figure 1.13. The rest of the figure depicts
some snapshots of the run of NFAtoDFA on A. The states of the resulting DFA are labeled
with the corresponding sets of states of A. The algorithm picks states from the workset
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in order {1}, {1, 2}, {1, 3}, {1, 4}, {1, 2, 4}. Snapshots (a)–(d) are taken right after it picks
the states {1, 2}, {1, 3}, {1, 4}, and {1, 2, 4}, respectively. Snapshot (e) is taken at the end.
Notice that out of the 24= 16 subsets of states of A, only five are constructed, because the
remaining ones are not reachable from {1}.
Complexity. If A has n states, then the output ofNFAtoDFA(A) can have up to 2n states. To
show that this bound is essentially reachable, consider the family {Ln}n≥1 of languages over
�={a, b} given by Ln= (a+ b)∗a(a+ b)(n−1). That is, Ln contains the words of length at
least nwhose nth letter starting from the end is an a. The language Ln is accepted by the NFA
with n+ 1 states shown in figure 1.14a: intuitively, the automaton chooses one of the as in
the input word and checks that it is followed by exactly n− 1 letters before the word ends.
Applying the powerset construction, however, yields a DFA with 2n states. The DFA for L3

1 2 3 n n+ 1

a, b

a a, b a, ba, b

(a) NFA for Ln.

1 1, 4

1, 2 1, 3

1, 2, 3 1, 2, 4

1, 2, 3, 4 1, 3, 4

b

a a

b

b

a

b

a

a b

b

a

a
b

a

b

bbb abb

bba bab

baa aba

aaa aab

b

a a

b

b

a

b

a

a b

b

a

a
b

a

b

(b) DFA for L3 and its interpretation.
Figure 1.14

Top: An NFA for Ln. Bottom: A DFA for L3.
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is shown on the left of figure 1.14b. The states of the DFA have a natural interpretation: they
“store” the last n letters read by the automaton. If the DFA is in the state storing a1a2 · · · an
and reads letter an+1, then it moves to the state storing a2 · · · an+1. States are final if the
first letter they store is an a. The interpreted version is shown on the right of figure 1.14b.

We can also easily prove that anyDFA recognizing Ln must have at least 2n states. For the
sake of contradiction, suppose there is a DFA An= (Q,�, δ, q0,F) such that |Q|< 2n and
L (An)=Ln. Let us extend δ to words—that is, to the mapping δ̂ : Q×{a, b}∗→Q, where
δ̂(q, ε)= q and δ̂(q,w σ)= δ(δ̂(q,w), σ) for all w∈�∗ and σ ∈�. Since |Q|< 2n, there
must exist two words uav1 and ubv2 of length n for which δ̂(q0, uav1)= δ̂(q0, ubv2). This
means that δ̂(q0, uav1u)= δ̂(q0, ubv2u); that is, either both uav1u and ubv2u are accepted by
An, or neither is. Since, however, |av1u| = |bv2u| = n, this contradicts the assumption that
An consists of exactly the words with an a at the nth position from the end.

1.4.2 From NFA-ε to NFA

Let A be an NFA-ε over an alphabet �. In this section, we use a to denote an element of �

and α,β to denote elements of � ∪ {ε}.
Loosely speaking, the conversion first adds toA new transitions that make all ε-transitions

redundant, without changing the language: every word accepted by A before adding the new
transitions is accepted after adding them by a run without ε-transitions. The conversion then
removes all ε-transitions, delivering an NFA that recognizes the same language as A.
The new transitions are shortcuts: if A has transitions (q,α, q′) and (q′,β, q′′) such that

α= ε or β = ε, then the shortcut (q,αβ, q′′) is added. (Note that either αβ = a for some
a∈�, or αβ = ε.) Shortcuts may generate further shortcuts: for example, if αβ = a and
A has a further transition (q′′, ε, q′′′), then a new shortcut (q, a, q′′′) is added. We call
the process of adding all possible shortcuts saturation. Obviously, saturation does not
change the language of A. If A has a run accepting a nonempty word before saturation, for
example,

q0
ε−→ q1

ε−→ q2
a−→ q3

ε−→ q4
b−→ q5

ε−→ q6,

then after saturation, it has a run accepting the same word, and visiting no ε-transitions,
namely,

q0
a−→ q4

b−→ q6.

However, removing ε-transitions immediately after saturation may not preserve the
language. The NFA-ε of figure 1.15a accepts ε. After saturation, we get the NFA-ε of
figure 1.15b. Removing all ε-transitions yields an NFA that no longer accepts ε. To solve
this problem, if A accepts ε from some initial state, then we mark that state as final, which
clearly does not change the language. To decide whether A accepts ε, we check if some state
reachable from some initial state by a sequence of ε-transitions is final. Figure 1.15c shows
the result. Observe that, in general, after removing ε-transitions, the automaton may not be
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(b) After saturation. (c) After marking the initial state final and
removing all ε-transitions.

Figure 1.15
Conversion of an NFA-ε into an NFA by shortcutting ε-transitions.

in normal form, because some states may no longer be reachable. So the naive procedure
runs in four phases: saturation, ε-check, removal of all ε-transitions, and normalization.
We show that it is possible to carry all four steps in a single pass. We present a work-

set algorithm NFAεtoNFA, in algorithm 2, that carries the ε-check while saturating and
generates only the reachable states. Furthermore, the algorithm avoids constructing some
redundant shortcuts. For instance, for the NFA-ε of figure 1.15a, the algorithm does not
construct the transition leading from the state in the middle to the state on the right
labeled by 2.
The correctness proof is easy, but the different cases require some care, and so we devote

a proposition to it.

Proposition 1.19 Let A be an NFA-ε, and let B=NFAεtoNFA(A). It is the case that B is
an NFA and L (A)=L (B).

Proof To show that the algorithm terminates, observe first that every transition that leaves
W is never added to W again. Indeed, when a transition (q1,α, q2) leaves W , it is added
to either δ′ or δ′′, and a transition enters W only if it does not belong to either δ′ or δ′′.
Further, every execution of the while loop removes a transition from the workset. Thus, the
algorithm eventually exits the loop and terminates.
To show that B is an NFA, we have to prove that it only has non-ε-transitions and that it

is in normal form (i.e., that every state of Q′ is reachable from some state of Q′0=Q0 in B).
For the first part, observe that transitions are only added to δ′ in line 7, and none of them
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Algorithm 2 Conversion from NFA-ε to NFA.

NFAεtoNFA(A)
Input: NFA-ε A= (Q,�, δ,Q0,F)

Output: NFA B= (Q′,�, δ′,Q′0,F′) with L (B)=L (A)

1 Q′0←Q0

2 Q′ ←Q0; δ′ ←∅; F′ ←F ∩Q0

3 δ′′ ←∅; W←{(q,α, q′)∈ δ : q∈Q0}
4 while W �= ∅ do
5 pick (q1,α, q2) from W
6 if α �= ε then
7 add q2 to Q′; add (q1,α, q2) to δ′; if q2 ∈F then add q2 to F′

8 for all q3 ∈ δ(q2, ε) do
9 if (q1,α, q3) �∈ δ′ then add (q1,α, q3) to W
10 for all a∈�, q3 ∈ δ(q2, a) do
11 if (q2, a, q3) �∈ δ′ then add (q2, a, q3) to W
12 else / ∗α= ε ∗ /

13 add (q1,α, q2) to δ′′; if q2 ∈F then add q1 to F′

14 for all β ∈� ∪ {ε}, q3 ∈ δ(q2,β) do
15 if (q1,β, q3) �∈ δ′ ∪ δ′′ then add (q1,β, q3) to W

is an ε-transition because of the guard in line 6. For the second part, we need the following
invariant, which can be easily proved by inspection: for every transition (q1,α, q2) added to
W , if α= ε, then q1 ∈Q0, and if α �= ε, then q2 is reachable in B (after termination). Since
new states are added to Q′ only at line 7, applying the invariant, we get that every state of
Q′ is reachable in B from some state in Q0.
It remains to prove L (A)=L (B). For the inclusion L (A)⊇L (B), we have to show

that after the addition of a new transition to δ′ or a new final state to F′, the recognized
language is the same as before. For transitions, this follows from the fact that every tran-
sition added to δ′ is either a transition of A or a shortcut, which is shown by inspection.
For final states, observe that the algorithm only adds new final states at line 13. Further,
at that line q1 only becomes final if there is a transition q1

ε−→ q2 for some final state
q2. So every word accepted by a run ending at q1 was already accepted before making
q1 final. For the inclusion L (A)⊆L (B), we first claim that ε ∈L (A) implies ε ∈L (B).
Let q0

ε−→ q1
ε−→· · · ε−→ qn be a run of A such that qn ∈F. If n= 0 (i.e., qn= q0), then we

are done. If n> 0, then we prove by induction on n that a transition (q0, ε, qn) is eventu-
ally added to W (and so eventually picked from it), which implies that q0 is eventually
added to F′ at line 13. If n= 1, then (q0, ε, qn) is added to W at line 3. If n> 1, then by
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hypothesis, (q0, ε, qn−1) is eventually added to W and picked from it at some later point.
So (q0, ε, qn) is added to W at line 15, and the claim is proved. We now show that for
every w∈�+, if w∈L (A), then w∈L (B). Let w= a1a2 · · · an with n≥ 1. Automaton A
has a run

q0
ε−→· · · ε−→ qm1

a1−−→ qm1+1
ε−→· · · ε−→ qmn

an−−→ qmn+1
ε−→· · · ε−→ qm

such that qm ∈F. We have just proved that a transition (q0, ε, qm1) is eventually added to
W . So, (q0, a1, qm1+1) is eventually added at line 15, (q0, a1, qm+2), . . . , (q0, a1, qm2) are
eventually added at line 9, and (qm2 , a2, qm2+1) is eventually added at line 11. Iterating this
argument, the following is a run of B:

q0
a1−−→ qm2

a2−−→· · · an−1−−−→ qmn
an−−→ qm.

Moreover, state qm is added to F′ at line 7, and so w∈L (B).

Complexity. The algorithm processes pairs of transitions (q1,α, q2) and (q2,β, q3), where
(q1,α, q2) comes fromW and (q2,β, q3) from δ (lines 8, 10, and 14). As every transition is
removed fromW at most once, the algorithm processes at most |Q| · |�| · |δ| pairs. Indeed,
for a fixed transition (q2,β, q3)∈ δ, there are |Q| possibilities for q1 and |�| possibilities
for α. Thus, the runtime is dominated by the processing of the pairs, and so it belongs to
O(|Q| · |�| · |δ|).
1.4.3 From NFA-reg to NFA-ε

We present an algorithm that, given an NFA-reg, constructs an equivalent NFA-ε. In a
first step, we preprocess the regular expressions labeling the transitions of the NFA-reg
by exhaustively applying the following rewrite rules:

r · ∅�∅ r+∅� r ∅∗� ε

∅ · r�∅ ∅+ r� r

Since the left- and right-hand sides of each rule denote the same language, the regular
expressions before and after preprocessing denote the same language. Moreover, if r is a
regular expression obtained after preprocessing, then either r=∅, or r does not contain
any occurrence of the ∅ symbol, since otherwise, one of the above rules can be applied.
A transition of an NFA-reg labeled by ∅ can be removed without changing its language.
Indeed, any regular expression accepted by means of a run containing such a transition is
of the form r1 ∅ r2, whose language is empty. After removing such transitions, we are left
with an NFA-reg whose labels contain no occurrence of the ∅ symbol. This concludes the
first step.
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Concatenation: �r1r2 r1 r2

Choice: �r1+ r2
r1

r2

Kleene star: �r∗ ε

r

ε

Figure 1.16
Three rules for converting an NFA-reg into an NFA-ε.

In the second step, we exhaustively apply the transformation rules of figure 1.16.
It is readily seen that each rule preserves the recognized language (i.e., the NFA-

regs before and after the application of the rule recognize the same language). The two
ε-transitions of the rule for Kleene iteration guarantee that the automata before and after
applying the rule are equivalent, even if the source and target states of the transition labeled
by r∗ have other incoming or outgoing transitions. If the source state has no other outgoing
transitions, then we can omit the first ε-transition. If the target state has no other incoming
transitions, then we can omit the second.
Since each rule splits a regular expression into its constituents, we eventually reach an

NFA-reg to which no rule can be applied. Since, due to the preprocessing, the initial regular
expressions do not contain any occurrence of ∅, the transitions of this NFA-reg can only be
labeled with letters from �, or with ε, and so the NFA-reg is an NFA-ε.
Observe that if we start with an NFA-reg consisting of an initial state q0, a final state

qf , different from q0, and one transition q0
r−→ qf , then the final NFA-ε also has q0 and

qf as unique initial and final states. Moreover, no transition leads to q0, and no transition
leaves qf .

Example 1.20 Consider the regular expression (a∗b∗ + c)∗d. Figure 1.17 depicts the re-
sult of applying the transformation rules.

Complexity. Given a regular expression r, define 	(r) inductively as follows: 	(∅)=
	(ε)= 	(a)= 0, 	(r1 · r2)= 	(r1+ r2)= 	(r1)+ 	(r2)+ 1, and 	(r∗)= 	(r)+ 1. Further,
given an NFA-reg A= (Q,�, δ,Q0,F), define 	(A)=∑(q,r,q′)∈δ 	(r). The application of
a rule transforms A into an automaton A′ such that 	(A′)= 	(A)− 1; moreover, if 	(A′)= 0,
then A′ is an NFA-ε. So we obtain an NFA-ε after 	(A) applications, with at most |Q| + 	(A)

states. Further, the conversion runs in linear time.
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Figure 1.17
The result of converting (a∗b∗ + c)∗d into an NFA-ε.

1.4.4 From NFA-ε to Regular Expressions

Given an NFA-ε A, we transform it into an equivalent regular expression. For this, we con-
vert A into an equivalent NFA-reg Ar with two states and a single transition labeled by a
regular expression r.
As in the previous section, it is convenient to apply some preprocessing to guarantee that

the NFA-ε has a single initial state with no incoming transitions and a single final state with
no outgoing transitions. We proceed as follows (see figure 1.18):

• If A has several initial states, or if an initial state has an incoming transition, then add a
new initial state q0, add ε-transitions leading from q0 to each initial state, and replace the
set of initial states by {q0}.
• If A has several final states, or if a final state has an outgoing transition, then add a new
state qf , add ε-transitions leading from each final state to qf , and replace the set of final
states by {qf }.
After preprocessing, the algorithm runs in phases. Each phase has two steps. The first step
yields an automaton with at most one transition between any two given states:
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Figure 1.18
Rule 1: Preprocessing.
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Figure 1.19
Rule 2: at most one transition between two states.

...
... � ...

...

r1

rn

t1

tm

s
r1s∗t1

r1s∗tm

rns∗t1

rns∗tm

Figure 1.20
Rule 3: removing a state.

• Repeat exhaustively: replace a pair of transitions (q, r1, q′) and (q, r2, q′) by a single
transition (q, r1+ r2, q′). (See figure 1.19.)

The second step, depicted in figure 1.20, reduces the number of states by 1, until the only
states left are the initial and final ones:

• Pick a nonfinal and noninitial state q, and shortcut it: if q has a self-loop (q, s, q),
then replace each pair of transitions (q′, r, q), (q, t, q′′), where q′ �= q �= q′′, but possibly
q′ = q′′, by a shortcut (q′, rs∗t, q′′). Otherwise, replace it by (q′, rt, q′′). After shortcutting
all pairs, remove q. (Notice that there is at most one self-loop on q, as otherwise we would
have two or more transitions leading from q to q, contradicting that rule 2 was applied
exhaustively.)

At the end of the last phase, we are left with an NFA-reg having exactly two states, the
unique initial state q0 and the unique final state qf . Moreover, q0 has no incoming transitions
and qf has no outgoing transitions, because it was initially so, and the application of the
rules cannot change it. After applying rule 2 exhaustively one last time, the NFA-reg has
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Algorithm 3 Conversion from NFA-ε to regular expression.

NFA-εtoRE(A)
Input: NFA-ε A= (Q,�, δ,Q0,F)

Output: regular expression r with L (r)=L (A)

1 apply Rule 1
2 let q0 and qf be the initial and final states of A
3 while Q \ {q0, qf } �= ∅ do
4 apply exhaustively Rule 2
5 pick q from Q \ {q0, qf }
6 apply Rule 3 to q
7 apply exhaustively Rule 2
8 return the label of the (unique) transition

exactly one transition from q0 to qf , and we are done. The complete procedure is described
in algorithm 3.

Example 1.21 An example of the execution of NFA-εtoRE will be given shortly at the
beginning of the forthcoming “Tour of Conversions” in the next section.

Complexity. The running time of the algorithm depends on the data structure used to store
regular expressions. If they are stored as strings or trees (following the syntax tree of the
expression), then the complexity can be exponential. To see this, consider, for n≥ 1, the
NFA An= (Q,�, δ,Q0,F), where

Q={q0, . . . , qn−1},
�={aij : 0≤ i, j< n},
Q0=Q,

δ={(qi, aij, qj) : 0≤ i, j< n},
F=Q.

That is, all states are initial and final, there is one transition between each pair of states,
and each transition is labeled by a different letter. By symmetry, the running time of the
algorithm is independent of the order in which states are eliminated. Consider the order
q0, q2, . . . , qn−1. It is easy to see that after eliminating state qi, the NFA-reg contains some
transitions labeled by regular expressions with 3i occurrences of letters. This exponential
blowup cannot be avoided: it can be shown that every regular expression recognizing the
same language as An contains at least 2n−1 occurrences of letters.
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Figure 1.21
Compact representation of regular expressions.

Regular expressions can also be stored as acyclic directed graphs by sharing common
subexpressions in the syntax tree. For example, the regular expression ((a+ b)(a+ b))
((a+ b)(a+ b)) can be represented by the syntax tree with fifteen nodes on the left of
figure 1.21 or, more compactly, by the acyclic directed graph with five nodes on the right.
If the algorithm is implemented using acyclic directed graphs, then it works in polynomial
time, because the label of a new transition is obtained by concatenating or starring already
computed labels.

1.5 A Tour of Conversions

We present an example chaining the conversions of this chapter.

(1) We begin with a DFA A that recognizes the language of words over {a, b} with an
even number of as and an even number of bs. We convert it into a regular expression
via NFA-εtoRE. In the following drawing, parts (b) to (f) depict snapshots of the run of
NFA-εtoRE(A). Snapshot (b) is taken right after applying rule 1. Snapshots (c) to (e) are
taken after each execution of the body of the while loop. Snapshot (f) shows the final
expression r.

(a)
a

a

a

a
bb bb

(b)
a

a

a

a
bb bb

ε
ε
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(c)

bb

a

a

ab
ba

aa

bb

ε
ε (d)

ab+ ba

ba+ ab

aa+ bb

aa+ bb

ε
ε

(e)

aa+ bb+
(ab+ ba)(aa+ bb)∗(ba+ ab)

ε
ε

(f)

(aa+ bb+
(ab+ ba)(aa+ bb)∗(ba+ ab))∗

(2) We convert r into an NFA-ε by repeatedly applying the three rules of figure 1.16. The
following drawing gives four snapshots (a)–(d) of these applications.

(a) (aa+ bb+
(ab+ ba)(aa+ bb)∗(ab+ ba))∗

(b)
ε ε

(ab+ ba)(aa+ bb)∗(ab+ ba)

aa bb

(c)
ε ε

a

a b

b

ab+ ba

ε ε

ab+ ba

aa+ bb

(d)
ε ε

a

a b

b

a
b

b

a
ε

a
b

b

a
ε

a

a b

b
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(3) We convert the resulting NFA-ε into an NFA via NFA-εtoNFA.

1 4 5

2 3

6

7

9

8

10

11 12

a

a b

b

a

a b

b

a

b

a

b

a

b

b

a

a

b

a

b

b ba a

(4) Finally, we transform the resulting NFA back into a DFA by means of the powerset
construction.

1

2, 6

3, 7

4, 5

8, 11

9, 12

10

a

b

a

a

b

b b

b

a

a

a

b

a

b

Note that we do not end up with the initial four-state DFA but rather with a “more compli-
cated one” recognizing the same language. A last step, allowing us to close the circle, is
presented in the next chapter.
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1.6 Exercises

�� Exercise 1. Give a regular expression for the language of all words over �={a, b}


(a) beginning and ending with the same letter.
(b) having two occurrences of a at distance 3.
(c) with no occurrence of the subword aa.

�� Exercise 2. Give a regular expression for the language of all words over �={a, b}�

(a) containing exactly two occurrences of aa (that may “overlap,” e.g., aaa belongs to the
language).
(b) that can be obtained from abaab by deleting letters.

� � Exercise 3. Show that the language of the regular expression r= (a+ ε)(b∗ + ba)∗

is the language A of all words over {a, b} that do not contain any occurrence of aa.

�� Exercise 4. Prove or disprove the following claim: the regular expressions (1+ 10)∗�
and 1∗(101∗)∗ represent the same language (namely, the language of words where each
occurrence of 0 is preceded by a 1).

�� Exercise 5.


(a) Prove that for all languages A and B, the following holds: A⊆B =⇒ A∗ ⊆B∗.
(b) Prove that the regular expressions ((a+ ab)∗ + b∗)∗ and �∗ represent the same lan-
guage, where �={a, b} and where �∗ stands for (a+ b)∗.

�� Exercise 6. Prove that every regular expression r is equivalent to a regular expression s�
of the form s= s1+ . . .+ sn for some n≥ 1, where s1, . . . , sn do not contain any occurrence
of “+.”
�� Exercise 7. For each of the following properties, provide a syntax that describes the

regular expressions r satisfying the property.

(a) L (r)=∅,
(b) L (r)={ε},
(c) ε ∈L (r),
(d) (L (r)=L (rr)) =⇒ (L (r)=L (r∗)).

� � Exercise 8. Use the solution to exercise 7 to define inductively the predicates

IsEmpty(r), IsEpsilon(r), and HasEpsilon(r) over regular expressions given by

• IsEmpty(r)⇔ (L (r)=∅),
• IsEpsilon(r)⇔ (L (r)={ε}),
• HasEpsilon(r)⇔ (ε ∈L (r)).
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�� Exercise 9. Let us extend the syntax and semantics of regular expressions as follows. �
If r and s are regular expressions over �, then r and r∩ s are also valid expressions, where
L (r)=L (r) and L (r∩ s)=L (r)∩L (s). We say that an extended regular expression is
star-free if it does not contain any occurrence of the Kleene star operation (e.g., expressions
ab and (∅ab∅)∩ (∅ba∅) are star-free, but expression ab∗ is not).
A language L⊆�∗ is called star-free if there exists a star-free extended regular expres-

sion r such that L=L (r); for example, �∗ is star-free, because �∗ =L
(
∅
)
.

Show that the languages of the regular expressions (a) (01)∗ and (b) (01+ 10)∗ are star-
free.

� � Exercise 10. Let L⊆{a, b}∗ be the language described by the regular expression 

a∗b∗a∗a.

(a) Give an NFA-ε that accepts L.
(b) Give an NFA that accepts L.
(c) Give a DFA that accepts L.

� � Exercise 11. Let |w|σ denote the number of occurrences of letter σ in word w. For 

every k≥ 2, let Lk,σ ={w∈ {a, b}∗ : |w|σ mod k= 0}.
(a) Give a DFA with k states that accepts Lk,σ .
(b) Show that any NFA accepting Lm,a ∩Ln,b has at least m · n states.

Hint: Consider using the pigeonhole principle.

� � Exercise 12. For every language L, let Lpref and Lsuff be respectively the lan- �
guages of all prefixes and suffixes of words in L. For example, if L={abc, d}, then Lpref =
{abc, ab, a, ε, d} and Lsuff ={abc, bc, c, ε, d}.
(a) Given an NFA A, construct NFAs Apref and Asuff that recognize L (A)pref and L (A)suff .
(b) Let r= (ab+ b)∗cd. Give a regular expression rpref such that L (rpref )=L (r)pref .
(c) More generally, give an algorithm that takes an arbitrary regular expression r as input
and returns a regular expression rpref such that L

(
rpref
)=L (r)pref .

�� Exercise 13. Consider the regular expression r= (a+ ab)∗. �

(a) Convert r into an equivalent NFA-ε A.
(b) Convert A into an equivalent NFA B.
(c) Convert B into an equivalent DFA C.
(d) By inspection of C, give an equivalent minimal DFA D.
(e) Convert D into an equivalent regular expression r′.
(f) Prove formally that L (r)=L (r′).
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�� Exercise 14.The reverse of a wordw, denoted bywR, is defined as follows: εR= ε and�
(a1a2 · · · an)R= an · · · a2a1. The reverse of a language L is the language LR={wR :w∈L}.
(a) Give a regular expression for the reverse of the language of ((a+ ba)∗ba(a+ b))∗ba.
(b) Give an algorithm that takes as input a regular expression r and returns a regular
expression rR such that L (rR)=L (r)R.
(c) Give an algorithm that takes an NFA A and returns an NFA AR such that L (AR)=
L (A)R.
(d) Does your construction in (c) work for DFAs? More precisely, does it preserve
determinism?

�� Exercise 15. Prove or disprove: every regular language is recognized by an NFA


(a) having one single initial state,
(b) having one single final state,
(c) whose initial states have no incoming transitions,
(d) whose final states have no outgoing transitions,
(e) all of the above,
(f) whose states are all initial,
(g) whose states are all final.

Which of the above hold for DFAs? Which ones for NFA-ε?

�� Exercise 16. Given a regular expression r, construct an NFA A that satisfies L (A)=

L (r) and the following properties:

• initial states have no incoming transitions,
• accepting states have no outgoing transitions,
• all input transitions of a state (if any) carry the same label,
• all output transitions of a state (if any) carry the same label.

Apply your construction on r= (a(b+ c))∗.

� � Exercise 17. Convert this NFA-ε to an NFA using the algorithm NFAεtoNFA:


p

q

r

s

ε

ε

b

a

ε
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�� Exercise 18. Show that every finite language L (i.e., every language containing finitely �
many words) is regular. Do so by defining a DFA that recognizes L.

� � Exercise 19. Let �n={1, 2, . . . , n}, and let Ln be the set of all words w∈�n such 

that at least one letter of �n does not appear in w. So, for instance, 1221, 32, 1111∈L3 and
123, 2231 /∈L3.
(a) Give an NFA for Ln with O(n) states and transitions.
(b) Give a DFA for Ln with 2n states.
(c) Show that any DFA for Ln has at least 2n states.
(d) Do the bounds of (a), (b), and (c) also hold for Ln?

�� Exercise 20. Let Mn be the language of the following regular expression: 


(0+ 1)∗0(0+ 1)n−10(0+ 1)∗.

These are the words containing at least one pair of 0s at distance n. For example,
101101, 001001, 000000∈M3 and 101010, 000111, 011110 /∈M3.

(a) Give an NFA for Mn with O(n) states and transitions.
(b) Give a DFA for Mn with �(2n) states.
(c) Show that any DFA for Mn has at least 2n states.

�	 Exercise 21.Recall that an NFA A accepts a wordw if at least one of the runs of A on 

w is accepting. This is sometimes called the existential accepting condition. Consider the
variant where A accepts word w if all runs of A on w are accepting (in particular, if A has no
run on w, then it trivially accepts w). This is called the universal accepting condition. Note
that a DFA accepts the same language with both the existential and the universal accepting
conditions.
Intuitively, we can imagine an automaton with universal accepting condition as executing

all runs in parallel. After reading a word w, the automaton is simultaneously in all states
reached by all runs labeled by w and accepts if all those states are accepting.
Consider the language by Ln={ww :w∈ {0, 1}n}.

(a) Give an automaton of size O(n) with universal accepting condition that recognizes Ln.
(b) Prove that every NFA (and so in particular every DFA) recognizing Ln has at least 2n

states.
(c) Give an algorithm that transforms an automaton with universal accepting condition into
a DFA recognizing the same language. This shows that automata with universal accepting
condition recognize the regular languages.

� 	 Exercise 22. The existential and universal accepting conditions can be combined, 

yielding alternating automata. The states of an alternating automaton are partitioned into
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existential and universal states. An existential state q accepts a wordw, denotedw∈L (q), if
eitherw= ε and q∈F, orw= aw′ and there exists a transition (q, a, q′) such thatw′ ∈L (q′).
A universal state q accepts a word w if either w= ε and q∈F, or w= aw′ and w′ ∈L (q′)
for every transition (q, a, q′). The language recognized by an alternating automaton is the
set of words accepted by its initial state.
Give an algorithm that transforms an alternating automaton into a DFA recognizing the

same language.

� � Exercise 23. In algorithm NFAεtoNFA, no transition that has been added to the�
workset, processed, and removed from the workset is ever added to the workset again. How-
ever, transitions may be added to the workset more than once. Give an NFA-ε and a run of
NFAεtoNFA where this happens.

� � Exercise 24. Execute algorithm NFAεtoNFA on the following NFA-ε over

�={a1, . . . , an} to show that the algorithm may increase the number of transitions quad-
ratically:

q0 q1 q2 qn−1 qn

a1

ε

a2

ε

an

ε

� � Exercise 25. We say that u= a1 · · · an is a scattered subword of w∈�∗, denoted�
u�w, if there are words w0, . . . ,wn ∈�∗ such that w=w0a1w1a2 · · · anwn. The upward
closure and downward closure of a language L are the following languages:

↑L={u∈�∗ :w� u for some w∈L},
↓L={u∈�∗ : u�w for some w∈L}.

(a) Give regular expressions for the upward and downward closures of {anbn : n≥ 0}.
(b) Give algorithms that take a regular expression r as input and return regular expressions
for ↑L (r) and ↓L (r).
(c) Give algorithms that take an NFA A as input and return NFAs for ↑L (A) and ↓L (A).

� � Exercise 26. An atomic expression over alphabet �∗ is an expression of the form�
∅, ε, (a+ ε), or (a1+ . . .+ an)∗, where a, a1, . . . , an ∈�. A product is a concatenation
e1e2 · · · en of atomic expressions. A simple regular expression is a sum p1+ . . .+ pn of
products.

(a) Prove that the language of a simple regular expression is downward-closed (i.e., it is
equal to its downward closure) (see exercise 25).
(b) Prove that any downward-closed language can be represented by a simple regular
expression.



Automata Classes and Conversions 43

Hint: Since every downward-closed language is regular, it can be represented by a regular
expression. Prove that this expression is equivalent to a simple regular expression.

�� Exercise 27. Let L be a regular language over �. Show that the following languages 

are also regular by constructing automata:

(a)
√
L={w∈�∗ :ww∈L},

(b) Cyc(L)={vu∈�∗ : uv∈L}.
� � Exercise 28. For every n∈N, let msbf(n) be the set of most-significant-bit-first 

encodings of n, that is, the words that start with an arbitrary number of leading zeros, fol-
lowed by nwritten in binary. For example, msbf(3)=L (0∗11), msbf(9)=L (0∗1001), and
msbf(0)=L (0∗). Similarly, let LSBF(n) denote the set of least-significant-bit-first encod-
ings of n, that is, the set containing for each word w∈msbf(n) its reverse. For example,
LSBF(6)=L (0110∗) and LSBF(0)=L (0∗).

(a) Construct and compare DFAs recognizing the set of even numbers w.r.t. the unary
encoding (where n is encoded by the word 1n), the msbf-encoding, and the LSBF-encoding.
(b) Do the same for the set of numbers divisible by 3.
(c) Give regular expressions corresponding to the languages of (b).

�� Exercise 29. Consider this DFA over alphabet {[0, 0], [0, 1], [1, 0], [1, 1]}: 


0 1 2

[
0
0

] [
1
1

][
1
0

] [
0
0

]

[
0
1

][
1
1

]
A word w encodes a pair of natural numbers (X (w),Y (w)), where X (w) and Y (w) are

obtained by reading the top and bottom rows inMSBF encoding. For instance, the following
word encodes (44, 19):

w=
[
1
0

] [
0
1

] [
1
0

] [
1
0

] [
0
1

] [
0
1

]
Show that the above DFA recognizes the set of words w such that X (w)= 3 ·Y (w), that is,
the solutions of the equation x− 3y= 0.

� 	 Exercise 30. Algorithm NFAtoRE transforms a finite automaton into a regular 

expression representing the same language by iteratively eliminating states of the automa-
ton. In this exercise, we present an algebraic reformulation of the algorithm. We represent
an NFA as a system of language equations with as many variables as states and solve the
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system by eliminating variables. A language equation over an alphabet � and a set V of
variables is an equation of the form r1= r2, where r1 and r2 are regular expressions over
� ∪V . For instance, X = aX + b is a language equation. A solution of a system of equa-
tions is a mapping that assigns to each variable X a regular expression over �, such that the
languages of the left- and right-hand sides of each equation are equal. For instance, a∗b is
a solution of X = aX + b because L (a∗b)=L (aa∗b+ b).

(a) Arden’s lemma states that, given two languages A,B⊆�∗, the smallest language X ⊆
�∗ satisfying X =AX +B is the language A∗B. Moreover, if ε �∈A, then the solution is
unique. Prove Arden’s lemma.
(b) Consider the following system of equations, where variables X and Y represent
languages (regular expressions) over the alphabet �={a, b, c, d, e, f }:

X = aX + bY + c

Y = dX + eY + f .

Find the unique solution with the help of Arden’s lemma.

Hint: As a first step, consider X not as a variable but as a constant language, and solve the
equation for Y using Arden’s lemma.
(c) We can associate to any NFA A= (Q,�, δ, {q0},F) a system of linear equations as fol-
lows. We take Q as variables, which we call here X ,Y ,Z, . . . , with X as initial state. The
system has the following equation for each state Y :

Y =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∑
(Y ,a,Z)∈δ

aZ if Y /∈F,

⎛⎝ ∑
(Y ,a,Z)∈δ

aZ

⎞⎠+ ε if Y ∈F.

Consider the DFA (1)(a) from the Tour of Conversions on page 35.
Let X ,Y ,Z,W be the states of the automaton, and read from top to bottom and from left

to right. The associated system of linear equations is

X = aY + bZ+ ε Y = aX + bW

Z= bX + aW W = bY + aZ.

Compute the solution of this system by iteratively eliminating variables. Start with Y , then
eliminate Z, and finallyW . Compare with the elimination procedure depicted in step (1) of
the Tour of Conversions on page 35.
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� � Exercise 31. Consider a deck of cards (with arbitrary many cards) in which black 

and colored cards alternate, the top card is black, and the bottom card is colored. The set
of possible decks is given by the regular expression (BR)∗. Cut the deck at any point into
two piles, and then perform a perfect riffle shuffle to yield a new deck (where cards strictly
alternate). For example, we can cut a deck with six cards 123456 (with 1 as the top card)
into two piles 12 and 3456, and the riffle yields 345162 (we start the riffle with the first pile).
Give a regular expression over the alphabet {B,R} describing the possible configurations of
the decks after the riffle.

Hint: After the cut, the last card of the first pile can be black or colored. In the first case,
the two piles belong to (BR)∗B and R(BR)∗ and in the second case to (BR)∗ and (BR)∗. Let
Rif(r1, r2) be the language of all decks obtained by performing a riffle on decks taken from
L (r1) and L (r2). We are looking for a regular expression for

Rif
(
(BR)∗B,R(BR)∗

)+Rif
(
(BR)∗, (BR)∗

)
.

Use exercise 30 to set up a system of equations over the variables X =Rif((BR)∗B,R(BR)∗)
and Y =Rif((BR)∗, (BR)∗), and solve it.

�� Exercise 32. Let L be an arbitrary language over a one-letter alphabet. Prove that L∗ 

is regular.

� � Exercise 33. In contrast to exercise 32, show that there exists a language L over a �
two-letter alphabet such that L∗ is not necessarily regular.

� � Exercise 34. Let Kn= (Vn,En) be the complete directed graph of n nodes— 

that is, with nodes Vn={1, . . . , n} and edges En={(i, j) : 1≤ i, j≤ n}. A path of Kn is a
sequence of nodes, and a circuit is a path that begins and ends in the same node. Let An=
(Qn,�n, δn, q0n,Fn) be the DFA defined by Qn={1, . . . , n} ∪ {⊥}, �n={ai,j : 1≤ i, j≤ n},
q0n= 1, Fn={1}, and

δn(q, ai,j)=
{
⊥ if q=⊥ or q �= i,

j otherwise (if q= i).

The language accepted by An consists of all words encoding circuits of Kn from node 1 to
itself. For example, the following DFA A3 accepts a1,3a3,2a2,1, which encodes the circuit
1321 of K3.

1

3

2

a1,2

a2,1

a1,3

a3,1 a2,3

a3,2a1,1 a2,2

a3,3
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The size of a regular expression r, denoted |r|, is defined recursively as 1 if r∈ {ε,∅}∪�n;
|r1| + |r2| if r= r1+ r2 or r= r1r2; and |s| if r= s∗. Similarly, we define the length of r,
denoted len(r), as 1 if r∈ {ε,∅}∪�n; max(len(r1), len(r2)) if r= r1+ r2; len(r1)+ len(r2)
if r= r1r2; and len(s) if r= s∗. Note that |r| ≥ len(r).
A path expression r is a regular expression over �n that encodes paths of Kn. We seek

to show that any path expression for L (An), and hence any regular expression, must have
length �(2n). As a consequence, this means that DFAs can be exponentially more succinct
than regular expressions.

(a) Let π be a circuit of Kn and let r be a path expression. We say that r covers π if L (r)
contains a word uwv such that w encodes π . Furthermore, we say that r covers π∗ if L (r)
covers πk for every k≥ 0. It can be shown that if r covers π2·len(r), then it covers π∗.
From this, show that if r covers π∗ and no proper subexpression of r does, then r= s∗

for some expression s, and every word of L (s) encodes a circuit starting at a node of π .
(b) For every 1≤ k≤ n+ 1, let [k] denote the permutation of {1, 2, . . . , n+ 1} that cycli-
cally shifts every index k position to the right. More formally, node i is renamed to i+ k
if i+ k≤ n+ 1 and to i+ k− (n+ 1) otherwise. Let π[k] be the result of applying the
permutation to π . For example, if n= 4 and π = 24142, we obtain

π [1] = 35253, π [2] = 41314, π [3] = 52425, π[4] = 13531, π [5] = 24142=π .

Let π be a circuit of Kn. Show that π [k] is a circuit of Kn+1 that does not pass through
node k.
(c) Let us define a circuit gn of Kn inductively:

g1= 11,

gn+1= 1 (gn[1])2n (gn[2])2n · · · (gn[n+ 1])2n for every n≥ 1.

In particular, we have

g1= 11,

g2= 1 (22)2 (11)2,

g3= 1 (2 (33)2 (22)2)4 (3 (11)2 (33)2 3)4 (1 (22)2 (11)2)4.

Prove, using (a)–(b), that every path expression r covering gn is such that |r| ≥ 2n−1.
(d) Show that any regular expression rn such that L (rn)=L (An) is such that |rn| ≥ 2n−1.

�� Exercise 35. Let us introduce weakly acyclic DFAs, NFAs, and regular expressions:


• A DFA A= (Q,�, δ, q0,F) is weakly acyclic if δ(q,w)= q implies δ(q, a)= q for every
letter a occurring in w.
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• An NFA A= (Q,�, δ,Q0,F) is weakly acyclic if q∈ δ(q,w) implies δ(q, a)={q} for
every letter a occurring in w.
• Weakly acyclic regular expressions over an alphabet � are regular expressions gener-
ated by

r ::=∅ |�∗ |�∗ar | r+ r where �,�⊆� and a∈� \�.

Finally, a regular language isweakly acyclic if it is recognized by some weakly acyclic DFA.
Show the following statements:

(a) An NFA A= (Q,�, δ, q0,F) is weakly acyclic iff it satisfies any of the following three
conditions:
(i) the binary relation �⊆Q×Q, given by q� q′ iff δ(q,w)={q′} for some word w, is a
partial order;
(ii) each strongly connected component of the underlying directed graph of A contains a
single state; and
(iii) the underlying directed graph of A does not contain any simple cycle beyond self-
loops.
(b) If A is a weakly acyclic NFA, then B=NFAtoDFA(A) is a weakly acyclic DFA.
(c) For everyweakly acyclic regular expression r, there is a weakly acyclic DFA that accepts
L (r).
(d) For every weakly acyclic NFA A, there is a weakly acyclic regular expression for L (A).

Since everyweakly acyclic DFA is also aweakly acyclic NFAby definition, we conclude that
a language is weakly acyclic iff it is recognized by a weakly acyclic DFA iff it is recognized
by a weakly acyclic NFA iff it is the language of a weakly acyclic regular expression.





2 Minimization and Reduction

In the previous chapter, we showed through a chain of conversions that the two DFAs of
figure 2.1 recognize the same language. Obviously, the automaton on the left is better as a
data structure for this language, since it has smaller size.
A DFA (respectively, NFA) is minimal if no other DFA (respectively, NFA) recognizing

the same language has fewer states. We show that every regular language has a unique min-
imal DFA up to isomorphism (i.e., up to renaming of the states). Moreover, we present an
efficient algorithm that “minimizes” a given DFA (i.e., converts it into the unique minimal
DFA). In particular, the algorithm converts the DFA on the right of figure 2.1 into the one
on the left.
From a data structure point of view, the existence of a unique minimal DFA has two

important consequences. First, as mentioned earlier, the minimal DFA is the one that can
be stored with a minimal amount of memory. Second, the uniqueness of the minimal DFA
makes it a canonical representation of a regular language. Canonicity leads to a fast equality
check: in order to decide if two regular languages are equal, we can construct their minimal
DFAs and check if they are isomorphic.

a

a

a

a

bb bb

a

b

a

a

b

b b

b

a

a

a

b

a

b

Figure 2.1
Two DFAs for the same language.
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In the second part of the chapter, we observe that, unfortunately, computing a minimal
NFA is a computationally hard problem, for which no efficient algorithm is likely to exist.
Moreover, the minimal NFA is not necessarily unique. However, we show that a general-
ization of the minimization algorithm for DFAs can be used to at least reduce the size of an
NFA while preserving its language.

2.1 Minimal DFAs

We start with a simple but very useful definition.

Definition 2.1 Given a language L⊆�∗ and a word w∈�∗, the residual of Lwith respect
tow is the language Lw={u∈�∗ :wu∈L}. A language L′ ⊆�∗ is a residual of L if L′ =Lw

for at least one w∈�∗.

The language Lw satisfies the following property:

wu∈L ⇐⇒ u∈Lw. (2.1)

Moreover, Lw is the only language satisfying this property. In other words, if a language L′
satisfies wu∈L ⇐⇒ u∈L′ for every word u, then L′ =Lw.

Example 2.2 Let �={a, b} and L={a, ab, ba, aab}. We compute Lw for all words w by
increasing length of w.

• |w| = 0: Lε ={a, ab, ba, aab}.
• |w| = 1: La={ε, b, ab} and Lb={a}.
• |w| = 2: Laa={b}, Lab={ε}, Lba={ε} and Lbb=∅.
• |w| ≥ 3: Lw=

{
{ε} if w= aab,

∅ otherwise.

Observe that residuals with respect to different words can be equal. In fact, even though �∗
contains infinitely many words, L has only six residuals, namely, the languages ∅, {ε}, {a},
{b}, {ε, b, ab}, and {a, ab, ba, aab}.
Example 2.3 Languages containing infinitely many words can have finitely many resid-
uals. For example, (a+ b)∗ contains infinitely many words, but it has a single residual:
indeed, we have Lw= (a+ b)∗ for everyw∈ {a, b}∗. Another example is the language of the
two DFAs depicted in figure 2.1. Recall that it is the language of all words over {a, b} with
an even number of as and an even number of bs. Let us call this language EE in the follow-
ing.1 The language has four residuals, namely, the languages EE, EO, OE, and OO, where
E stands for “even” and O for “odd.” For example, EO contains the words with an even

1. Here, EE is a two-letter name for a language, not a concatenation of two languages!
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number of as and an odd number of bs. In particular, we have (EE)ε =EE, (EE)a=OE,
(EE)b=EO, and (EE)ab=OO.

Example 2.4 The languages of examples 2.2 and 2.3 have finitely many residuals, but
this is not the case for every language. In general, proving that the number of residuals of a
language is finite or infinite can be complicated. To show that a language L has an infinite
number of residuals, one can use the following general proof strategy:

• Define an infinite set W ={w0,w1,w2, . . .}⊆�∗.
• Prove that Lwi �=Lwj holds for every i �= j. For this, show that for every i �= j, there exists
a word wi,j that belongs to exactly one of the sets Lwi and Lwj .

As an example, we apply this strategy to two languages:

• Let L={anbn : n≥ 0}. Let W ={ak : k≥ 0}. For every two distinct words ai, aj ∈W , we
have bi ∈Lai since aibi ∈L, and bi /∈Laj since ajbi /∈L. Thus, L has infinitely many residuals.
• Let L={ww :w∈ {0, 1}∗}. LetW ={0n1 : n≥ 0}. For every two distinct words u= 0i1, v=
0j1∈W , where without loss of generality (w.l.o.g.) i< j, we have u∈Lu since uu∈L, and
u /∈Lv since vu /∈L. Thus, L has infinitely many residuals.

There is a close connection between the states of a (not necessarily finite) DA and the
residuals of the language it recognizes. In order to formulate it, we introduce the following
definition:

Definition 2.5 Let A= (Q,�, δ, q0,F) be a DA and let q∈Q. The language recognized by
q, denoted byLA(q) (or justL (q) if there is no risk of confusion), is the language recognized
by A with q as initial state, that is, the language recognized by the DA Aq= (Q,�, δ, q,F).

For every transition q
a−→ q′ of an automaton, deterministic or not, if a wordw is accepted

from q′, then the word aw is accepted from q. For deterministic automata, the converse also
holds: since q

a−→ q′ is the unique transition leaving q labeled by a, if aw is accepted from q,
then w is accepted from q′. So, we have aw∈L (q) iff w∈L (q′) and, comparing with (2.1),
we obtain

For every transition q
a−→ q′ of a DA: L (q′)=L (q)a. (2.2)

More generally, we can establish the following:

Lemma 2.6 Let A= (Q,�, δ, q0,F) be a DA and let L=L (A).

(a) Every residual of L is recognized by some state of A. More formally, for every w∈�∗,
there is at least one state q∈Q such that LA(q)=Lw.
(b) Every state of A recognizes a residual of L. More formally, for every q∈Q, there is at
least one word w∈�∗ such that LA(q)=Lw.
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Proof

(a) Let w∈�∗, and let q be the state reached by the unique run of A on w, that is, q0
w−→ q.

We prove LA(q)=Lw. By (2.1), it suffices to show that every word u satisfies

wu∈L ⇐⇒ u∈LA(q).

Since A is a DFA, for every word wu∈�∗, the unique run of A on wu is of the form
q0

w−→ q
u−→ q′. Hence, A accepts wu iff q′ is a final state, which is the case iff u∈LA(q).

Thus, LA(q)=Lw.
(b) Since A is in normal form, q can be reached from q0 by at least a word w. The proof
that LA(q)=Lw holds is exactly as above.

Example 2.7 Figure 2.2 shows the result of labeling the states of the DFAs of figure 2.1
with the languages they recognize. These languages are residuals of EE.

We use the notion of a residual to define the canonical deterministic automaton of a
given language L. The states of the canonical DA are themselves languages. Furthermore,
“each state recognizes itself” (i.e., the language recognized from the state L is the language
L itself). This single property completely determines the initial state, transitions, and final
states of the canonical DA:

• The canonical DA for a language Lmust recognize L. So, the initial state of the canonical
DA recognizes L. Since each state “recognizes itself,” the initial state is necessarily the
language L itself.
• Since each state K recognizes the language K, by (2.2), all transitions of the canonical
DA are of the form K

a−→Ka.
• A state q of a DA is final iff it recognizes the empty word. Thus, a state K of the canonical
DA is final iff ε ∈K.

EE OE

OOEO

a

a

a

a
bb bb EE

OE

EO

EE

EO

OE

OO
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b

a

a

b

b b

b

a

a

a

b

a

b

Figure 2.2
Languages of the states from the DFAs of figure 2.1.
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We formalize this construction and prove its correctness.

Definition 2.8 The canonical DA for language L⊆�∗ is the DA CL= (QL,�, δL,
q0L,FL), where

• QL is the set of residuals of L, that is, QL={Lw :w∈�∗};
• δL(K, a)=Ka for every K ∈QL and a∈�;
• q0L=L; and
• FL={K ∈QL : ε ∈K}.
Example 2.9 Figure 2.3 illustrates the canonical DA A for the language {a, ab, ba, aab}.
As the language has six residuals, A has six states. Note that every state “recognizes itself.”
For example, the language recognized from the state {ε, b, ab} is {ε, b, ab}. The final states
are the residuals containing ε, that is, the two residuals {ε, b, ab} and {ε}.
Example 2.10 Let us reconsider the language EE recognized by the two automata
depicted in figure 2.2. Its canonical DA is the one shown on the left of the figure. It has four
states, corresponding to the four residuals of EE. Since, for instance, EEa=OE, the canoni-
cal DA has a transition EE

a−→OE. The initial state is EE. Since the empty word has an even
number of a and b (namely, zero in both cases), we have ε ∈EE, and ε /∈EO∪OE∪OO.
Thus, the only final state is EE.

Proposition 2.11 The canonical DA for language L⊆�∗ recognizes L.

Proof Let CL be the canonical DA for L. We show that L (CL)=L. Let w∈�∗. We prove,
by induction on |w|, that w∈L iff w∈L (CL). If |w| = 0, then w= ε, and we have

ε ∈L ⇐⇒ L∈FL (by definition of FL)

⇐⇒ q0L ∈FL (by q0L=L)

⇐⇒ ε ∈L (CL) (as q0L is the initial state of CL).

{a, ab, ba, aab}

{ε, b, ab}

{a}

{ε}

{b}

∅

a

b

a

b

a

b

a

b

a, b

a, b

Figure 2.3
Canonical DA for the language {a, ab, ba, aab}⊆ {a, b}∗.
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If |w|> 0, then w= aw′ for some a∈� and w′ ∈�∗, and we have

aw′ ∈L ⇐⇒ w′ ∈La (by definition of La)

⇐⇒ w′ ∈L (CLa) (by induction hypothesis)

⇐⇒ aw′ ∈L (CL) (by δL(L, a)=La).

We now prove that if L is a regular language, then CL is the unique minimal DFA recog-
nizing L (up to isomorphism). The informal argument goes as follows. Since every DFA for
L has at least one state for each residual, and CL has exactly one state for each residual, CL
has a minimal number of states. Further, every other minimal DFA for L also has exactly
one state for each residual. It remains to show that all these minimal DFAs are isomorphic.
For this, we observe that, if we knowwhich state recognizes which residual, we can infer the
initial state, the transitions, and the final states. In other words, the transitions, initial states,
and final states of a minimal DFA are completely determined by the residual recognized by
each state. Indeed, if state q recognizes residual R, then the a-transition from q necessarily
leads to the state recognizing Ra; further, q is initial iff R=L, and q is final iff ε ∈R. A
more formal proof looks as follows:

Theorem 2.12 If language L is regular, then the canonical DFA CL is the unique minimal
DFA up to isomorphism that recognizes L.

Proof Let L be a regular language, and let A= (Q,�, δ, q0,F) be an arbitrary DFA rec-
ognizing L. By lemma 2.6, the number of states of A is greater than or equal to the number
of states of CL, and so CL is a minimal automaton for L. It remains to prove uniqueness of
the minimal automaton up to isomorphism. Assume A is minimal. Let LA be the mapping
that assigns to each state q of A the language L (q) recognized from q. By lemma 2.6(b),
LA assigns to each state of A a residual of L, and so LA : Q→QL. We prove that LA
is an isomorphism between A and CL. First, LA is bijective because it is surjective by
lemma 2.6(a), and |Q| = |QL| since A is minimal by assumption. Moreover, if δ(q, a)= q′,
then LA(q′)= (LA(q))a, and so δL(LA(q), a)=LA(q′). Moreover, LA maps the initial state
of A to the initial state of CL: LA(q0)=L= q0L. Finally, LA maps final to final states and
nonfinal to nonfinal states: q∈F iff ε ∈LA(q) iff LA(q)∈FL.

The following simple corollary is useful to establish that a DFA is minimal:

Corollary 2.13 A DFA is minimal if and only if different states recognize different
languages, that is, L (q) �=L (q′) holds for every two states q �= q′.

Proof ⇒) By theorem 2.12, the number of states of a minimal DFA is equal to the number
of residuals of its language. Since every state recognizes some residual, each state must
recognize a different residual.
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⇐) If all states of a DFA A recognize different languages, then, since every state rec-
ognizes some residual, the number of states of A is less than or equal to the number of
residuals. Thus, A has at most as many states as CL(A), and so it is minimal.

2.1.1 The Master Automaton

Themaster automaton over an alphabet� is a deterministic automatonwith an infinite num-
ber of states but no initial state. As in the case of canonical DAs, the states are languages—in
this case, all regular languages.

Definition 2.14 The master automaton over the alphabet � is the tuple M= (QM ,�,
δM ,FM ), where

• QM is the set of all regular languages over �,
• δ : QM ×�→QM is given by δ(L, a)=La for every q∈QM and a∈�, and
• L∈FM iff ε ∈L.

Figure 2.4 depicts a small fragment of the master automaton for the alphabet �={a, b}.
Given two states L and L′ of the master automaton, we say that L′ is reach-

able from L if there is a word a1 · · · an ∈�∗ and languages L1, . . . ,Ln−1 such that
L

a1−−→L1
a2−−→L2 · · · Ln−2 an−1−−−→Ln−1

an−−→L′. By definition of the canonical automaton def-
inition (2.8) and theorem 2.12, for every regular language L, the fragment of the master
automaton containing the states reachable from L and the transitions between them is the
canonical DFA for L. So, in a sense, the master automaton “contains” all minimal DFAs
for all regular languages: in order to find the canonical DFA for L, just search for state L
of the master automaton, and “copy” the fragment reachable from there. For example, the
reader can check that the minimal DFA for the language a�+ b(ε+�2�∗) is indeed the
seven-state DFA obtained by taking all the states reachable from this regular expression in
figure 6.1—namely, the language itself; the languages ε+�2�∗, ��∗, and �∗ (moving
upward); and the languages �, ε, and ∅ (moving downward).
The master automaton is a beautiful mathematical object, a sort of God’s view of the

universe of regular languages. It enjoys many interesting properties (see exercises 55
and 56), and in chapter 6 we use it to define decision diagrams, a data structure with many
applications.

2.2 Minimizing DFAs

We present an algorithm that converts a given DFA into the unique minimal DFA recog-
nizing the same language. The algorithm first partitions the states of the DFA into blocks,
where a block contains all states recognizing the same residual. We call this partition the
language partition. Then, the algorithm “merges” the states of each block into a single state,
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Figure 2.4
A fragment of the master automaton over �={a, b}. We use � as an abbreviation of (a+ b).

an operation usually called quotienting with respect to the partition. Intuitively, this yields
a DFA where distinct states recognize different residuals. These two steps are described in
sections 2.2.1 and 2.2.2.
For the rest of this section, we fix a DFA A= (Q,�, δ, q0,F) recognizing a regular

language L.

2.2.1 Computing the Language Partition

We need some basic notions on partitions. A partition of Q is a finite set P={B1, . . . ,Bn}
of nonempty subsets of Q, called blocks, such that Q=B1 ∪ . . .∪Bn, and Bi ∩Bj=∅ for
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every 1≤ i< j≤ n. The block containing a state q is denoted by [q]P. A partition P′ refines
or is a refinement of another partition P if every block of P′ is contained in some block of
P. If P′ refines P and P′ �=P, then P is coarser than P′.
The language partition, denoted by P	, puts two states in the same block iff they rec-

ognize the same language (i.e, the same residual). To compute P	, we iteratively refine an
initial partition P0 while maintaining the following

Invariant: States in different blocks recognize different languages.

Partition P0 consists of two blocks containing the final and the nonfinal states, respec-
tively (or just one of the two if all states are final or all states are nonfinal). That is, P0=
{F,Q \F} if F and Q \F are nonempty, P0={F} if Q \F is empty, and P0={Q \F}= {Q}
if F is empty. Notice that P0 satisfies the invariant, because every state of F accepts the
empty word, but no state of Q \F does.
A partition is refined by splitting a block into two blocks. To find a block to split, we first

observe the following:

Fact 2.15 If L (q1)=L (q2), then L (δ(q1, a))=L (δ(q2, a)) for every a∈�.

By contraposition, if L (δ(q1, a)) �=L (δ(q2, a)), then L (q1) �=L (q2), or, rephrasing in
terms of blocks: if δ(q1, a) and δ(q2, a) belong to different blocks, but q1 and q2 belong
to the same block B, then B can be split, because q1 and q2 can be put in different blocks
while respecting the invariant.

Definition 2.16 Let B,B′ be (not necessarily distinct) blocks of a partition P, and let a∈�.
The pair (a,B′) splits B if there are q1, q2 ∈B such that δ(q1, a)∈B′ and δ(q2, a) /∈B′. The
result of the split is the partition RefP[B, a,B′] = (P \ {B})∪ {B0,B1}, where

B0={q∈B : δ(q, a) /∈B′} and B1={q∈B : δ(q, a)∈B′}.
A partition is unstable if it contains blocks B,B′ such that (a,B′) splits B for some a∈�

and is stable otherwise.

The partition refinement algorithm LanPar(A), described in algorithm 4, iteratively
refines the initial partition of A until it becomes stable. The algorithm terminates as each
iteration increases the number of blocks by 1, and a partition has at most |Q| blocks.
Observe that if all states of a DFA are nonfinal, then every state recognizes ∅, and if all are

final, then every state recognizes �∗. In both cases, all states recognize the same language,
and the language partition is {Q}.
Example 2.17 Figure 2.5 illustrates a run of LanPar on the DFA depicted on the right
of figure 2.1. States that belong to the same block have the same color and pattern. The
initial partition, shown in (a), consists of the solid and hatched states. In (b), the solid block
and the letter a split the hatched block into the crosshatched block (hatched states with
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Algorithm 4 Partition refinement algorithm.

LanPar(A)
Input: DFA A= (Q,�, δ, q0,F)

Output: The language partition P	

1 if F=∅ or Q \F=∅ then return {Q}
2 else P←{F,Q \F}
3 while P is unstable do
4 pick B,B′ ∈P and a∈� such that (a,B′) splits B
5 P←RefP[B, a,B′]
6 return P
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Figure 2.5
Computing the language partition of a DFA in steps (a), (b), and (c).

an a-transition to the solid block) and the rest (hatched states with an a-transition to other
blocks), which stay hatched. In the final step (c), the crosshatched block and the letter b
split the hatched block into the dotted block (hatched states with a b-transition into the
crosshatched block) and the rest, which stay hatched.

We prove the correctness of LanPar in two steps. First, we show that it computes the
coarsest stable refinement of P0, denoted by CSR; in other words, we show that, after
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termination, the partition P is coarser than every other stable refinement of P0. Then, we
prove that CSR is equal to P	.

Lemma 2.18 LanPar(A) computes CSR.

Proof LanPar(A) clearly computes a stable refinement of P0. We prove that, after termi-
nation, P is coarser than any other stable refinement of P0 or, equivalently, that every stable
refinement of P0 refines P. Actually, we prove that this holds not only after termination but
at any time.
Let P′ be an arbitrary stable refinement of P0. Initially, P=P0, and so P′ refines P. Now,

we show that if P′ refines P, then P′ also refines RefP[B, a,B′]. For this, let q1 and q2 be two
states belonging to the same block of P′. We show that they belong to the same block of
RefP[B, a,B′]. Assume the contrary. Since the only difference between P and RefP[B, a,B′]
is the splitting of B into B0 and B1, exactly one of q1 and q2, say q1, belongs to B0, and
the other belongs to B1. Therefore, there exists a transition (q2, a, q′2)∈ δ such that q′2 ∈
B′. Since P′ is stable and q1, q2 belong to the same block of P′, there is also a transition
(q1, a, q′1)∈ δ such that q′1 ∈B′. This contradicts q1 ∈B0.

Theorem 2.19 CSR is equal to P	.

Proof We show that (a) P	 refines P0, (b) P	 is stable, and (c) every stable refinement P
of P0 refines P	.

(a) Trivial.
(b) By fact 2.15, if two states q1 and q2 belong to the same block of P	, then δ(q1, a) and
δ(q2, a) also belong to the same block, for every letter a. Hence, no block can be split.
(c) Let q1, q2 be states belonging to the same block B of P. We prove that they belong to
the same block of P	—that is, that L (q1)=L (q2). By symmetry, it suffices to prove that,
for every word w, if w∈L (q1), then w∈L (q2). We proceed by induction on the length
of w. If w= ε, then q1 ∈F, and since P refines P0, we have q2 ∈F, and so w∈L (q2). If
w= aw′, then there exists (q1, a, q′1)∈ δ such thatw′ ∈L (q′1). LetB′ be the block containing
q′1. Since P is stable, B′ does not split B, and so there is (q2, a, q′2)∈ δ such that q′2 ∈B′.
By induction hypothesis, w′ ∈L (q′1) iff w′ ∈L (q′2). Therefore, w′ ∈L (q′2), which implies
w∈L (q2).

2.2.2 Quotienting

It remains to define the quotient of A with respect to a partition. It is convenient to define
it not only for DFAs but more generally for NFAs. The states of the quotient are the blocks
of the partition. The quotient has a transition (B, a,B′) from block B to block B′ if A con-
tains some transition (q, a, q′) for some states q and q′ belonging to B and B′, respectively.
Formally:
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Definition 2.20 The quotient of an NFA A with respect to a partition P is the NFA A/P=
(QP,�, δP,Q0P,FP) where

• QP is the set of blocks of P;
• (B, a,B′)∈ δP if (q, a, q′)∈ δ for some q∈B, q′ ∈B′;
• Q0P is the set of blocks of P that contain at least one state from Q0; and
• FP is the set of blocks of P that contain at least one state of F.

Example 2.21 The right-hand side of figure 2.6 depicts the result of quotienting the DFA
on the left-hand side with respect to its language partition. The quotient has as many states
as colored patterns, and it has a transition between two colored patterns (say, an a-transition
from solid to crosshatched) if the DFA on the left has such a transition.

We show that A/P	, the quotient of a DFA A with respect to the language partition, is the
minimal DFA for L. The main part of the argument is contained in the forthcoming lemma.
Loosely speaking, it says that any refinement of the language partition (i.e., any partition
in which states of the same block recognize the same language) “is good” for quotienting,
because the quotient recognizes the same language as the original automaton. Moreover,
if the partition not only refines but is equal to the language partition, then the quotient is
a DFA.

Lemma 2.22 Let A be an NFA, and let P be a partition of the states of A. If P refines
P	, then LA(q)=LA/P(B) for every state q of A, where B is the block of P containing q. In
particular, L (A/P)=L (A). Moreover, if A is a DFA and P=P	, then A/P is a DFA.

Proof Let P be a refinement of P	. We prove that for every w∈�∗, it is the case that
w∈LA(q) iff w∈LA/P(B). We proceed by induction on |w|.
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Figure 2.6
Quotient of a DFA with respect to its language partition.
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If |w| = 0, then w= ε and we have

ε ∈LA(q) ⇐⇒ q∈F
⇐⇒ B⊆F (since P refines P	 and so also P0)

⇐⇒ B∈FP

⇐⇒ ε ∈LA/P(B).

If |w|> 0, then w= aw′ for some a∈�. Therefore, w∈LA(q) iff there is a transition
(q, a, q′)∈ δ such that w′ ∈LA(q′). Let B′ be the block containing q′. By definition of A/P,
we have (B, a,B′)∈ δP, and hence

aw′ ∈LA(q)

⇐⇒ w′ ∈LA(q′) (by definition of q′)

⇐⇒ w′ ∈LA/P(B′) (by induction hypothesis)

⇐⇒ aw′ ∈LA/P(B) (by (B, a,B′)∈ δP).

For the second part, we show that (B, a,B1), (B, a,B2)∈ δP	 implies B1=B2. By defini-
tion, there exist (q, a, q1), (q′, a, q2)∈ δ for some q, q′ ∈B, q1 ∈B1, and q2 ∈B2. Since q and
q′ belong to the same block of the language partition, we have LA(q)=LA(q′). Since A is a
DFA, we get LA(q1)=LA(q2). Since P=P	, the states q1 and q2 belong to the same block,
and so B1=B2.

Proposition 2.23 The quotient A/P	 is the minimal DFA for L.

Proof By lemma 2.22, A/P	 is a DFA, and its states recognize residuals of L. Moreover,
two states ofA/P	 recognize different residuals by definition of the language partition. Thus,
A/P	 has as many states as residuals.

2.2.3 Hopcroft’s Algorithm

Algorithm LanPar leaves open the choice of an adequate refinement triple [B, a,B′]. While
every exhaustive sequence of refinements leads to the same result, and so the choice does
not affect the correctness of the algorithm, it affects its runtime. Hopcroft’s algorithm is
a modification of LanPar, which carefully selects the next triple. When properly imple-
mented, Hopcroft’s algorithm runs in time O(mn log n) for a DFA with n states over a
m-letter alphabet. A full analysis of the algorithm is beyond the scope of this book, and
so we limit ourselves to presenting its main ideas.
It is convenient to start by describing an intermediate algorithm, not as efficient as the

final one. The intermediate algorithm maintains a workset of pairs (a,B′), called splitters.
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Initially, theworkset contains all pairs (a,B′)where a is an arbitrary letter andB′ is a block of
the original partition (i.e., either B′ =F or B′ =Q \F). At every step, the algorithm chooses
a splitter from the workset and uses it to split every block of the current partition (if possi-
ble). Whenever a block B is split by (a,B′) into two new blocks B0 and B1, the algorithm
adds to the workset all pairs (b,B0) and (b,B1) for every letter b∈�.
It is not difficult to see that the intermediate algorithm is correct. The only point requiring

a moment of thought is that it suffices to use each splitter at most once. A priori, a splitter
(a,B′) could be required at some point of the execution and then later again. To discard this,
observe that, by the definition of split, if (a,B′) splits a block B into B0 and B1, then it does
not split any subset of B0 or B1. So, after (a,B′) is used to split all blocks of a partition,
since all future blocks are strict subsets of the current blocks, (a,B′) is not useful anymore.
Hopcroft’s algorithm improves on the intermediate algorithm by observing that when a

block B is split into B0 and B1, it is not always necessary to add both (b,B0) and (b,B1) to
the workset. The fundamental for this is the following:

Proposition 2.24 Let A= (Q,�, δ, q0,F), let P be a partition of Q, and let B be a block
of P. Suppose we refine B into B0 and B1. Then, for every a∈�, refining all blocks of P
with respect to any two of the splitters (a,B), (a,B0), and (a,B1) gives the same result as
refining them with respect to all three of them.

Proof LetC be a block of P. Every refinement sequence with respect to two of the splitters
(there are six possible cases) yields the same partition of C—namely, {C0,C1,C2}, where
C0, C1, and C2 contain the states q∈Q that respectively satisfy δ(q, a)∈B0, δ(q, a)∈B1,
and δ(q, a) /∈B.
Now, assume that (a,B′) splits a block B into B0 and B1. For every b∈�, if (b,B) is in

the workset, then adding both (b,B0) and (b,B1) is redundant, because we only need two
of the three. In this case, Hopcroft’s algorithm chooses to replace (b,B) in the workset by
(b,B0) and (b,B1) (i.e., to remove (b,B) and to add (b,B0) and (b,B1)). If (b,B) is not in
the workset, then in principle, we could have two possible cases.

• If (b,B) was already removed from the workset and used to refine, then we only need to
add one of (b,B0) and (b,B1). Hopcroft’s algorithm adds the smaller of the two (i.e., (b,B0)

if |B0| ≤ |B1| and (b,B1) otherwise).
• If (b,B) has not been added to the workset yet, then it looks as if we would still have to
add both (b,B0) and (b,B1). However, a more detailed analysis shows that this is not the
case, it suffices to add only one of (b,B0) and (b,B1). Hopcroft’s algorithm adds again the
smaller of the two.

These considerations lead to algorithm 5, where (b, min{B0,B1}) denotes the smaller of
(b,B0) and (b,B1).
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Algorithm 5 Hopcroft’s algorithm.

Hopcroft(A)
Input: DFA A= (Q,�, δ, q0,F)

Output: The language partition P	

1 if F=∅ or Q \F=∅ then return {Q}
2 else P←{F,Q \F}
3 W←{(a, min{F,Q \F}) : a∈�}
4 whileW �= ∅ do
5 pick (a,B′) fromW
6 for all B∈P split by (a,B′) do
7 replace B by B0 and B1 in P
8 for all b∈� do
9 if (b,B)∈W then replace (b,B) by (b,B0) and (b,B1) inW
10 else add (b, min{B0,B1}) toW
11 return P

We sketch an argument showing that the mainwhile loop is executed at mostO(mn log n)
times, where m= |�| and n= |Q|. Fix a state q∈Q and a letter a∈�. It is easy to see that
at every moment during the execution ofHopcroft, the workset contains at most one splitter
(a,B) such that q∈B (in particular, if (a,B) is in the workset and B is split at line 9, then
q goes to either B0 or to B1). We call this splitter (if present) the a-q-splitter and define
its size as the size of the block B. So, during the execution of the algorithm, there are
alternating phases in which the workset contains one or zero a-q-splitters, respectively. Let
us call them one-phases and zero-phases. It is easy to see that during a one-phase, the
size of the a-q-splitter (defined as the number of states in the block) can only decrease (at
line 9). Moreover, if at the end of a one-phase, the a-q-splitter has size k, then, because of
line 10, at the beginning of the next one-phase, it has size at most k/2. Thus, the number
of a-q-splitters added to the workset throughout the execution of the algorithm isO(log n),
and therefore the total number of splitters added to the workset is O(mn log n). Hence, the
while loop is executedO(mn log n) times. If the algorithm is carefully implemented (which
is nontrivial), then it also runs in time O(mn log n).

2.3 Reducing NFAs

There is no canonical minimal NFA for a given regular language. The simplest witness of
this fact is the language aa∗, which is recognized by the two nonisomorphic, minimal NFAs
of figure 2.7. Moreover, computing any of the minimal NFAs equivalent to a given NFA
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a

a a

a

Figure 2.7
Two minimal NFAs for aa∗.

is computationally hard. Indeed, the problem can be shown to be PSPACE-complete. For
readers not familiar with complexity theory, “PSPACE-complete” informally means that
there is most likely no minimization algorithm that uses less than exponential time and a
polynomial amount of memory. The proof is deferred to a forthcoming optional subsection.
Despite this intractability, we can reuse part of the theory for the DFA case to obtain an

efficient procedure to possibly reduce the size of a given NFA.

2.3.1 The Reduction Algorithm

For the rest of the section, we fix an NFA A= (Q,�, δ,Q0,F) recognizing a language L.
Recall that definition 2.20 and the first part of lemma 2.22 were defined for NFAs. Thus,
L (A)=L (A/P) holds for every refinement P of P	, and so any refinement of P	 can be
used to reduce A. The largest reduction is obtained for P=P	, but P	 is hard to compute for
NFAs. On the other extreme, the partition that puts each state in a separate block is always
a refinement of P	, but it does not provide any reduction.
To find a reasonable trade-off, we examine again lemma 2.18, which proves that Lan-

Par(A) computesCSR for deterministic automata. Its proof only uses the following property
of stable partitions: if q1 and q2 belong to the same block of a stable partition and there is
a transition (q2, a, q′2)∈ δ such that q′2 ∈B′ for some block B′, then there is also a transition
(q1, a, q′1)∈ δ such that q′1 ∈B′. We extend the definition of stability to NFAs so that stable
partitions still satisfy this property: we just replace condition

δ(q1, a)∈B′ and δ(q2, a) /∈B′

of definition 2.16 by

δ(q1, a)∩B′ �= ∅ and δ(q2, a)∩B′ = ∅.
Definition 2.25 [Refinement and stability for NFAs] Let B,B′ be (not necessarily dis-
tinct) blocks of a partition P, and let a∈�. The pair (a,B′) splits B if there are q1, q2 ∈B
such that δ(q1, a)∩B′ �= ∅ and δ(q2, a)∩B′ = ∅. The result of the split is the partition
RefNFAP [B, a,B′] = (P \ {B})∪ {B0,B1}, where

B0={q∈B : δ(q, a)∩B′ = ∅} and B1={q∈B : δ(q, a)∩B′ �= ∅}.
A partition is unstable if it contains blocks B and B′ such that B′ splits B and is stable
otherwise.
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Using this definition, we generalize LanPar(A) to NFAs in the obvious way: allow NFAs
as inputs, and replace RefP by RefNFAP as new notion of refinement. Lemma 2.18 still holds:
the algorithm still computes CSR, but with respect to the new notion of refinement. The
procedure is described in algorithm 6. Notice that in the special case of DFAs, it reduces to
LanPar(A), because RefP and RefNFAP coincide for DFAs.

Algorithm 6 Coarsest stable refinement for NFAs.

CSR(A)
Input: NFA A= (Q,�, δ,Q0,F)

Output: The partition CSR of A

1 if F=∅ or Q \F=∅ then P←{Q}
2 else P←{F,Q \F}
3 while P is unstable do
4 pick B,B′ ∈P and a∈� such that (a,B′) splits B
5 P←RefNFAP [B, a,B′]
6 return P

Observe that line 1 of CSR(A) is different from line 1 of algorithm LanPar. If all states
of an NFA are nonfinal, then every state recognizes ∅, but if all are final, we can no longer
conclude that every state recognizes �∗, as was the case for DFAs. In fact, all states might
recognize different languages.
In the case of DFAs, we had theorem 2.19, which states that CSR is equal to P	. The

theorem does not hold anymore for NFAs, as we will see later. However, part (c) of the
proof, which showed that CSR refines P	, still holds, with exactly the same proof. Hence:

Theorem 2.26 The partition CSR refines P	.

Now, lemma 2.22 and theorem 2.26 lead to the final result:

Corollary 2.27 Let A be an NFA. It is the case that L (A/CSR)=L (A).

Example 2.28 Consider the NFA as depicted on the left of figure 2.8.

CSR is the partition indicated by colored patterns. A possible run of CSR(A) is graphically
represented on the right as a tree. Initially, we have the partition with two blocks shown at the
top of the figure: the block {1, . . . , 14} of nonfinal states and the block {15} of final states.
The first refinement uses (a, {15}) to split the block of nonfinal states, yielding the blocks
{1, . . . , 8, 11, 12, 13} (no a-transition to {15}) and {9, 10, 14} (an a-transition to {15}). The
leaves of the tree are the blocks of CSR.
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1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

a a a a

a a a aa a a

a a a a

a a a aa a a

a a a a

a, b a, b a, b

a, b a, b a, b

{1, . . . , 14}

(a, {15})

{1, . . . , 8, 11, 12, 13}

(a, {9, 10, 14})

{1, 2, 6, 7, 11, 12}

(a, {3, 4, 5, 8, 13})

{1, 6, 11}

(a, {1, 6, 11})

{1} {6, 11}

(b, {6, 11})

{6} {11}

{2, 7, 12}

(a, {4, 8})

{7, 12} {2}

{3, 4, 5, 8, 13}

(b, {3, 4, 5, 8, 13})

{4, 8} {3, 5, 13}

(a, {4, 8})

{3} {5, 13}

{9, 10, 14}

{15}

Figure 2.8
An NFA A and a run of CSR(A).

a a

a a

a

a, b

a, b

a, b

a, b

a, ba

a
a

a a

aa

a

a aa

Figure 2.9
The quotient of the NFA of Figure 2.8.

In this example, we have CSR �=P	. For instance, states 3 and 5 recognize the same lan-
guage, that is, (a+ b)∗aa(a+ b)∗, but they belong to different blocks of CSR. The quotient
automaton is shown in figure 2.9.
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a

a

a, b

b

Figure 2.10
An NFA A such that A/P	 is not minimal.

1

2

3

5

4

6

7a

b

c

c

c

d

e

d, e

{1, . . . , 6}

(d, {7})

{1, 2, 3, 5}

(e, {7})

{1, 2, 3}

(c, {5})

{1, 3}

(b, {1, 3})

{1} {3}

{2}

{5}

{4, 6}

(e, {7})

{4} {6}

{7}

Figure 2.11
An NFA such that CSR �=P	.

Remark 2.29 If A is an NFA, then A/P	 might not be a minimal NFA for L. The NFA
of figure 2.10 is an example: all states accept different languages, and so A/P	=A, but the
NFA is not minimal, since, for instance, the state at the bottom can be removed without
changing the language.
It is not difficult to show that if two states q1 and q2 belong to the same block ofCSR, then

they not only recognize the same language but also satisfy the following far stronger prop-
erty: for every a∈� and q′1 ∈ δ(q1, a), there exists q′2 ∈ δ(q2, a) such that L

(
q′1
)=L (q′2).

This can be used to show that two states belong to different blocks of CSR. For instance,
consider states 2 and 3 of the NFA on the left of figure 2.11. They recognize the same lan-
guage, but state 2 has a c-successor—namely, state 4—that recognizes {d}, while state 3
has no such successor. So, states 2 and 3 belong to different blocks of CSR. A possible run
of the CSR algorithm is shown on the right of the figure. Here, CSR has as many blocks as
states.
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2.3.2 �Minimality Is PSPACE-Complete

We show that NFA minimality is PSPACE-complete and hence computationally hard.
Readers not familiar with complexity theory can directly move to the next section.
In chapter 3, we will show that the universality problem for NFAs is PSPACE-complete:

given an NFA A over an alphabet �, decide whether L (A)=�∗. Using this result, we
can easily prove that deciding the existence of a small NFA equivalent to a given one is
PSPACE-complete.

Theorem 2.30 The following problem is PSPACE-complete: given an NFA A and k≥ 1,
decide if there exists an NFA equivalent to A with at most k states.

Proof To provemembership in PSPACE, observe first that ifA has at most k states, thenwe
can answer “yes.” So, assume that A has more than k states. Since PSPACE= co-PSPACE,
it suffices to give a procedure to decide if no NFA with at most k states is equivalent to
A. For this, we construct all NFAs with at most k states (over the same alphabet as A),
reusing the same space for each of them, and check that none of them is equivalent to A.
Since NPSPACE=PSPACE, it suffices to exhibit a nondeterministic algorithm that, given
an NFA B with at most k states, checks that B is not equivalent to A (and runs in polyno-
mial space). The algorithm nondeterministically guesses a word, one letter at a time, while
maintaining the sets of states in both A and B reached from the initial states by the word
guessed so far. The algorithm stops when it observes that the current word is accepted by
exactly one of A and B.
PSPACE-hardness is easily proved by a reduction from the universality problem. If an

NFA is universal, then it is equivalent to an NFA with one state, and so, to decide if a given
NFA A is universal, we can proceed as follows: check first if A accepts all words of length
1. If not, then A is not universal. Otherwise, check if some NFA with one state is equivalent
to A. If not, then A is not universal. Otherwise, if such an NFA, say B, exists, then, since A
accepts all words of length 1, B is the NFA with one final state and a loop for each alphabet
letter. Therefore, A is universal.

2.4 A Characterization of Regular Languages

In this last section, we present a useful by-product of the results of section 2.1.

Theorem 2.31 A language L is regular iff it has finitely many residuals.
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Proof If L is not regular, then no DFA recognizes it. Since, by proposition 2.11, the canon-
ical automaton CL recognizes L, then CL necessarily has infinitely many states, and so L has
infinitely many residuals. If L is regular, then some DFA A recognizes it. By lemma 2.6, the
number of states of A is greater than or equal to the number of residuals of L, and so L has
finitely many residuals.

This theorem provides a technique for proving that a given language L⊆�∗ is not regular:
exhibit an infinite set of words W ⊆�∗ such that Lw �=Lv for every distinct words w, v∈
W . In example 2.4, we showed using this technique that the languages {anbn : n≥ 0} and
{ww :w∈�∗} have infinitely many residuals, and so they are not regular. We provide a third
example.

Example 2.32 Let L={an2 : n≥ 0}. Let W =L. For every two distinct words ai
2
, aj

2 ∈
W , word a2i+1 belongs to the ai

2
-residual of L, because ai

2+2i+1= a(i+1)2 , but not to the
aj

2
-residual, since aj

2+2i+1 is only a square number for i= j.

2.5 Exercises

�� Exercise 36. For each language L⊆{a, b, c}∗ below, say whether L has finitely many 

residuals, and, if so, describe the residuals.

(a) (ab+ ba)∗,
(b) (aa)∗,
(c) {anbncn : n≥ 0}.
� � Exercise 37. Consider the most-significant-bit-first (MSBF) encoding of natural 

numbers over alphabet �={0, 1}. Recall that every number has infinitely many encodings,
because all the words of 0∗w encode the same number as w. Construct the minimal DFAs
accepting the following languages, where �4 denotes all words of length 4:

(a) {w :MSBF−1(w) mod 3= 0} ∩�4.
(b) {w :MSBF−1(w) is a prime} ∩�4.

�� Exercise 38. Prove or disprove the following statements: 


(a) A subset of a regular language is regular.
(b) A superset of a regular language is regular.
(c) If L1 and L1L2 are regular languages, then L2 is regular.
(d) If L2 and L1L2 are regular languages, then L1 is regular.
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�� Exercise 39. Consider the following DFA A:


q0

q1

q2

q3

q4

q5

q6

a

b

a

b

a

b

b

a

a

b

a

b

a

b

(a) Compute the language partition of A.
(b) Construct the quotient of A with respect to its language partition.
(c) Give a regular expression for L (A).

�� Exercise 40. Consider the following DFA A:�

q0 q1

q2 q3

q4

b

a a b b

a

b

a

a, b

(a) Compute the language partition of A.
(b) Construct the quotient of A with respect to its language partition.
(c) Give a regular expression for L (A).
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�� Exercise 41. Consider the language partition algorithm LanPar. Since every execu- �
tion of its while loop increases the number of blocks by 1, the loop can be executed at most
|Q| − 1 times. Show that this bound is tight, that is, give a family of DFAs for which the
loop is executed |Q| − 1 times.

Hint: There exists a family with a one-letter alphabet.

�� Exercise 42. For each of the two following NFAs: �

(a) Compute the coarsest stable refinement (CSR).
(b) Construct the quotient with respect to the CSR.
(c) Say whether the obtained automaton is minimal.

q0

q1 q2

q3 q4

q5

a

a

b

a

a

a

a

b

a, b

a, b

a

a

q1 q2 q3

q4

a a

a

a b
a b

a

�� Exercise 43. Let A1 and A2 be DFAs with n1 and n2 states such that L (A1) �=L (A2). 

Show that there exists a word w of length at most n1+ n2− 2 such that w∈ (L (A1) \
L (A2))∪ (L (A2) \L (A1)).

Hint: Consider the NFA obtained by putting A1 and A2 “side by side” and CSR(A).

� � Exercise 44. Let �={a, b}. Let Ak be the minimal DFA such that L (Ak)={ww : 

w∈�k}.
(a) Construct A2.
(b) Construct a DFA that accepts L (Ak).
(c) How many states does Ak contain for k > 2?

�� Exercise 45. For every language L⊆�∗ and wordw∈�∗, let wL={u∈�∗ : uw∈L}. 

A language L′ ⊆�∗ is an inverse residual of L if L′ = wL for some w∈�∗.
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(a) Determine the inverse residuals of the first two languages of exercise 36: (ab+ ba)∗
and (aa)∗.
(b) Show that a language is regular iff it has finitely many inverse residuals.
(c) Does a language always have as many residuals as inverse residuals?

�� Exercise 46. Design an efficient algorithm Res(r, a), where r is a regular expression�
over an alphabet� and a∈�, which returns a regular expression satisfying L (Res(r, a))=
L (r)a.

� � Exercise 47. A DFA A= (Q,�, δ, q0,F) is said reversible if no letter can enter a�
nontrap state from two distinct states, that is, for every p, q∈Q and σ ∈�, if δ(p, σ)=
δ(q, σ), then p= q.

(a) Give a reversible DFA that accepts L={ab, ba, bb}.
(b) Show that the minimal DFA that accepts L is not reversible.
(c) Is there a unique minimal reversible DFA that accepts L? Justify.

� 	 Exercise 48. A DFA with negative transitions (DFA-n) is a DFA whose transitions

are partitioned into positive and negative transitions. A run of a DFA-n is accepting if

• it ends in a final state and the number of occurrences of negative transitions is even, or
• it ends in a nonfinal state and the number of occurrences of negative transitions is odd.

The intuition is that taking a negative transition “inverts the polarity” of the acceptance
condition.

(a) Show that the language accepted by a DFA-n is regular.
(b) Give a DFA-n for a regular language L that has fewer states than the minimal DFA for L.
(c) Show that the minimal DFA-n for a language is not necessarily unique.

� � Exercise 49. We say that a residual of a regular language L is composite if it is the

union of other residuals of L and that it is prime otherwise. Show that every regular language
L is recognized by an NFAwhose number of states is equal to the number of prime residuals
of L.

� � Exercise 50. Let Lu,v be the language of words over {0, 1} that contain the same�
number of occurrences of u and v. Say whether Lu,v is regular for the following choices of
u and v.

(a) u= 0 and v= 1.
(b) u= 01 and v= 10.
(c) u= 00 and v= 11.

(d) u= 001 and v= 110.
(e) u= 001 and v= 100.
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� � Exercise 51. Consider the alphabet �={up, down, left, right}. A word over � cor- �
responds to a line in a grid consisting of concatenated segments drawn in the direction
specified by the letters. In the same way, a language corresponds to a set of lines. For exam-
ple, the set of all staircases can be specified as the set of lines given by the regular language
(up right)∗.

(a) Specify the set of all skylines as a regular language (i.e., formalize the intuitive notion
of skyline). The left drawing is a skyline, while the two others are not.

(b) Show that the set of all rectangles is not regular.

� � Exercise 52. An NFA A= (Q,�, δ,Q0,F) is reverse-deterministic if (q1, a, q)∈ δ �
and (q2, a, q)∈ δ implies q1= q2, that is, no state has two input transitions labeled by the
same letter. Furthermore, we say that A is trimmed if every state accepts at least one word,
that is, if LA(q) �= ∅ for every q∈Q. Let A be a reverse-deterministic trimmed NFA with a
single final state qf . Show that NFAtoDFA(A) is minimal.

Hint: States of NFAtoDFA(A) accept different languages; use corollary 2.13.

�� Exercise 53. Let Rev(A) be the algorithm of exercise 14 that, given an NFA A as input, 

returns a trimmed NFA AR such that L (AR)=L (A)R, where LR denotes the reverse of L.
Recall that an NFA is trimmed if every state accepts at least one word (see exercise 52).
Prove that, for every NFA A, the following DFA is the unique minimal DFA that accepts
L (A):

NFAtoDFA(Rev(NFAtoDFA(Rev(A)))).

�� Exercise 54. 


(a) Let �={a, b}. Find a language L⊆�∗ that has infinitely many residuals and that
satisfies |Lw|> 0 for all w∈�∗.
(b) Let �={a}. Find a language L⊆�∗, such that Lw=Lw

′ =⇒w=w′ for all words
w,w′ ∈�∗.

�� Exercise 55. Recall the master automatonM defined in section 2.1.1. DoesM have 


(a) other states than ∅ and �∗ that can only reach themselves?
(b) states that cannot be reached from any other state?
(c) states that can reach all other states?
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(d) states with infinitely many immediate predecessors?
(i.e., states L such that L′ a−→L for infinitely many states L′?)
(e) two states having the same successor for every letter of �?
(f) bottom strongly connected components with infinitely many states?
(A bottom strongly connected component is a maximal set of states S such that for every
state s∈ S, the set of states reachable from S is exactly S.)
(g) bottom strongly connected components with arbitrarily many states?

� � Exercise 56. Recall the master automaton M defined in section 2.1.1. A symmetry

is a bijection f on the states of the master automaton such that L

a−→L′ iff f (L)
a−→ f (L′).

Loosely speaking, after applying f , we still obtain the same graph. Show that the bijection
given by f (L)=L is a symmetry.

�� Exercise 57. Recall that weakly acyclic DFAs were introduced in exercise 35. Show

that weakly acyclic DFAs are closed under minimization, that is, prove that the unique
minimal DFA equivalent to a given weakly acyclic DFA is also weakly acyclic.



3 Operations on Sets: Implementations

Recall that, in this book, we see automata as data structures over some universe of objectsU .
In this chapter, we explain how to implement important operations on such data structures.
As a motivating example, let us consider the case where U is the set of natural num-

bers. Let A be the automaton, over alphabet �={0, 1}, depicted on the left of figure 3.1.
The words read by A are seen as numbers encoded in binary with their most significant
bit appearing first, for example, the word 1100 corresponds to number 12. Observe that
A accepts infinitely many numbers. In particular, it accepts words {11, 111, 1111, . . .},
which respectively correspond to numbers {3, 7, 15, . . .}. Nonetheless, automaton A
does not accept all numbers. For example, it rejects word 100, which corresponds to
number 4.
Suppose we ask ourselves whether all multiples of 3 are accepted by A. For example, we

see that numbers 0, 3, 6, 9, and 12 are accepted by A, as they are respectively represented by
words ε, 11, 110, 1001, and 1100 (with possibly leading zeros). Such a brute-force approach
quickly gets tedious when carried manually. Further, it is not clear howmany numbers must
be checked (even if done with a computer). In fact, if A accepts all multiples of 3, then there
are infinitely many numbers to check! Thus, we need a better approach.
Let B be the automaton depicted on the right of figure 3.1. This automaton accepts the set

of all multiples of 3 (see example 1.10 if you want to know why). Hence, our question can
be rephrased as does L (B)⊆L (B) hold?" or "does L (A)∩L (B)=L (B)?. So, in order to
answer our question, it suffices to implement inclusion, or both intersection and equality.

p0 p1 p2 p3

A:
1 1 1

0 0 0 1

0

q0 q1 q2

B:
0

1 0

1 0

1

Figure 3.1
Two automata representing sets of numbers, represented in binary with their most significant bit first.
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As we shall see in section 3.1.6, A does not accept all multiples of 3. Moreover, a counter-
example can be obtained automatically, that is, an algorithm can produce a word from B
that is not accepted by A.

Such algorithms have important applications. For example, in chapter 7 we will use
automata to represent the behavior of concurrent programs. In that setting, counterexamples
are bugs, and it is certainly desirable to detect bugs automatically.
In the remainder of this chapter, we provide implementations of inclusion, intersection,

and other operations. More precisely, we show that automata as a data structure support the
following operations, where U is the universe of objects, X ,Y ⊆U and x∈U :

Operation Returns

Member(x,X ) true if x∈X , false otherwise
Complement(X ) U \X
Intersection(X , Y ) X ∩Y
Union(X , Y ) X ∪Y
Empty(X ) true if X =∅, false otherwise
Universal(X ) true if X =U , false otherwise
Included(X ,Y ) true if X ⊆Y , false otherwise
Equal(X ,Y ) true if X =Y , false otherwise

Let us fix an alphabet�. We assume that there exists a bijection betweenU and�∗—that
is, we assume that each object of the universe is encoded by a word and that each word is
the encoding of some object. Under this assumption, the operations on sets and elements
become operations on languages and words, as in our motivating example. For instance, the
first two operations become the following:

Operation Returns

Member(w,L) true if w∈L, false otherwise
Complement(L) L

The assumption that each word encodes some object may seem too strong. Indeed, the
languageE of encodings is usually only a subset of�∗. For example, not everyword over the
alphabet {0, . . . , 9, .,−} encodes a decimal number. However, once we have implemented
the operations under this strong assumption, we can easily modify them so that they work
under amuchweaker assumption that almost always holds: the assumption that the language
E of encodings is regular. For instance, assume that E is a regular subset of �∗ and that L
is the language of encodings of a set X . We implement Complement(X ) so that it returns
not L but rather Intersection(L,E).

For each operation, we present an implementation that, given automata representations
of the operands, returns an automaton representing the result (or a boolean value, when
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that is the return type). Sections 3.1 and 3.2 respectively consider the cases in which the
representation is a DFA and an NFA.

3.1 Implementation on DFAs

In order to evaluate the complexity of the operations, we must first provide our assump-
tions on the complexity of basic operations on a DFA A= (Q,�, δ, q0,F). We assume that
dictionary operations (lookup, add, remove) on Q and δ can be performed in constant time
using hashing. We further assume that, given a state q, we can decide in constant time if
q= q0, and if q∈F, and that given a state q and a letter a∈�, we can find the unique state
δ(q, a) in constant time.

3.1.1 Membership

To check membership for a word w, we just execute the run of the DFA on w. It is conve-
nient for future use to have an algorithmMemDFA[A](w, q) that checks whether word w is
accepted from state q in A, that is, whether w∈LA(q). Operation Member(w,L) can then
be implemented by MemDFA[A](w, q0), where A is the automaton representing L. Writ-
ing head(aw)= a and tail(aw)=w for a∈� and w∈�∗, the procedure is described in
algorithm 7.

Algorithm 7 Membership for DFAs.

MemDFA[A](w, q)
Input: DFA A= (Q,�, δ, q0,F), state q∈Q, word w∈�∗
Output: true if w∈L(q), false otherwise

1 if w= ε then return q∈F
2 else return MemDFA[A](tail(w),δ(q, head(w)))

The complexity of the algorithm is O(|w|).
3.1.2 Complementation

Implementing the complement operations on DFAs is easy. Recall that a DFA has exactly
one run for each word, and the run is accepting iff it reaches a final state. Thus, if we swap
final and nonfinal states, the run on a word becomes accepting iff it was nonaccepting, and
so the new DFA accepts the word iff the old one did not accept it. So, we get the linear-time
procedure CompDFA described in algorithm 8.

Observe that complementation of DFAs preservesminimality. By construction, each state
of CompDFA(A) recognizes the complement of the language recognized by the same state
in A. Thus, if the states of A recognize pairwise different languages, so do the states of
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Algorithm 8 DFA complementation.

CompDFA(A)
Input: DFA A= (Q,�, δ, q0,F)

Output: DFA B= (Q′,�, δ′, q′0,F′) with L (B)=L (A)

1 Q′ ←Q; δ′ ← δ; q′0← q0; F′ = ∅
2 for all q∈Q do
3 if q /∈F then add q to F′

CompDFA(A). Apply now corollary 2.13, stating that a DFA is minimal iff their states
recognize different languages.

3.1.3 Binary Boolean Operations

Instead of specific implementations for union and intersection, we give a generic implemen-
tation for all binary boolean operations. Given two DFAs A1 and A2 and a binary boolean
operation like union, intersection, or difference, the implementation returns a DFA recog-
nizing the result of applying the operation to L (A1) and L (A2). The DFAs for different
boolean operations always have the same states and transitions; they differ only in the set
of final states. We call this DFA with a yet unspecified set of final states the pairing of A1
and A2, denoted by [A1,A2]. Formally:

Definition 3.1 Let A1= (Q1,�, δ1, q01,F1) and A2= (Q2,�, δ2, q02,F2) be DFAs. The
pairing [A1,A2] of A1 and A2 is the tuple (Q,�, δ, q0) where

• Q={[q1, q2] : q1 ∈Q1, q2 ∈Q2},
• δ={([q1, q2], a, [q′1, q′2]) : (q1, a, q′1)∈ δ1, (q2, a, q′2)∈ δ2},
• q0= [q01, q02].
The run of [A1,A2] on a word of �∗ is defined as for DFAs.

It follows immediately from this definition that the run of [A1,A2] over a word w=
a1a2 · · · an is also a “pairing” of the runs of A1 and A2 over w. Formally,

q01
a1−−→ q11

a2−−→· · · an−−→ qn1

q02
a1−−→ q12

a2−−→· · · an−−→ qn2

are the runs of A1 and A2 on w if and only if[
q01
q02

]
a1−−→
[
q11
q12

]
a2−−→· · · an−−→

[
qn1
qn2

]
is the run of [A1,A2] on w.
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DFAs for different boolean operations are obtained by adding an adequate set of final
states to [A1,A2]. For intersection, [A1,A2] must accept w iff A1 accepts w and A2 accepts
w. This is achieved by declaring a state [q1, q2] final iff q1 ∈F1 and q2 ∈F2. For union, we
replace and by or. For difference, [A1,A2] must accept w iff A1 accepts w and A2 does not
accept w, and so we declare [q1, q2] final iff q1 ∈F1 and not q2 ∈F2.

Example 3.2 The top of figure 3.2 depicts two DFAs over alphabet �={a}. They recog-
nize thewords whose length is amultiple of 2 and 3, respectively.We denote these languages
by Mult(2) and Mult(3). The remainder of the figure illustrates the pairing of the two
DFAs (for clarity, the states carry labels x, y instead of [x, y]) and three DFAs recognizing
Mult(2)∩Mult(3), Mult(2)∪Mult(3), and Mult(2) \Mult(3), respectively.

Example 3.3 The tour of conversions of chapter 1 started with a DFA for the language
of all words over {a, b} containing an even number of as and an even number of bs. This
language is the intersection of the language of all words containing an even number of as,
and the language of all words containing an even number of bs. Figure 3.3 shows DFAs for
these two languages and the DFA for their intersection.

We can now formulate a generic algorithm that, given two DFAs recognizing languages
L1,L2 and a binary boolean operation, returns a DFA recognizing the result of “applying”

1 2

a

a
3 4 5

a a

a

1, 3 2, 4 1, 5 2, 3 1, 4 2, 5
a a a a a

a

1, 3 2, 4 1, 5 2, 3 1, 4 2, 5
a a a a a

a

1, 3 2, 4 1, 5 2, 3 1, 4 2, 5
a a a a a

a

1, 3 2, 4 1, 5 2, 3 1, 4 2, 5
a a a a a

a

Figure 3.2
Two DFAs, their pairing, and DFAs for the intersection, union, and difference of their languages.
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1 2

b b

a

a
3 4

a a

b

b

1, 3 2, 3

2, 41, 4

a

a

a

a

bb bb

Figure 3.3
Two DFAs and a DFA for their intersection.

the boolean operation to L1,L2. First, let us formally define what this means. Given an
alphabet � and a binary boolean operator � : {true, false}× {true, false}→ {true, false},
we lift � to a function �̂ : 2�∗ × 2�∗ → 2�∗ on languages as follows:

L1�̂L2={w∈�∗ : (w∈L1)� (w∈L2)}.

Algorithm 9 Boolean combination of two DFAs.

BinOp[�](A1,A2)

Input: DFAs A1= (Q1,�, δ1, q01,F1), A2= (Q2,�, δ2, q02,F2)

Output: DFA A= (Q,�, δ, q0,F) with L (A)=L (A1) �̂L (A2)

1 Q, δ,F←∅
2 q0←[q01, q02]
3 W←{q0}
4 while W �= ∅ do
5 pick [q1, q2] from W
6 add [q1, q2] to Q
7 if (q1 ∈F1)� (q2 ∈F2) then add [q1, q2] to F
8 for all a∈� do
9 q′1← δ1(q1, a); q′2← δ2(q2, a)

10 if [q′1, q′2] /∈Q then add [q′1, q′2] to W
11 add ([q1, q2], a, [q′1, q′2]) to δ
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That is, to decide whetherw belongs to L1�̂L2, we evaluate (w∈L1) and (w∈L2) to true or
false and then apply �̂ to the results. For instance, L1 ∩L2=L1∧̂L2. The generic algorithm,
parameterized by �, is described in algorithm 9.
Popular choices of boolean language operations are summarized in the left column of the

following table, while the right column shows the corresponding boolean operation needed
to instantiate BinOp[�].

Language operation b1� b2

Union b1 ∨ b2
Intersection b1 ∧ b2
Set difference (L1 \L2) b1 ∧¬b2
Symmetric difference (L1 \L2 ∪L2 \L1) b1↔¬b2

The output of BinOp is a DFA withO(|Q1| · |Q2|) states, regardless of the boolean oper-
ation being implemented. To show that the bound is reachable, let �={a}, and, for every
n≥ 1, let Mult(n) denote the language of words whose length is a multiple of n. As in
figure 3.3, the minimal DFA recognizingMult(n) is a cycle of n states, with the initial state
being also the only final state. For any two relatively prime numbers n1 and n2 (i.e., two
numbers without a common divisor), we haveMult(n1)∩Mult(n2)=Mult(n1 · n2). There-
fore, any DFA for Mult(n1 · n2) has at least n1 · n2 states. In fact, if we denote the minimal
DFA for Mult(k) by Ak , then BinOp[∧](An1 ,An2)=An1 · n2 .

Note, however, that in general, minimality is not preserved: the product of two minimal
DFAs may not be minimal. In particular, given any regular language L, the minimal DFA
for L∩L has one state, but the result of the product construction is a DFA with the same
number of states as the minimal DFA for L.

3.1.4 Emptiness

A DFA recognizes the empty language iff it has no final states (recall our normal form,
where all states must be reachable). This leads to algorithm 10.

Algorithm 10 DFA emptiness check.

Empty(A)
Input: DFA A= (Q,�, δ, q0,F)

Output: true if L (A)=∅, false otherwise
1 return F=∅

The runtime depends on the implementation. If we keep a boolean indicating whether the
DFA has some final state, then the complexity is O(1). If checking F=∅ requires a linear
scan over Q, then the complexity is O(|Q|).
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3.1.5 Universality

A DFA in normal form recognizes �∗ iff all its states are final. This leads to algorithm 11,
which again has complexity O(1) or O(|Q|), depending on the implementation.

Algorithm 11 DFA universality check.

UnivDFA(A)
Input: DFA A= (Q,�, δ, q0,F)

Output: true if L (A)=�∗, false otherwise
1 return F=Q

3.1.6 Inclusion

The following lemma characterizes the inclusion of regular languages.

Lemma 3.4 Let A1= (Q1,�, δ1,Q01,F1) and A2= (Q2,�, δ2,Q02,F2) be DFAs. It is the
case that L (A1)⊆L (A2) iff every state [q1, q2] of the pairing [A1,A2] satisfying q1 ∈F1
also satisfies q2 ∈F2.

Proof Let L1=L (A1) and L2=L (A2). We have

L1 �⊆L2 ⇐⇒ L1 \L2 �= ∅
⇐⇒ at least one state [q1, q2] of the DFA for L1 \L2 is final
⇐⇒ there exist q1 ∈Q1, q2 ∈Q2 s.t. q1 ∈F1 and q2 /∈F2.

The condition of the lemma can be checked by slightly modifying BinOp. The resulting
algorithm checks inclusion on the fly, as described in algorithm 12.
Recall the example from the beginning of the chapter. We were interested in determining

whether all multiples of 3 are accepted by automaton A of figure 3.1. Let us show that this is
not the case by algorithmically testing whether L (B)⊆L (A). We execute InclDFA(B,A).
The algorithm internally constructs a fragment of the automaton C depicted in figure 3.4.
Note that the state [q0, p1] of C is such that q0 is final in B and p1 is nonfinal in A. There-
fore, the algorithm returns false, which means that A does not accept all multiples of 3. A
counterexample can be obtained from C by taking any word w that leads to [q0, p1]. For
example, w= 11110 corresponds to number 30, which is rejected by A. In fact, this is the
shortest counterexample since A accepts 0, 3, 6, 9, 12, 15, 18, 21, 24, 27 (and more multiples
of 3 such as 33, 36, and 39 but not 42).
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Algorithm 12 DFA inclusion check.

InclDFA(A1,A2)

Input: DFAs A1= (Q1,�, δ1, q01,F1), A2= (Q2,�, δ2, q02,F2)

Output: true if L (A1)⊆L (A2), false otherwise

1 Q←∅; W←{[q01, q02]}
2 while W �= ∅ do
3 pick [q1, q2] from W
4 add [q1, q2] to Q
5 if (q1 ∈F1) and (q2 /∈F2) then return false
6 for all a∈� do
7 q′1← δ1(q1, a); q′2← δ2(q2, a)
8 if [q′1, q′2] /∈Q then add [q′1, q′2] to W
9 return true

q0, p0 q1, p1

q2, p1

q0, p2

q1, p2

q1, p3 q0, p3

q0, p1

q2, p2q2, p3

0

1

0

1

0

1

0

1

0

1

0

1
0

1

0
1

0

1

0

1

Figure 3.4
Underlying automaton of IncDFA(B,A), where colors and patterns correspond to those of the final states of
figure 3.1.

3.1.7 Equality

For equality, just observe that L (A1)=L (A2) holds iff the symmetric difference of L (A1)

and L (A2) is empty. The algorithm is obtained by replacing line 6 of IncDFA(A1,A2) by

if ((q1 ∈F1) and q2 /∈F2)) or ((q1 /∈F1) and (q2 ∈F2)), then return false.

Let us call this algorithm EqDFA. An alternative procedure consists of minimizing A1
and A2 and checking whether the results are isomorphic DFAs. In fact, the isomorphism
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check is not even necessary: one can just apply algorithm CSR (Algorithm 6 of chapter 2)
to the NFA A1 ∪A2 := (Q1 ∪Q2,�, δ1 ∪ δ2, {q01, q02},F1 ∪F2). It is easy to see that, in this
particular case, CSR still computes the language partition, and so we have L (A1)=L (A2)

iff after termination, the initial states of A1 and A2 belong to the same block.
If Hopcroft’s algorithm is used for computing CSR, then the equality check can be per-

formed in time O(n log n), where n is the sum of the number of states of A1 and A2. This
complexity is lower than that of EqDFA. However, EqDFA has two important advantages:

• It works on-the-fly. That is, L (A1)=L (A2) can be tested while constructing A1 and A2.
This allows to stop early if a difference in the languages is detected. On the contrary, mini-
mization algorithms cannot minimize a DFAwhile constructing it. All states and transitions
must be known before the algorithm can start.
• It is easy to modify EqDFA so that it returns a witness whenever L (A1) �=L (A2), that is,
a word in the symmetric difference of L (A1) and L (A2). This is more difficult to achieve
with the minimization algorithm. Moreover, to the best of our knowledge, it cancels the
complexity advantage. This may seem surprising, since, as shown in exercise 43, the short-
est word in the symmetric difference of L (A1) and L (A2) has length n1+ n2− 2, where
n1 and n2 are the numbers of states of A1 and A2, respectively. However, this word is com-
puted by tracking for each pair of states the shortest word in the symmetric difference of
their languages. Since there are O(n1 · n2) pairs, this takes time O(n1 · n2). There could be
a more efficient way to compute the witness, but we do not know any.

3.2 Implementation on NFAs

For NFAs, we make the same assumptions on the complexity of basic operations as for
DFAs. For DFAs, however, we had the assumption that, given a state q and a letter a∈�,
we can find in constant time the unique state δ(q, a). This assumption no longer makes sense
for NFA, since δ(q, a) is a set.

3.2.1 Membership

Membership testing is slightly more involved for NFAs than for DFAs. An NFA may have
many runs on the same word, and examining all of them one after the other in order to see if
at least one is accepting is a bad idea: the number of runs may be exponential in the length of
the word. The algorithm described in algorithm 13 does better. For each prefix of the word,
it computes the set of states in which the automaton may be after having read the prefix.

Example 3.5 Consider the NFA depicted on the left of figure 3.5. Let w= aaabba. The
successive values of W—that is, the sets of states A can reach after reading the prefixes of
w—are shown on the right of the figure. Since the final set contains final states, the algorithm
returns true.
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Algorithm 13 Membership for NFAs.

MemNFA[A](w)
Input: NFA A= (Q,�, δ,Q0,F), word w∈�∗
Output: true if w∈L(A), false otherwise

1 W←Q0

2 while w �= ε do
3 U←∅
4 for all q∈W do
5 add δ(q, head(w)) to U
6 W←U
7 w← tail(w)

8 return (W ∩F �= ∅)

For the complexity, observe first that the while loop is executed |w| times. The for
loop is executed at most |Q| times. Each execution takes at most time O(|Q|), because
δ(q, head(w)) contains at most |Q| states. So the overall running time is O(|w| · |Q|2).
3.2.2 Complementation

Recall that an NFA Amay have multiple runs on a word w. Moreover, it accepts w if at least
one is accepting. In particular, an NFA can accept w because of an accepting run ρ1 but
have another nonaccepting run ρ2 on w. It follows that the complement operation for DFAs
cannot be extended to NFAs: after exchanging final and nonfinal states, the run ρ1 becomes

1 2

3 4

a, b

b

a

a

a

ba
a, b

b

Prefix read W

ε {1}
a {2}
aa {2, 3}
aaa {1, 2, 3}
aaab {2, 3, 4}
aaabb {2, 3, 4}
aaabba {1, 2, 3, 4}

Figure 3.5
An NFA A and the run of MemNFA[A](aaabba).
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nonaccepting, but ρ2 becomes accepting. So, the resulting NFA still accepts w (because ρ2
accepts), and so it does not recognize the complement of L (A).

For this reason, complementation for NFAs is carried out by converting to a DFA and
complementing the result, as described in algorithm 14.

Algorithm 14 NFA complementation.

CompNFA(A)
Input: NFA A
Output: DFA A with L (A)=L (A)

1 A←CompDFA (NFAtoDFA(A))

Since determinizing an NFA may cause an exponential blowup in the number of states,
the number of states of A is O(2|Q|).

3.2.3 Union and Intersection

Let us see that, on NFAs, it is no longer possible to uniformly implement all binary boolean
operations. The pairing operation can be defined exactly as in definition 3.1. Observe that
if for some letter a states q1 and q2 have n1 and n2 successors, then the state [q1, q2] of the
pairing has n1× n2 successors. The runs of a pairing [A1,A2] of NFAs on a given word are
defined as for DFAs. The difference with respect to the DFA case is that the pairing may
have multiple runs or no run at all on a word. But we still have that

q01
a1−−→ q11

a2−−→· · · an−−→ qn1

q02
a1−−→ q12

a2−−→· · · an−−→ qn2

are runs of A1 and A2 on w if and only if[
q01
q02

]
a1−−→
[
q11
q12

]
a2−−→· · · an−−→

[
qn1
qn2

]
is a run of [A1,A2] on w.
Let us now discuss the cases of intersection, union, and set difference.

Intersection. Let [q1, q2] be a final state of [A1,A2] if q1 is a final state of A1 and q2 is
a final state of A2. It is still the case that [A1,A2] has an accepting run on w iff A1 has an
accepting run on w and A2 has an accepting run on w. Thus, with this choice of final states,
automaton [A1,A2] recognizes L (A1)∩L (A2). So, we obtain algorithm 15.
Notice that we overload the symbol and denote the output byA1 ∩A2. AutomatonA1 ∩A2

is often called the product of A1 and A2. It is readily seen that, as operation on NFAs, ∩ is
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Algorithm 15 NFA intersection.

IntersNFA(A1,A2)

Input: NFA A1= (Q1,�, δ1,Q01,F1), A2= (Q2,�, δ2,Q02,F2)

Output: NFA A1 ∩A2= (Q,�, δ,Q0,F) with L (A1 ∩A2)=L (A1)∩L (A2)

1 Q, δ,F←∅; Q0←Q01×Q02

2 W←Q0

3 while W �= ∅ do
4 pick [q1, q2] from W
5 add [q1, q2] to Q
6 if (q1 ∈F1) and (q2 ∈F2) then add [q1, q2] to F
7 for all a∈� do
8 for all q′1 ∈ δ1(q1, a), q′2 ∈ δ2(q2, a) do
9 if [q′1, q′2] /∈Q then add [q′1, q′2] to W
10 add ([q1, q2], a, [q′1, q′2]) to δ

associative and commutative in the following sense:

L ((A1 ∩A2)∩A3) =L (A1)∩L (A2)∩L (A3) =L (A1 ∩ (A2 ∩A3))

L (A1 ∩A2) =L (A1)∩L (A2) =L (A2 ∩A1) .

For the complexity, observe that in the worst case, the algorithm must examine all pairs
(q1, a, q′1)∈ δ1, (q2, a, q′2)∈ δ2 of transitions, but every pair is examined at most once. So,
the running time is O(|δ1||δ2|).
Example 3.6 Consider the two NFAs of figure 3.6 over alphabet {a, b}. The top one rec-
ognizes the words containing at least two non-overlapping occurrences of aa. The bottom
one recognizes the words containing at least one occurrence of aa. The result of applying
IntersNFA is the NFA of figure 2.8. Observe that the NFA has fifteen states (i.e., all pairs of
states are reachable).
Note that in this example, the intersection of the two languages is equal to the language

of the first NFA. So, there is an NFA with five states that recognizes the intersection, which
means that the output of IntersNFA is far from optimal in this case. Even after applying the
reduction algorithm for NFAs, we only obtain the ten-state automaton of figure 2.9.

Union. It could seem that the argumentation for intersection still holds if we replace and
by or, and so that the algorithm obtained from IntersNFA by substituting and for or correctly
computes an NFA for L (A1)∪L (A2). It could seem that the algorithm obtained by sub-
stituting or for and in line 6 of IntersNFA correctly computes an NFA for L (A1)∪L (A2).
However, this is not true! Assume that A1 accepts a word but A2 has no run on it at all.
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a a a a

a, b a, b a, b

a a

a, b a, b

Figure 3.6
Two NFAs.

In this case, the pairing [A1,A2] also has no run on the word, and so the NFA returned by
the algorithm does not accept it. If both A1 and A2 have at least one run for each word,
then the algorithm is indeed correct. However, there is a much simpler algorithm. It suffices
to put A1 and A2 “side by side”: take the union of its states, transitions, initial states, and
final states (where we assume these to be disjoint). The resulting procedure is described in
algorithm 16.

Algorithm 16 NFA union.

UnionNFA(A1,A2)

Input: NFA A1= (Q1,�, δ1,Q01,F1), A2= (Q2,�, δ2,Q02,F2)

Output: NFA A1 ∪A2= (Q,�, δ,Q0,F) with L (A1 ∪A2)=L (A1)∪L (A2)

1 Q←Q1 ∪Q2

2 δ← δ1 ∪ δ2

3 Q0←Q01 ∪Q02

4 F←F1 ∪F2

Set difference. The generalization of the procedure for DFAs fails. Let [q1, q2] be a final
state of [A1,A2] if q1 is a final state of A1 and q2 is not a final state of A2. Then, [A1,A2]
has an accepting run on w if and only if A1 has an accepting run on w and A2 has a nonac-
cepting run on w. But “A2 has a nonaccepting run on w” is not equivalent to “A2 has no
accepting run on w”: this only holds in the DFA case. An algorithm producing an NFA
A1 \A2 recognizing L (A1) \L (A2) can be obtained from the algorithms for complement
and intersection through the equality L (A1) \L (A2)=L (A1)∩L (A2).

3.2.4 Emptiness and Universality

Emptiness for NFAs is decided using the same algorithm as for DFAs: just check if the NFA
has at least one final state.
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Universality requires a new algorithm. An NFA whose states are all final is not universal
if it has no run at all on some word. Moreover, an NFA may be universal even if some states
are nonfinal: for every word having a run that leads to a nonfinal state, there may be another
run leading to a final state. An example is the NFA of figure 3.5, which, as we shall show
in this section, is universal.
A language L is universal if and only if L is empty, and so universality of an NFA A

can be checked by applying the emptiness test to A. However, complementation requires to
compute an equivalent DFA by means of the powerset construction, which involves a worst-
case exponential blow-up in the number of states. So the algorithm runs in exponential time
and space in the worst case.
Since the universality problem is PSPACE-complete, it is unlikely that a superpolynomial

blowup can be avoided. The forthcoming optional section 3.2.6 provides a proof for readers
familiar with complexity theory. But one can still improve on the powerset construction. Let
us see how.

A subsumption test. We show that it is not necessary to completely construct the automa-
ton A. First, the universality check of a DFA only examines the states of the DFA, not the
transitions. So, instead of NFAtoDFA(A), we can use a modified version that only stores the
states of the DFA but not its transitions. Second, let us see that it is not necessary to store
all states.

Definition 3.7 Let A be an NFA, and let B=NFAtoDFA(A). A state Q′ of B is minimal if
no state Q′′ satisfies Q′′ ⊂Q′.

Proposition 3.8 Let A be an NFA and let B=NFAtoDFA(A). Automaton A is universal iff
every minimal state of B is final.

Proof Since A and B recognize the same language, A is universal iff B is universal. So,
A is universal iff every state of B is final. But a state of B is final iff it contains some final
state of A, and so every state of B is final iff every minimal state of B is final.

Example 3.9 Figure 3.7 depicts an NFA on the left and the equivalent DFA obtained
through the application of NFAtoDFA on the right. Since all states of the DFA are final, the
NFA is universal. Only the colored states {1}, {2}, and {3, 4} are minimal.

Proposition 3.8 establishes that it suffices to construct and store the minimal states of
B. Procedure UnivNFA(A), described in algorithm 17, constructs the states of B as in
NFAtoDFA(A) but introduces at line 8 a subsumption test: it checks if some state Q′′ ⊆
δ(Q′, a) has already been constructed. If so, either δ(Q′, a) has already been constructed
(case Q′′ = δ(Q′, a)) or is nonminimal (case Q′′ ⊂ δ(Q′, a)). In both cases, the state is not
added to the workset.
The next proposition shows that UnivNFA(A) constructs all minimal states of B. If

UnivNFA(A) would first generate all states of A and then would remove all nonminimal
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Figure 3.7
An NFA (left) and the result of converting it into a DFA (right). The minimal states of the latter are colored.

Algorithm 17 NFA universality check.

UnivNFA(A)

Input: NFA A= (Q,�, δ,Q0,F)

Output: true if L (A)=�∗, false otherwise
1 Q←∅;
2 W←{Q0}
3 while W �= ∅ do
4 pick Q′ from W
5 if Q′ ∩F=∅ then return false
6 add Q′ to Q
7 for all a∈� do
8 Q′′ ←⋃q∈Q′ δ(q, a)
9 ifW ∪Q contains no Q′′′ ⊆Q′′ then add Q′′ toW

10 return true

states, the proof would be trivial. But the algorithm removes nonminimal states whenever
they appear, and we must show that this does not prevent the future generation of other
minimal states.

Proposition 3.10 Let A= (Q,�, δ,Q0,F) be an NFA, and let B=NFAtoDFA(A). After
termination of UnivNFA(A), the set Q contains all minimal states of B.

Proof LetQt be the value ofQ after termination ofUnivNFA(A). We show that no path of
B leads from a state of Qt to a minimal state of B not in Qt. Since {q0} ∈Qt and all states
of B are reachable from {q0}, it follows that each minimal state of B belongs to Qt.
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Suppose there is a path π =Q1
a1−−→Q2

a2−−→· · · an−−→Qn of B such that Q1 ∈Qt, Qn /∈Qt,
and Qn are minimal. Assume further that π is as short as possible. This implies Q2 /∈Qt

(otherwise Q2
a2−−→· · · an−−→Qn is a shorter path satisfying the same properties), and so Q2

is never added to the workset. On the other hand, since Q1 ∈Qt, the state Q1 is eventu-
ally added to and picked from the workset. When Q1 is processed at line 7, the algorithm
considers Q2= δ(Q1, a1) but does not add it to the workset in line 8. Thus, at that moment,
either the workset orQ contains a state Q′2⊂Q2. This state is eventually added toQ (if it is

not already there), and soQ′2 ∈Qt. So, B has a path π ′ =Q′2
a2−−→· · ·Q′n−1

an−−→Q′n for some
states Q′3, . . . ,Q′n. Since Q′2⊂Q2, we have Q′2⊂Q2,Q′3⊆Q3, . . . ,Q′n⊆Qn (note that we
may have Q′3=Q3). By minimality of Qn, we get Q′n=Qn, and so π ′ leads from Q′2, which
belongs toQt, to Qn, which is minimal and not inQt. This contradicts the assumption that
π is as short as possible.

Observe that the complexity of the subsumption test may be considerable, because the
new set δ(Q′, a) must be compared with every set in W ∪Q. Good use of data structures
(hash tables or radix trees) is advisable.

3.2.5 Inclusion and Equality

Recall lemma 3.4: given two DFAs A1,A2, the inclusion L (A1)⊆L (A2) holds if and only
if every state [q1, q2] of [A1,A2] having q1 ∈F1 also has q2 ∈F2. This lemma no longer
holds for NFAs. To see why, let A be any NFA having two runs for some word w, one of
them leading to a final state q1, the other to a nonfinal state q2. We have L (A)⊆L (A), but
the pairing [A,A] has a run on w leading to [q1, q2].
To obtain an algorithm for checking inclusion, we observe that L1⊆L2 holds if and only

if L1 ∩L2=∅. This condition can be checked using the constructions for intersection and
for the emptiness check. However, as in the case of universality, we can apply a subsumption
check.

Definition 3.11 Let A1,A2 be NFAs, and let B2=NFAtoDFA(A2). A state [q1,Q2] of
[A1,B2] is minimal if no other state [q′1,Q′2] satisfies q′1= q1 and Q′2⊆Q2.

Proposition 3.12 Let A1= (Q1,�, δ1,Q01,F1) and A2= (Q2,�, δ2,Q02,F2) be NFAs,
and let B2=NFAtoDFA(A2). It is the case that L (A1)⊆L (A2) iff every minimal state
[q1,Q2] of [A1,B2] having q1 ∈F1 also has Q2 ∩F2 �= ∅.
Proof Since A2 and B2 recognize the same language, we have

L (A1)⊆L (A2)

⇐⇒ L (A1)∩L (A2)=∅
⇐⇒ L (A1)∩L (B2)=∅



92 Chapter 3

⇐⇒ [A1,B2] has no state [q1,Q2] s.t. q1 ∈F1 and Q2 ∩F2=∅
⇐⇒ [A1,B2] has no minimal state [q1,Q2] s.t. q1 ∈F1 and Q2 ∩F2=∅.

This leads to algorithm 18 for checking inlcusion.

Algorithm 18 NFA inclusion check.

InclNFA(A1,A2)

Input: NFAs A1= (Q1,�, δ1,Q01,F1), A2= (Q2,�, δ2,Q02,F2)

Output: true if L (A1)⊆L (A2), false otherwise

1 Q←∅;
2 W←{[q01,Q02] : q01 ∈Q01}
3 while W �= ∅ do
4 pick [q1,Q′2] from W
5 if (q1 ∈F1) and (Q′2 ∩F2=∅) then return false
6 add [q1,Q′2] to Q
7 for all a∈� do
8 Q′′2←

⋃
q2∈Q′2 δ2(q2, a)

9 for all q′1 ∈ δ1(q1, a) do
10 if W ∪Q contains no [q′′1,Q′′′2 ] s.t. q′′1 = q′1 and Q′′′2 ⊆Q′′2 then
11 add [q′1,Q′′2] to W
12 return true

Observe that, in unfavorable cases, the overhead of the subsumption test may not be
compensated by a reduction in the number of states. Without the test, the number of pairs
that can be added to the workset is at most |Q1| · 2|Q2|. For each of them, we have to execute
the for loop O(|Q1|) times, each of them taking time O(|Q2|2). So, the algorithm runs in
time and space |Q1|2 · 2O(|Q2|).
As was the case for universality, the inclusion problem is PSPACE-complete, and so it is

unlikely that the exponential factor can be avoided (see the optional section 3.2.6). There
is, however, an important case with polynomial complexity. When A2 is a DFA, the number
of pairs that can be added to the workset is at most |Q1| · |Q2|. The for loop is still executed
O(|Q1|) times, but each iteration takes constant time. Thus, the algorithm runs in time and
space O(|Q1|2 · |Q2|).
Equality. Equality of two languages is decided by checking that each of them is included
in the other. The equality problem is also PSPACE-complete. The only point worth observ-
ing is that, unlike the inclusion case, we do not get a polynomial algorithmwhenA2 is aDFA.
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3.2.6 � Universality and Inclusion Are PSPACE-Complete

In this subsection, we show that the universality and inclusion problems for NFAs are
PSPACE-complete.

Theorem 3.13 The universality problem for NFAs is PSPACE-complete.

Proof We only sketch the proof. To prove that the problem is in PSPACE, we show that it
belongs to NPSPACE and apply Savitch’s theorem. The polynomial-space nondeterministic
algorithm for universality looks as follows. Given an NFA A= (Q,�, δ,Q0,F), it guesses
a run of B=NFAtoDFA(A) leading from {q0} to a nonfinal set of states—that is, to a set of
states of A containing no final state (if such a run exists). The algorithm does not store the
whole run, only the current state of B, and so it only needs linear space in the size of A.

We prove PSPACE-hardness with a reduction from the acceptance problem for linearly
bounded automata. A linearly bounded automaton is a deterministic Turing machine that
always halts and only uses the part of the tape containing the input. A configuration of the
Turing machine on an input of length k is encoded as a word of length k. The run of the
machine on an input can be encoded as a word c0#c1 · · · #cn, where the cis are the encodings
of the configurations.
Let � be the alphabet used to encode the run of the machine. Given an input x, the

machine accepts if there exists a word w of (� ∪ {#})∗ (we assume # /∈�) satisfying the
following properties:

(a) w has the form c0#c1 . . . #cn, where the cis are configurations;
(b) c0 is the initial configuration;
(c) cn is an accepting configuration; and
(d) for every 0≤ i< n: configuration ci+1 is the successor of ci according to the transition
relation of the machine.

The reduction shows how to construct in polynomial time, given a linearly bounded
automatonM and an input x, an NFA AM ,x accepting all the words of �∗ that do not satisfy
at least one of the conditions (a)–(d) above. Thus:

• If M accepts x, then there is a word wM ,x encoding the accepting run of M on x, and so
L (AM ,x

)=�∗ \ {wM ,x}.
• If M rejects x, then no word encodes an accepting run of M on x, and so L (AM ,x

)=�∗.

Therefore, M rejects x iff L (AM ,x
)=�∗, and we are done.

Proposition 3.14 The inclusion problem for NFAs is PSPACE-complete.

Proof Wefirst provemembership in PSPACE. Since PSPACE= co-PSPACE=NPSPACE,
it suffices to give a polynomial space nondeterministic algorithm that decides noninclusion.
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Given NFAs A1 and A2, the algorithm guesses w∈L (A1) \L (A2) letter by letter,
maintaining the sets Q′1 and Q

′
2 of states that A1 and A2 reached by the word guessed so far.

When the guessing ends, the algorithm checks that Q′1 contains some final state of A1, but
Q′2 does not.
Hardness follows from the fact that A is universal iff �∗ ⊆L (A), and so the universality

problem, which is PSPACE-complete by Theorem 3.13, is a subproblem of the inclusion
problem.

3.3 Exercises

�� Exercise 58. Consider the following languages over alphabet �={a, b}:�

• L1 is the set of all words where between any two occurrences of bs, there is at least one a;
• L2 is the set of all words where every maximal sequence of consecutive as has odd length;
• L3 is the set of all words where a occurs only at even positions;
• L4 is the set of all words where a occurs only at odd positions;
• L5 is the set of all words of odd length; and
• L6 is the set of all words with an even number of as.

Construct an NFA for the language

(L1 \L2)∪ (L3!L4)∩L5 ∩L6,

where L!L′ denotes the symmetric difference of L and L′, while sticking to the following
rules:

• Start from NFAs for L1, . . . ,L6.
• Any further automaton must be constructed from already existing automata via an
algorithm introduced in the chapter (e.g., Comp, BinOp, UnionNFA, NFAtoDFA, etc.).

� � Exercise 59. Prove or disprove: the minimal DFAs recognizing a language L and its�
complement L have the same number of states.

� � Exercise 60. Give a regular expression for the words over {0, 1} that do not contain

010 as a subword.

� � Exercise 61. In example 1.9, we presented an automaton that recognizes words

over alphabet �={−, ·, 0, 1, . . . , 9} that encode real numbers with a finite decimal part, for
example, 37, 10.503, and −0.234 are accepted, but 002, −0, and 3.10000000 are not. This
language is described by these four properties:

(a) a word encoding a number consists of an integer part, followed by a possibly empty
fractional part; the integer part consists of an optional minus sign, followed by a nonempty
sequence of digits;
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(b) if the first digit of the integer part is 0, then it is the only digit of the integer part;
(c) if the fractional part is nonempty, then it starts with “.,” followed by a nonempty
sequence of digits that does not end with 0; and
(d) if the integer part is −0, then the fractional part is nonempty.

We seek to obtain the automaton presented in example 1.9 in a more modular and algorith-
mic way. More precisely, give an automaton for each of the above properties, construct the
pairing of these automata, and minimize the resulting automaton.

�� Exercise 62. The following automaton A accepts a set of numbers encoded in binary �
with their most significant bit appearing first (as in the example from the beginning of
the chapter). Say whether A accepts all odd numbers. This can be answered by inspection.
Instead, answer the question algorithmically.

p0 p1

p2

0

1

1

1

0
0

� � Exercise 63. Find a family of NFAs {An}n≥1 with O(n) states such that every NFA 

recognizing the complement of L (An) has at least 2n states. Hint: See exercise 21.

� � Exercise 64. Consider again the regular expressions (1+ 10)∗ and 1∗(101∗)∗ of �
exercise 4.

• Construct NFAs for these expressions and use InclNFA to check if their languages are
equal.
• Construct DFAs for the expressions and use InclDFA to check if their languages are equal.
• Construct minimal DFAs for the expressions and check whether they are isomorphic.

�� Exercise 65. Consider the variant of IntersNFA in which line 7 


if (q1 ∈F1) and (q2 ∈F2) then add [q1, q2] to F

is replaced by

if (q1 ∈F1) or (q2 ∈F2) then add [q1, q2] to F

Let A1⊗A2 be the result of applying this variant to two NFAs A1 and A2. An NFA A= (Q,
�, δ,Q0,F) is complete if δ(q, a) �= ∅ for all q∈Q and all a∈�.

• Prove the following: ifA1 andA2 are complete NFAs, thenL (A1⊗A2)=L (A1)∪L (L2).
• Give NFAs A1 and A2 that are not complete and such that L (A1⊗A2)=L (A1)∪L (L2).
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� � Exercise 66. The even part of a word w= a1a2 · · · an over alphabet � is the word

a2a4 · · · a2·#n/2$. Given an NFA A, construct an NFA A′ such that L (A′) is the even parts of
the words of L (A).

�� Exercise 67. Let Li={w∈ {a}∗ : the length of w is divisible by i}.


(a) Construct an NFA for L :=L4 ∪L6 with a single initial state and at most eleven states.
(b) Construct the minimal DFA for L.

�� Exercise 68.Modify algorithm Empty so it returns a witness when the automaton is

nonempty, that is, a word accepted by the automaton. Explain how could you further return
a shortest witness. What is the complexity of your procedure?

� � Exercise 69. Use the algorithm UnivNFA to test whether the following NFA is�
universal.

q0

q1 q2

q3 q4

b

b

a, b

a

a, b
a

a

a, b

� � Exercise 70. Let � be an alphabet. We define the shuffle operator ||| : �∗ ×�∗→�
P(�∗) inductively as follows, where a, b∈� and w, v∈�∗:

w ||| ε ={w},
ε ||| w ={w},

aw ||| bv={au : u∈w ||| bv} ∪ {bu : u∈ aw ||| v}.
For example, we have

b ||| d={bd, db},
ab ||| d={abd, adb, dab},
ab ||| cd={cabd, acbd, abcd, cadb, acdb, cdab}.

Given DFAs recognizing languages L1,L2⊆�∗, construct an NFA recognizing their shuffle

L1 |||L2=
⋃

u∈L1,v∈L2
u ||| v.



Operations on Sets: Implementations 97

�� Exercise 71. The perfect shuffle of two languages L,L′ ∈�∗ is a variant of the shuffle �
introduced in exercise 70, defined as

L |̃|| L′ = {w∈�∗ : ∃a1, . . . , an, b1, . . . , bn ∈� s.t. a1 · · · an ∈L and

b1 · · · bn ∈L′ and
w= a1b1 · · · anbn}.

Give an algorithm that returns a DFA accepting L (A) |̃|| L (B) from two given DFAs A
and B.

� � Exercise 72. Let �1,�2 be two alphabets. A homomorphism is a map h : �∗1→ 

�∗2 such that h(ε)= ε and h(uv)= h(u)h(v) for every u, v∈�∗1 . Observe that if �1=
{a1, . . . , an}, then h is completely determined by the values h(a1), . . . , h(an). Let h : �∗1→
�∗2 be a homomorphism.

(a) Construct an NFA for the language h(L (A))={h(w) :w∈L (A)} where A is an NFA
over �1.
(b) Construct anNFA for h−1(L (A))={w∈�∗1 : h(w)∈L (A)}whereA is anNFAover�2.
(c) Recall that the language {0n1n : n∈N} is not regular. Use the preceding results to show
that {(01k2)n3n : k, n∈N} is also not regular.
�� Exercise 73. Let L1 and L2 be regular languages over alphabet �. The left quotient �
of L1 by L2 is the language

L2�L1={v∈�∗ : ∃u∈L2 s.t. uv∈L1}.
Note that L2�L1 is different from the set difference L2 \L1.
(a) Given NFAs A1 and A2, construct an NFA A s.t. L (A)=L (A1) �L (A2).
(b) Do the same for the right quotient, defined as L1�L2={u∈�∗ : ∃v∈L2 s.t. uv∈L1}.
(c) Determine the inclusions between L1, (L1�L2)L2, and (L1L2)�L2.

�� Exercise 74.Given alphabets� and
, a substitution is a map f : �→ 2
∗ assigning 

to each letter a∈� a language La⊆
∗. A substitution f can be canonically extended to
a map 2�∗ → 2
∗ by defining f (ε)= ε, f (wa)= f (w)f (a), and f (L)=⋃w∈L f (w). Note
that a homomorphism can be seen as the special case of a substitution in which all Las are
singletons.
Let �={Name, Tel, :, #}, let 
={A, . . . ,Z, 0, 1, . . . , 9, :, #}, and let f be the sub-

stitution:

f (Name)= (A+ · · ·+Z)∗

f (:)={:}
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f (Tel)= 0049(1+ . . .+ 9)(0+ 1+ . . .+ 9)10+
00420(1+ . . .+ 9)(0+ 1+ . . .+ 9)8

f (#)={#}
(a) Draw a DFA recognizing L= Name:Tel(#Tel)∗.
(b) Sketch an NFA recognizing f (L).
(c) Give an algorithm that takes as input an NFA A, a substitution f , and for every a∈�

an NFA recognizing f (a) and returns an NFA recognizing f (L (A)).

�� Exercise 75. Let A1 and A2 be two NFAs with n1 and n2 states. Let


B=NFAtoDFA(IntersNFA(A1,A2)),

C= IntersDFA(NFAtoDFA(A1),NFAtoDFA(A2)).

A superficial analysis shows that B andC haveO(2n1·n2) andO(2n1+n2) states, respectively,
wrongly suggesting that C might be more compact than B. Show that, in fact, B and C are
isomorphic and hence have the same number of states.

� 	 Exercise 76. Let A= (Q,�, δ, q0,F) be a DFA. A word w∈�∗ is a synchronizing

word of A if reading w from any state of A leads to a common state, that is, if there exists
q∈Q such that for every p∈Q, p w−→ q. A DFA is synchronizing if it has a synchronizing
word.

(a) Show that the following DFA is synchronizing:

p q

r s

a

b

a

b
a

b

a

b

(b) Give a DFA that is not synchronizing.
(c) Give an exponential time algorithm to decide whether a DFA is synchronizing.

Hint: Use the powerset construction.
(d) Show that a DFA A= (Q,�, δ, q0,F) is synchronizing iff for every p, q∈Q, there exist
w∈�∗ and r∈Q such that p

w−→ r and q
w−→ r.
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(e) Give a polynomial time algorithm to test whether a DFA is synchronizing.
Hint: Use (d).

(f) Show that (d) implies that every synchronizing DFA with n states has a synchronizing
word of length at most (n2− 1)(n− 1).

Hint: You might need to reason in terms of pairing.
(g) Show that the upper bound obtained in (f) is not tight by finding a synchronizing word
of length (4− 1)2 for the following DFA:

q0 q1

q3 q2

a

b

a

b

a, b

a

b

�	 Exercise 77. 


(a) Prove that the following problem is PSPACE-complete:

Given: DFAs A1, . . . ,An over the same alphabet �;
Decide: whether

⋂n
i=1 L (Ai)=∅.

Hint: Reduce from the acceptance problem for deterministic linearly bounded automata.
(b) Prove that if the DFAs are acyclic, but the alphabet is arbitrary, then the problem is
coNP-complete. Here, acyclic means that the graph induced by transitions has no cycle,
apart from a self-loop on a trap state. Hint: Reduce from 3-SAT.
(c) Prove that if � is a one-letter alphabet, then the problem is coNP-complete.

� � Exercise 78. Let A= (Q,�, δ,Q0,F) be an NFA. Show that, with the univer- 

sal accepting condition of exercise 21, automaton A′ = (Q,�, δ, q0,Q \F) recognizes the
complement of L (A).

�	 Exercise 79. Recall the model of alternating automata introduced in exercise 22. 


(a) Show that alternating automata can be complemented by exchanging existential
and universal states, as well as final and nonfinal states. More precisely, let A=
(Q1,Q2,�, δ, q0,F) be an alternating automaton, where Q1 and Q2 are respectively the
sets of existential and universal states and where δ : (Q1 ∪Q2)×�→P(Q1 ∪Q2). Show
that the alternating automaton A= (Q2,Q1,�, δ, q0,Q \F) recognizes the complement of
the language recognized by A.
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(b) Give linear time algorithms that take two alternating automata recognizing languages
L1 and L2 and that deliver a third alternating automaton recognizing L1 ∪L2 and L1 ∩L2.

Hint: The algorithms are very similar to UnionNFA.
(c) Show that testing emptiness for alternating automata is PSPACE-complete.

Hint: Use exercise 77.

� � Exercise 80. Recall that weakly acyclic DFAs were introduced in exercise 35.

Show that if A is a weakly acyclic DFA, then CompDFA(A) is also weakly acyclic, and,
that for every binary boolean operator �, if A1 and A2 are weakly acyclic DFAs, then
BinOp[�](A1,A2) is also weakly acyclic.



4 Application I: Pattern Matching

As a first example of a practical application of automata, we consider the pattern matching
problem. Given w,w′ ∈�∗, we say that w′ is a factor of w if there are words w1,w2 ∈�∗
such that w=w1w′w2. If w1 and w1w′ have lengths i and j, respectively, we say that w′ is the
[i, j]-factor of w. The pattern matching problem is as follows: given a word t∈�+ (called
the text) and a regular expression p over � (called the pattern), determine the smallest j≥ 0
such that a [i, j]-factor of t belongs to L (p). We call j the first occurrence of p in t.

Example 4.1 Let t= aabab and p= a(aba)∗b. The [1, 3]-, [3, 5]-, and [0, 5]-factors of t
are ab, ab, and aabab, respectively. All of these factors belong toL (p). The first occurrence
of p in t is 3.

Usually, one is interested in finding not only the ending position j of the [i, j]-factor but
also the starting position i. Adapting the algorithms to also provide this information is left
as an exercise.

4.1 The General Case

We present two different solutions to the pattern matching problem, using nondeterministic
and deterministic automata, respectively.

Solution 1. Some word of L (p) occurs in t iff some prefix of t belongs to L (�∗p). Thus,
we construct an NFA Ap for the regular expression�∗p by first using the rules of figure 1.16
and then removing all ε-transitions by means of NFAεtoNFA. Let us call the resulting algo-
rithm RegtoNFA. Once Ap is constructed, we simulate it on t as inMemNFA[A](q0,t). Recall
that the simulation algorithm reads the text letter by letter, maintaining the set of states
reachable from the initial state by the prefix read so far. So the simulation reaches a set of
states containing a final state iff the prefix read so far belongs to L (�∗p). The pseudocode
is described in algorithm 19.
Let us estimate the complexity of PatternMatchingNFA for a text of length n over a k-

letter alphabet �, where k≤ n, and a pattern of length m. RegtoNFA is the concatenation
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Algorithm 19 NFA-based pattern matching.

PatternMatchingNFA(t, p)
Input: text t= a1 · · · an ∈�+, pattern p
Output: the first occurrence of p in t, or ⊥ if no such occurrence exists

1 A←RegtoNFA(�∗p)
2 S←Q0

3 for all k= 0 to n− 1 do
4 if S ∩F �= ∅ then return k
5 S← δ(S, ak+1)
6 return ⊥

of RegtoNFAε and NFAεtoNFA. Since �∗p has size O(k+m), RegtoNFAε takes time
O(k+m) and outputs an NFA-ε with O(k+m) states and O(k+m) transitions. When
applied to this output,NFAεtoNFA takes timeO(k(k+m)2) and outputs an NFAwithO(m)

states and O(km2) transitions. The for all loop is executed at most n times, and for an
automaton with O(m) states, each line of the loop’s body takes a time of at most O(m2).
So the loop runs in time O(k(k+m)2+ nm2).
If k can be considered a constant—for example, when searching in standard English

books, where the alphabet always consists of twenty-six letters, fourteen punctuationmarks,
and the blank symbol—then this reduces to O(nm2) time. If the alphabet is implicitly de-
fined by the text and can be of similar size, then, since k≤ n, we obtainO(n(n+m)2+ nm2)

time, which for the typical case n>m reduces to O(n3).

Solution 2. We proceed as in the previous case, but constructing a DFA for �∗p instead
of an NFA, as described in algorithm 20.

Algorithm 20 DFA-based pattern matching.

PatternMatchingDFA(t, p)
Input: text t= a1 · · · an ∈�+, pattern p,
Output: the first occurrence of p in t, or ⊥ if no such occurrence exists.

1 A←NFAtoDFA(RegtoNFA(�∗p))
2 q← q0
3 for all k= 0 to n− 1 do
4 if q∈F then return k
5 q← δ(q, ak+1)
6 return ⊥
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Note that there is a trade-off: while the conversion to a DFA can take (much) longer than
the conversion to an NFA, the membership check for a DFA is faster. The complexity of Pat-
ternMatchingDFA for a word of length n and a pattern of length m can be easily estimated:
RegtoNFA(p) runs in time O(k(k+m)2+ nm2), but it outputs an NFA with only O(m)

states. The equivalent DFA produced by NFAtoDFA has 2O(m) states and k · 2O(m) transi-
tions. However, transitions for letters that do not appear in p necessarily go to a trap state
and do not need to be explicitly constructed. Since p has at mostm different letters, the DFA
can be constructed in time m · 2O(m)= 2O(m). Since the loop is executed at most n times,
and each line of the body takes constant time, the overall runtime isO(n)+ 2O(|�|+m). For
a fixed alphabet, this reduces to O(n)+ 2O(m).

4.2 The Word Case

We study the special but very common case of the pattern matching problem in which we
wish to know if a givenword appears in a text. In this case, the pattern p is the word itself. For
the rest of the section, we consider an arbitrary but fixed text t= a1 · · · an and an arbitrary
but fixed word pattern p= b1 · · · bm. We do not assume that the alphabet has fixed size but
only that it has size O(n+m).
It is easy to find a faster algorithm for this special case, without any use of automata

theory: just move a “window” of length m over the text t, one letter at a time, and check
after each move whether the content of the window is p. The number of moves is n−m+ 1,
and a check requires O(m) letter comparisons, giving a runtime of O(nm), independently
of the size of the alphabet. In the rest of the section, we present a faster algorithm with time
complexity O(m+ n). Notice that in many applications n is very large, and so, even for a
relatively small m, the difference between nm and m+ n can be significant.

Example 4.2 Figure 4.1a depicts an NFA Ap, recognizing �∗p for the case p= nano.

In general, the obvious NFA recognizing �∗p is Ap= (Q,�, δ, {q0},F), where Q=
{0, 1, . . . ,m}, q0= 0, F={m}, and

δ={(i, bi+1, i+ 1) : 0≤ i<m} ∪ {(0, a, 0) : a∈�}.
Clearly, Ap can reach state k whenever the word read so far ends with b0 · · · bk . We define
the hit and miss letters for each state of Ap. Intuitively, the hit letter makes Ap “progress”
toward reading p, while the miss letters “throw it back.”

Definition 4.3 A letter a∈� is a hit for state i of Ap if δ(i, a)={i+ 1}; otherwise, it is a
miss for i.

Example 4.4 Figure 4.1b depicts the DFA Bp obtained by applying NFAtoDFA on Ap. It
has as many states as Ap, and there is a natural correspondence between the states of Ap and
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Figure 4.1
NFA Ap and DFA Bp for p= nano.

Bp: each state of Ap is the largest element of exactly one state of Bp. For example, 3 is the
largest element of {3, 1, 0}, and 4 is the largest element of {4, 0}.
Definition 4.5 The head of a state S⊆{0, . . . ,m} of Bp, denoted by h(S), is the largest
element of S. The tail of S, denoted by t(S), is the set t(S)= S \ {h(S)}. The hit for a state S
of Bp is defined as the hit of the state h(S) in Ap.

If we label a state with head k by the word b1 · · · bk , as shown in figure 4.1c, then we see
that the states of Bp keep track of how close the automaton is to finding nano. For instance:

• if Bp is in state n and reads an a (a hit for this state), then it “makes progress” and moves
to state na;
• if Bp is in state nan and reads an a (a miss for this state), then it is “thrown back” to state
na. Not to state ε, because if the next two letters are n and o, then Bp should accept!

Automaton Bp has another property that will be very important later on: for each state
S �= {0} of Bp, the tail of S is again a state of Bp. For instance, the tail of {3, 1, 0} is {1, 0},
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Algorithm 21 Conversion from NFA to DFA.

NFAtoDFA(A)
Input: NFA A= (Q,�, δ,Q0,F)

Output: DFA B= (Q,�,
,Q0,F) with L (B)=L (A)

1 Q,
,F←∅
2 W ={Q0}
3 whileW �= ∅ do
4 pick S from W
5 add S to Q
6 if S ∩F �= ∅ then add S to F
7 for all a∈� do
8 S′ ← δ(S, a)
9 if S′ /∈Q then add S′ to W
10 add (S, a, S′) to 


which is also a state ofBp. We show that this property and the ones above hold in general and
not only in the special case p= nano. Formally, we prove the following invariant of NFA-
toDFA when applied to a word pattern p. Algorithm NFAtoDFA is recalled in algorithm 21
for convenience.

Proposition 4.6 Let p be a pattern of length m. For every k≥ 0, let Sk be the kth set picked
from the workset during the execution of NFAtoDFA(Ap). We have:

(a) h(Sk)= k (which implies k≤m), and
(b) either k= 0 and t(Sk)=∅, or k > 0 and t(Sk)∈Q.

Proof We first prove by induction on k that (a), (b), and the following fact (c) hold for
every 0≤ k≤m: before the kth iteration of the while loop, the workset only contains Sk .
Then, we prove that Sm is the last state added to the workset and hence that themth iteration
is the last one.
For k= 0, we have S0={0}, which implies (a) and (b); further, (c) follows because of

line 2. Assume now k > 0. By induction hypothesis, we have h(Sk)= k by (a) and t(Sk)= Sl
for some l< k by (b); further, by (c), at the start of the kth iteration the, workset only contains
Sk . At the start of the kth iteration the algorithm picks Sk from the workset, which becomes
empty, and examines the sets δ(Sk , a) for every action a. We consider two cases:

• Letter a is a miss for Sk . By definition, it is also a miss for its head h(Sk)= k. So we have
δ(k, a)=∅, and hence δ(Sk , a)= δ(t(Sk), a)= δ(Sl, a). So δ(Sk , a) was already explored by
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the algorithm during the lth iteration of the loop, and δ(Sk , a) is not added to the workset at
line 9.
• Letter a is a hit for Sk . We have δ(k, a)={k+ 1}. Since δ(Sk , a)= δ(h(Sk), a)∪
δ(t(Sk), a), we get δ(Sk , a)={k+ 1} ∪ δ(Sl, a). Since state k+ 1 has not been explored
before, the set {k+ 1} ∪ δ(Sl, a) becomes the (k+ 1)th state added to the workset, that is,
Sk+1={k+ 1} ∪ δ(Sl, a). Therefore, h(Sk+1)= k+ 1, which yields (a). Further, t(Sk+1)=
t(Sl, a), and so t(Sk+1)∈Q, which gives (b).

Let us now prove (c). For every 0≤ k <m, exactly one letter is a hit for Sk . Therefore, at
the end of the kth iteration, Sk+1 is the only state added to the workset, and so the workset
only contains k+ 1. Thus, (c) follows from the fact that the end of the kth iteration, is also
the beginning of the (k+ 1)th iteration.

It still remains to prove that Sm is the last state added to the workset. For this, observe
that there is no hit letter for Sm. Therefore, during the mth iteration, no state is added to
the workset. So, at the end of the mth iteration, the workset is empty, and the algorithm
terminates.

By proposition 4.6, the DFA Bp hasm+ 1 states for a pattern of lengthm. So, NFAtoDFA
does not incur in any exponential blowup for word patterns. Even more: since, for any two
distinct prefixes p1 and p2 of p, the residuals (�∗p)p1 and (�∗p)p2 are also distinct, any
DFA for �∗p has at least m+ 1 states. Thus:

Corollary 4.7 Automaton Bp is the minimal DFA recognizing �∗p.

Since Bp is a DFA with m+ 1 states, it has (m+ 1) · |�| transitions. Transitions of Bp
labeled by letters that do not appear in p always lead to state 0, and so they do not need to
be explicitly stored. The remainingO(m) transitions for each state can easily be constructed
and stored using space and time of O(m2), leading to a O(n+m2) algorithm. To achieve
a time of O(n+m), we introduce an even more compact data structure: the lazy DFA for
�∗p, which, as we shall see, can be constructed in space and time O(m).

4.2.1 Lazy DFAs

Recall that a DFA can be seen as the control unit of a machine that reads an input from
a tape divided into cells by means of a reading head. At each step, the machine reads the
contents of the cell occupied by the reading head, updates the current state according to the
transition function, and moves the head one cell to the right. It accepts a word if the state
reached after reading it is final.
In lazy DFAs, the machine advances the head one cell to the right or keeps it on the same

cell (see figure 4.2). Which of the two takes place is a function of the current state and
the current letter read by the head. Formally, a lazy DFA only differs from a DFA in the
transition function, which has the form δ : Q×�→Q×{R,N}, where R stands for “move
Right” and N stands for “No move.” A transition of a lazy DFA is a quadruple of the form
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Figure 4.2
Tape with reading head.

(q, a, q′, d), where d ∈ {R,N} is the move of the head. Intuitively, a transition (q, a, q′,N)

means that state q delegates processing the letter a to state q′.

A lazy DFACp for�∗p. Recall that each state Sk of Bp, except the last one, has a hit letter
and all other letters are misses. In particular, if letter a is a miss, then δB(Sk , a)= δ(t(Sk), a),
and so:

When Bp is in state Sk and reads a miss, it moves to the same state it would move to if it were in
state t(Sk).

Using this fact, we construct a lazy DFA Cp with the same states as Bp and with transition
function δC(Sk , a) given by:

• If a is a hit for Sk , then Cp behaves as Bp, that is:

δC(Sk , a)= (Sk+1,R).

• If a is a miss for Sk and k > 0, then Sk “delegates” to t(Sk), that is:

δC(Sk , a)= (t(Sk),N).

• If a is a miss for Sk and k= 0, then t(Sk) is not a state, and so Sk cannot “delegate”;
instead, Cp behaves as Bp:

δC(S0, a)= (S0,R).

Note that, in the case of a miss, Cp always delegates to the same state, independently of
the letter being read. So, we can “summarize” the transitions for all misses into a single
transition δC(Sk ,miss)= (t(Sk),N).

Example 4.8 Figure 4.3 depicts the DFA and the lazy DFA for p= nano, where we write
k instead of Sk in the states of the lazy DFA. Consider the behavior of Bp and Cp from state
S3 if they read the letter n. While Bp moves to S1 (what it would do if it were in state S1),
Cp delegates to S1, which delegates to S0, which moves to S1. That is, the move of Bp is
simulated in Cp by a chain of delegations, followed by a move of the head to the right (in
the worst case, the chain of delegations reaches S0, who cannot delegate to anybody). The
final destination is the same in both cases.
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Figure 4.3
DFA and lazy DFA for p= nano.

Observe that Cp may require more steps than Bp to read the text. However, we can easily
show that the number of steps is at most 2n. For every letter, the automaton Cp does a
number of N-steps, followed by one R-step. Call this step sequence a macrostep, and let Sji
be the state reached after the ith macrostep, with j0= 0. Since the ith macrostep leads from
Sji−1 to Sji , and N-steps never move forward along the spine, the number of steps of the ith
macrostep is bounded by ji−1− ji+ 2. Hence, the total number of steps is bounded by

n∑
i=1

(ji−1− ji+ 2)= j0− jn+ 2n= 0− jn+ 2n≤ 2n.

Computing Cp in timeO(m): The Knuth–Morris–Pratt algorithm. LetMiss(i) be the
head of the state reached from Si by the miss transition of the lazy DFA. For instance, for
p= nano, we have Miss(3)= 1 and Miss(i)= 0 otherwise (see figure 4.3). Clearly, if we
can compute Miss(0), . . . ,Miss(m) together in time O(m), then we can construct Cp in
time O(m).

Consider the auxiliary function miss(Si) which returns the target state of the miss transi-
tion, instead of its head, that is, Miss(i)= h(miss(Si)). We obtain some equations for miss
and then transform them into equations for Miss. By definition, for every i> 0, in the case
of a miss, the state Si delegates to t(Si), that is, miss(Si)= t(Si). Since t(S1)={0}= S0, this
already gives miss(S1)= S0. For i> 1, using Si−1={i− 1} ∪ t(Si−1), we get
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t(Si)= t(δB(Si−1, bi))= t(δ(i− 1, bi)∪ δ(t(Si−1, bi)))=
t({i} ∪ δ(t(Si−1), bi))= δB(t(Si−1), bi),

yielding
miss(Si)= δB(miss(Si−1), bi). (4.1)

Moreover, we have

δB(Sj, b)=

⎧⎪⎪⎨⎪⎪⎩
Sj+1 if b= bj+1 (hit),
S0 if b �= bj+1 (miss) and j= 0,

δB(t(Sj), b) if b �= bj+1 (miss) and j �= 0.

(4.2)

Combining (4.1) and (4.2), and recalling that miss(S0)= S0, we obtain

miss(Si)=
{
S0 if i= 0 or i= 1,

δB(miss(Si−1), bi) if i> 1,
(4.3)

δB(Sj, b)=

⎧⎪⎪⎨⎪⎪⎩
Sj+1 if b= bj+1 (hit),
S0 if b �= bj+1 (miss) and j= 0,

δB(miss(Sj), b) if b �= bj+1 (miss) and j �= 0.

(4.4)

Let Miss(i)= h(miss(Si)) and 
B(i, b)= h(δB(Si, b)). Equations (4.3) and (4.4) on sets of
states become equations on numbers:

Miss(i)=
{
0 if i= 0 or i= 1,


B(Miss(i− 1), bi) if i> 1,
(4.5)


B(j, b)=

⎧⎪⎪⎨⎪⎪⎩
j+ 1 if b= bj+1,
0 if b �= bj+1 and j= 0,


B(Miss(j), b) if b �= bj+1 and j �= 0.

(4.6)

Equations (4.5) and (4.6) lead to the procedures described in algorithm 22. Given a word
p of lengthm, CompMiss(p) computesMiss(i) for every index i∈ {0, . . . ,m}. CompMiss(p)
calls DeltaB(j, b), which in turn calls Miss( j).

It remains to prove that CompMiss(p) runs in time O(m). This amounts to showing that
all calls toDeltaB together take timeO(m). During the execution ofCompMiss(p), function
DeltaB(j, b) is called with j=Miss(1), b= b2; j=Miss(2), b= b3; . . . ; j=Miss(m− 1), b=
bm. Let ni be the number of iterations of thewhile loop, at line 1 ofDeltaB, executed during
the call with arguments j=Miss(i− 1) and b= bi. We show that

∑m
i=2 ni <m. To this end,

we claim that ni≤Miss(i− 1)− (Miss(i)− 1) holds. Indeed, since each iteration of the loop
decreases j by at least 1 (line 1 of DeltaB), the number of iterations is at most equal to the
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Algorithm 22 Algorithm CompMiss(p).

CompMiss(p)
Input: pattern p= b1 · · · bm
1 Miss(0)← 0; Miss(1)← 0
2 for i← 2, . . . ,m do
3 Miss(i)←DeltaB(Miss(i− 1), bi)

DeltaB(j, b)
Input: head j∈ {0, . . . ,m}, letter b
Output: head of the state δB(Sj, b)

1 while b �= bj+1 and j �= 0 do j←Miss(j)
2 if b= bj+1 then return j+ 1
3 else return 0

value of j before the loop minus its value after the loop. The value of j before the loop is
Miss(i− 1), and so it suffices to show that the final value is at leastMiss(i)− 1. This follows
from the fact that the call to DeltaB returns either j+ 1 or 0 (lines 2 and 3 of DeltaB), and
the returned value is assigned toMiss(i) (line 3 of CompMiss). This concludes the proof of
the claim, and we get

m∑
i=2

ni≤
m∑
i=2

(Miss(i− 1)−Miss(i)+ 1)=Miss(1)−Miss(m)+m− 1<m.

4.3 Exercises

� � Exercise 81. Use ideas from the main text to design an algorithm for the pattern

matching problem that identifies a matched [i, j]-factor of the text, where position j is min-
imal and where position i is as close to j as possible, that is, maximal w.r.t. j. Run your
algorithm on text t= caabac and pattern p= a+(b+ c)a+ + bac. What is the complexity
of your algorithm?

�� Exercise 82. The pattern matching problem deals with finding the first [i, j]-factor of�
t that belongs to L (p). Show that the first such [i, j]-factor w.r.t. j is not necessarily the first
one w.r.t. to i.

� � Exercise 83. Suppose we have an algorithm that solves the pattern matching pro-

blem—that is, one that finds the first [i, j]-factor (w.r.t. j) of a text t that matches a pattern
p. How can we use it as a black box to find the last [i, j]-factor w.r.t. i?
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�� Exercise 84. Use the ideas of exercises 81 and 83 to obtain an algorithm that solves 

the pattern matching problem, but this time by finding the first [i, j]-factor w.r.t. i (instead
of j).

�� Exercise 85. �

(a) Build the automata Bp and Cp for the word pattern p=mammamia.
(b) How many transitions are taken when reading t=mami in Bp and Cp?

�� Exercise 86.We have shown that lazy DFAs for a word pattern may need more than 

n steps to read a text of length n but not more than 2n+m, where m is the length of the
pattern. Find a text t and a word pattern p such that the run of Bp on t takes at most n steps
and the run of Cp takes at least 2n− 1 steps.

Hint: A simple pattern of the form ak is sufficient.

� � Exercise 87. Give an algorithm that, given a text t and a word pattern p, counts the 

number of occurrences of p in t. Try to obtain a complexity of O(|t| + |p|).
� 	 Exercise 88. Two-way DFAs are an extension of lazy automata where the read- 

ing head is also allowed to move left. Formally, a two-way DFA (2DFA) is a tuple A=
(Q,�, δ, q0,F), where δ :Q× (� ∪ {%,&})→Q×{L,N ,R}. Given a wordw∈�∗, A starts
in q0 with its reading tape initialized with %w& and its reading head pointing on %. When
reading a letter, A moves the head according to δ (Left, No move, Right). Moving left on %
or right on & does not move the reading head. A accepts w if, and only if, it reaches & in a
state of F.

(a) Let n∈N. Give a 2DFA that accepts (a+ b)∗a(a+ b)n.
(b) Give a 2DFA that does not terminate on any input.
(c) Describe an algorithm to test whether a given 2DFA A accepts a given word w.
(d) Let A1,A2, . . . ,An be DFAs over a common alphabet. Give a 2DFA B such that

L (B)=L (A1)∩L (A2)∩ · · · ∩L (An) .

� � Exercise 89. In order to make pattern matching robust to typos, we further wish to �
include “similar words” in our results. For this, we consider as “similar” words with a small
Levenshtein distance (also known as the edit distance). We may transform a word w into a
new word w′ using the following operations, where ai, b∈�:

(R) Replace: w= a1 · · · ai−1aiai+1 · · · al→w′ = a1 · · · ai−1 b ai+1 · · · al,
(D) Delete: w= a1 · · · ai−1aiai+1 · · · al→w′ = a1 · · · ai−1 ε ai+1 · · · al,
(I) Insert: w= a1 · · · ai−1aiai+1 · · · al→w′ = a1 · · · ai−1ai b ai+1 · · · al.
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The Levenshtein distance of w and w′, denoted 
(w,w′), is the minimal number of oper-
ations (R), (D), and (I) needed to transform w into w′. We write 
L,i={w∈�∗ : ∃w′ ∈
L s.t. 
(w,w′)≤ i} to denote the language of all words with Levenshtein distance at most i
to some word of L.

(a) Compute 
(abcde, accd).
(b) Prove the following statement: If L is a regular language, then
L,n is a regular language.
(c) Let p be the pattern abba. Construct an NFA-ε locating the pattern or variations of it
with Levenshtein distance 1.



5 Operations on Relations: Implementations

In this chapter, we show how to implement operations on relations over a (possibly infinite)
universe U . Even though we will encode elements from U as words, when implementing
relations, it is convenient to think ofU as an abstract universe and not as the set of all words
over an alphabet. The reason is that for some operations we will encode an object not by
a single word but by (infinitely) many words. In the case of operations on sets, this is not
necessary, and one can safely identify the object and its encoding as a word.
We are interested in several operations. A first group contains the operations we already

studied for sets but lifted to relations. For instance, given objects x, y and a relation R,
we consider the operation Membership((x, y),R) that returns true if (x, y)∈R, and false
otherwise, orComplement(R), which returns R= (U ×U) \R. Their implementations will
be very similar to those of the language case. A second group contains three fundamental
operations proper to relations. Given relations R,R1,R2⊆U ×U :

Operation Returns

Projection_1(R) π1(R)={x : ∃y s.t. (x, y)∈R}
Projection_2(R) π2(R)={y : ∃x s.t. (x, y)∈R}
Join(R1, R2) R1 ◦R2={(x, z) : ∃y s.t. (x, y)∈R1 ∧ (y, z)∈R2}

Finally, given X ⊆U , we are interested in two derived operations:

Operation Returns

Post(X , R) postR(X )={y : ∃x∈X s.t. (x, y)∈R}
Pre(X , R) preR(X )={y : ∃x∈X s.t. (y, x)∈R}

Example 5.1 Let R={(a, a), (b, a), (ab, ba)}, S={(ba, b)} and X ={a, b, ab}. We have

π1(R)={a, b, ab},π2(R)={a, ba} and R ◦ S={(ab, b)}.
Furthermore, postR(X )={a, ba} and preR(X )={a, b}.
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5.1 Encodings

We encode elements of U as words over an alphabet �. It is convenient to assume that �

contains a padding letter # and that an element x∈U is encoded not only by a word sx ∈�∗
but by all the words of the language {sx #n : n≥ 0}. That is, an element x has a shortest
encoding sx, and other encodings are obtained by appending to sx an arbitrary number of
padding letters. We assume that the shortest encodings of two distinct elements are also
distinct and that, for every x∈U , the last letter of sx differs from #. It follows that the sets
of encodings of two distinct elements are disjoint.
The advantage of this assumption is that for any two elements x and y, there exists a

number n (and in fact infinitely many) such that both x and y have encodings of length n.
We say that a pair of words (wx,wy) encodes the pair (x, y) if wx encodes x, wy encodes y,
and |wx| = |wy|. Note that if (wx,wy) encodes (x, y), then so does (wx#k ,wy#k) for every
k≥ 0. If sx and sy are the shortest encodings of x and y, and |sx| ≤ |sy|, then the shortest
encoding of (x, y) is (sx#|sy|−|sx|, sy).

Example 5.2 We encode the number 6 not only by its small end binary representation
011 but by any word of L (0110∗). In this case, we have �={0, 1} with 0 as a padding
letter. Note, however, that taking 0 as a padding letter requires to take the empty word as
the shortest encoding of the number 0 (otherwise, the last letter of the encoding of 0 is the
padding letter).
In the rest of this chapter, we use this particular encoding of natural numbers without fur-

ther notice. We call it the least-significant-bit-first (LSBF) encoding and write, for example,
LSBF(6) to denote the language L (0110∗).

If we encode an element of U by more than one word, then we have to define when is an
element accepted or rejected by an automaton. Does it suffice that the automaton accepts
(rejects) some encoding, or does it have to accept (reject) all of them? Several definitions are
possible, leading to different implementations of the operations. We choose the following
option:

Definition 5.3 Suppose an encoding of the universe U over �∗ has been fixed. Let A be
an NFA. We say that

• A accepts x∈U if it accepts all encodings of x,
• A rejects x∈U if it accepts no encoding of x, and
• A recognizes a set X ⊆U if

L (A)={w∈�∗ :w encodes some element of X }.
A set is regular (with respect to the fixed encoding) if it is recognized by some NFA.
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Observe that if A recognizes X ⊆U , then, as one would expect, A accepts every x∈X
and rejects every x /∈X . Furthermore, with this definition, an NFA may neither accept nor
reject a given x. An NFA is well formed if it recognizes some set of objects and ill-formed
otherwise.

5.2 Transducers and Regular Relations

Assume an encoding of the universe U over alphabet � has been fixed.

Definition 5.4 A transducer over � is an NFA over the alphabet �×�.

Transducers are also called Mealy machines. According to this definition, a transducer
accepts sequences of pairs of letters, but it is convenient to look at it as a machine accepting
pairs of words:

Definition 5.5 Let T be a transducer over �. Given words u= a1a2 · · · an and v=
b1b2 · · · bn, we say that T accepts the pair (u, v) if it accepts the word (a1, b1) · · · (an, bn)∈
(�×�)∗.

In other words, we identify the set⋃
i≥0

(�i×�i) with (�×�)∗ =
⋃
i≥0

(�×�)i.

We now define when a transducer accepts a pair (x, y)∈U ×U , which allows us to define
the relation recognized by a transducer. The definition is analogous to definition 5.3.

Definition 5.6 Let T be a transducer. We say that

• T accepts a pair (x, y)∈U ×U if it accepts all encodings of (x, y),
• T rejects a pair (x, y)∈U ×U if it accepts no encoding of (x, y), and
• T recognizes a relation R⊆U ×U if

L (T)={(wx,wy)∈ (�×�)∗ : (wx,wy) encodes some pair of R}.
A relation is regular if it is recognized by some transducer.

It is important to emphasize that not every transducer recognizes a relation, because it
may recognize only some, but not all, of the encodings of a pair (x, y). As for NFAs, we say
a transducer is well formed if it recognizes some relation and ill-formed otherwise.

Example 5.7 The Collatz function is the function f : N→N defined as follows:

f (n)=
{
3n+ 1 if n is odd,

n/2 if n is even.
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Figure 5.1

A transducer for Collatz’s function.

Figure 5.1 depicts a transducer that recognizes {(n, f (n)) : n∈N} using the LSBF encoding
and �={0, 1}.
The elements of �×� are drawn as column vectors with two components. The trans-

ducer accepts, for instance, the pair (7, 22) because it accepts all pairs of words of the form
(111000k , 011010k), that is, it accepts[

1
0

] [
1
1

] [
1
1

] [
0
0

] [
0
1

] [
0
0

]k
for every k≥ 0.

Moreover, we have LSBF(7)=L (1110∗) and LSBF(22)=L (011010∗).

Why “transducer”? In engineering, a transducer is a device that converts signals in one
form of energy into signals of a different form. Two examples of transducers are micro-
phones and loudspeakers. We can look at a transducer T over an alphabet � as a device that
transforms an input word into an output word. If we choose � as the union of an input and
an output alphabet, and ensure that in every transition

q
(a,b)−−−→ q′

the letters a and b are an input and an output letter, respectively, then the transducer trans-
forms a word over the input alphabet into a word over the output alphabet. Observe that the
same word can be transformed into different ones.
When looking at transducers from this point of view, it is customary to write a pair

(a, b)∈�×� as a/b and read it as “the transducer reads an a and writes a b.” In some
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exercises, we use this notation. However, in section 5.4 we extend the definition of a
transducer and consider transducers that recognize relations of arbitrary arity. For such
transducers, the metaphor of a converter is less appealing: while in a binary relation, it
is natural and canonical to interpret the first and second components of a pair as “input”
and “output,” there is no such canonical interpretation for a relation of arity 3 or more. In
particular, there is no canonical extension of the a/b notation. For this reason, while we
keep the name “transducer” for historical reasons, we use the notation

q
(a1,...,an)−−−−−−→ q′

for transitions, or the column notation, as in example 5.7.

Determinism. A transducer is deterministic if it is a DFA. In particular, a state of a
deterministic transducer over alphabet �×� has exactly |�|2 outgoing transitions. The
transducer of figure 5.1 is deterministic in this sense, when an appropriate trap state is
added.
There is another possibility to define determinism of transducers, which corresponds to

the converter interpretation (a, b) '→ a/b described in the previous paragraph. If the letter
a/b is interpreted as “the transducer receives the input a and produces the output b,” then
it is natural to call a transducer deterministic if for every state q and every letter a, there is
exactly one transition of the form (q, a/b, q′). Note that these two definitions of determinism
are not equivalent.
We do not give separate implementations of the operations for deterministic and nonde-

terministic transducers. The new operations (projection and join) can only be reasonably
implemented on nondeterministic transducers, and so the deterministic case does not add
anything new to the discussion of chapter 3.

5.3 Implementing Operations on Relations

In chapter 3, we made two assumptions on the encoding of objects from the universe U as
words:

• every word is the encoding of some object, and
• every object is encoded by exactly one word.

We have relaxed the second assumption and allowed for multiple (and, in fact, infinitely
many) encodings of an object. Fortunately, as long as the first assumption still holds, the
implementations of the boolean operations remain correct, in the following sense: if the
input automata are well formed, then the output automaton is alsowell formed. Consider, for
instance, the complementation operation on DFAs. Since every word encodes some object,
the set of all words can be partitioned in equivalence classes, each of them containing all
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the encodings of an object. If the input automaton A is well formed, then for every object
from the universe, A either accepts all words in an equivalence class or none of them. The
complement automaton then satisfies the same property but accepts a class iff the original
automaton does not accept it.
Note that membership of an object x in a set represented by a well-formed automaton

can be checked by taking any encoding wx of x and checking if the automaton accepts wx.

5.3.1 Projection

Given a transducer T recognizing a relation R⊆X ×X , we construct an automaton over �

recognizing the set π1(R). The initial idea is very simple: loosely speaking, we go through
all transitions and replace their labels (a, b) by a. This transformation yields an NFA that
has an accepting run on a word w iff T has an accepting run on some pair (w,w′). Formally,
this step is carried out in lines 1–4 of algorithm 23 (line 5 is explained below).
However, this initial idea is not fully correct. Consider R={(1, 4)} over N. A transducer

T recognizing relation R recognizes the language

{(10n+2, 0010n) : n≥ 0},
and hence the NFA constructed after lines 1–4 recognizes {10n+2 : n≥ 0}. However, it does
not recognize the number 1, because it does not accept all of its encodings: the encodings
1 and 10 are rejected.

Algorithm 23 Projection onto the first component of a binary relation.

Proj_1(T)
Input: transducer T = (Q,�×�, δ,Q0,F)

Output: NFA A= (Q′,�, δ′,Q′0,F′) with L (A)=π1(L (T))

1 Q′ ←Q; Q′0←Q0; F′′ ←F
2 δ′ ←∅
3 for all (q, (a, b), q′)∈ δ do
4 add (q, a, q′) to δ′

5 F′ ←PadClosure((Q′,�, δ′,Q′0,F′′), #)

This problem can be easily repaired. We introduce an auxiliary construction that “com-
pletes” a given NFA: the padding closure of an NFA is another NFA that accepts a word
w if and only if the first NFA accepts w #n for some n≥ 0. Formally, the padding closure
augments the set of final states and returns a new such set. The procedure constructing the
padding closure is described in algorithm 24.
Projection onto the second component is implemented in the same fashion. The com-

plexity of Proj_i is clearly O(|δ| + |Q|), since every transition is examined at most twice,
once in line 3 and possibly a second time at line 5 of PadClosure.
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Algorithm 24 Closure with respect to a padding symbol #.

PadClosure(A, #)
Input: NFA A= (�,Q, δ, q0,F)

Output: new set F′ of final states
1 W←F; F′ ←∅
2 while W �= ∅ do
3 pick q from W
4 add q to F′

5 for all (q′, #, q)∈ δ do
6 if q′ /∈F′ then add q′ to W
7 return F′

Observe that projections do not preserve determinism, because two transitions leav-
ing a state and labeled by two different (pairs of) letters (a, b) and (a, c) become after
projection two transitions labeled with the same letter a. In practice, the projection of a
transducer is hardly ever deterministic. Since, typically, a sequence of operations manip-
ulating transitions contains at least one projection, deterministic transducers are relatively
uninteresting.

Example 5.8 Figure 5.2 depicts the NFAs obtained by projecting the transducer for the
Collatz function onto the first and second components. States 4 and 5 of the NFA on the
left are made final by PadClosure, because they can both reach the final state 6 through a
chain of 0s (recall that 0 is the padding symbol). The same happens to state 3 for the NFA
on the right, which can reach the final state 2 with 0.
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Figure 5.2
Projection of the transducer for the Collatz function onto the first component (left) and second component (right).
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Recall that the original transducer recognizes R={(n, f (n)) : n∈N}, where f denotes the
Collatz function. Therefore, we have π1(R)={n : n∈N}=N and π2(R)={f (n) : n∈N},
and a moment of thought shows that π2(R)=N as well. So, both NFAs should be universal,
and the reader can easily check that this is indeed the case. Observe that both projections
are nondeterministic, although the transducer is deterministic.

5.3.2 Join, Post and Pre

We give an implementation of the Join operation and then show how to modify it to obtain
implementations of Pre and Post.

Given transducers T1 and T2 recognizing relations R1 and R2, we construct a transducer
T1 ◦T2 recognizing R1 ◦R2. We first construct a transducer T with the following property:
T accepts (w,w′) iff there is a wordw′′ such that T1 accepts (w,w′′) and T2 accepts (w′′,w′).
The intuitive idea is to slightly modify the pairing operation. Recall that the pairing [A1,A2]
of two NFAs A1 and A2 has a transition [q, r] a−→[q′, r′] iff

A1 has a transition q
a−→ q′ and A2 has a transition r

a−→ r′.

Similarly, T has a transition [q, r] (a,b)−−−→[q′, r′] if there is a letter c such that

T1 has a transition q
(a,c)−−−→ q′ and A2 has a transition r

(c,b)−−−→ r′.

So, loosely speaking, the transducer T can output b on input a if there is a letter c such that
T1 can output c on input a, and T2 can output b on input c. It follows that T has a run

[q01, q02] (a1,b1)−−−−→[q11, q12] (a2,b2)−−−−→ · · · (an,bn)−−−−→[qn1, qn2]
iff T1 and T2 respectively have runs

q01
(a1,c1)−−−−→ q11

(a2,c2)−−−−→ · · · (an,cn)−−−−→ qn1,

q02
(c1,b1)−−−−→ q12

(c2,b2)−−−−→ · · · (cn,bn)−−−−→ qn2.

Formally, if T1= (Q1,�×�, δ1,Q01,F1) and T2= (Q2,�×�, δ2,Q02,F2), then T =
(Q,�×�, δ,Q0,F′) is the transducer generated by lines 1–9 of algorithm 25. However,
transducer T does not necessarily recognize R1 ◦R2 yet. The issue is similar to the one of
the projection operation. Consider the relations on numbers R1={(2, 4)} and R2={(4, 2)}.
Transducers T1 and T2 recognize

{(010n+1, 0010n) : n≥ 0} and {(0010n, 010n+1) : n≥ 0}.
Therefore, T recognizes {(010n+1, 010n+1) : n≥ 0}. According to our definition, T does not
accept the pair (2, 2)∈N×N, because it does not accept all of its encodings: the encoding
(01, 01) is missing. To fix this, we add a padding closure again at line 10, this time using
(#, #) as a padding symbol.
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Algorithm 25 Join operation.

Join(T1,T2)
Input: transducers T1= (Q1,�×�, δ1,Q01,F1),T2= (Q2,�×�, δ2,Q02,F2)

Output: transducer T1 ◦T2= (Q,�×�, δ,Q0,F)

1 Q, δ,F′ ←∅; Q0←Q01×Q02

2 W←Q0

3 while W �= ∅ do
4 pick [q1, q2] from W
5 add [q1, q2] to Q
6 if q1 ∈F1 and q2 ∈F2 then add [q1, q2] to F′

7 for all (q1, (a, c), q′1)∈ δ1, (q2, (c, b), q′2)∈ δ2 do
8 add ([q1, q2], (a, b), [q′1, q′2]) to δ

9 if [q′1, q′2] /∈Q then add [q′1, q′2] to W
10 F←PadClosure((Q,�×�, δ,Q0,F′), (#, #))

The transducer T1 ◦T2 has O(|Q1| · |Q2|) states.
Example 5.9 Recall that the transducer T of figure figure 5.1 recognizes the relation
{(n, f (n)) : n∈N}, where f is the Collatz function. Figure 5.3 depicts the transducer T ◦T
as computed by Join(T , T). For example, the transition leading from [2, 3] to [3, 2], labeled
by (0, 0), is the result of “pairing” the transition from 2 to 3 labeled by (0, 1) and the one
from 3 to 2 labeled by (1, 0). Observe that T ◦T is not deterministic since, for instance,
[1, 1] is the source of two transitions labeled by (0, 0), even though T is deterministic.
This transducer recognizes the relation {(n, f (f (n))) : n∈N}. A little calculation gives

f (f ((n))=

⎧⎪⎪⎨⎪⎪⎩
n/4 if n≡ 0 (mod 4)

3n/2+ 1 if n≡ 2 (mod 4)

3n/2+ 1/2 if n≡ 1 (mod 4) or n≡ 3 (mod 4).

The three (shaded) components of the transducer reachable from state [1, 1] correspond to
these three cases.

Post and Pre. Note that Post(X , R) = Projection_2(Join(IdX , R)) and Pre(X , R) = Pro-
jection_1(Join(R, Idx)), where IdX ={(x, x) : x∈X }. Thus, operations Post and Pre can be
applied by chaining the previous implementations. However, it is possible to implement
them directly.
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Figure 5.3
A transducer for f (f (n)).

Given an NFAA1= (Q1,�, δ1,Q01,F1) recognizing a regular setX ⊆U and a transducer
T2= (Q2,�×�, δ2, q02,F2) recognizing a regular relation R⊆U ×U , we construct an
NFA B recognizing the set postR(X ). It suffices to slightly modify the join operation. The
algorithm Post(A1, T2) is the result of replacing lines 7–8 of Join by

7 for all (q1, c, q′1)∈ δ1, (q2, (c, b), q′2)∈ δ2 do
8 add ([q1, q2], b, [q′1, q′2]) to δ

As for the join operation, the resulting NFA has to be postprocessed, closing it with respect
to the padding symbol.
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In order to construct an NFA recognizing preR(X ), we replace lines 7–8 by

7 for all (q1, (a, c), q′1)∈ δ1, (q2, c, q′2)∈ δ2 do
8 add ([q1, q2], a, [q′1, q′2]) to δ

Observe that both post and pre are computed with the same complexity as the pairing
construction—namely, the product of the number of states of transducer and NFA.

Example 5.10 Let us construct an NFA recognizing the image of multiples of 3 under
the Collatz function—that is, the set {f (3n) : n∈N}. For this, we first need an automaton
recognizing the set Y of all LSBF encodings of the multiples of 3. Such a DFA is depicted in
figure 5.4a. For instance, this DFA recognizes 0011 (encoding of 12) and 01001 (encoding
of 18) but not 0101 (encoding of 10). We now compute postR(Y ), where, as usual, R=
{(n, f (n)) : n∈N}. The result is the NFA shown in figure 5.4c.

For instance, [1, 1] 1−→[1, 3] is generated by 1
0−→ 1 of the DFA and 1

(0,1)−−−→ 3 of the
transducer for the Collatz function. State [2, 3] becomes final due to the closure with respect
to the padding symbol 0.
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Figure 5.4
Left: (a) DFA for multiples of 3, (b) transducer for the Collatz function f . Right: (c) NFA computing f for multi-
ples of 3.
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The NFA of figure 5.4c is not difficult to interpret. The multiples of 3 are the union of
the sets {6k : k ∈N}, all whose elements are even, and the set {6k+ 3 : k ∈N}, all whose
elements are odd. Applying f to them yields the sets {3k : k ∈N} and {18k+ 10 : k ∈N}.
The first of them is again the set of all multiples of 3, and it is recognized by the upper part
of the NFA. In fact, this upper part is a DFA, and if we minimize it, we obtain exactly the
DFA described above. The lower part of the NFA recognizes the second set. The lower part
is minimal; it is easy to find for each state a word recognized by it but not by the others.
It is interesting to observe that an explicit computation of the set {f (3k) : k ∈N}) in which

we apply f to each multiple of 3 does not terminate, because the set is infinite. In a sense,
our solution “speeds up” the computation by an infinite factor!

5.4 Relations of Higher Arity

The implementations described in the previous sections can be easily extended to rela-
tions of higher arity over the universe U . We briefly describe the generalization. Let us fix
an encoding of U over the alphabet � with padding symbol #. A tuple (w1, . . . ,wk) of
words over � encodes the tuple (x1, . . . , xk)∈Uk if wi encodes xi for every 1≤ i≤ k, and
|w1| = · · · = |wk |. A k-transducer over � is an NFA over alphabet �k . Acceptance of a
k-transducer is defined as for standard transducers.
Boolean operations are defined as for NFAs. The projection operation can be general-

ized to projection over an arbitrary subset of components. For this, given an index set
I ={i1, . . . , in}⊆ {1, . . . , k}, let xI denote the projection of a tuple x= (x1, . . . , xk)∈Uk

over I , defined as the tuple (xi1 , . . . , xin)∈Un. Given a relation R⊆U ×U , we define:

Operation Returns

Projection_I(R): πI (R)={xI : x∈R}

The operation is implemented analogously to the case of a binary relation. Given a k-
transducer T recognizing R, the n-transducer recognizing Projection_I(R) is computed as
follows:

• Replace every transition (q, (a1, . . . , ak), q′) of T by (q, (ai1 , . . . , ain), q
′).

• Compute the padding closure: for every transition (q, (#, . . . , #), q′), if q′ is a final state,
then add q to the set of final states.

The join operation can also be generalized. Given tuples x= (x1, . . . , xn) and y=
(y1, . . . , ym) respectively of arities n and m, we write x · y to denote the tuple
(x1, . . . , xn, y1, . . . , ym)of arityn+m.Given relationsR1⊆Uk1 andR2⊆Uk2 respectivelyof
arities k1 and k2, and index sets I1⊆{1, . . . , k1} and I2⊆{1, . . . , k2} of the same cardinality 	,
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we define:

Operation Returns

Join_I(R1, R2) {x I1 · y I2 : ∃x∈R1, y∈R2 s.t. xI1 = yI2 }

The arity of Join_I(R1, R2) is k1+ k2− 	. The operation is implemented similarly to
the case of binary relations. We proceed in two steps. The first step constructs a transducer
according to the following rule:

If the transducer for R1 has a transition (q, a, q′), the transducer for R2 has a transition (r, b, r′), and
if aI1 = bI2 , then add a transition ([q, r], a I1 · b I2 , [q′, r′]) to the transducer for Join_I(R1, R2).

In the second step, we compute the padding closure of the result. The generalization of the
Pre and Post operations is analogous.

5.5 Exercises

�� Exercise 90. In phone dials, letters are mapped into digits as follows: 


ABC '→ 2 DEF '→ 3 GHI '→ 4 JKL '→ 5
MNO '→ 6 PQRS '→ 7 TUV '→ 8 WXYZ '→ 9

This map can be used to assign a telephone number to a given word. For instance, the
number for AUTOMATON is 288662866.
Consider the problem of, given a telephone number (for simplicity, we assume that it

contains neither 1 nor 0), finding the set of English words that are mapped into it. For
instance, the set of words mapping to 233 contains at least ADD, BED, and BEE. Let N be
a given DFA over alphabet {A, . . . ,Z} that recognizes the set of all English words. Given a
number n, explain how to construct an NFA recognizing the set of all words mapped to n.

� � Exercise 91. As we have seen, the application of the Post and Pre operations to 

transducers requires to compute the padding closure in order to guarantee that the resulting
automaton accepts either all or none of the encodings of an object. The padding closure
has been defined for encodings where padding occurs on the right—that is, w belongs to
the padding closure of an NFA A iff w#k ∈L (A) for some k ∈N. However, in some natural
encodings, like the most-significant-bit-first encoding of natural numbers, padding occurs
on the left. Give an algorithm for computing the padding closure of an NFA when padding
occurs on the left (i.e., where we consider #kw).

� � Exercise 92. Let val : {0, 1}∗→N be the function such that val(w) is the number �
represented by w∈ {0, 1}∗ with the “least-significant bit-first” encoding.
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(a) Give a transducer that doubles numbers, that is, a transducer accepting)

L1=
{[x, y] ∈ ({0, 1}× {0, 1})∗ : val(y)= 2 · val(x)} .

(b) Give an algorithm that takes k ∈N as input and that produces a transducer Ak accepting

Lk =
{
[x, y] ∈ ({0, 1}× {0, 1})∗ : val(y)= 2k · val(x)

}
.

Hint: Use (a) and consider operations seen in the chapter.
(c) Give a transducer for the addition of two numbers, that is, a transducer accepting{[x, y, z] ∈ ({0, 1}× {0, 1}× {0, 1})∗ : val(z)= val(x)+ val(y)

}
.

(d) For every k ∈N>0, let

Xk =
{[x, y] ∈ ({0, 1}× {0, 1})∗ : val(y)= k · val(x)} .

Suppose you are given transducers A and B accepting respectively Xa and Xb for some
a, b∈N>0. Sketch an algorithm that builds a transducer C accepting Xa+b.

Hint: Use (b) and (c).
(e) Let k ∈N>0. Using (b) and (d), how can you build a transducer accepting Xk?
(f) Show that the following language has infinitely many residuals and hence is not regular:{[x, y] ∈ ({0, 1}× {0, 1})∗ : val(y)= val(x)2

}
.

� � Exercise 93. Let U =N be the universe of natural numbers, and consider MSBF

encodings. Give transducers for the sets of pairs (n,m)∈N2 such that

(a) m= n+ 1,
(b) m=#n/2$,
(c) n≤ 2m.

�� Exercise 94. Let U be some universe of objects, and let us fix an encoding of U over

�∗. Prove or disprove: if a relation R⊆U ×U is regular, then the following language is
regular:

LR={wxwy : (wx,wy) encodes a pair (x, y)∈R}.

�� Exercise 95. Let A be an NFA over alphabet �.�

(a) Show how to construct a transducer T over alphabet �×� such that (w, v)∈L (T) iff
wv∈L (A) and |w| = |v|.
(b) Give an algorithm that takes an NFA A as input and returns an NFA A÷2 such that
L (A÷2)={w∈�∗ : ∃v∈�∗ s.t. wv∈L (A) and |w| = |v|}.
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�� Exercise 96.We have defined transducers as NFAs whose transitions are labeled by 

pairs of symbols (a, b)∈�×�. With this definition, transducers can only accept pairs of
words (a1 · · · an, b1 · · · bn) of the same length, which is not suitable for many applications.
An ε-transducer is an NFA whose transitions are labeled by elements of (� ∪ {ε})×

(� ∪ {ε}). An ε-transducer accepts a pair (w,w′) of words if it has a run

q0
(a1,b1)−−−−→ q1

(a2,b2)−−−−→· · · (an,bn)−−−−→ qn with ai, bi ∈� ∪ {ε}
such that w= a1 · · · an and w′ = b1 · · · bn. Note that |w| ≤ n and |w′| ≤ n. The relation
accepted by the ε-transducer T is denoted by L (T). The following figure depicts an ε-
transducer over alphabet {a, b} that, intuitively, duplicates the letters of a word, for example,
on input aba, it outputs aabbaa.

(a, a)

(b, b)

(ε, a)

(ε, b)

Give an algorithm Postε(A,T) that, given an NFA A and an ε-transducer T , both over a
common alphabet �, returns an NFA recognizing the language

postTε
(A)= {w : ∃w′ ∈L (A) such that (w′,w)∈L (T)

}
.

Hint: View ε as an additional letter.

� � Exercise 97. In exercise 96, we have shown how to compute preimages and postim- 

ages of relations described by ε-transducers. In this exercise, we show that, unfortunately,
and unlike standard transducers, ε-transducers are not closed under intersection.

(a) Construct ε-transducers T1 and T2 recognizing the relations

R1={(anbm, c2n) : n,m≥ 0} and R2={(anbm, c2m) : n,m≥ 0}.
(b) Show that no ε-transducer recognizes R1 ∩R2.

� � Exercise 98. Consider transducers whose transitions are labeled by elements of 

(� ∪ {ε})×�∗. Intuitively, at each transition, these transducers read one letter or no letter,
and write a string of arbitrary length. These transducers can be used to perform operations
on strings like, for instance, capitalizing all the words in the string: if the transducer reads,
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say, “singing in the rain,” it writes “Singing In The Rain.” Sketch ε-transducers for the fol-
lowing operations, each of which is informally defined by means of two or three examples.
In each example, when the transducer reads the string on the left, it writes the string on the
right.

Company\Code\index.html Company\Code
Company\Docs\Spec\specs.doc Company\Docs\Spec

International Business Machines IBM
Principles Of Programming Languages POPL

Oege De Moor Oege De Moor
Kathleen Fisher AT&T Labs Kathleen Fisher AT&T Labs

Eran Yahav Yahav, E.
Bill Gates Gates, B.

004989273452 +49 89 273452
(00)4989273452 +49 89 273452

273452 +49 89 273452

� � Exercise 99. This exercise deals with transducers “normalizing” representations of�
numbers.

(a) Give a transducer that removes left-trailing zeros from a fractional number. For exam-
ple, the number 00123.45 should bewritten as 123.45.More precisely, the transducer should
“remove” these zeros by replacing them by the delete symbol “x,” for example,

00123.450 '→ xx123.450

00.000 '→ x0.000

98701.2304 '→ 98701.2304

(b) Give a transducer that now handles trailing zeros from both sides, for example,

00123.450 '→ xx123.45x

00.000 '→ x0.0xx

98701.2304 '→ 98701.2304

(c) Give a transducer that achieves the task of (b) but that further handles negative and
integral numbers, for example,

−00123.450 '→−xx123.45x

−00.000 '→ x0xxxxx
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98701.2304 '→ 98701.2304

00042.0 '→ xxx42xx

9000 '→ 9000

�	 Exercise 100. Transducers can be used to capture the behavior of simple programs. 

For example, consider this program P and its control-flow diagram:

bool x, y init 0
x←?
write x
while true do

read y until y= x∧ y
if x= y then write y end
x←x− 1 or y←x+ y
if x �= y then write x end

1

2

3

4

5
6

78

9 10

x←?

write x

read y

y= x∧ y

y �= x∧ y

x �= y

x= y

write y

y←x+ yx←x− 1

x �= y

write x

x= y

Program P communicates with the environment through its two boolean variables, both
initialized to 0. The instruction end finishes the execution of P. The I/O-relation of P is the
set of pairs (wI ,wO)∈ {0, 1}∗ × {0, 1}∗ such that there is an execution of P during which P
reads the sequence wI of values and writes the sequence wO.
Let [i, x, y] denote the configuration of P in which P is at node i of the control-flow

diagram, and the values of its two boolean variables are x and y, respectively. The initial
configuration of P is [1, 0, 0]. By executing the first instruction, P moves nondeterministi-
cally to one of the configurations [2, 0, 0] and [2, 1, 0]; no input symbol is read and no output
symbol is written. Similarly, by executing its second instruction, the program Pmoves from
[2, 1, 0] to [3, 1, 0] while reading nothing and writing 1.

(a) Give an ε-transducer recognizing the I/O-relation of P.
(b) Can an overflow error occur? That is, can a configuration be reached in which the value
of x or y is not 0 or 1?
(c) Can node 10 of the control-flow graph be reached?
(d) What are the possible values of x upon termination, that is, upon reaching end?
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(e) Is there an execution during which P reads 101 and writes 01?
(f) Let I and O be regular sets of inputs and outputs, respectively. Think of O as a set of
dangerous outputs that we want to avoid. We wish to prove that the inputs from I are safe,
that is, when P is fed inputs from I , none of the dangerous outputs can occur. Describe
an algorithm that decides, given I and O, whether there are i∈ I and o∈O such that (i, o)
belongs to the I/O-relation of P.



6 Finite Universes and Decision Diagrams

In chapter 2, we proved that every regular language has a unique minimal DFA. A natural
question is whether the operations on languages and relations, described in chapters 3 and
5, can be implemented using minimal DFAs and minimal deterministic transducers as data
structure.
The implementations described in the first part of chapter 3 accept and return DFAs but

do not preserve minimality: even if the arguments are minimal DFAs, the result may be
nonminimal (the only exception was complementation). So, in order to return the minimal
DFA, an extra minimization operation must be applied. The situation is worse for the pro-
jection and join operations of chapter 5, because they do not even preserve determinism: the
result of projecting a deterministic transducer or joining two of them may be nondetermin-
istic. In order to return a minimal DFA, it is necessary to first determinize, at exponential
cost in the worst case, and then minimize.
In this chapter, we present implementations that directly yield the minimal DFA, with no

need for an extra minimization step, for the special case in which the universe of objects is
finite. The fundamental feature of this case is that all objects can be encoded by words over
a suitable alphabet� of a fixed length. For instance, if the universe consists of sixty-four-bit
unsigned integers, that is, natural numbers in the range {0, . . . , 264− 1}, then its objects can
be encoded by words over �={0, 1} of length 64. Number 0 is encoded by the word 064,
number 1 by 0631, number 2 by 06210, and so on until number 264− 1, encoded by 164. A
first consequence is that, since all encodings have the same length, we can represent a tuple
of n objects by a word of the same length over alphabet �n, without having to pad shorter
words up to the length of the longest one, as we did in chapter 5.
In the first part of this chapter, we give a first implementation of the operations on lan-

guages and relations using minimal DFAs as data structure. But we can even do better. We
introduce a very restricted class of automata with transitions labeled by regular expres-
sions. This class still has a unique minimal automaton for each fixed-length language,
which can have fewer states than the minimal DFA. We reimplement the operations using
these new minimal automata. The resulting data structure, called decision diagrams, is a
slight generalization of binary decision diagrams, or BDDs, a fundamental data structure
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introduced by R. E. Bryant in 1986. Bryant introduced binary decision diagrams as a com-
pact representation of boolean functions and have been extensively used in many areas of
computer science, particularly in the synthesis and verification of logical circuits. We will
provide an example of such an application in section 6.4.1.

6.1 Fixed-Length Languages and the Master Automaton

Let us introduce fixed-length languages.

Definition 6.1 A language L⊆�∗ has length n≥ 0 if every word of L has length n. If L
has length n for some n≥ 0, then we say that L is a fixed-length language, or that it has
fixed-length.

Some remarks are in order:

• According to this definition, the empty language has length n for all n≥ 0 (the assertion
“every word of L has length n” is vacuously true).
• There are exactly two languages of length 0: the empty language ∅ and the language {ε}
containing only the empty word.
• Every fixed-length language contains only finitely many words, and so it is regular.

In chapter 2, we introduced the master automaton, an object “encompassing” all minimal
DFAs of all regular languages (definition 2.14).We now consider the fragment of the master
automaton obtained by retaining the states corresponding to fixed-length languages and the
transitions between them. Given a language L and a letter a∈�, recall that La, the residual
of L with respect to a, is the set of all words w such that aw∈L (definition 2.1). The fixed-
length master automaton is defined exactly as the master automaton but replacing the set of
all regular languages by the smaller set of all fixed-length languages:

Definition 6.2 The fixed-length master automaton over the alphabet � is the tuple M=
(QM ,�, δM ,FM ), where

• QM is the set of all fixed-length languages over �,
• δ : QM ×�→QM is given by δ(L, a)=La for every q∈QM and a∈�, and
• L∈FM iff ε ∈L.
Example 6.3 Figure 6.1 depicts a small part of the fixed-length master automaton for the
alphabet �={a, b}.

We make some observations:

• The set of transitions of M is well defined, because if L is a fixed-length language, then
so is La.
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{ε} ∅

{a} {a, b} {b}

{aa, ab, ba} {aa, ab, ba, bb} {ab, bb} {aa, ab, bb}

{aaa, aab, aba, baa, bab, bba, bbb} {aab, abb, baa, bab, bbb}
a b a b

a
b

a, b a, b
a b

a

b

a, b
a

b

a, b
a, b

Figure 6.1
A fragment of the fixed-length master automaton over �={a, b}.

• M has a single final state—namely, {ε}. Indeed, by definition 6.2, the final states ofM are
the fixed languages containing ε, and the only such language is {ε}.
• For every k≥ 1, every transition ofM starting at a language of length k leads to a state of
length k− 1. This allows us to organize the states ofM in layers, according to their lengths.
(Recall that ∅ has all lengths, and so it could be in any layer, but we assign it to layer 0.)
• M is almost acyclic. More precisely, the only cycles ofM are the self-loops leading from
∅ to itself for every letter a∈�.

We proved in chapter 2 that the minimal DFA for a regular language L is the fragment
of the master automaton with the state L as the initial state. In particular, the language rec-
ognized from the state L is L. The fixed-length master automaton inherits this property; for
example, the reader can check that the language recognized from state {ab, bb} of figure 6.1
is indeed {ab, bb}.

6.2 A Data Structure for Fixed-Length Languages

The previous observations allow us to define a data structure for representing finite sets
of fixed-length languages, all of them of the same length. Loosely speaking, the struc-
ture representing the languages L={L1, . . . ,Lm} is the fragment of the fixed-length master
automaton containing the states recognizing L1, . . . ,Ln and their descendants. It is a DFA
with multiple initial states, and, for this reason, we call it the multi-DFA for L. Formally:

Definition 6.4 Let L={L1, . . . ,Ln} be a set of languages of the same length over a
common alphabet �. The multi-DFA AL is the tuple AL= (QL,�, δL,Q0L,FL), where
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5

L1

6

L2

7

L3

2 3 4

1

a, b
a

b a, b

a a, b
b

Figure 6.2
The multi-DFA for set L={L1,L2,L3}, where L1={aa, ba}, L2={aa, ba, bb}, and L3={ab, bb}.

• QL is the set of states of the fixed-length master automaton reachable from at least one
of the states L1, . . . ,Ln,
• Q0L={L1, . . . ,Ln},
• δL is the projection of δM onto QL, and
• FL=FM ∩QL.

Example 6.5 Figure 6.2 depicts the multi-DFA for L={L1,L2,L3}, where L1={aa, ba},
L2={aa, ba, bb}, and L3={ab, bb}. For clarity, the state for the empty language has been
omitted, as well as the transitions leading to it.

In order to manipulate multi-DFAs, we represent them as a table of nodes. Let
�={a1, . . . , am}. A node is a pair 〈q, s〉, where q is a state identifier and s= (q1, . . . , qm)

is the successor tuple of the node. Along the chapter, we denote the state identifiers of the
states for ∅ and {ε} by q∅ and qε, respectively.
Amulti-DFA is represented by a table containing a node for each state, with the exception

of the nodes q∅ and qε. The table for the multi-DFA of figure 6.2, where state identifiers are
numbers, is as follows:

Ident. a-succ b-succ

2 1 0
3 1 1
4 0 1
5 2 2
6 2 3
7 4 4
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The procedure make. The algorithms on multi-DFAs use a procedure make(s) that
returns the identifier of the state of T having s as successor tuple, if such a state exists,
and that, otherwise, adds a new node 〈q, s〉 to T , where q is a fresh state identifier, different
from all other state identifiers in T , and returns q. If s is the tuple whose components all
equal q∅, then make(s) returns q∅. The procedure assumes that all the states of the tuple s
(with the exception of q∅ and qε) appear in T .1 For instance, if T is the table above, then
make(2, 2) returns 5, and make(3, 2) adds a new row, say 〈8, (3, 2)〉, and returns 8.

6.3 Operations on Fixed-Length Languages

All operations assume that input fixed-length languages are given as multi-DFAs repre-
sented as a table of nodes. Nodes are pairs of state identifier and successor tuple. The key to
all implementations is the fact that if L is a language of length n≥ 1, then La is a language
of length n− 1. This allows to design recursive algorithms that directly compute the result
when the inputs are languages of length 0 and reduce the problem of computing the result
for languages of length n≥ 1 to the same problem for languages of smaller length.

Fixed-length membership. The operation is implemented as for DFAs, and the complex-
ity is linear in the size of the input.

Fixed-length union and intersection. Implementing a boolean operation on multi-DFAs
corresponds to possibly extending the multi-DFA and returning the state corresponding to
the result of the operation. This is best explained by means of an example. Consider again
the multi-DFA of figure 6.2. An operation like Union(L1,L2) gets the initial states 5 and 6
as input and returns the state recognizing L1 ∪L2. Since L1 ∪L2=L2, the operation returns
state 6. However, if we take Intersection(L2,L3), then the multi-DFA does not contain any
state recognizing it. In this case, the operation extends the multi-DFA for {L1,L2,L3} to
the multi-DFA for {L1,L2,L3,L2 ∩L3}, depicted in figure 6.3, and returns state 8. Thus,
Intersection(L2,L3) not only returns a state but also has a side effect on the multi-DFA
underlying the operations.
Given two fixed-length languages L1,L2 of the same length, we present an algorithm that

returns the state of the fixed-lengthmaster automaton recognizing L1 ∩L2 (the algorithm for
L1 ∪L2 is analogous). The following properties lead to the recursive algorithm inter(q1, q2)
shown in algorithm 26:

• if L1=∅ or L2=∅, then L1 ∩L2=∅;
• if L1={ε} and L2={ε}, then L1 ∩L2={ε}; and
• if L1,L2 /∈ {∅, {ε}}, then (L1 ∩L2)a=La1 ∩La2 for every a∈�.

1. Note that the procedure makes use of the fact that no two states have the same successor tuple.
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a a, b
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Figure 6.3
The multi-DFA for {L1,L2,L3,L1 ∪L2,L2 ∩L3}.

Assume that the states q1 and q2 recognize languages L1 and L2 of the same length.
We say that q1 and q2 have the same length. The algorithm returns the state identifier
qL1∩L2 . If q1= q∅, then L1=∅, which implies L1 ∩L2=∅. So, the algorithm returns the
state identifier q∅. If q2= q∅, then the algorithm also returns q∅. If q1= qε = q2, then the
algorithm returns qε. This deals with all the cases in which q1, q2 ∈ {q∅, qε} (and some
more, which does no harm). If q1, q2 /∈ {q∅, qε}, then the algorithm computes the state
identifiers r1, . . . , rm recognizing the languages (L1 ∩L2)a1 , . . . , (L1 ∩L2)am and returns
make(r1, . . . , rm), creating a new node if no node of T has (r1, . . . , rm) as successor tuple.
But how does the algorithm compute the state identifier of (L1 ∩L2)ai? By the above
identity, we have (L1 ∩L2)ai =Lai1 ∩Lai2 , so the algorithm computes the state identifier of
Lai1 ∩Lai2 by a recursive call inter(qai1 , q

ai
2 ).

The only remaining point is the role of tableG. The algorithm uses memoization to avoid
recomputing the same object. TableG is initially empty. When inter(q1, q2) is computed for
the first time, the result is memoized in G(q1, q2). In any subsequent call, the result is not
recomputed but just read from G. For the complexity, let n1 and n2 be the number of states
of T reachable from states q1 and q2. It is easy to see that every call to inter receives as
arguments states reachable from q1 and q2, respectively. Thus, inter is called with at most
n1 · n2 possible arguments, and hence the complexity is O(n1 · n2).
Algorithm inter is generic: in order to obtain an algorithm for another binary operator,

it suffices to change lines 2 and 3. For example, the symmetric difference of L1 and L2 is
implemented by changing lines 2 and 3 to

2 if (q1= q∅ and q2= qε) or (q1= qε and q2= q∅) then return qε

3 else if (q1= qε and q2= qε) or (q1= q∅ and q2= q∅) then return q∅
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Algorithm 26 Algorithm inter.

inter(q1, q2)
Input: states q1, q2 of the same length
Output: state recognizing L (q1)∩L (q2)
1 if G(q1, q2) is not empty then return G(q1, q2)
2 if q1= q∅ or q2= q∅ then return q∅
3 else if q1= qε and q2= qε then return qε

4 else /* q1, q2 /∈ {q∅, qε} */
5 for all i= 1, . . . ,m do ri← inter(qai1 , q

ai
2 )

6 G(q1, q2)←make(r1, . . . , rm)

7 return G(q1, q2)

For intersection, we can easily obtain a more efficient version. For instance, we know
that inter(q1, q2) and inter(q2, q1) return the same state, and so we can improve line 1 by
checking not only if G(q1, q2) is nonempty but also if G(q2, q1) is. Moreover, inter(q, q)
always returns q, so there is no need to compute anything either.

Example 6.6 Consider the multi-DFA at the top of figure 6.4 but without the colored
states. State 0 for ∅ is again not shown. The tree at the bottom of the figure graphically
describes the run of inter(12, 13), that is, we compute the node for the intersection of the
languages recognized from states 12 and 13. A node q, q′ '→ q′′ of the tree stands for a
recursive call to interwith arguments q and q′ that returns q′′. For instance, the node 2, 4 '→ 2
indicates that inter is called with arguments 2 and 4 and that the call returns state 2. Let
us see why the result is 2. The call inter(2, 4) produces two recursive calls, first inter(1, 1)
(the a-successors of 2 and 4) and then inter(0, 1). The first call returns 1 and the second
0. Therefore, inter(2, 4) returns a state with 1 as a-successor and 0 as b-successor. Since
this state already exists (it is state 2), inter(2, 4) returns 2. On the other hand, inter(9, 10)
creates and returns a new state: its two “children calls” return 5 and 6, and so a new state
with states 5 and 6 as a- and b-successors must be created.

Solid colored nodes of the tree correspond to calls that have already been computed and
for which inter just looks up the result in G. Hatched colored nodes correspond to calls
that are not computed by the more efficient version. For instance, this version immediately
returns 4 as result of inter(4, 4).

Fixed-length complement. Observe that if a set X ⊆U is encoded by a language L of
length n, then the set U \X is encoded by the fixed-length complement �n \L, which we
denote by Ln. In particular, since the empty language has all lengths, we have, for example,
∅ 2=�2, ∅ 3=�3, and ∅ 0=�0={ε}.
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12, 13 '→ 15

8, 11 '→ 8

5, 7 '→ 5

2, 4 '→ 2

1, 1 '→ 1 0, 1 '→ 0

3, 4 '→ 3

0, 1 '→ 0 1, 1 '→ 1

0, 7 '→ 0

9, 10 '→ 14

5, 7 '→ 5 7, 6 '→ 6

4, 2 '→ 2

1, 1 '→ 1 1, 0 '→ 0

4, 4 '→ 4

1, 1 '→ 1 1, 1 '→ 1

Figure 6.4
An execution of inter.

Given the state of the fixed-length master automaton recognizing L, we compute the state
recognizing Ln with the help of these properties:

• if L has length 0 and L=∅, then L 0={ε};
• if L has length 0 and L={ε}, then L 0=∅; and
• if L has length n≥ 1, then

(
Ln
)a=La (n−1) (observe that w∈ (L)a iff aw /∈L iff w /∈La

iff w∈La).
We obtain the procedure described in algorithm 27. If the fixed-length master automaton
has n states reachable from q, then the operation has complexity O(n).

Example 6.7 Consider the multi-DFA at the top of figure 6.5 without the colored states.
The tree of recursive calls at the bottom of the figure graphically describes the run of
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Figure 6.5
An execution of comp.

comp(4, 12)—that is, we compute the node for the complement of the language recog-
nized from state 12, which has length 4. For instance, comp(1, 2) generates two recursive
calls, first comp(0, 1) (the a-successor of 2) and then comp(0, 0). The calls return 0 and 1,
respectively, and so comp(1, 2) returns 3. Observe how the call comp(2, 0) returns 7, the
state accepting {a, b}2.
Solid colored nodes correspond again to calls for which comp just looks up the result

in G. Hatched colored nodes correspond to calls whose result is directly computed by a
more efficient version of comp that applies the following rule: if comp(i, j) returns k, then
comp(i, k) returns j.

Fixed-length emptiness. A fixed-language language L is empty iff the node representing
L has q∅ as state identifier. Hence, emptiness can be checked in constant time.
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Algorithm 27 Algorithm comp.

comp(n, q)
Input: length n, state q of length n
Output: state recognizing L (q)

n

1 if G(n, q) is not empty then return G(n, q)
2 if n= 0 and q= q∅ then return qε

3 else if n= 0 and q= qε then return q∅
4 else / ∗ n≥ 1 ∗ /

5 for all i= 1, . . . ,m do ri← comp(n− 1, qai)
6 G(n, q)←make(r1, . . . , rm)

7 return G(n, q)

Algorithm 28 Algorithm univ.

univ(q)
Input: state q
Output: true if L (q) is fixed-length universal,

false otherwise
1 if G(q) is not empty then return G(q)
2 if q= q∅ then return false
3 else if q= qε then return true
4 else / ∗ q �= q∅ and q �= qε ∗ /

5 G(q)← and(univ(qa1), . . . , univ(qam))

6 return G(q)

Fixed-length universality. A language L of length n is fixed-length universal if L=�n.
The universality of a language of length n recognized by a state q can be checked in time
O(n). It suffices to check for all states reachable from q, with the exception of q∅, that
no transition leads to q∅. More systematically, we use the following properties that lead to
algorithm 28:

• if L=∅, then L is not universal;
• if L={ε}, then L is universal; and
• if ∅ �=L �= {ε}, then L is universal iff La is universal for every a∈�.

For a better algorithm, see exercise 103.
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Algorithm 29 Algorithm eq2.

eq2(q1, q2)
Input: states q1, q2 of different tables, of the same length
Output: true if L (q1)=L (q2), false otherwise
1 if G(q1, q2) is not empty then return G(q1, q2)
2 if q1= q∅1 and q2= q∅2 then G(q1, q2)← true
3 else if q1= q∅1 and q2 �= q∅2 then G(q1, q2)← false
4 else if q1 �= q∅1 and q2= q∅2 then G(q1, q2)← false
5 else / ∗ q1 �= q∅1 and q2 �= q∅2 ∗ /

6 G(q1, q2)← and(eq2(qa11 , qa12 ), . . . , eq2(qam1 , qam2 ))

7 return G(q1, q2)

Fixed-length equality. Since minimal DFAs are unique, two languages are equal iff
the nodes representing them have the same state identifier. This leads to a constant time
algorithm. This solution, however, assumes that the two input nodes come from the same
table. If they come from two different tables T1 and T2, then, since state identifiers can
be assigned in both tables in different ways, it is necessary to check if the DFAs rooted at
the states q1 and q2 are isomorphic. This is done by eq2 described in algorithm 29, which
assumes that qi belongs to a table Ti and that both tables assign state identifiers q∅1 and
q∅2 to ∅.
Fixed-length inclusion. Given L1,L2⊆�n, in order to check L1⊆L2, we compute
L1 ∩L2 and check whether it is equal to L1 using the equality check. The complexity is
dominated by the complexity of computing the intersection.

6.4 Determinization and Minimization

Let L be a fixed-length language, and let A= (Q,�, δ,Q0,F) be an NFA recognizing L. The
forthcoming procedure det&min(A) returns the state of the fixed-length master automaton
recognizing L. In other words, det&min(A) simultaneously determinizes and minimizes A.
The algorithm actually solves a more general problem. Given a set S⊆Q of states, all

recognizing languages of the same length, the language L (S)=∪q∈SL (q) has also this
common length. The heart of the algorithm is a procedure state(S) that returns the state
recognizing L (S). Since L=L ({q0}), the algorithm det&Min(A) just calls state({q0}).

We make the assumption that for every state q of A, there is a path leading from q to some
final state. This assumption can be enforced by suitable preprocessing, but usually it is not
necessary; in applications, NFAs for fixed-length languages usually satisfy the property by
construction. With this assumption, L (S) satisfies the following properties:
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Algorithm 30 Algorithm det&min.

det&min(A)

Input: NFA A= (Q,�, δ,Q0,F)

Output: master state recognizing L (A)

1 return state(Q0)

state(S)
Input: set S⊆Q recognizing languages of the same length
Output: state recognizing L (S)
1 if G(S) is not empty then return G(S)
2 else if S=∅ then return q∅
3 else if S ∩F �= ∅ then return qε

4 else / ∗ S �= ∅ and S ∩F=∅∗ /

5 for all i= 1, . . . ,m do Si← δ(S, ai)
6 G(S)←make(state(S1), . . . , state(Sm))

7 return G(S)

• if S=∅, then L (S)=∅;
• if S ∩F �= ∅, then L (S)={ε} (since the states of S recognize fixed-length languages, the
states of F recognize {ε}; since all the states of S recognize languages of the same length
and S ∩F �= ∅, we have L (S)={ε}); and
• if S �= ∅ and S ∩F=∅, thenL (S)=⋃n

i=1 ai ·L (Si), where Si= δ(S, ai) :=⋃q∈S δ(q, ai).

These properties lead to the recursive procedure of algorithm 30. The procedure state(S)
uses a table G of results, initially empty. When state(S) is computed for the first time, the
result is memoized in G(S), and any subsequent call directly reads the result from G.
The algorithm has exponential complexity, as, in the worst case, it may call state(S) for

every set S⊆Q. To show that an exponential blowup is unavoidable, consider the family
{Ln}n≥0, where Ln={ww′ :w,w′ ∈ {0, 1}n,w �=w′}. While Ln can be recognized by an NFA
of sizeO(n2), its minimal DFA hasO(2n) states: for all u, v∈�n if u �= v, then Lun �=Lvn, as
v∈Lun but v /∈Lvn.
Example 6.8 Figure 6.6 shows an NFA (top left) and the result of applying det&min to
it (top right). The run of det&min is shown at the bottom of the figure, where, for the sake
of readability, sets of states are written without curly brackets (e.g., β, γ instead of {β, γ }).
Observe, for instance, that the algorithm assigns to {γ } the same node as to {β, γ }, because
both have the states 2 and 3 as a-successor and b-successor, respectively.
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Figure 6.6
Run of det&min on an NFA for a fixed-length language.

6.4.1 An Application: Equivalence of Digital Circuits

A carry-ripple adder is a digital circuit that adds two n-bits binary numbers xn · · · x1 and
yn · · · y1, producing a (n+ 1)-bit number sn+1sn · · · s1. The circuit implements the simple
algorithm that repeatedly adds the bits xi and yi, together with a carry-bit cini−1, producing
the sum-bit si and the carry-bit couti (where cin0 := 0 and sn+1 := cn). So, the adder consists
of a cascade of one-bit full adders, each of which implements one step of the algorithm.

A full adder has three inputs x, y, cin; two outputs s, cout; and the following specification:
s must be set to 1 iff exactly one or exactly three of the inputs are 1, and cout must be set
to 1 iff at least two of the inputs are 1.
When asked to implement a full adder, some students produce the circuit depicted on the

left of figure 6.7. It corresponds to the logical formulas

s= cin⊕ x⊕ y,

cout= ((cin ∧ x)∨ (cin ∧ y))∨ (x∧ y),

where⊕ denotes the exclusive-or operator. It is a natural seven-gate implementation, which
deals with the three possible cases for the carry-bit separately: cin and x are 1, cin and y are 1,
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Figure 6.7
Two implementations of a full adder.

and x and y are 1. However, there is a more economic and efficient five-gate implementation,
depicted on the right of figure 6.7. It corresponds to the formulas

s= cin⊕ x⊕ y,

cout= (x∧ y)∨ (cin ∧ (x⊕ y).

Verifying that the two circuits indeed compute the same boolean function reduces to
checking the logical equivalence of the two boolean formulas

ϕ1 := (cin ∧ x)∨ (cin ∧ y)∨ (x∧ y) and ϕ2 := (x∧ y)∨ (cin ∧ (x⊕ y)).

In this simple example, equivalence can be checked by computing the truth tables of ϕ1
and ϕ2; since they have three variables, there are only eight truth assignments. However, a
formula with n variables has 2n truth assignments, and so this approach does not scale to
circuits with hundreds of input signals. A much better algorithm encodes assignments as
words and constructs a multi-DFA for the languages of satisfying assignments of ϕ1 and ϕ2.
Let us encode an assignment cin := b1, x := b2 and y := b3 as the word b1b2b3 ∈�3,

where �={0, 1}. Figure 6.8 depicts the multi-DFA produced to construct nodes for ϕ1
and ϕ2. It has been constructed by starting with the smallest subformulas of ϕ1, iteratively
constructing nodes for increasingly large subformulas, ending with a node for ϕ1 itself, and
then proceeding in the same way for ϕ2. More precisely, we first construct nodes for the
smallest subformulas of ϕ1—namely, cin, x, and y. Their languages of satisfying assign-
ments are 1��, �1�, and ��1, respectively, corresponding to nodes 4, 6, and 9. Then,
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Figure 6.8
Multi-DFA produced when computing the sets of satisfying assignments of the formulas ϕ1 and ϕ2.

we repeatedly apply the algorithms for union, intersection, and symmetric difference to
construct nodes for increasingly larger subformulas; for example, node 10 is obtained by
applying the intersection algorithm to nodes 4 and 6. We compute in this way nodes 10,
11, 13, 15, and, finally, node 16 for ϕ1. We proceed in the same way for ϕ2. For example,
node 19 is the result of applying the algorithm for symmetric difference to nodes 6 and 9. In
this way, we compute nodes 19, 20, and finally node 16. Since ϕ1 and ϕ2 point to the same
node, they have the same satisfying assignments, and hence they are equivalent.

6.5 Operations on Fixed-Length Relations

Fixed-length relations can bemanipulated very similarly to fixed-length languages. Boolean
operations are as for fixed-length languages. Nonetheless, the projection, join, pre, and post
operations can be implemented more efficiently than in chapter 5.
We start with an observation on encodings. In chapter 5, we assumed that if an element

of X is encoded by word w∈�∗, then it is also encoded by w #, where # is the padding
symbol. This ensures that every pair (x, y)∈X ×X has an encoding (wx,wy) such that wx
and wy have the same length. Since, in the fixed-length case, all shortest encodings have
the same length, the padding symbol is no longer necessary. So, in this section, we assume
that each word or pair has exactly one encoding.
The basic definitions on fixed-length languages extend easily to fixed-length relations. A

word relation R⊆�∗ ×�∗ has length n≥ 0 if for all pairs (w1,w2)∈R, the words w1 and
w2 have length n. If R has length n for some n≥ 0, then we say that R has fixed length.
Recall that a transducer T accepts a pair (u, v)∈�∗ ×�∗ if u= a1 · · · an, v= b1 · · · bn,

and T accepts the word (a1, b1) · · · (an, bn)∈ (�×�)∗. A fixed-length transducer accepts
a relation R⊆U ×U if it recognizes the word relation {(wx,wy) : (x, y)∈R}.
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Given a relation R⊆�∗ ×�∗ and a, b∈�, we define R[a,b] = {(w1,w2)∈�∗ ×�∗ :
(aw1, bw2)∈R}. Note that, in particular, ∅[a,b] = ∅ and that ifR has fixed length, then so does
R[a,b]. The fixed-length master transducer over alphabet � is the tuple MT= (QM ,�×�,
δM ,FM ), where

• QM is the set of all fixed-length relations,
• FM ={(ε, ε)}, and
• δM : QM × (�×�)→QM is given by δM (R, [a, b])=R[a,b] for all q∈QM and a, b∈�.

As in the language case, the minimal deterministic transducer recognizing a fixed-length
relation R is the fragment of the fixed-length master transducer containing the states
reachable from R.
Like minimal DFAs, minimal deterministic transducers are represented as tables of

nodes. However, a remark is in order: since a state of a deterministic transducer has |�|2
successors, one for each letter of �×�, a row of the table has |�|2 entries, too large when
the table is only sparsely filled. Sparse transducers over �×� are better encoded as NFAs
over � by introducing auxiliary states:

a transition q
[a,b]−−−→ q′ is “simulated” by two transitions q

a−→ r
b−→ q′,

where r is an auxiliary state with exactly one input and one output transition.

Fixed-length projection. The implementation of the projection operation of chapter 5
may yield a nondeterministic transducer, even if the initial transducer is deterministic. So
we need a different implementation. We observe that projection can be reduced to pre or
post: the projection of a binary relation R onto its first component is equal to preR(�∗)
and the projection onto the second component to postR(�∗). Thus, we defer dealing with
projection until the implementation of pre and post has been discussed.

Fixed-length join. We give a recursive definition of the join R1 ◦R2 of two fixed-length
relations R1,R2. Given a fixed-length relation R, let [a, b]R={(aw1, bw2) : (w1,w2)∈R}.
We have the following properties:

• ∅ ◦R=R ◦ ∅=∅,
• {[ε, ε]} ◦ { [ε, ε]}= {[ε, ε]}, and
• R1 ◦R2=

⋃
a,b,c∈�

[a, b] ·
(
R[a,c]1 ◦R[c,b]2

)
.

This leads to algorithm 31, where union is defined similarly to inter. The complexity is
exponential in the worst case: if t(n) denotes the worst-case complexity for two states of
length n, thenwe have t(n)∈O(t(n− 1)2), since union has quadratic worst-case complexity.
This exponential blowup is unavoidable. We prove it later for projections (see example 6.9),
which is a special case of pre and post, which in turn can be seen as variants of join.
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Algorithm 31 Algorithm join.

join(r1, r2)
Input: states r1, r2 of a transducer table, of the same length
Output: state recognizing L (r1) ◦L (r2)
1 if G(r1, r2) is not empty then return G(r1, r2)
2 if r1= q∅ or r2= q∅ then return q∅
3 else if r1= qε and r2= qε then return qε

4 else / ∗ q∅ �= r1 �= qε and q∅ �= r2 �= qε ∗ /

5 for all (ai, aj)∈�×� do

6 ri,j← union
(
join
(
r[ai,a1]1 , r

[a1,aj]
2

)
, . . . , join

(
r[ai,am]1 , r

[am,aj]
2

))
7 G(r1, r2)=make(r1,1, . . . , rm,m)

8 return G(r1, r2)

Fixed-length pre and post. Recall that in the fixed-length case, we do not need any
padding symbol. Given a fixed-length language L and a fixed-length relation R, preR(L)

admits an inductive definition that we now derive. We have the following:

• if R=∅ or L=∅, then preR(L)=∅;
• if R={[ε, ε]} and L={ε}, then preR(L)={ε}; and
• if ∅ �=R �= {[ε, ε]} and ∅ �=L �= {ε}, then preR(L)=⋃a,b∈� a · preR[a,b](Lb), where R[a,b] =
{w∈ (�×�)∗ : [a, b]w∈R}.
The first two properties are obvious. For the last one, observe that all pairs of R have length
at least 1, and so every word of preR(L) also has length at least 1. Now, given a∈� and
w1 ∈�∗, we have

aw1 ∈ preR(L) ⇐⇒ ∃bw2 ∈L s.t. [aw1, bw2] ∈R
⇐⇒ ∃b∈�, ∃w2 ∈Lb s.t. [w1,w2] ∈R[a,b]

⇐⇒ ∃b∈� s.t. w1 ∈ preR[a,b](Lb)
⇐⇒ aw1 ∈

⋃
b∈�

a · preR[a,b](Lb).

These properties lead to the recursive procedure of algorithm 32, which accepts as inputs
a state of the transducer table for a fixed-length relation R and a state of the automaton table
for a language L, and returns the state of the automaton table recognizing preR(L). The
transducer table is not changed by the algorithm.
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Algorithm 32 Algorithm pre.

pre(r, q)
Input: state r of a transducer table and state q of an automaton table, of the same length
Output: state recognizing preL(r)(L (q))
1 if G(r, q) is not empty then return G(r, q)
2 if r= r∅ or q= q∅ then return q∅
3 else if r= rε and q= qε then return qε

4 else
5 for all ai ∈� do
6 q′i← union

(
pre
(
r[ai,a1], qa1

)
, . . . , pre

(
r[ai,am], qam

))
7 G(q, r)←make(q′1, . . . , q′m)

8 return G(q, r)

Algorithm 33 Algorithm pro1.

pro1(r)
Input: state r of a transducer table
Output: state recognizing proj1(L (r))
1 if G(r) is not empty then return G(r)
2 if r= r∅ then return q∅
3 else if r= rε then return qε

4 else
5 for all ai ∈� do
6 q′i← union

(
pro1
(
r[ai,a1]

)
, . . . , pro1

(
r[ai,am]

))
7 G(r)←make(q′1, . . . , q′m)

8 return G(r)

As promised, we can now implement the operation that projects a fixed-length relation
R onto its first component. We provide a dedicated procedure for preR(�∗), described in
algorithm 33.
Algorithm pro1 has exponential worst-case complexity. As for join, the reason is the

quadratic blowup introduced by union when the recursion depth increases by 1. The
next example shows that projection is inherently exponential. Slight modifications of this
example show that join, pre, and post are inherently exponential as well.

Example 6.9 Consider the relation R⊆�2n×�2n given by

R=
{(

w1xw2yw3, 0|w1|10|w2|10|w3|
)
: x �= y, |w2| = n, |w1w3| = n− 2

}
.
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That is, R contains all pairs of words of length 2n whose first word has a position i≤ n such
that the letters at positions i and i+ n are distinct and whose second word contains only 0s
except for two 1s at the same two positions. It is easy to see that the minimal deterministic
transducer for R has O(n2) states (intuitively, it memorizes the letter x above the first 1,
reads n− 1 letters of the form [z, 0], and then reads [z, 1], where y �= x). On the other hand,
we have

proj1(R)={ww′ :w,w′ ∈�n and w �=w′},
whose minimal DFA, as shown when discussing det&min, has O(2n) states. Thus, any
algorithm for projection has complexity �(2

√
n).

6.6 Decision Diagrams

Binary decision diagrams, BDDs for short, are a very popular data structure for the repre-
sentation and manipulation of boolean functions. In this section, we show that they can be
seen as minimal automata of a certain kind.
Given a boolean function f (x1, . . . , xn) : {0, 1}n→{0, 1}, let Lf denote the set of strings

b1b2 · · · bn ∈ {0, 1}n such that f (b1, . . . , bn)= 1. The minimal DFA recognizing Lf is very
similar to the BDD representing f but not completely equal. We modify the constructions
of the last section to obtain an exact match.
Consider the DFA depicted in figure 6.9. It is a minimal DFA for some language of length

4 that can be described as follows: after reading an a, accept any word of length 3; after
reading ba, accept any word of length 2; and after reading bb, accept any two-letter word
whose last letter is a b. Following this description, the language can also be more compactly
described by the automaton of figure 6.10 with regular expressions as transitions.
We call such an automaton a decision diagram (DD). The intuition behind this name is

that, if we view states as points at which a decision is made—namely, which should be the
next state—then states q1, q3, q4, and q5 do not correspond to any real decision; whatever
the next letter, the next state is the same. As we shall see, the states of a minimal DD will
always correspond to “real” decisions.

q0

q1

q2

q3 q5

q4 q6

q7

a

b

a

b

a

b
a

b
a

b

a

b

b

Figure 6.9
A minimal DFA for some language of length 4.
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Figure 6.10
Compact presentation of the DFA from figure 6.9.
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Figure 6.11
Decision diagram reduction rule.

The forthcoming section 6.6.1 shows that the minimal DD for a fixed-length language is
unique and can be obtained by repeatedly applying to the minimal DFA the reduction rule
of figure 6.11.
The converse direction also works: the minimal DFA can be recovered from the minimal

DD by “reversing” the rule. This already allows us to use DDs as a data structure for fixed-
length languages but only through conversion to minimal DFAs: to compute an operation
using minimal DDs, expand them to minimal DFAs, conduct the operation, and convert the
result back. The forthcoming section 6.6.2 shows how to do better by directly defining the
operations on minimal DDs, bypassing the minimal DFAs.

6.6.1 Decision Diagrams and Kernels

A decision diagram (DD) is an automatonA= (Q,�, δ,Q0,F)whose transitions are labeled
by regular expressions of the form

a�n= a��� · · ·��︸ ︷︷ ︸
n

and that satisfies the following determinacy condition: for all q∈Q and a∈�, there is
exactly one k ∈N such that δ(q, a�k) �= ∅, and for this k, there is a state q′ such that
δ(q, a�k)={q′}. Observe that DFAs are DDs in which k= 0 for every state and every letter.

We introduce the notion of kernel, as well as kernel of a fixed-length language.
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Definition 6.10 A fixed-length language L⊆�∗ is a kernel if L=∅, L={ε}, or La �=Lb

for some a, b∈�. The kernel of a fixed-length language L, denoted by 〈L〉, is the unique
kernel satisfying L=�k〈L〉 for some k≥ 0.

Observe that the number k is also unique for every language but ∅. Indeed, for the empty
language, we have 〈∅〉=∅ and so ∅=�k〈∅〉 for every k≥ 0.

Example 6.11 Let �={a, b, c}. The language L1={aab, abb, bab, cab} is a kernel
because La1={ab, bb} �= {ab}=Lb1. The language L2={aa, ba} is also a kernel since La2=
{a} �= ∅=Lc2. However, if we change the alphabet to �′ = {a, b}, then L2 is no longer a
kernel, and we have 〈L2〉= {a}.
For the language L3={aa, ab, ba, bb} over �′, we have L3= (�′)2, and so k= 2 and

〈L3〉= {ε}.
The mapping that assigns to every nonempty fixed-length language L the pair (k, 〈L〉) is

a bijection. In other words, L is completely determined by k and 〈L〉. Thus, a representation
of kernels can be extended to a representation of all fixed-length languages. Let us now see
how to represent kernels.
Themaster decision diagram has the set of all kernels as states, the kernel {ε} as a unique

final state, and a transition (K, a�k , 〈Ka〉) for every kernel K and a∈�, where k is equal to
the length of Ka minus the length of 〈Ka〉. For K=∅, which has all lengths, we take k= 0.

Example 6.12 Figure 6.12 shows a fragment of the master decision diagram over alpha-
bet {a, b}. In comparison to the fixed-length master automaton of figure 2.4, the languages
{a, b}, {ab, bb}, and {aa, ab, ba, bb} are not states of the master since they are not kernels.

The DD AK for a kernel K is the fragment of the master decision diagram containing
the states reachable from K. It is readily seen that AK recognizes K. A DD is minimal if no
other DD for the same language has fewer states. Observe that, since every DFA is also a
DD, the minimal DD for a language has at most as many states as its minimal DFA.
The following proposition shows that the minimal DD of a kernel has very similar prop-

erties to the minimal DFAs of a regular language. In particular, AK is always a minimal DD
for the kernelK. However, because of a technical detail, it is not the uniqueminimal DD: the
label of the transitions of themaster leading to ∅ can be changed from a to a�k for any k≥ 0,
and from b to b�k for any k≥ 0, without changing the language. To recover unicity, we rede-
fine minimality: a DD is minimal if no other DD for the same language has fewer states,
and every transition leading to a state from which no word is accepted is labeled by a or b.

Proposition 6.13 The following statements hold.

(a) Let A be a DD such that L (A) is a kernel. It is the case that A is minimal if and only
if (i) every state of A recognizes a kernel, and (ii) distinct states of A recognize distinct
kernels.
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Figure 6.12
A fragment of the master decision diagram.

(b) For every K �= ∅, AK is the unique minimal DD recognizing K.
(c) The result of exhaustively applying the reduction rule to the minimal DFA recognizing
a fixed-length language L is the minimal DD recognizing 〈L〉.
Proof

(a) ⇒) For (i), assume A contains a state q such that L (q) is not a kernel. We prove that
A is not minimal. Since L (A) is a kernel, q is neither initial nor final. Let k be the smallest
number such that A contains a transition (q, a�k , q′) for some letter a and some state q′. We
haveL (q)a=�kL (q′), and sinceL (q) is not a kernel,L (q)a=L (q)b for every b∈�. So,
we have L (q)=⋃a∈� a�kL (q′)=�k+1L (q′). Now we perform the following two oper-
ations: first, we replace every transition (q′′, b�l, q) of A by a transition (q′′, b�l+k+1, q′);
then, we remove q and any other state no longer reachable from the initial state (recall that
q is neither initial nor final). The resulting DD recognizes the same language as A and has
at least one state less. Therefore, A is not minimal.
For (ii), observe that the quotienting operation can be defined for DDs as for DFAs, and

so we can merge states that recognize the same kernel without changing the language. If
two distinct states of A recognize the same kernel, then the quotient has fewer states than
A, and so A is not minimal.

⇐) We show that two DDs A and A′ that satisfy (i) and (ii) and recognize the same language
are isomorphic, which, together with⇒), proves that they are minimal. It suffices to prove
that if two states q and q′ ofA andA′ satisfyL (q)=L (q′), then for every a∈�, the (unique)
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transitions (q, a�k , r) and (q′, a�k′ , r′) satisfy k= k′ and L (r)=L (r′). Let L (q)=K=
L (q′). By (i), both L (r) and L (r′) are kernels. Thus, we necessarily have L (r)=〈Ka〉=
L (q′), because the only solution to the equation K= a�	K ′, where 	 and K ′ are unknowns
and K ′ must be a kernel, is K ′ = 〈Ka〉.
(b) Automaton AK recognizes K, and it satisfies conditions (i) and (ii) of (a) by definition.
So, it is a minimal DD. Uniqueness follows from the proof of direction⇐) of (a).
(c) Let B be a DD obtained by exhaustively applying the reduction rule to A. By (a), it
suffices to prove that B satisfies (i) and (ii). For (ii), observe that, since every state of
A recognizes a different language, so does every state of B (the reduction rule preserves
the recognized languages). For (i), assume that some state q does not recognize a kernel.
Without loss of generality, we can choose L (q) of minimal length, and therefore the target
states of all outgoing transitions of q recognize kernels. It follows that all of them necessarily
recognize 〈L (q)〉. Since B contains at most one state recognizing 〈L (q)〉, all outgoing tran-
sitions of q have the same target, and so the reduction rule can be applied to q, contradicting
the hypothesis that it has been applied exhaustively.

6.6.2 Operations on Kernels

We use multi-DDs to represent sets of fixed-length languages of the same length. A set
L={L1, . . . ,Lm} is represented by the states of the master decision diagram recognizing
〈L1〉, . . . , 〈Lm〉 and by the common length of L1, . . . ,Lm. Observe that the states and the
length completely determine L.
Example 6.14 Figure 6.13 shows the multi-DD for the set L={L1,L2,L3} previously
depicted in figure 6.2. Recall that we have L1={aa, ba}, L2={aa, ba, bb}, and L3=
{ab, bb}. The multi-DD is the result of applying the reduction rule to the multi-DFA of
figure 6.2. Observe that, while L1, L2, and L3 have the same length, 〈L2〉 has a different
length than 〈L1〉 and 〈L3〉.

6

L2

2

L1

4

L3

1

a

a b

b�

Figure 6.13
The multi-DD for {L1,L2,L3}, where L1={aa, ba}, L2={aa, ba, bb}, and L3={ab, bb}.
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Multi-DDs are represented as a table of kernodes. A kernode is a triple 〈q, 	, s〉, where q
is a state identifier, 	 is a length, and s= (q1, . . . , qm) is the successor tuple of the kernode.
The table for the multi-DD of figure 6.13 is the following:

Ident. Length a-succ b-succ

2 1 1 0
4 1 0 1
6 2 2 1

This example explains the role of the new length field. If we only know that the a- and
b-successors of, say, state 6 are states 2 and 1, we cannot infer which expressions label the
transitions from 6 to 2 and from 6 to 1: they could be a and b�, a� and b�2, or a�n and
b�n+1 for any n≥ 0. However, once we know that state 6 accepts a language of length 2,
we can deduce the correct labels: since states 2 and 1 accept languages of length 1 and 0,
respectively, the labels are a and b�.

The procedure kmake(�, s). All algorithms call a procedure kmake(	, s) with the follow-
ing specification. Let Ki be the kernel recognized by the ith component of s. A call to
kmake(	, s) returns the kernode for 〈L〉, where L is the unique language of length 	 such
that 〈Lai〉=Ki for every ai ∈�.
If Ki �=Kj for some i and j, then kmake(	, s) behaves like make(s): if the current table

already contains a kernode 〈q, 	, s〉, then kmake(	, s) returns q, and if no such kernode exists,
then kmake(	, s) creates a new kernode 〈q, 	, s〉 with a fresh identifier q and returns q.

If K1, . . . ,Km are all equal to some kernel K, then we have L=⋃m
i=1 ai�kK for some k,

and hence 〈L〉= 〈�	+1K〉=K. So, kmake(	, s) returns the kernode for K. For instance, if
T is the table above, then kmake(3, (2, 2)) returns 3, while make(2, 2) creates a new node
having 2 as a-successor and b-successor.

Algorithms. The algorithms for operations on kernels are modifications of the algorithms
of the previous section. We show how to modify the algorithms for intersection, comple-
ment, and simultaneous determinization and minimization. In the previous section, the state
of the fixed-length master automaton for a language L was the language L itself and was
obtained by recursively computing the states for La1 , . . . ,Lam and then applyingmake. Now,
the state of the master for L is 〈L〉 and can be obtained by recursively computing states for
〈La1〉, . . . , 〈Lam〉 and applying kmake.

Fixed-length intersection. Given kernels K1 and K2 of languages L1 and L2, we compute
the state recognizingK1 ,K2=〈L1 ∩L2〉.2 We have the following obvious property: ifK1=
∅ or K2=∅, then K1 ,K2=∅. Assume K1 �= ∅ �=K2. If the lengths of K1 and K2 are 	1 and

2. Operation , is well defined as 〈L1〉= 〈L′1〉 and 〈L2〉= 〈L′2〉 implies 〈L1 ∩L2〉= 〈L′1 ∩L′2〉.
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	2, then since 〈�kL〉= 〈L〉 holds for every k and L, we have

K1 ,K2=

⎧⎪⎪⎨⎪⎪⎩
〈�l2−l1K1 ∩K2〉 if 	1 < 	2,

〈K1 ∩�l1−l2K2〉 if 	1 > 	2,

〈K1 ∩K2〉 if 	1= 	2,

which allows us to obtain the state for K1 ,K2 by computing states for

〈(�	1−	2K1 ∩K2)
a〉, 〈(K1 ∩�	2−	1K2)

a〉 or 〈(K1 ∩K2)
a〉

for every a∈� and applying kmake.
These states can be computed recursively by means of the following rules, which lead to

the procedure of algorithm 34:

if 	1 < 	2, then 〈(�	2−	1K1 ∩K2)
a〉 = 〈�	2−	1−1K1 ∩Ka

2 〉 = K1 , 〈Ka
2 〉;

if 	1 > 	2, then 〈(K1 ∩�	1−	2K2)
a〉 = 〈Ka

1 ∩�	1−	2−1K2〉 = 〈Ka
1 〉 ,K2; and

if 	1= 	2, then 〈(K1 ∩K2)
a〉 = 〈Ka

1 ∩Ka
2 〉 = 〈Ka

1 〉 , 〈Ka
2 〉.

Example 6.15 Figure 6.14 shows a run of kinter on the two languages represented by the
multi-DFA at the top of figure 6.4. The multi-DD for the same languages is shown at the

Algorithm 34 Algorithm kinter.

kinter(q1, q2)
Input: states q1, q2 recognizing 〈L1〉, 〈L2〉
Output: state recognizing 〈L1 ∩L2〉
1 if G(q1, q2) is not empty then return G(q1, q2)
2 if q1= q∅ or q2= q∅ then return q∅
3 if q1 �= q∅ and q2 �= q∅ then
4 if 	1 < 	2 /* lengths of the kernodes for q1, q2 */ then
5 for all i= 1, . . . ,m do ri← kinter(q1, q

ai
2 )

6 G(q1, q2)← kmake(	2, r1, . . . , rm)

7 else if 	1 > 	2 then
8 for all i= 1, . . . ,m do ri← kinter(qai1 , q2)
9 G(q1, q2)← kmake(	1, r1, . . . , rm)

10 else /* 	1= 	2 */
11 for all i= 1, . . . ,m do ri← kinter(qai1 , q

ai
2 )

12 G(q1, q2)← kmake(	1, r1, . . . , rm)

13 return G(q1, q2)
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5, 1 '→ 5 1, 6 '→ 6

1, 2 '→ 2

1, 1 '→ 1 1, 0 '→ 0

1, 1 '→ 1

Figure 6.14
An execution of kinter.

top of figure 6.14, and the rest of the figure describes the run of kinter on it. Recall that
solid colored nodes correspond to calls whose result has already been memoized and need
not be executed. The meaning of the hatched colored nodes is explained below.

The algorithm can be improved by noting that two further properties hold:

If K1={ε}, then L1 ∩L2=L2, and so K1 ,K2=K2.

If K2={ε}, then L1 ∩L2=L1, and so K1 ,K2=K1.

These properties imply that kinter(qε, q)= q= kinter(q, qε) for every state q. Thus, we can
improve kinter by explicitly checking if one of the arguments is qε. The hatched colored
nodes in figure 6.14 correspond to calls whose result is immediately returned with the help
of this check. Observe how this improvement has a substantial effect, reducing the number
of calls from nineteen to only five.
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Algorithm 35 Algorithm kcomp.

kcomp(q)
Input: state q recognizing a kernel K
Output: state recognizing K̂
1 if G(q) is not empty then return G(q)
2 if q= q∅ then return qε

3 else if q= qε then return q∅
4 else
5 for all i= 1, . . . ,m do ri← kcomp(qai)
6 G(q)← kmake(r1, . . . , rm)

7 return G(q)

Fixed-length complement. Given the kernel K of a fixed-language L of length n, we
wish to compute the state of the master decision diagram recognizing 〈Ln〉, where n is the
length of L. The superscript n is only necessary because ∅ has all possible lengths, and
so ∅ n=�n �=�m=Lm for n �=m. But now we have 〈∅ n〉= {ε} for all n≥ 0, and so the
superscript is not needed anymore. We define the operator̂on kernels by K̂=〈L〉.3 We
obtain the state for K̂ by recursively computing states for 〈K̂a〉 by means of the following
properties, which lead to algorithm 35:

• If K=∅, then K̂={ε}, and if K={ε}, then K̂=∅.
• If ∅ �=K �= {ε}, then 〈K̂a〉= K̂a.

6.6.3 Determinization and Minimization

The algorithm kdet&min that converts an NFA recognizing a fixed-language L into themini-
mal DD recognizing 〈L〉 differs from det&min essentially in one letter: it uses kmake instead
of make. It is described in algorithm 36.

Example 6.16 Figure 6.15 shows again the NFA of figure 6.6 and the minimal DD for
the kernel of its language. The run of kdet&min(A) is at the bottom of the figure. For
the difference with det&min(A), consider the call kstate({ε, ζ }). Since the two recursive
calls kstate({η}) and kstate({η, θ}) return both state 1 with length 1, kmake(1, 1) does not
create a new state, as make(1, 1) would return state 1. The same occurs at the top call
kstate({α}).

3. The operator is well defined because 〈L〉= 〈L′〉 implies 〈L〉= 〈L′〉.
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Algorithm 36 Algorithm kdet&min.

kdet&min(A)

Input: NFA A= (Q,�, δ,Q0,F)

Output: state of a multi-DFA recognizing L (A)

1 return kstate(Q0)
kstate(S)
Input: set S of states of length 	

Output: state recognizing L (R)

1 if G(S) is not empty then return G(S)
2 else if S=∅ then return q∅
3 else if S ∩F �= ∅ then return qε

4 else / ∗ S �= ∅ and S ∩F=∅∗ /

5 for all i= 1, . . . ,m do Si← δ(S, ai)
6 G(S)← kmake(	, kstate(S1), . . . , kstate(Sm));
7 return G(S)

α

β γ

δ ε ζ

η θ

a a, b

a b

b

a, b
b

b
b a

b

3

2

1
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b
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α '→ 3

β, γ '→ 3

δ, ε '→ 2

∅ '→ 0 η '→ 1

ε, ζ '→ 1

η '→ 1 η, θ '→ 1

γ '→ 3

ε '→ 2

∅ '→ 0 η '→ 1

ε, ζ '→ 1

Figure 6.15
Run of kdet&min on an NFA for a fixed-length language.
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6.7 Exercises

� � Exercise 101. Prove that the minimal DFA for a language of length 4 over a two- �
letter alphabet has at most twelve states, and give a language for which the minimal DFA
has twelve states.

�� Exercise 102. Give an efficient algorithm that receives as input the minimal DFA of 

a fixed-length language and returns the number of words it contains.

� � Exercise 103. The algorithm for fixed-length universality given in table 28 has a 

best-case runtime equal to the length of the input state q. Give an improved algorithm that
only needs O(|�|) time for inputs q such that L (q) is not fixed-size universal.

� � Exercise 104. Let �={0, 1}. Let f : �6→� be the boolean function defined by �
f (x1, x2, . . . , x6)= (x1 ∧ x2)∨ (x3 ∧ x4)∨ (x5 ∧ x6).

(a) Construct the minimal DFA recognizing {x1 · · · x6 ∈�6 : f (x1, . . . , x6)= 1}. For exam-
ple, the DFA accepts 111000 because f (1, 1, 1, 0, 0, 0)= 1 but not 101010.
(b) Show that the minimal DFA recognizing {x1x3x5x2x4x6 : f (x1, . . . , x6)= 1} has at least
fifteen states. Variables are ordered differently, for example, the DFA accepts neither 111000
nor 101010.
(c) More generally, consider function f (x1, . . . , x2n)=∨1≤k≤n(x2k−1 ∧ x2k) and languages

Ln={x1x2 · · · x2n−1x2n : f (x1, . . . , x2n)= 1},
Kn={x1x3 · · · x2n−1x2x4 · · · x2n : f (x1, . . . , x2n)= 1}.

Show that the size of the minimal DFA grows linearly for Ln and exponentially for Kn.

�� Exercise 105. Let L1={abb, bba, bbb} and L2={aba, bbb}. �

(a) Suppose you are given a fixed-length language L described explicitly by a set instead
of an automaton. Give an algorithm that outputs the state q of the fixed-length master
automaton for L.
(b) Use the previous algorithm to build the states of the fixed-length master automaton for
L1 and L2.
(c) Compute the state of the fixed-length master automaton representing L1 ∪L2.
(d) Identify the kernels 〈L1〉, 〈L2〉, and 〈L1 ∪L2〉.
�� Exercise 106. 


(a) Give an algorithm to compute L (p) ·L (q) given states p and q of the fixed-length
master automaton.
(b) Give an algorithm to compute both the length and size of L (q) given a state q of the
fixed-length master automaton.
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(c) The length and size of L (q) could be obtained in constant time if they were simply
stored in the fixed-length master automaton table. Give a new implementation of make for
this representation.

�� Exercise 107. Let k ∈N>0. Let flip : {0, 1}k→{0, 1}k be the function that inverts the

bits of its input, for example, flip(010)= 101. Let val : {0, 1}k→N be such that val(w) is
the number represented by w with the “least significant bit first” encoding.

(a) Describe the minimal transducer that accepts

Lk =
{
[x, y] ∈ ({0, 1}× {0, 1})k : val(y)= val(flip(x))+ 1 mod 2k

}
.

(b) Build the state r of the fixed-length master transducer for L3 and the state q of the
fixed-length master automaton for {010, 110}.
(c) Adapt the algorithm pre seen in the chapter to compute post(r, q).

� � Exercise 108. We define the language of a boolean formula ϕ over variables�
x1, . . . , xn as

L (ϕ)={a1 · · · an ∈ {0, 1}n : assignment x1 '→ a1, . . . , xn '→ an satisfies ϕ}.
(a) Give a polynomial-time algorithm that takes as input a DFA A recognizing a language
of length n and returns a boolean formula ϕ such that L (ϕ)=L (A).
(b) Give an exponential-time algorithm that takes a boolean formula ϕ as input and returns
a DFA A recognizing L (ϕ).

�� Exercise 109.Given X ⊆{0, 1, . . . , 2k − 1}, where k≥ 1, let AX be the minimal DFA

recognizing the “least-significant-bit-first” encodings of length k of the elements of X .

(a) Let X + 1={x+ 1 mod 2k : x∈X }. Give an algorithm that on input AX produces AX+1.
(b) Let AX = (Q, {0, 1}, δ, q0,F). What is the set of numbers recognized by the automaton
A′ = (Q, {0, 1}, δ′, q0,F), where δ′(q, b)= δ(q, 1− b)?

�� Exercise 110. Recall that weakly acyclic languages and DFAs have been introduced

in exercise 35. Recall that the relation � on the states of a weakly acyclic DFA, defined by
q� q′ iff δ(q,w)= q′ for some word w, is a partial order. Show that:

(a) Every fixed-length language is weakly acyclic.
(b) If L is weakly acyclic, then Lw is also weakly acyclic for every w∈�∗.

Given weakly acyclic languages L and L′, let L�L L′ denote that L= (L′)w for some word
w. Show that:

(c) �L is a partial order on the set of all weakly acyclic languages.
(d) �L has no infinite descending chains.
(e) The only two minimal languages w.r.t. �L are ∅ and �∗.
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Recall that, by exercise 57, the minimal DFA recognizing a given weakly acyclic language
is weakly acyclic. We define the weakly acyclic master automaton over alphabet � as
M= (QM ,�, δM ,FM ), where

• QM is the set of all weakly acyclic languages over �;
• δ : QM ×�→QM is given by δ(L, a)=La for every q∈QM and a∈�; and
• L∈FM iff ε ∈L.
Prove the following result, which generalizes the corresponding one for fixed-length
languages:

(f) For every weakly acyclic language L, the language recognized from the state L of the
weakly acyclic master automaton M is L.

�� Exercise 111. Recall that exercise 110 establishes that weakly acyclic languages can 

be represented by a weakly acyclic master automaton. A state q of the weakly acyclic master
automaton can be represented by a table as follows. A node is a triple 〈q, s, b〉, where
• q is a state identifier;
• s= (α1, . . . ,αm) is the successor tuple of the node, where for every 1≤ i≤m, the
component αi is either a state identifier or the special symbol SELF; and
• b∈ {0, 1} indicates whether the state is accepting (b= 1) or not (b= 0).

For example, if �={a, b} and q is an accepting state satisfying δ(q, a)= q′ and δ(q, b)=
q, then q is represented by the triple 〈q, s, b〉, where s= (q′, SELF) and b= 1. The state
identifiers of the states for the languages ∅ and �∗ are denoted respectively by q∅ and q�∗ .
Given a table T that represents a fragment of the weakly acyclic master automaton, the

proceduremake(s, b) returns the state identifier of the unique state of T having s as successor
tuple and b as boolean flag, if such a state exists; otherwise, it adds a new node 〈q, s, b〉 to
T , where q is a fresh identifier, and it returns q.

(a) Give an algorithm to compute L (q1)∩L (q2) given states q1 and q2 of the weakly
acyclic master automaton.
(b) Give an algorithm to compute L (q1)∪L (q2) given states q1 and q2 of the weakly
acyclic master automaton.
(c) Give an algorithm to compute L (q) given a state q of the weakly acyclic master
automaton.

�	 Exercise 112. Recall that we can associate a language to a boolean formula as done 

in exercise 108. Show that the following problem is NP-hard:

Given: a boolean formula ϕ.

Decide: whether the minimal DFA for L (ϕ) has more than one state.





7 Application II: Verification

A significant part of the development of computer systems consists of finding and fixing
bugs. For many systems, code inspection and testing are not enough to catch every bug. In
particular, this is the case for concurrent systems. A concurrent system consists of multiple
computing units communicating by some means, like shared memory or message-passing.
The order in which different units of a concurrent system execute instructions depends on
many factors, like the particular hardware on which the system is running, the specific state
of the memory, the relative speed of communication channels, and others. These factors are
not under the control of the designer, and so a concurrent system that is repeatedly started
in the same initial configuration can potentially execute in many different ways. A bug that
is only revealed in a few of these executions is very hard to find and to reproduce.
One of the main applications of automata theory is the algorithmic verification or fal-

sification of correctness properties of hardware and software systems, in particular of
concurrent ones. Given a system (such as a digital circuit, a program, or a communica-
tion protocol) and a property (such as “after termination, the values of variables x and y
are equal” or “every sent message is eventually received”), we wish to automatically deter-
mine whether the system satisfies the property or not. We apply the theory developed in the
previous chapters to this question.

7.1 The Automata-Theoretic Approach to Verification

We consider discrete systems for which a notion of configuration is definable.1 At every
time moment, the system is in a configuration. Moves from one configuration to the next
take place instantaneously and are determined by the system dynamics. If the semantics
allows a move from a configuration c to another one c′, then c′ is a legal successor of
c. A configuration may have several successors, in which case the system is said to be

1. We speak of the “configurations” of a system and not of its “states,” as it is sometimes done in the literature,
in order to avoid confusion with the states of automata.
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nondeterministic. There is a distinguished set of initial configurations. An execution is a
finite or an infinite sequence of configurations starting at some initial configuration and in
which every other configuration is a legal successor of its predecessor in the sequence. A
full execution is either an infinite execution or an execution whose last configuration has no
successors.
In this chapter, we are only interested in finite executions (see chapter 13 for an extension

to infinite executions). The set of executions can then be seen as a language E⊆C∗, where
the alphabet C is the set of possible configurations of the system. We call C∗ the set of
potential executions of the system.

Example 7.1 Consider program 1, which has two boolean variables x and y. A configura-
tion of the program is a triple [	, nx, ny], where 	∈ {1, 2, 3, 4, 5} is the current value of the
program counter, and nx, ny ∈ {0, 1} are the current values of x and y. The set C of all pos-
sible configurations contains 5 · 2 · 2= 20 elements. The initial configurations are [1, 0, 0],
[1, 0, 1], [1, 1, 0], [1, 1, 1]—that is, all configurations in which control is at line 1.
The sequence

[1, 1, 1] [2, 1, 1] [3, 1, 1] [4, 0, 1] [1, 0, 1] [5, 0, 1]
is a full execution, while

[1, 1, 0] [2, 1, 0] [4, 1, 0] [1, 1, 0]
is also an execution but not a full one. All words of

([1, 1, 0] [2, 1, 0] [4, 1, 0])∗

are executions, and hence the language E of all executions is infinite.

1 while x= 1 do
2 if y= 1 then
3 x← 0
4 y← 1− x
5 end

Program 1 A simple boolean program.

Assume we wish to determine whether the system has an execution satisfying some prop-
erty of interest. If we can construct automata for the language E⊆C∗ of executions and the
language P⊆C∗ of potential executions satisfying the property, then we can solve the pro-
blem by checking whether the language E∩P is empty, which can be decided using the
algorithms of chapter 3. This is the main insight behind the automata-theoretic approach to
verification.
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The requirement that the language E of executions is regular is satisfied by all systems
with finitely many reachable configurations (i.e., finitely many configurations c such that
some execution leads from some initial configuration to c). A system automaton recognizing
the executions of the system can be easily obtained from the configuration graph: the
graph having the reachable configurations as nodes and arcs from each configuration to
its successors. There are two possible constructions, both very simple.

• In the first construction, the states are the reachable configurations of the program plus
a new state i, which is also the initial state. All states are final. For every transition c→ c′

of the graph, there is a transition c
c′−→ c′ in the system automaton. Moreover, there is a

transition i
c−→ c for every initial configuration.

It is easy to see that this construction produces a deterministic automaton. Since the

label of a transition is also its target state, for any two transitions c
c′−→ c1 and c

c′−→ c2 we
necessarily have c1= c′ = c2, and so the automaton is deterministic.
• In the second construction, the states are the reachable configurations of the program plus
a new state f . The initial states are all the initial configurations, and all states are final.
For every transition c→ c′ of the graph, there is a transition c

c−→ c′ in the system
automaton. Moreover, there is a transition c

c−→ f for every configuration c having no
successor.

Example 7.2 Figure 7.1 depicts the configuration graph of program 1, together with the
system automata produced by the two constructions above. Let us algorithmically decide
whether the system has a full execution such that initially y= 1, finally y= 0, and y never
increases. Let [	, x, 0] and [	, x, 1] stand for the sets of configurations where y= 0 and y= 1,
respectively, and the values of 	 and x are arbitrary. Similarly, let [5, x, 0] stand for the
set of configurations where 	= 5, y= 0, and x is arbitrary. The set of potential executions
satisfying the property is given by the regular expression

[	, x, 1] [	, x, 1]∗ [	, x, 0]∗ [5, x, 0],
which is recognized by the property automaton at the top of figure 7.2. Its intersection with
the system automaton in the middle of figure 7.1 (we could also use the other one) is shown
at the bottom of figure 7.2. A solid colored state of the pairing labeled by [	, x, y] is the result
of pairing the solid colored state of the property NFA and the state [	, x, y] of the system
DFA. Since labels of the transitions of the pairing are always equal to the target state, they
are omitted for the sake of readability.
Since the intersection has no hatched colored state, the intersection is empty, and so the

program has no execution satisfying the property.
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1, 0, 0 5, 0, 0

1, 1, 0 2, 1, 0 4, 1, 0

1, 0, 1 5, 0, 1

1, 1, 1 2, 1, 1 3, 1, 1 4, 0, 1

1, 0, 0 5, 0, 0

1, 1, 0 2, 1, 0 4, 1, 0

1, 0, 1 5, 0, 1

1, 1, 1 2, 1, 1 3, 1, 1 4, 0, 1

i

[1, 0, 0]

[1, 1, 0]

[1, 0, 1]

[1, 1, 1]

[5, 0, 0]

[2, 1, 0] [4, 1, 0]

[1, 1, 0]
[5, 0, 1]

[2, 1, 1] [3, 1, 1] [4, 0, 1]

[1, 0, 1]

1, 0, 0 5, 0, 0

1, 1, 0 2, 1, 0 4, 1, 0

1, 0, 1 5, 0, 1

1, 1, 1 2, 1, 1 3, 1, 1 4, 0, 1

f

[5, 0, 0]

[5, 0, 1]

[1, 0, 0]

[1, 1, 0] [2, 1, 0]

[4, 1, 0]
[1, 0, 1]

[1, 1, 1] [2, 1, 1] [3, 1, 1]

[4, 0, 1]

Figure 7.1
Top: the configuration graph of program 1.Middle and bottom: two system automata arising from the configuration
graph.
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[	, x, 1] [5, x, 0]

[	, x, 1] [	, x, 0]

1, 0, 1 5, 0, 1

1, 0, 1 5, 0, 1

1, 1, 1 2, 1, 1 3, 1, 1 4, 0, 1

1, 1, 1 2, 1, 1 3, 1, 1 4, 0, 1

i

Figure 7.2
Top: property automaton. Bottom: product automaton.

Example 7.3 Let us determinewhether the assignment “y← 1− x” on line 4 of program 1
is redundant and can be safely removed. This is the case if the assignment never changes
the value of y. The potential executions of the program in which the assignment changes
the value of y at some point correspond to the regular expression

[	, x, y]∗ ([4, x, 0] [1, x, 1]+ [4, x, 1] [1, x, 0]) [	, x, y]∗.
A property automaton for this expression can be easily constructed, and its intersection with
the system automaton is again empty. So, the property holds, and the assignment is indeed
redundant.

7.2 Programs as Networks of Automata

We can also model program 1 as a network of communicating automata. The key idea is
to model the two variables x and y and the control flow of the program as three indepen-
dent processes. The processes for x and y maintain their current values, and the control
flow process maintains the current value of the program counter. The execution of, say, the
assignment “x← 0” in line 3 of the program is modeled as the execution of a joint action
between the control flow process and the process for variable x: the control flow process
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1

2

3

4

5

x= 1

y= 1

x �= 1

y �= 1

x← 0

x= 1⇒ y← 0,
x= 0⇒ y← 1

0 1

x= 0⇒ y← 1,
x← 0,
x �= 1

x= 1⇒ y← 0,
x= 1

x← 0

0 1

x= 1⇒ y← 0,
y �= 1

x= 0⇒ y← 1,
y= 1

x= 0⇒ y← 1

x= 1⇒ y← 0

Figure 7.3
A network of three automata modeling program 1. All states are final, so the double circles are drawn as simple
circles for clarity.

updates the current control position to 4, and simultaneously, the process for x updates the
current value of x to 0.
The processes for the variables and the control flow are represented by finite automata

whose states are all final. The three automata for program 1 are shown in figure 7.3. Since all
states are final, we do not use the graphical representationwith a double circle. The automata
for x and y have two states, one for each possible value of the variables. The control-flow
automaton has five states, one for each control location. The alphabet of the automaton
for x contains the assignments and the boolean conditions of the program involving x and
similarly for y. So, for example, the alphabet for x contains x← 0 but not y= 1. However, a
single assignment may produce several alphabet letters. For instance, the assignment “y←
1− x” at line 4 produces two alphabet letters, corresponding to two possible actions: if the
automaton for x is currently at state 0 (i.e., if x currently has value 0), then the automaton
for y must move to state 1, otherwise to state 0. We let “x= 0⇒ y← 1” and “x= 1⇒
y← 0” denote these two alphabet letters. Observe also that the execution of “y← 1− x” is
modeled as a joint action of all three automata: intuitively, the action “x= 0⇒ y← 1” can
be executed only if the automaton for x is currently at state 0 and the control-flow automaton
is currently at state 4.
Let us give a formal definition of networks of automata. In the definition, we do not

require all states to be final, because, as we shall see later, a more general definition proves
to be useful.

Definition 7.4 A network of automata is a tuple A=〈A1, . . . ,An〉 of NFAs, not necessar-
ily over a common alphabet. Let Ai= (Qi,�i, δi,Q0i,Fi) for every i∈ {1, . . . , n}, and let
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�=�1 ∪ · · · ∪�n. A letter of � is called an action. A configuration of A is a tuple
[q1, . . . , qn] of states such that qi ∈Qi for every i∈ {1, . . . , n}. A configuration is initial if
qi ∈Q0i for every i∈ {1, . . . , n} and final if qi ∈Fi for every i∈ {1, . . . , n}.
Observe that each NFA of a network has its own alphabet �i. The alphabets �1, . . . ,�n

are not necessarily disjoint; in fact, usually they are not.We define when is an action enabled
at a configuration and what happens when it occurs.

Definition 7.5 Let A=〈A1, . . . ,An〉 be a network of automata, where Ai= (Qi,�i, δi,
Q0i,Fi). Given an action a∈�, we say that Ai participates in a if a∈�i. An action a is
enabled at a configuration [q1, . . . , qn] if δi(qi, a) �= ∅ for every i∈ {1, . . . , n} such that Ai
participates in a. If a is enabled, then it can occur, and its occurrence leads to any element
of Q′1× · · ·×Q′n, where

Q′i=
{

δ(qi, a) if Ai participates in a,

{qi} otherwise.

We call Q′1× · · ·×Q′n the set of successor configurations of [q1, . . . , qn] with respect to
action a. We write [q1, . . . , qn] a−→[q′1, . . . , q′n] to denote that [q1, . . . , qn] enables a and
[q′1, . . . , q′n] ∈Q′1× · · ·×Q′n.

The language accepted by a network is defined in the standard way:

Definition 7.6 A run of A on input a0a1 · · · an−1 ∈�∗ is a sequence

c0
a0−−→ c1

a1−−→· · · an−1−−−→ cn,

where c0, . . . , cn are configurations ofA, the configuration c0 is initial, and ci+1 is a succes-
sor of ci with respect to ai for every 0≤ i< n. A run is accepting if cn is a final configuration.
Network A accepts w∈�∗ if it has an accepting run on input w. The language recognized
by A, denoted by L (A), is the set of words accepted by A.

Example 7.7 Let Ax, Ay, and AP be the three automata of figure 7.3 for the variables x
and y and the control flow, respectively. We have

�x={x= 1; x �= 1; x← 0; x= 0⇒ y← 1; x= 1⇒ y← 0},
�y={y= 1; y �= 1; x= 0⇒ y← 1; x= 1⇒ y← 0}, and
�P=�x ∪�y.

The automata participating in the action x← 0 are AP and Ax, and all three automata
participate in “x= 1⇒ y← 0.” Observe that AP participates in all actions. If we define
A=〈AP,Ax,Ay〉, then the configurations of A are the configurations of program 1. The

configuration [3, 1, 1] enables the action x← 0, and we have [3, 1, 1] x←0−−−→[4, 0, 1]. One of
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the runs of A is

[1, 1, 1] x=1−−−→[2, 1, 1] y=1−−−→[3, 1, 1] x←0−−−→[4, 0, 1] x=0⇒y←1−−−−−−−→[5, 0, 1]
and so the word (x= 1)(y= 1)(x← 0)(x= 0⇒ y← 1) belongs to L (A).

7.2.1 Parallel Composition of Languages

We introduce a useful characterization of the language of a network of automata. Given L1⊆
�∗1 , . . . ,Ln⊆�∗n , the parallel composition of L1, . . . ,Ln is the language L1 ‖L2 ‖ · · · ‖Ln⊆
(�1 ∪ · · · ∪�n)

∗ defined as follows: w∈L1 ‖ · · · ‖Ln iff proj�i
(w)∈Li for every 1≤ i≤ n,

where proj�i
(w) is the word obtained from w by only keeping letters from �i.

Example 7.8 Let L1={aa, bc} be a language over alphabet �1={a, b, c} and L2=
{ada, dc} a language over alphabet �2={a, c, d}. We have L1 ‖L2={ada, bdc, dbc}.

Notice that, strictly speaking, parallel composition is an operation that depends not only
on the languages L1, . . . ,Ln, but also on their alphabets. Take, for example, L1={a} and
L2={ab}. If we look at them as languages over the alphabet {a, b}, then L1 ‖L2=∅, but if
we look at L1 as a language over {a} and L2 as a language over {a, b}, then L1 ‖L2={ab}.
Thus, the correct notation would be L1 ‖�1,�2 L2, but we abuse language and assume that
when a language is defined, its alphabet is clear from the context.

Proposition 7.9 The parallel composition of languages satisfies the following:

(a) Parallel composition is associative, commutative, and idempotent, that is, (L1 ‖L2) ‖
L3=L1 ‖ (L2 ‖L3) (associativity), L1 ‖L2=L2 ‖L1 (commutativity), and L ‖L=L (idem-
potence).
(b) If L1 and L2 are over a common alphabet �1=�2, then L1 ‖L2=L1 ∩L2.
(c) If A=〈A1, . . . ,An〉 is a network of automata, then L (A)=L (A1) ‖ · · · ‖L (An).

Proof See exercise 115.

By property (b), two automata A1 and A2 over a common alphabet satisfy L (A1 ‖A2)=
L (A1)∩L (A2). Intuitively, in this case, every action must be jointly executed by A1 and A2,
or, in other words, the automata move in lockstep. At the other extreme, if the input alpha-
bets of A1 and A2 are pairwise disjoint, then, intuitively, the automata do not communicate
at all and move independently of each other.

7.2.2 Asynchronous Product

Given a network of automata A=〈A1, . . .An〉, we can compute an NFA recognizing the
same language. This NFA, called the asynchronous product of A and denoted by A1⊗
· · ·⊗An, is the output of algorithm 37.
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Algorithm 37 Asynchronous product.

AsyncProduct(A1, . . . ,An)

Input: a network of automata A=〈A1, . . . ,An〉, where
Ai= (Qi,�i, δi,Q0i,Fi) for every i∈ {1, . . . , n}

Output: NFA A1⊗ · · ·⊗An= (Q,�, δ,Q0,F) recognizing L (A)

1 Q, δ,F←∅
2 Q0←Q01× · · ·×Q0n

3 W←Q0

4 while W �= ∅ do
5 pick [q1, . . . , qn] from W
6 add [q1, . . . , qn] to Q
7 if

∧n
i=1 qi ∈Fi then add [q1, . . . , qn] to F

8 for all a∈�1 ∪ . . .∪�n do
9 for all i∈ [1..n] do
10 if a∈�i then Q′i← δi(qi, a) else Q′i={qi}
11 for all [q′1, . . . , q′n] ∈Q′1× . . .×Q′n do
12 if [q′1, . . . , q′n] /∈Q then add [q′1, . . . , q′n] to W
13 add ([q1, . . . , qn], a, [q′1, . . . , q′n]) to δ

14 return Q,�1 ∪ · · · ∪�n, δ,Q0,F

The algorithm follows closely definitions 7.5 and 7.6. Starting at the initial configurations,
AsyncProduct repeatedly picks a configuration from theworkset, stores it, constructs its suc-
cessors, and adds them (if not yet stored) to the workset. Line 10 is the crucial one. Assume
we are in the middle of the execution of AsyncProduct(A1,A2), currently processing a
configuration [q1, q2] and an action a at line 8. There are three cases.

• Assume that a belongs to �1 ∩�2, and the a-transitions leaving q1 and q2 are
q1

a−→ q′1, q1
a−→ q′′1 and q2

a−→ q′2, q1
a−→ q′′2. Then, we obtain Q′1={q′1, q′′1} and Q′2=

{q′2, q′′2}, and the loop at lines 11–13 adds the transitions
[q1, q2] a−→ [q′1, q′2], [q1, q2] a−→ [q′′1, q′2],
[q1, q2] a−→ [q′1, q′′2], [q1, q2] a−→ [q′′1, q′′2],

corresponding to the four possible “joint a-moves” that A1 and A2 can execute from [q1, q2].
• Assume that a only belongs to �1, the a-transitions leaving q1 are as before, and, since
a /∈�2, there are no a-transitions leaving q2. Then, Q′1={q′1, q′′1}, Q′2={q2}, and the loop
adds transitions [q1, q2] a−→[q′1, q2] and [q1, q2]

a−→[q′′1, q2], which correspond to A1 making
a move while A2 stays put.
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1, 0, 0 5, 0, 0
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x= 1⇒ y← 0

x �= 1

x= 1 y= 1 x← 0

x= 0⇒ y← 1

Figure 7.4
Asynchronous product of the automata of figure 7.3.

• Assume that a belongs to �1 ∩�2, the a-transitions leaving q1 are as before, and there
are no a-transitions leaving q2 (which is possible even if a∈�2, because A2 is an NFA).
Then, Q′1={q′1, q′′1}, Q′2=∅, and the loop adds no transitions. This corresponds to the fact
that, since a-moves must be jointly executed by A1 and A2, and A2 is not currently able to
do any a-move, no joint a-move can happen.

Example 7.10 The asynchronous product AP⊗Ax⊗Ay, where AP,Ax,Ay are the three
automata of figure 7.3, is shown in figure 7.4. Its states are the reachable configurations of
the program. Since all states are final, we draw all states as simple instead of double circles.

Finally, while we have defined the asynchronous product of A1⊗ · · ·⊗An as an automa-
ton over alphabet �=�1 ∪ · · · ∪�n, the algorithm can be easily modified to return a
system automaton recognizing the set of executions of the program.We provide a procedure
SysAut(A1, . . . ,An) in algorithm 38 for the first of the two constructions on page 165 (the
one in which the automaton has an extra initial state i). Giving an algorithm for the sec-
ond construction is left as an exercise (see exercise 114). To obtain SysAut, we first modify
line 13 of AsyncProduct so that, instead of transition [q1, . . . , qn] a−→[q′1, . . . , q′n], it adds

[q1, . . . , qn] [q1,...,qn]−−−−−−→[q′1, . . . , q′n] (see line 14 of SysAut).

It only remains to add the initial state and its outgoing transitions, which happens in lines
1 to 4.

7.2.3 State- and Action-Based Properties

We have defined executions as sequences of configurations of the program and modeled
properties as sets of potential executions. This is called the state-based approach. One
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Algorithm 38 Generation of the system automaton with an extra initial state.

SysAut(A1, . . . ,An)

Input: a network of automata 〈A1, . . .An〉, where
A1= (Q1,�1, δ1,Q01,Q1), . . . ,An= (Qn,�n, δn,Q0n,Qn)

Output: a system automaton S= (Q,�, δ,Q0,F)

1 Q, δ,Q0,F←∅
2 add i to Q; add i to Q0; add i to F
3 for all [q1, . . . , qn] ∈Q01× · · ·×Q0n do
4 add (i, [q1, . . . , qn], [q1, . . . , qn]) to δ

5 W←Q01× · · ·×Q0n

6 while W �= ∅ do
7 pick [q1, . . . , qn] from W
8 add [q1, . . . , qn] to Q; add [q1, . . . , qn] to F
9 for all a∈�1 ∪ . . .∪�n do

10 for all i∈ [1..n] do
11 if a∈�i then Q′i← δi(qi, a) else Q′i={qi}
12 for all [q′1, . . . , q′n] ∈Q′1× . . .×Q′n do
13 if [q′1, . . . , q′n] /∈Q then add [q′1, . . . , q′n] to W
14 add ([q1, . . . , qn], [q′1, . . . , q′n], [q′1, . . . , q′n]) to δ

15 return (Q,�, δ,Q0,F)

can also define executions as sequences of instructions. The set of executions of a net-
work 〈A1, . . . ,An〉 is then defined directly as the language of AsyncProduct(A1, . . . ,An).
For example, the execution of our running example is the language of the NFA shown in
figure 7.4. The property “no terminating execution of the program contains an occurrence
of the action (x= 0⇒ y← 1)” holds iff this language and the regular language

�∗P (x= 0⇒ y← 1) �∗P (x �= 1)

have an empty intersection, which is not the case. In this context, program instructions are
called actions, and we speak of action-based verification.

7.3 Concurrent Programs

Networks of automata can also elegantly model concurrent programs—that is, programs
consisting of several sequential programs, usually called processes, communicating in some
way. A popular communication mechanism includes shared variables, where processes
communicate by writing a value to a variable, which can then be read by other processes.
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As an example, we consider (a simplified version of) Lamport-Burns’ mutual exclusion
algorithm for two processes, called process 0 and process 1, whose code is described in
algorithm 39.

Algorithm 39 Lamport-Burns’ mutual exclusion algorithm.

Process 0

repeat
nc0 : b0← 1
t0 : while b1= 1 do skip
c0 : b0← 0

forever

Process 1

repeat
nc1 : b1← 1
t1 : if b0= 1 then
q1 : b1← 0
q′1 : while b0= 1 do skip

goto nc1
c1 : b1← 0

forever

The processes communicate through the shared boolean variables b0 and b1, which ini-
tially hold the value 0. Process i reads and writes variable bi and reads variable b1−i. The
algorithm should guarantee that the processes are never simultaneously at control points
c0 and c1 (their critical sections) and that they will not reach a deadlock. Other properties
the algorithm should satisfy will be discussed later. Initially, process 0 is in its noncritical
section (local state nc0); it can also be trying to enter its critical section (t0) or be already
in its critical section (c0). The process can move from nc0 to t0 at any time by setting b0 to
1, it can move from t0 to c0 only if the current value of b1 is 0, and it can move from c0 to
nc0 at any time by setting b0 to 0.
Process 1 is a bit more complicated. The local states nc1, t1, and c1 play the same role

as in process 0. The local states q1 and q′1 model a “polite” behavior: intuitively, if pro-
cess 1 sees that process 0 is trying to enter or in the critical section, it moves to an “after
you” local state q1 and sets b1 to 0 to signal that it is no longer trying to enter its crit-
ical section (local state q′1). It can then return to its noncritical section if the value of
b0 is 0.
A configuration of this program is a tuple [nb0 , nb1 , 	0, 	1], where nb0 , nb1 ∈ {0, 1}, 	0 ∈

{nc0, t0, c0}, and 	1 ∈ {nc1, t1, q1, q′1, c1}. We define executions of the program by inter-
leaving. We assume that, if at the current configuration both processes can do an action,
then one of the two will occur before the other, but which one occurs before is decided
nondeterministically. So, loosely speaking, if two processes can execute two sequences of
actions independently of each other (because, say, they involve disjoint sets of variables),
then the sequences of actions of the two processes running in parallel are the interleaving
of the sequences of the processes.



Application II: Verification 175

nc0 t0 c0
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Figure 7.5
A network of four automata modeling the Lamport–Burns mutex algorithm for two processes. The automata on
the left model the control flow of the processes and the automata on the right the two shared variables. All states
are final.

For example, at the initial configuration [0, 0, nc0, nc1], both processes can set their
variables to 1. Hence, there are two possible transitions:

[0, 0, nc0, nc1]→ [1, 0, t0, nc1] and [0, 0, nc0, nc1]→ [0, 1, nc0, t1].
Since the other process can still set its variable, we also have transitions

[1, 0, t0, nc1]→ [1, 1, t0, t1] and [1, 0, t0, nc1]→ [1, 1, t0, t1].
In order to model a shared-variable program as a network of automata, we model each
process and variable by an automaton. The network of automata modeling Lamport-Burns’
algorithm is shown in figure 7.5 and its asynchronous product in figure 7.6.

7.3.1 Expressing and Checking Properties

We use Lamport-Burns’ algorithm to present some more examples of properties and how
to check them automatically.
The mutual exclusion property can be easily formalized: it holds if the asynchronous

product does not contain any configuration of the form [v0, v1, c0, c1], where v0, v1 ∈ {0, 1}.
The property can be easily checked on-the-fly while constructing the asynchronous product,
and an inspection of figure 7.6 shows that it holds. Notice that in order to check mutual
exclusion, we do not need to construct the NFA for the executions of the program. This
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0, 0, nc0, nc1 1, 1, t0, t1 1, 1, t0, q1 1, 0, t0, q′1

1, 0, t0, nc1 1, 1, c0, t1 0, 1, nc0, q1

1, 0, c0, nc1 1, 1, c0, q1 1, 0, c0, q′1

0, 0, nc0, q′1

0, 1, nc0, t1 1, 1, t0, c1

0, 1, nc0, c1

b0= 1 b1← 0
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b1← 1
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b0← 1 b1= 1 b1= 1 b0= 1

b0= 0 b0← 1
b1= 0b1← 0

b1← 0

b1= 0 b1← 1
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b0= 1

b0← 0

b1← 0

b1= 0

b0= 1

b0← 0
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b0← 1

b0= 0

b0← 0 b0← 1

Figure 7.6
Asynchronous product of the network of figure 7.5. Solid (respectively, dotted) transitions correspond to moves
by process 0 (respectively, process 1).

is always the case if we only wish to check the reachability of a configuration or set of
configurations.
Other properties of interest for the algorithm are as follows:

• Deadlock freedom. The algorithm is deadlock-free if every configuration of the asyn-
chronous product has at least one successor. Again, the property can be checked on-the-fly,
and it holds.
• Bounded overtaking. The property states that after process 0 signals its interest in access-
ing the critical section by moving to t0, process 1 can enter the critical section at most once
before process 0 enters the critical section.2 Bounded overtaking can be checked using the
NFA recognizing the executions of the network. The NFA can be easily obtained from the
asynchronous product by renaming the transitions as shown in example 7.2. Let NCi,Ti,Ci

2. More precisely, this is the bounded overtaking property for process 0. We would like it to hold for both process
0 and process 1.
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be the sets of configurations in which process i is in its noncritical section, is trying to access
its critical section, and is in its critical section, respectively. Let � stand for the set of all
configurations. The regular expression

r=�∗ T0 (� \C0)
∗ C1 (� \C0)

∗ NC1 (� \C0)
∗ C1 �∗

represents potential executions of the algorithm that violate the property.

7.4 Coping with the State-Explosion Problem

Recall that the automata-theoretic approach to the verification of networks of automata
reduces the verification problem to the question of deciding whether given an automaton
AE and a regular expression rV , the language L (AE)∩L (rV ) is empty or not. Automaton
AE recognizes the language E of executions of the system, and rV is a regular expression
for the set V of potential executions that violate the property.
When the system is modeled as a network of automata,AE is essentially the asynchronous

product of the network (after the minor modifications mentioned at the end of section 7.2.2;
see also exercise 114). The main problem of the approach is the number of states of AE.
If the network has n components, each of them with at most k states, then AE can have as
many as kn states. Thus, in the worst case, the number of states of AE grows exponentially
in the size of the network. This is called the state-explosion problem.
The existence of a polynomial-time algorithm for the verification problem is very

unlikely. Indeed, the problem is PSPACE-complete. For readers not familiar with complex-
ity theory, “PSPACE-complete” informally means that there is most likely no verification
algorithm that uses less than exponential time and a polynomial amount of memory. The
proof is deferred to a forthcoming optional subsection, which may be skipped.
Despite this result, the automata-theoretic approach is successfully applied to many hard-

ware and software systems. This is possible thanks to numerous clever ideas that improve
its performance in practice. We introduce three of them in the rest of the section.

7.4.1 � Verification Is PSPACE-Complete

Theorem 7.11 The following problem is PSPACE-complete.

Given: a network of automata A=〈A1, . . . ,An〉 over alphabets �1, . . . ,�n, a regular
expression rV over the set of configurations of A.

Decide: whether L (A1⊗ · · ·⊗An)∩L (rV ) �= ∅.
Proof To prove that the problem is in PSPACE, we show that it lies in NPSPACE and
apply Savitch’s theorem. Let B= IntersNFA(A1⊗ · · ·⊗An,AV ). The states of B are tuples
[q1, . . . , qn, q], where qi is a state of Ai for every 1≤ i≤ n, and q is a state of V . The
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polynomial-space nondeterministic algorithm guesses a run ofB, one state at a time, leading
to a final state. Notice that storing a state of B only requires linear space.

To prove PSPACE-hardness, consider the special case of the problem in which all
the alphabets �1, . . . ,�n are equal. By proposition 7.9(b) and (c), in this case, we have
L (A1⊗ · · ·⊗An)=⋂n

i=1 L (Ai), and the problem reduces to checking whether the inter-
section

⋂n
i=1 L (Ai) is empty. This problemwas shown to be PSPACE-hard in exercise 77 by

a reduction from the acceptance problem for deterministic linearly bounded automata.

7.4.2 On-the-Fly Verification

Given a program with a set E of executions and a regular expression describing the set V of
potential executions violating a property, we can check if E∩V =∅ holds in four steps:

(a) model the program as a network of automata 〈A1, . . . ,An〉, and construct AE=
SysAut(A1, . . . ,An) with L (AE)=E;
(b) transform the regular expression into an NFA AV using the algorithm of section 1.4.3;
(c) construct an NFA AE∩V recognizing E∩V ; and
(d) check the emptiness of AE∩V .

Observe that AE may havemore states than AE∩V . Indeed, if a state of AE is not reachable
by any word of V , then it does not appear in AE∩V . The difference in size between AE and
AE∩V can be large, and so it is better to directly construct AE∩V , bypassing the construction
of AE. Further, it is inefficient to first construct AE∩V and then check if its language is
empty. It is better to check for emptiness on-the-fly, while constructing AE∩V . This is done
by CheckViol as described in algorithm 40.
Algorithm CheckViol is designed for state-based properties. For action-based properties,

the algorithm is even simpler. Recall that, in the action-based approach, the potential execu-
tions of a network 〈A1, . . . ,An〉 violating the property are specified by a regular expression
rV over the alphabet �=�1 ∪ · · · ∪�n of actions. Therefore, both the asynchronous prod-
uct A1⊗ · · ·⊗An and the NFA AV computed from rV have � as an alphabet. Furthermore,
recall that if two NFAs A1 and A2 have the same alphabet, then L (A1⊗A2)=L (A1)∩
L (A2) (by proposition 7.9b and c). So, we have L (A)∩L (AV )=L (A1⊗ · · ·⊗An⊗AV ).
Thus, we can test the emptiness ofL (A)∩L (V) by constructing the asynchronous product
A1⊗ · · ·⊗An⊗AV , checking on-the-fly if its language is empty. If we rename AV as An+1,
then it suffices to change line 7 of AsyncProduct to

if
n+1∧
i=1

qi ∈Fi then return true.

Intuitively, in the construction above, we consider AV as another component of the
asynchronous product. This has another small advantage. Let us consider again the language

�∗P (x= 0⇒ y← 1) �∗P (x �= 1).
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Algorithm 40 Algorithm to check violation of a property.

CheckViol(A1, . . . ,An, rV )

Input: a network A=〈A1, . . .An〉, where Ai= (Qi,�i, δi,Q0i,Fi)

a regular expression rV over the configurations of A
Output: true if L (A1⊗ · · ·⊗An)∩L (rV ) is nonempty, false otherwise

1 (QV ,�V , δV ,Q0V ,FV )←REtoNFA(rV )

2 Q←∅; Q0←Q01× · · ·×Q0n×Q0V

3 W←Q0

4 while W �= ∅ do
5 pick [q1, . . . , qn, q] from W
6 add [q1, . . . , qn, q] to Q
7 for all a∈�1 ∪ . . .∪�n do
8 for all i∈ [1..n] do
9 if a∈�i then Q′i← δi(qi, a) else Q′i={qi}
10 for all [q′1, . . . , q′n] ∈Q′1× . . .×Q′n do
11 Q′ ← δV (q, [q′1, . . . , q′n])
12 for all q′ ∈Q′ do
13 if

∧n
i=1 q′i ∈Fi and q′ ∈FV then return true

14 if [q′1, . . . , q′n, q′] /∈Q then add [q′1, . . . , q′n, q′] to W
15 return false

In order to check whether some execution of the program belongs to it, we are only inter-
ested in the actions “x= 0⇒ y← 1” and “x �= 1.” Thus, we can replace AV by an automaton
A′V with only these two actions as an alphabet and recognizing only the word (x= 0⇒ y←
1) (x �= 1). Note that A′V only participates in these two actions. Intuitively, A′V is an observer
of the network 〈A1, . . . ,An〉 that onlymonitors occurrences of “x= 0⇒ y← 1” and “x �= 1.”

7.4.3 Compositional Verification

Consider the asynchronous product A1⊗A2 of two NFAs over alphabets �1 and �2. Intu-
itively, A2 does not see the actions of �1 \�2; they are “internal” actions of A1. Therefore,
A1 can be replaced by any other automaton A′1 satisfying L (A′1)= proj�2

(L (A1)) without
A2 “noticing,” meaning that the sequences of actions that A2 can execute with A1 and A′1 as
partners are the same. Formally,

proj�2
(A1⊗A2)= proj�2

(A′1⊗A2).

In particular, we have L (A1⊗A2) �= ∅ iff L (A′1⊗A2
) �= ∅, and so instead of checking

emptiness of A1⊗A2, one can also check the emptiness of A′1⊗A2.
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It is easy to construct an automaton recognizing proj�2
(L (A1)): it suffices to replace all

transitions of A1 labeled with letters of �1 \�2 by ε-transitions. This automaton has the
same size as A1, and so substituting it for A1 has no immediate advantage. However, after
removing the ε-transitions and reducing the resulting NFA, we may obtain an automaton
A′1 smaller than A1.

This idea can be extended to the problem of checking emptiness of a product
A1⊗ · · ·⊗An with an arbitrary number of components. Exploiting the associativity of
⊗, we rewrite the product as A1⊗ (A2⊗ · · ·⊗An) and replace A1 by a hopefully smaller
automaton A′1 over the alphabet�2 ∪ · · · ∪�n. In a second step, we rewrite A′1⊗A2⊗A3⊗
· · ·⊗An as (A′1⊗A2)⊗ (A3⊗ · · ·⊗An) and, applying again the same procedure, replace
A′1⊗A2 by a new automaton A′2 over the alphabet �3 ∪ · · · ∪�n. The procedure contin-
ues until we are left with a single automaton A′n over �n, whose emptiness can be checked
directly on-the-fly. We call this approach compositional verification because it exploits the
structure of the system as a network of components.
To see this idea in action, consider the network of automata depicted on the left of

figure 7.7. It models a 3-bit counter consisting of an array of three 1-bit counters, where
each counter communicates with its neighbors. We call the components of the network
〈A0,A1,A2〉 instead of 〈A1,A2,A3〉 to better reflect that Ai stands for the ith bit. Each NFA
but the last one has three states, two of which are marked with 0 and 1 (“a” stands for
“auxiliary”). The alphabets are

�0={inc, inc1, 0, . . . , 7},
�1={inc1, inc2, 0, . . . , 7},
�2={inc2, 0, . . . , 7}.

Intuitively, the system interacts with its environment by means of the “visible” actions Vis=
{inc, 0, 1, . . . , 7}. More precisely, inc models a request of the environment to increase the
counter by 1, and i∈ {0, . . . , 7} models a query of the environment asking whether i is the
current value of the counter. A configuration of the form [b2, b1, b0] ∈ {0, 1}3 indicates that
the current value of the counter is 4b2+ 2b1+ b0 (configurations are represented as triples
of states of A2,A1,A0, in that order).
Here is a run of the network starting and ending at configuration [0, 0, 0]:

[0, 0, 0] inc−−→ [0, 0, 1]
inc−−→ [0, 0, a] inc1−−−→ [0, 1, 0]
inc−−→ [0, 1, 1]
inc−−→ [0, 1, a] inc1−−−→ [0, a, 0] inc2−−−→ [1, 0, 0]
inc−−→ [1, 0, 1]
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inc−−→ [1, 0, a] inc1−−−→ [1, 1, 0]
inc−−→ [1, 1, 1]
inc−−→ [1, 1, a] inc1−−−→ [1, a, 0] inc2−−−→ [0, 0, 0] · · · .

The right-hand side of figure 7.7 illustrates the asynchronous product of the network (all
states are final, but we have drawn them as simple instead of double ellipses for simplicity).
The asynchronous product has eighteen states.
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Figure 7.7
A network modeling a 3-bit counter and its asynchronous product.
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Assume we wish to check some property whose violations are given by the language of
an automaton AV over the alphabet Vis of visible actions. For this, we construct an automa-
ton A′0 such thatL

(
A′0
)= projVis(L (A2⊗A1⊗A0)) and check emptiness of A′0⊗AV . If we

compute A′0 by first constructing the asynchronous product A2⊗A1⊗A0, replacing invis-
ible actions by ε, and removing ε-transitions, then the maximum size of all intermediate
automata involved is at least 18, because that is the number of states of A2⊗A1⊗A0. Let
us instead apply the procedure above, starting with A2. We first construct an automaton
A′2 over the alphabet �1 ∪�0 ∪Vis such that L (A′2)= proj�1∪�0∪Vis(L (A2)). Since �2⊆
(�1 ∩�0), we takeA′2=A2. In the next step, we compute the productA′2⊗A1, shown on the
left of figure 7.8, and replace it by an automaton A′1 such that L

(
A′1
)= proj�0∪Vis(L (A1)).

Since inc2 /∈�0 ∪Vis, we can replace inc2 by ε and remove ε-transitions, leading to the
automaton A′1 shown on the right of figure 7.8.
In the next step, we construct A′1⊗A0, shown on the left of figure 7.9, and replace it by

an automaton A′0 such that L
(
A′0
)= projVis(L (A0)). Since inc1 /∈Vis, we replace inc1 by ε

and eliminate ε-transitions. The result is shown on the left of the figure. The important fact
is that we have never had to construct an automaton with more than twelve states, saving
six states with respect to the method that directly computes A2⊗A1⊗A0. While saving six
states is, of course, irrelevant in practice, in larger examples, the savings can be significant.
In particular, it can be the case that an asynchronous product A0⊗ · · ·⊗An is too large to be
stored in memory, but each of the intermediate automata constructed by the compositional
approach fits in it.
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Figure 7.8
Asynchronous product A2⊗A1 and reduced automaton A′1.
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The asynchronous product A′1⊗A0 and the reduced automaton A′0.

7.4.4 Symbolic State-Space Exploration

Recall that many program properties, like deadlock-freedom or mutual exclusion, can be
checked by computing the set of reachable configurations of the program. In breadth-first
search, this is done by iteratively computing the set of configurations reachable in at most
0, 1, 2, . . . steps from the set I of initial configurations until a fixed point is reached. Let C
denote the set of all possible configurations of the program, and let S⊆C×C be the step
relation, defined by (c, c′)∈ S iff the program can reach c′ from c in one step. Note that c
may or may not be a reachable configuration. For example, [4, 0, 0]→ [1, 0, 1] is a step of
program 1, even though [4, 0, 0] is not reachable. Algorithm 41 computes the configurations
reachable from I .

The algorithm can be implemented using different data structures, which can be explicit
or symbolic. Explicit data structures store separately each configuration of I and each pair
of configurations of S; typical examples are lists and hash tables. Their distinctive feature is
that thememory needed to store a set is proportional to the number of its elements. Symbolic
data structures, on the contrary, do not store a set by storing each of its elements; they
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Algorithm 41 Computation of configurations reachable from I .

Reach(I ,R)

Input: set I of initial configurations; step relation S
Output: set of configurations reachable from I

1 OldP←∅; P← I
2 while P �=OldP do
3 OldP←P
4 P←Union(P,Post(P, S))
5 return P

store a representation of the set itself. A prominent example of a symbolic data structure
are finite automata and transducers: given an encoding of configurations as words over
some alphabet �, the set I and the step relation S are represented by an automaton and a
transducer, respectively, recognizing the encodings of its elements. Their sizes can be much
smaller than the sizes of I or S. For instance, if I is the set of all possible configurations, then
its encoding is often �∗, which is represented by a very small automaton. Symbolic data
structures are only useful if all the operations required by the algorithm can be implemented
without having to switch to an explicit data structure. This is the case of automata and
transducers:Union,Post, and the equality check in the condition of the while loop operation
are implemented by the algorithms of chapters 3 and 5 or, if they are of fixed length, by the
algorithms of chapter 6.
Symbolic data structures are interesting when the set of reachable configurations can

be very large or even infinite. When the set is small, the overhead of symbolic data struc-
tures usually offsets the advantage of a compact representation. Despite this, and in order
to illustrate the method, we apply it to the five-line program 1, shown with its flow graph in
figure 7.10.
An edge of the flow graph leading from node 	 to node 	′ can be associated a step relation

S	,	′ containing all pairs of configurations
([	, x0, y0], [	′, x′0, y′0]) such that if at control point

	, the current values of the variables are x0 and y0, then the program can take a step after
which the new control point is 	′, and the new values are x′0, y

′
0. For instance, for the edge

leading from node 4 to node 1, we have

S4,1=
{([4, x0, y0], [1, x′0, y′0]) : x′0= x0, y′0= 1− x0

}
,

and, for the edge leading from 1 to 2, we have

S1,2=
{([1, x0, y0], [2, x′0, y′0]) : x0= 1= x′0, y

′
0= y0

}
.
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1 while x= 1 do
2 if y= 1 then
3 x← 0
4 y← 1− x
5 end

3
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5

x= 1

y= 1

x �= 1

y �= 1

x← 0

y← 1− x

Figure 7.10
Flow graph of program 1.
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Figure 7.11
Transducer for the program of figure 7.10.
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Figure 7.12
Minimal DFAs for the reachable configurations of the program of figure 7.10.

It is convenient to assign a relation to every pair of nodes of the control graph, even to
those not connected by any edge. If no edge leads from a to b, then we define Sa,b=∅. The
complete step relation of the program is then described by

S=
⋃

	,	′∈L
S	,	′ ,

where L is the set of control points.
The fixed-length transducer for the step relation S is shown in figure 7.11; a configuration

[	, x0, y0] is encoded by the word 	x0y0 of length 3.
Consider, for instance, the transition labeledby [4, 1].Using it, the transducercanrecognize

four pairs of configurations describing the action of the instruction “y← 1− x”, namely,{[
400
101

]
,
[
401
101

]
,
[
410
110

]
,
[
411
110

]}
.

Figure 7.12 depicts minimal DFAs for the set I and for the sets obtained after each iteration
of the while loop.
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7.4.4.1 Variable Orders
We have defined a configuration of program 1 as a triple [	, nx, ny], and we have encoded
it as the word 	nxny. We could also have encoded it as the word nx	ny, nx	ny, or any other
permutation, since in all cases, the information contents is the same. Of course, when encod-
ing a set of configurations, all elements of the set must be encoded using the same variable
order. While the information contents is independent of the variable order, the size of the
automaton encoding a set is not. The following example gives an extreme case.

Example 7.12 Consider the set of tuples Xk ={[x1, x2, . . . , x2k] : x1, . . . , x2k ∈ {0, 1}} and
the subset Yk ⊆Xk of tuples satisfying x1= xk+1, x2= xk+2, . . . , xk = x2k . Consider two
possible encodings of a tuple [x1, x2, . . . , x2k]: by the word x1x2 · · · x2k and by the word
x1xk+1x2xk+2 . . . xkx2k . In the first case, the encoding of Yk for k= 3 is the language

L1={000000, 001001, 010010, 011011, 100100, 101101, 110110, 111111},
and, in the second case, the language

L2={000000, 000011, 001100, 001111, 110000, 110011, 111100, 111111}.
Figure 7.13 depicts the minimal DFAs for the languages L1 and L2. It is readily seen that the
minimal DFA for L1 has at least 2k states: since for every word w∈ {0, 1}k , the residual Lw1

Figure 7.13
Minimal DFAs for the languages L1 and L2. For the sake of readability, 0 and 1 are respectively represented by
solid and dotted arcs.
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Figure 7.14
Minimal DFAs for the reachable configurations of Lamport–Burns’s algorithm. On the left, a configuration
〈s0, s1, v0, v1〉 is encoded by the word s0s1v0v1, on the right, by v1s1s0v0.

is equal to {w}, the language L1 has a different residual for each word of length k, and so the
minimal DFA has at least 2k states (the exact number is 2k+1+ 2k − 2). On the other hand,
it is easy to see that the minimal DFA for L2 has only 3k+ 1 states. So, a good variable
order can lead to an exponentially more compact representation.

We can also appreciate the effect of the variable order in Lamport–Burns’ algorithm. The
set of reachable configurations, where a configuration is described by the control point of
the first process, the control point of the second process, the variable of first process, and
finally the variable of the second process, is

〈nc0, nc1, 0, 0〉 〈t0, nc1, 1, 0〉 〈c0, nc1, 1, 0〉
〈nc0, t1, 0, 1〉 〈t0, t1, 1, 1〉 〈c0, t1, 1, 1〉
〈nc0, c1, 0, 1〉 〈t0, c1, 1, 1〉
〈nc0, q1, 0, 1〉 〈t0, q1, 1, 1〉 〈c0, q1, 1, 1〉
〈nc0, q′1, 0, 0〉 〈t0, q′1, 1, 0〉 〈c0, q′1, 1, 0〉

If we encode a tuple 〈s0, s1, v0, v1〉 as the word v0s0s1v1, then the set of reachable config-
urations is recognized by the minimal DFA on the left of figure 7.14. However, if we encode
it as the word v1s1s0v0, then we get the minimal DFA illustrated on the right.
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Figure 7.15
Minimal DFAs for the reachable configurations of Lamport’s algorithm plus 〈c0, c1, 1, 1〉.

The same example can be used to visualize how, by adding configurations to a set, the
size of its minimal DFA can decrease. If we add the “missing” configuration 〈c0, c1, 1, 1〉
to the set of reachable configurations (filling the “hole” in the list above), two states of the
DFAs of figure 7.14 can be merged, yielding the minimal DFAs of figure 7.15. Further note
that the set of all configurations, reachable or not, contains 120 elements but is recognized
by a five-state DFA.

7.5 Safety and Liveness Properties

Apart from the state-explosion problem, the automata-theoretic approach to automatic veri-
fication as described in this chapter has a second limitation: it assumes that the violations of
the property can be witnessed by finite executions. In other words, if an execution violates
the property, then we can detect the violation after finite time. Not all properties satisfy this
assumption. A typical example is the property “if a process requests access to the critical
section, then it eventually enters the critical section” (without specifying how long it may
take). After a finite time, we can only tell that the process has not entered the critical sec-
tion yet, but we cannot say that the property has been violated: the process might still enter
the critical section in the future. A violation of the property can only be witnessed by an
infinite execution, in which we observe that the process requests access, but the access is
never granted.
Properties that are violated by finite executions are called safety properties. Intuitively,

they correspond to properties of the form “nothing bad ever happens.” Typical examples
are “the system never deadlocks” or, more generally, “the system never enters a set of bad
states.” Clearly, every interesting systemmust also satisfy properties of the form “something
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good eventually happens” because otherwise, the system that does nothing would already
satisfy all properties. Properties of this kind are called liveness properties and can only
be witnessed by infinite executions. Fortunately, the automata-theoretic approach can be
extended to liveness properties. This requires to develop a theory of automata on infinite
words, which is the subject of the second part of this book. The application of this theory
to the verification of liveness properties is presented in chapter 13. As an appetizer, some
exercises of this chapter already start to discuss them.

7.6 Exercises

� � Exercise 113. Exhibit a family {Pn}n≥1 of sequential programs (like program 1)

satisfying the following conditions:

• Pn has O(n) boolean variables, O(n) lines, and exactly one initial configuration; and
• Pn has at least 2n reachable configurations.

� � Exercise 114. When applied to program 1, algorithm SysAut outputs the system

automaton shown in the middle of figure 7.1. Give an algorithm SysAut′ that outputs the
automaton depicted at the bottom.

�� Exercise 115. Prove the following statements:�

(a) Parallel composition is
• associative: (L1 ‖L2) ‖L3=L1 ‖ (L2 ‖L3),
• commutative: L1 ‖L2=L2 ‖L1, and
• idempotent: L ‖L=L.

(b) If L1,L2⊆�∗, then L1 ‖L2=L1 ∩L2.
(c) It is the case that L (A)=L (A1) ‖ · · · ‖L (An) for any network of automata A=
〈A1, . . . ,An〉.
�� Exercise 116. Let �={request, answer,working, idle}.�

(a) Build a regular expression and an automaton recognizing all words with the property
P1: “for every occurrence of request, there is a later occurrence of answer.”
(b) Property P1 does not imply that every occurrence of request has “its own” answer: for
instance, the sequence request request answer satisfies P1, but both requests must neces-
sarily be mapped to the same answer. If words were infinite and there were infinitely many
requests, would P1 guarantee that every request has its own answer?

More precisely, let w=w1w2 · · · satisfy P1 and contain infinitely many occurrences
of request, and let f : N→N be such that wf (i) is the ith request of w. Is there
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always an injective function g : N→N satisfying wg(i)= answer and f (i) < g(i) for all
i∈ {1, . . . , k}?
(c) Build an automaton recognizing all words with the property P2: “there is an occurrence
of answer before which only working and request occur.”
(d) Using automata-theoretic constructions, prove that all words accepted by the following
automaton A satisfy P1, and give a regular expression for all words accepted by A that
violate P2.

q0 q1

�

answer

� � Exercise 117. Consider two processes (process 0 and process 1) being executed 

through the following generic mutual exclusion algorithm:

1 while true do
2 enter(process_id)
3 critical section
4 leave(process_id)
5 for arbitrarily many iterations do
6 noncritical section
7 end

(a) Consider the following implementations of enter and leave:

1 x← 0
2 proc enter(i)
3 while x= 1− i do
4 pass
5 proc leave(i)
6 x← 1− i

(i) Design a network of automata capturing the executions of the two processes.
(ii) Build the asynchronous product of the network.
(iii) Show that both processes cannot reach their critical sections at the same time.
(iv) If a process wants to enter its critical section, is it always the case that it can eventually
enter it? Hint: Reason in terms of infinite executions.
(b) Consider the following alternative implementations of enter and leave:
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1 x0← false
2 x1← false
3 proc enter(i)
4 xi← true
5 while x1−i do
6 pass
7 proc leave(i)
8 xi← false

(i) Design a network of automata capturing the executions of the two processes.
(ii) Say whether a deadlock can occur, that is, can both processes get stuck trying to enter
their critical sections?

�� Exercise 118. Consider a circular railway divided into eight tracks: 0→ 1→ . . .→

7→ 0. Three trains, modeled by three automata T1, T2, and T3, circulate on the railway.
Each automaton Ti is defined as follows:

• states: {qi,0, . . . , qi,7};
• alphabet: {enter[i, j] : 0≤ j≤ 7}, where enter[i, j] models that train i enters track j;
• transition relation: {(qi,j, enter[i, j⊕ 1], qi,j⊕1) : 0≤ j≤ 7}, where ⊕ denotes addition
mod 8;
• initial state: qi,2i (i.e., initially the trains occupy tracks 2, 4, and 6).

Describe automata C0, . . . ,C7, called local controllers, that ensure that two trains can
never be on the same track or adjacent tracks, that is, there must always be at least one empty
track between two trains. Each controller Cj can only have knowledge of the state of tracks
j. 1, j, and j⊕ 1; there must be no deadlocks; and every train must eventually visit every
track. More formally, the network of automataA=〈C0, . . . ,C7,T1,T2,T3〉must satisfy the
following specification:

(a) Cj only knows the state of local tracks: Cj has alphabet {enter[i, j. 1], enter[i, j], enter
[i, j⊕ 1] : 1≤ i≤ 3};
(b) no deadlock and each train eventually visits every segment:L (A)|�i= (enter[i, 2i] enter
[i, 2i⊕ 1] · · · enter[i, 2i⊕ 7])∗ for each i∈ {1, 2, 3}; and
(c) no two trains on the same or adjacent tracks: for every word w∈L (A), it is the case
that w= u enter[i, j] enter[i′, j′] v and i′ �= i implies |j− j′| /∈ {0, 1, 7}.
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A regular expression can be seen as a set of instructions (a “recipe”) for generating the
words of a language. For instance, the expression aa(a+ b)∗b can be interpreted as the
recipe “write two as, repeatedly choose one a or b and write it, an arbitrary number of
times, and then write a b.” We say that regular expressions are an operational formalism.
Languages can also be described in declarative style, as the set of words that satisfy a

property. For instance, “the words over {a, b} containing an even number of as and an even
number of bs” is a declarative description. It describes the property but does not give a
recipe to construct the words that satisfy it.
For some languages, declarative descriptions can be simpler than operational ones. For

instance, the regular expression

(aa+ bb+ (ab+ ba)(aa+ bb)∗(ba+ ab))∗

is an operational description of the language “even number of as and even number of bs,”
and most people will agree that it is far less intuitive than the declarative description. In
particular, the expression does not consist of the conjunction of two smaller regular expres-
sions, one for “even number of as” and the other for “even number of bs.” Another example
in which a declarative description is arguably simpler is “the words over {a, b} that do not
contain any occurrence of aba.” This description is immediately understood by a human,
who also has no problem to formulate it as the negation of the simpler property “the words
over {a, b} that contain some occurrence of aba.” However, the operational description

(b+ aa∗bb)∗(ε+ aa∗(b+ ε))

is substantially harder to understand and produce.
In this chapter, we first present a logical formalism for the declarative description of

regular languages. We use logical formulas to describe properties of words and logical
operators to construct complex properties out of simpler ones. In particular, the formalism
allows us to combine properties using conjunction, disjunction, and negation.We then show
how to automatically translate a formula describing a property of words into an automaton
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recognizing the words satisfying the property. As a consequence, we obtain an algorithm to
convert declarative into operational descriptions and vice versa.

8.1 Predicate Logic on Words: An Informal Introduction

In declarative style, a language is defined indirectly as the set of words satisfying a given
property, called the membership predicate. A word belongs to the language if and only
if it satisfies the membership predicate. For example, the membership predicates of the
languages discussed in the previous section are “to have an even number of as and an even
number of bs,” and “to not contain any occurrence of aba.”

The standard mathematical framework for expressing membership predicates is pred-
icate logic, also called—for reasons explained in section 8.5—first-order logic. Starting
from very few natural “atomic formulas,” predicate logic allows one to build more complex
formulas through boolean combinations and quantification. Formulas of predicate logic
represent predicates in the same sense that regular expressions represent languages. We
consider a version of predicate logic usually called “predicate logic on words,” because its
atomic formulas represent predicates on words.1

Before introducing predicate logic on words, let us become familiar with it at an intuitive
level. (Readers acquainted with predicate logic can move directly to section 8.5.) For the
time being, it suffices to know that the symbols ∧, ∨, ¬,→, ∃x, and ∀x roughly correspond
to the English expressions “and,” “or,” “not,” “implies,” “there exists an x such that,” and
“every x satisfies.”
We start by fixing an alphabet, for example, �={a, b}. Predicate logic on words has two

types of atomic formulas:

• Formulas of the form Qa(x) or Qb(x), where x is a variable ranging over the positions of
the word.

The intended meaning of Qa(x) is “the letter at position x is an a,” and the meaning of
Qb(x) is analogous. For instance, the predicate “all letters of the word are as” is expressed
by the formula ∀x Qa(x). The language of all words satisfying the formula, called just the
language of the formula, is L (a∗).
• Formulas of the form x< y, where x and y range over the positions of the word.

The intended meaning is “position x is smaller than (lies to the left of) position y.” For
example, the predicate “if some letter is an a, then all subsequent letters are also as” is
expressed by the formula

∀x ∀y ((Qa(x)∧ x< y)→Qa(y)) .

1. Chapter 9 presents a different predicate logic expressing properties of tuples of numbers.
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The language of the formula isL (b∗a∗). Notice, however, that this is so because�={a, b}.
If �={a, b, c}, then the language of the formula is L ((b+ c)∗a∗).

Example 8.1 Other examples of formulas are

• ∀x Qa(x)∨∀x Qb(x).

The formula expresses the predicate “either all letters are as or all letters are bs.” The
same predicate is also expressed by¬∃x ∃y (Qa(x)∧Qb(y)). The language of both formulas
is L (a∗ + b∗).
• ∀x ∀y (Qa(x)∧ x< y∧Qa(y))→∃z (x< z∧ z< y∧Qb(z)).

The formula expresses the predicate “between every two as, there is at least one b,”
which corresponds to the language L ((b+ ab)∗(ε+ a)). For �={a, b}, this predicate is
equivalent to “after every a there is a b, unless that a is the last letter,” which corresponds
to the formula ∀x ∀y (Qa(x)∧ x< y∧¬∃z (x< z∧ z< y)

)→Qb(y).

While our intuitive understanding of the meaning of “and,” “implies,” and so on can bring
us a long way, it is not precise enough for formal reasoning. For example, faced with the
question whether the empty word ε satisfies ∀x Qa(x), some people answer “yes,” others
“no.” Some people argue that the question whether the empty word satisfies the formula
∃x Qa(x)→∀x Qa(x) does not make sense. Some formulas truly seem to make no sense,
for example ∃x ∀x Qa(x) or ∃x Qa(y), which raises the problem of defining which formulas
make sense. Such problems can only be solved by formally specifying which sequences
of symbols are formulas and, for every formula, which are the words that satisfy it. These
specifications are called the syntax and the semantics of predicate logic on words.

8.2 Syntax and Semantics

We introduce the syntax and semantics of predicate logic on words over a given alphabet
�. Readers familiar with logic only need to look at the forthcoming definition 8.2 (syntax)
and definitions 8.3 and 8.5 (semantics).

8.2.1 Syntax

The following definition determines which sequences of symbols are formulas of predicate
logic on words.

Definition 8.2 Let V ={x, y, z, . . .} be an infinite set of variables, and let �={a, b, c, . . .}
be a finite alphabet. The formulas of predicate logic on words over �, also called the first-
order formulas over � and denoted FO(�), are the expressions generated by the grammar

ϕ ::=Qa(x) | x< y | ¬ϕ | (ϕ ∨ ϕ) | ∃x ϕ
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∨
∃x y< x

∨
Qa(x) z< y
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∃y
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Qa(x) ¬
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x< y Qb(y)

¬

∃x

¬

¬

∨
¬ ¬

∃x

Qa(x)

Qb(x)

Figure 8.1
Syntax trees of (8.1), (8.2), and (8.3).

where a∈� and x, y∈V. Expressions of the form Qa(x) and x< y are called atomic
formulas.

In the rest of the section, we introduce or recall several notions, using the following three
formulas as running examples.

ϕ1 := (∃x (Qa(x)∨ z< y)∨ y< x) (8.1)

ϕ2 :=∃x ∃y (Qa(x)∨¬(x< y∨Qb(y))) (8.2)

ϕ3 :=¬∃x ¬¬(¬∃x Qa(x)∨¬Qb(x)) (8.3)

Syntax tree of a formula. We assume that the reader is familiar with the notion and just
show the syntax trees of (8.1), (8.2), and (8.3) in figure 8.1.

Free and bound variables. The occurrences of a variable x in a formula are the leaves
of the syntax tree containing x. For example, x occurs twice in all of (8.1), (8.2), and (8.3),
while y occurs two, two, and zero times, respectively. An occurrence of a variable x is bound
if it is in the scope of some ∃x, that is, if the unique path of the syntax tree leading from the
root to the occurrence of x traverses a node labeled by ∃x; otherwise, the occurrence of x is
free. Observe that the same variable can occur bound and free in a formula; for example, x
occurs bound and free in (8.1). A variable is free in ϕ if it has at least one free occurrence in
ϕ and bound otherwise. The set of free variables of ϕ, denoted free(ϕ), can also be defined
inductively as follows:

free(Qa(x))={x}, free(x< y) ={x, y},
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free(¬ϕ)= free(ϕ), free(ϕ1 ∨ ϕ2)= free(ϕ1)∪ free(ϕ2), (8.4)

free(∃x ϕ)= free(ϕ) \ {x}.
For the formulas (8.1), (8.2), and (8.3), we get free(ϕ1)={x, y, z} and free(ϕ2)= free(ϕ3)=
∅. A formula without free variables is called a sentence, and so (8.2) and (8.3) are sentences,
but (8.1) is not.
We use the following abbreviations:

(ϕ1 ∧ ϕ2) :=¬(¬ϕ1 ∨¬ϕ2), (ϕ1→ ϕ2) := (¬ϕ1 ∨ ϕ2), ∀x ϕ :=¬∃x ¬ϕ.

For example, (8.3) can be rewritten as ∀x (∃x Qa(x)∧Qb(x)).

8.2.2 Semantics

The semantics of FO(�) is the definition that determines whether a given word over �

satisfies a given sentence or not. In logical jargon, this definition allows us to interpret
the sentence on the word. The definition is inductive, that is, the set of words satisfying a
sentence is defined as a function of the sets of words satisfying its subformulas. However,
we have to overcome the fact that the subformulas of a sentence may not be sentences
themselves. So, we give a semantics not only for sentences but also for formulas with free
variables.

Interpretations. While a sentence can be interpreted on just a word (e.g., we intuitively
see that aaa satisfies ∀x Qa(x) and aba does not), formulas with free variables usually
cannot. For example, whether aba satisfies Qa(x) or not depends on the position x is refer-
ring to. If x '→ 1 or x '→ 3, then aba satisfies the formula, but if x '→ 2, then it does not.
Generally, we interpret a formula, with or without free variables, over a pair (w,V), where
w is a word and V is a mapping that assigns to every free variable of the formula, and per-
haps to others, a position in the word, that is, a value in the range {1, . . . , |w|}. We call V
a valuation. Formally, we define valuations as partial mappings V→N, that is, mappings
that may be defined only for a subset of V . In particular, the totally undefined valuation
⊥ : V→N is the partial map that is undefined for every variable of V .2

Definition 8.3 An interpretation of a formula ϕ of FO(�) is a pair (w,V), where w∈�∗
and V : V→N is a partial mapping such that V(x) is defined and satisfies 1≤V(x)≤ |w|
for every x∈ free(ϕ). We call V a valuation.

We often write the map V extensionally, that is, enumerating the value assigned to each
variable for which the map is defined. For example, if V is the valuation that is defined only
for the variables x and y and satisfies V(x)= 5 and V(y)= 3, then we write (w, {x '→ 5, y '→

2. A partial mapping f : V→N is just a set of pairs of V ×N, containing one pair for each x∈V such that f (x)
is defined; the totally undefined map corresponds to the empty set of pairs.
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3}) instead of (w,V). With this convention, (ab, {x '→ 1}) is an interpretation of formulas
like Qa(x), ∃x Qa(x), or ∃x ∃y (Qa(x)∧Qb(y)) but not of x< y or Qa(y). In particular, the
definition of interpretation requires that all free variables are assigned values but does not
forbid that other variables are assigned values as well.

Remark 8.4
• Since ε has no positions, it is not possible to assign values to them. Thus, a formula with
at least one free variable has no interpretation of the form (ε,V).
• If ϕ is a sentence and w �= ε, then (w,V) is an interpretation of ϕ for every valuation
V : V→{1, . . . , |w|}, including the totally undefined valuation ⊥. However, if w= ε, then
(w,V) is an interpretation if and only if V =⊥. Indeed, if V(x) is defined, then by the
definition of an interpretation we have 1≤V(x)≤ |ε| = 0, which is not possible.

Models. The pairs (ab, {x '→ 1}) and (ab, {x '→ 2}) are interpretations ofQa(x). Intuitively,
the first interpretation satisfies Qa(x), but the second does not. In logical jargon, the inter-
pretations of a formula that satisfy it are called the models of the formula. We formally
define which interpretations (w,V) of a formula ϕ are models of ϕ.
Given a word w and a number 1≤ i≤ |w|, let w[i] denote the letter of w at position i, and

let V[i/x] denote the partial mapping that assigns i to x and coincides with V on all other
variables (in particular, V[i/x](x) is always defined and satisfies V[i/x](x)= i, even if V(x)
is undefined).

Definition 8.5 Let ϕ be a formula of FO(�), and let (w,V) be an interpretation of ϕ. We
say that (w,V) satisfies ϕ, or is a model of ϕ, if one of the following conditions holds:

• ϕ=Qa(x) and w[V(x)] = a,
• ϕ= x< y and V(x) <V(y),
• ϕ=¬ϕ′ and (w,V) �|= ϕ′,
• ϕ= (ϕ1 ∨ ϕ2) and (w,V) |= ϕ1 or (w,V) |= ϕ2, and
• ϕ=∃x ϕ, w �= ε and (w,V[i/x]) |= ϕ holds for some i such that 1≤ i≤ |w|.
Two formulas ϕ1, ϕ2 are equivalent, denoted ϕ1≡ ϕ2, if they have the same interpretations
and the same models.

Example 8.6 Let �={a, b}. We show that, unsurprisingly, (ab,⊥) |= ∃x ¬Qa(x). We use
definition 8.5 to deduce that (ab,⊥) satisfies ∃x ¬Qa(x) iff b �= a, which is true:

(ab,⊥) |= ∃x ¬Qa(x)

⇐⇒ (ab, {x '→ 1}) |=¬Qa(x) or (ab, {x '→ 2}) |=¬Qa(x)

⇐⇒ (ab, {x '→ 1}) �|=Qa(x) or (ab, {x '→ 2}) �|=Qa(x)



Automata and Logic 199

⇐⇒ (ab)[1] �= a or (ab)[2] �= a

⇐⇒ a �= a or b �= a

⇐⇒ true.

Remark 8.7
• Only interpretations can be models. For example, the question of whether (ε,⊥) is a
model Qa(x) is ill-posed, as (ε,⊥) is not an interpretation of Qa(x).
• If free(ϕ)⊆ free(ψ), then every interpretation of ψ is also an interpretation of ϕ. Indeed,
every interpretation of ψ assigns values to all free variables of ψ , and so it also assigns
values to all free variables of ϕ.
• Definition 8.5 silently uses three facts:

1. An interpretation of ¬ϕ′ is also an interpretation of ϕ′, because free(¬ϕ′)= free(ϕ′).
2. An interpretation of (ϕ1 ∨ ϕ2) is also an interpretation of ϕ1 and ϕ2, because free(ϕ1 ∨
ϕ2)= free(ϕ1)∪ free(ϕ2).
3. If w �= ε and (w,V) is an interpretation of ∃x ϕ, then (w,V[i/x]) is an interpretation of
ϕ for every i∈ {1, . . . , |w|}.

Since w �= ε, the set i∈ {1, . . . , |w|} is nonempty, and so it is possible to assign to x at
least one value. For w= ε, the pair (w,⊥) is an interpretation of ∃xQa(x), but there are no
interpretations (w,V[i/x]) such that 1≤ i≤ 0.

For the previously introduced abbreviations, it follows from definition 8.5 that

(w,V) |= (ϕ1 ∧ ϕ2) iff (w,V) |= ϕ1 and (w,V) |= ϕ2, and

(w,V) |= (ϕ1→ ϕ2) iff (w,V) �|= ϕ1 or (w,V) |= ϕ2 .

Let us now consider the abbreviation ∀x ϕ=¬∃x ¬ϕ. We have

(w,V) |= ∀x ϕ

⇐⇒ (w,V) |=¬∃x ¬ϕ

⇐⇒ (w,V) �|= ∃x ¬ϕ

⇐⇒w= ε or (w,V[i/x]) |= ϕ for every i∈ {1, . . . , |w|}.
Remark 8.8 Recall that if (ε,V) is an interpretation of a formula, then the formula is
a sentence and V is the totally undefined valuation (i.e., V =⊥). By definition 8.5, (ε,⊥)

satisfies no sentences of the form ∃x ϕ and every sentence of the form ∀x ϕ. For exam-
ple, (ε,⊥) satisfies neither ∃x Qa(x) nor ∃x ∀z Qa(z), but it satisfies both ∀x Qa(x) and
∀x ∃z Qa(z). Intuitively, “there exists a position x in the word such that ϕ” is always false
for ε, because the empty word has no positions at all, while “for every position in the word
ϕ holds” is vacuously true for ε.



200 Chapter 8

Using definition 8.5, it is possible to prove many standard equivalence rules, like¬¬ϕ≡
ϕ for every ϕ; (ϕ1 ∨ (ϕ2 ∨ ϕ3))≡ ((ϕ1 ∨ ϕ2)∨ ϕ3) for every ϕ1, ϕ2, ϕ3; ∃x ∃y ϕ≡∃y ∃x ϕ

for every ϕ; or ∃x (ϕ1 ∨ ϕ2)≡ (∃x ϕ1 ∨∃x ϕ2) for every ϕ1, ϕ2. We implicitly use them to
lighten notation. For example, instead of (ϕ1 ∨ (ϕ2 ∨ ϕ3)) or ((ϕ1 ∨ ϕ2)∨ ϕ3), as we would
have to write according to the syntax, we simply write (ϕ1 ∨ ϕ2 ∨ ϕ3) or even ϕ1 ∨ ϕ2 ∨ ϕ3.
The following lemma is easy to prove by induction on the structure of formulas. It cor-

responds to our intuition that bound variables are “internal” variables of a formula that are
“invisible outside of it.”

Lemma 8.9 Let w be a word, and let (w,V) and (w,V ′) be two interpretations of a formula
ϕ. If V and V ′ assign the same values to all free variables of ϕ, then either (w,V) |= ϕ

and (w,V ′) |= ϕ or (w,V) �|= ϕ and (w,V ′) �|= ϕ. In particular, for every word w and every
sentence ϕ, either all interpretations (w,V) of ϕ are models, or none of them is a model.

Example 8.10 Let w be a word of length at least 2. It is the case that (w, {x '→ 1}) and
(w, {x '→ 2}) are interpretations of ∃x Qa(x) that assign the same values to all free variables,
because ∃x Qa(x) is a sentence. We have

(w, {x '→ 1}) |= ∃x Qa(x)

⇐⇒ (w, {x '→ 1}[1/x]) |=Qa(x) or (w, {x '→ 1}[2/x]) |=Qa(x)

(by def. of (w,V) |= ∃x ϕ)

⇐⇒ (w, {x '→ 2}[1/x]) |=Qa(x) or (w, {x '→ 2}[2/x]) |=Qa(x)

(since {x '→ 1}[i/x]= {x '→ i}= {x '→ 2}[i/x])
⇐⇒ (w, {x '→ 2}) |= ∃x Qa(x).

The second part of lemma 8.9 justifies the following definition, which takes us to our final
destination: a precise definition of when a given word over � satisfies a given sentence of
FO(�).

Definition 8.11 Let ϕ be a sentence of FO(�). A word w∈�∗ satisfies ϕ or is a model
of ϕ, denoted w |= ϕ, if every interpretation (w,V) of ϕ satisfies ϕ or, equivalently (by
lemma 8.9), if some interpretation (w,V) of ϕ satisfies ϕ.

Example 8.12 Consider the two sentences ∃x Qa(x) and ∀x ∃x Qa(x). Are they equivalent?
This is the kind of question that challenges our intuition. If you accept definition 8.5, then
there is only one right answer. By remark 8.8, we have ε �|= ∃x Qa(x) and ε |= ∀x ∃x Qa(x),
and so the two formulas are not equivalent. However, they are “almost” equivalent: every
word w �= ε satisfies ∃x Qa(x) iff it satisfies ∀x ∃x Qa(x). This is an easy consequence of
lemma 8.9. Indeed,
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w |= ∀x ∃x Qa(x)

⇐⇒ (w,⊥) |= ∀x ∃x Qa(x)

(by lemma 8.9 and as ∀x ∃x Qa(x) is a sentence)

⇐⇒ (w,⊥[1/x]) |= ∃x Qa(x) and · · · and (w,⊥[|w|/x]) |= ∃x Qa(x)

(by w �= ε and def. of (w,V) |= ∀x ϕ)

⇐⇒ (w, {x '→ 1}) |= ∃x Qa(x) and · · · and (w, {x '→ |w|}) |= ∃x Qa(x)

⇐⇒w |= ∃x Qa(x)

(by lemma 8.9 and as ∃x Qa(x) is a sentence).

8.3 Macros and Examples

Expressing predicates in first-order logic on words is akin to writing programs in a low-level
language. The language has a very small syntax and is therefore easy to learn, but expressing
even simple predicates may be tedious, is error prone, and requires writing long formulas.
All these problems are palliated by the use ofmacros. Formally, a macro is an expression of
the form m(x1, . . . , xn)= ϕ, where ϕ is a formula with free variables x1, . . . , xn. Intuitively,
macros play the same role as procedures in programming: they are defined once and can
be used multiple times in other formulas, where they stand for the formula ϕ. Here are two
examples:

• “x is the first position.”
first(x) :=¬∃y y< x

Observe that x is the only free variable of first(x).
• “x is the last position.”

last(x) :=¬∃y x< y

Sometimes we use infix notation for macros and write “x1 m x2” instead of m(x1, x2).
The following examples illustrate this.

• “x and y are the same position.”

x= y :=¬(x< y∨ y< x)

We could also call this macro equal(x, y).
• “y is the successor position of x,” or “y is the position to the right of x.”

y= x+ 1 := (x< y∧¬∃z (x< z∧ z< y))
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Recall that here the expression y= x+ 1 is just a name; we could also call the macro
succ(x, y). We prefer y= x+ 1 because the name can be generalized, as shown by the next
example.
• “y is two positions to the right of x.”

y= x+ 2 :=∃z (z= x+ 1∧ y= z+ 1)

The macros y= x+ 3, y= x+ 4, and so on are defined similarly.
• “y is at most k positions to the right of x.”

y< x+ k :=∃z (z= x+ k ∧ y< z)

Observe that k is a constant, that is, y< x+ k stands for the infinite family of macros y<

x+ 1, y< x+ 2, y< x+ 3, and so on. Further, remember that y< x+ k is just the name of
a formula. For example, unravelling all macros, we have

(y< x+ 2)=∃z (z= x+ 2∧ y< z)=∃z (∃u (u= x+ 1∧ z= u+ 1)∧ y< z).

In particular, one should not confuse the atomic formula x< y and the macro x< y+ 2. The
latter is only an abbreviation, for which we could have chosen any other name.
• “x is to the left of the kth position.”

x< k :=¬∃y x= y+ k− 1

• “The length of the word is smaller than k.”

last< k :=∀x (last(x)→ x< k)

Example 8.13 Using the macros above, we can express some predicates on words by
rather short sentences:

• “The last letter is a b and before it, there are only as.”

(∃x Qb(x)∧∀x (last(x)→Qb(x)∧¬last(x)→Qa(x)))

• “Every a is immediately followed by a b.”

∀x (Qa(x)→∃y (y= x+ 1∧Qb(y)))

• “Every a is immediately followed by a b, unless it is the last letter.”

∀x (Qa(x)→∀y (y= x+ 1→Qb(y)))

Observe the difference: The previous sentence states that if the letter at position x is an a,
then the word has a successor position y, and the letter at y is a b. This sentence only states
that for every position y, if y happens to be the successor of x, then the letter at that position
is a b. It does not state that the successor position of x exists.
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• “Between every a and every later b there is a c.”

∀x ∀y ((Qa(x)∧Qb(y)∧ x< y)→∃z (x< z∧ z< y∧Qc(z)))

• Finally, we formalize the second predicate from the introduction to the chapter: “no
occurrence of aba.”

¬∃x ∃y ∃z (y= x+ 1∧ z= y+ 1∧Qa(x)∧Qb(y)∧Qa(z))

8.4 Expressive Power of FO(�)

Now that we have defined which words satisfy which sentences, we can associate to a sen-
tence the language of all words that satisfy it. Intuitively, this language is the “meaning” of
the sentence.

Definition 8.14 The language of a sentence ϕ ∈FO(�) is the set L (ϕ) :={w∈�∗ |w |=
ϕ}. We also say that ϕ expresses L (ϕ). A language L⊆�∗ is FO-definable if L=L (ϕ) for
some formula ϕ of FO(�).

The languages of the predicates from example 8.13 areFO-definable by definition.Which
languages are FO-definable? Are all FO-definable languages regular? Are all regular lan-
guages FO-definable? These are questions concerning the expressive power of first-order
logic on words.
We study which languages are FO-definable when the alphabet � contains exactly one

letter. We show that in this case, a language is FO-definable iff it is finite or co-finite. A
language is co-finite if its complement is finite. It follows from this result that all FO-
definable languages over a one-letter alphabet are regular. Indeed, we know that all finite
languages are regular and, since the regular languages are closed under complement, so are
all co-finite languages. However, it also follows that even very simple regular languages,
like {an : n is even}, are not FO-definable. Thus, first-order logic on words is not expressive
enough as a declarative language.
Let�={a}. The proof that a language is FO-definable iff it is finite or co-finite proceeds

in three steps (readers not interested in the proof can move directly to section 8.5):

1. We define a fragment of FO({a}), called QF, standing for quantifier-free. Formulas of
QF contain no quantifiers, existential or universal, and no occurrences of Qa(x).
2. We show that languages over {a} are QF-definable iff they are finite or co-finite.
3. We prove that languages over {a} are FO-definable iff they are QF-definable. That is,
we show that for every formula of FO({a}), there exists an equivalent formula of QF.

The fragment QF. Formulas of QF are boolean combinations of some of the macros
introduced in section 8.3:
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Definition 8.15 The formulas of QF are the formulas of FO({a}) generated by the
grammar

f ::= x< k | x< y+ k | last< k | ¬f | (f ∨ f )| (f ∧ f ),

where k ∈N.

Observe that the sentences of QF are especially simple. They cannot contain any occur-
rence of x< k or x< y+ k because, loosely speaking, QF does not have quantification,
and so it cannot bind free occurrences of variables. So, sentences of QF are boolean
combinations of expressions of the form last< k. For example,

ϕ := ((last< 3∧¬ last< 2)∨¬ last< 7)

is a sentence of QF. Its language is L (aa+ a7a∗
)
, whose complement is the finite set

{ε, a, a3, a4, a5, a6}. So the language of ϕ is co-finite.

One-letter languages are QF-definable iff they are finite or co-finite. We prove the
following proposition:

Proposition 8.16 A language over a one-letter alphabet is QF-definable iff it is finite or
co-finite.

Proof ⇒) We show that, for every sentence f of QF, the language L (f ) is finite or co-
finite. Let f be a sentence of QF, that is, a boolean combination of formulas of the form
last< k. We proceed by induction on the structure of f . If f = last< k, then L (f ) is finite.
If f =¬f ′, then by induction hypothesis, L (f ′) is finite or co-finite, and so L (f )=L (f ′)
is co-finite or finite, respectively. If f = (f1 ∨ f2), then by induction hypothesis, L (f1) and
L (f2) are finite or co-finite; if L (f1) and L (f2) are finite, then so is L (f ), and otherwise,
L (f ) is co-finite. The case of f = (f1 ∧ f2) is similar.

⇐) Let �={a}. The empty language is expressed by last< 1. A nonempty finite language
{ak1 , . . . , akn} is expressed by the formula

((¬last< k1− 1∧ last< k1+ 1)∨ · · · ∨ (¬last< kn− 1∧ last< kn+ 1)) .

A co-finite language L is expressed by ¬f , where f is the formula for the finite language L
(i.e., where L (f )=L).

One-letter languages are FO-definable iff they are QF-definable. We show that when
� contains only one letter, every first-order formula over� has an equivalent formula in the
QF-fragment. Themain difficulty is that first-order formulas are closed under quantification
(i.e., if ϕ is a formula so is ∃x ϕ), but formulas of QF are not.
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Theorem 8.17 Every formula of FO({a}) is equivalent to a formula of QF.

Proof sketch Let ϕ be a formula ofFO({a}). Observe that, since the alphabet only contains
one letter, every formula of FO({a}) is equivalent to a formula without occurrences of
Qa(x). So, we can assume that ϕ has no occurrence of Qa(x). We proceed by induction
on the structure of ϕ. If ϕ(x, y)= x< y, then ϕ≡ x< y+ 0. If ϕ=¬ψ , then by induction
hypothesis, there is a formula f of QF equivalent to ψ , and so ϕ≡¬f . The cases ϕ=
(ϕ1 ∨ ϕ2) and ϕ= (ϕ1 ∧ ϕ2) are similar.
Consider now the case ϕ=∃x ψ . By induction hypothesis, ψ is equivalent to a formula

f ofQF. Further, we can assume that f is in disjunctive normal form, that is, f = (f1 ∨ · · · ∨
fn), where each fi is a conjunction of atomic formulas of QF or their negations. Repeatedly
applying the equivalence ∃x (ϕ1 ∨ ϕ2)≡ (∃x ϕ1 ∨∃x ϕ2), we obtain

ϕ≡∃x (f1 ∨ · · · ∨ fn)≡ (∃x f1 ∨∃x f2 ∨ · · · ∨ ∃x fn).
Thus, it suffices to find a formula gi of QF equivalent to ∃x fi for every 1≤ i≤ n, since then
ϕ≡ (g1 ∨ · · · ∨ gn).
We sketch how to construct gi with the help of this representative example:

fi= ((x< y+ 3)∧¬(x< z+ 4)∧ (z< y+ 2)∧ (y< x+ 1)).

We start by classifying the conjuncts of fi with some occurrence of x into

• lower bounds of the form ¬(x< k), ¬(x< y+ k), or y< x+ k; and
• upper bounds of the form x< k, x< y+ k, or ¬(y< x+ k).

In our example, the lower bounds are ¬(x< z+ 4) and y< x+ 1, and the only upper bound
is x< y+ 3. The remaining conjunct, z< y+ 2, has no occurrence of x.
Assume that the lower bounds of fi are 	1, . . . , 	p, the upper bounds are u1, . . . , uq, and the

conjuncts with no occurrence of x are e1, . . . , er. Applying standard logical equivalences,
we have

∃x fi≡∃x
⎛⎝ p∧

j=1
	j ∧

q∧
k=1

uk ∧
r∧

	=1
e	

⎞⎠≡ r∧
	=1

e	 ∧∃x
⎛⎝ p∧

j=1

q∧
k=1

(	j ∧ uk)

⎞⎠ .

In our example, this yields

∃x fi≡ z< y+ 2∧∃x((¬ x< z+ 4∧ x< y+ 3)∧ (y< x+ 1∧ x< y+ 3)
)
.

Observe that
∧r

	=1 e	 is already a formula of QF. So it remains to find a formula of
QF equivalent to ∃x∧p

j=1
∧q

k=1(	j ∧ uk). Intuitively, each conjunct 	j ∧ uk expresses that x
must lie in an interval determined by 	j and uk . The key insight is that, since we consider
all combinations of upper and lower bounds, there exists an x that simultaneously lies in
all intervals iff each interval is nonempty. Let us see how this works in our example. Since
there is one upper bound and two lower bounds, we have to consider two conjuncts:
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• ¬(x< z+ 4)∧ (x< y+ 3).

This expresses that xmust lie in the interval [z+ 4, y+ 3) (closed on the left, open on the
right). The interval is nonempty iff z+ 2≤ y or, equivalently, if ¬(y< z+ 2).
• (y< x+ 1)∧ (x< y+ 3).

This expresses that x must lie in the interval (y− 1, y+ 3) (open on both sides). The
interval is always nonempty.

So, in our example, we finally obtain

∃x fi=∃x ((x< y+ 3)∧¬(x< z+ 4)∧ (z< y+ 2)∧ (y< x+ 1))

≡ ((z< y+ 2)∧¬(y< z+ 2))

=: gi.
As the set of words of even length is neither finite nor co-finite, we have

Corollary 8.18 The language Even={a2n : n≥ 0} is not FO-definable.

8.5 Monadic Second-Order Logic on Words

In a nutshell, monadic second-order logic on words extends first-order logic on words with
variables X ,Y ,Z, . . . ranging over sets of positions, and with a new kind of atomic formulas
of the form x∈X , with intended meaning “position x belongs to the set X of positions.” The
logic allows to quantify over both kinds of variables.
Variables x, y, z, . . . ranging over positions are called first-order variables, and variables

X ,Y ,Z, . . . ranging over sets of positions are called second-order variables. One could
further introduce variables ranging over sets of sets of positions, called third-order vari-
ables, and so on. Further, sets can be seen as unary relations, and one could have variables
for unary, binary, and ternary relations, and so forth, called monadic, dyadic, and triadic
second-order variables, respectively. Thus, monadic second-order logic is the extension of
first-order logic that allows variables ranging over sets of positions, and no variables ranging
over binary relations, or relations of higher arity.
Before introducing the syntax and semantics of the logic, let us informally argue that

monadic second-order logic can express the language Even of words of even length. The
formula expressing Even states that the set containing exactly all even positions also con-
tains the last position (if there is one, observe that the empty word has even length but no
positions):

EvenLength :=∀X ∀x ((Even(X )∧ last(x))→ x∈X ) .

It remains to define the macro Even(X ). To express that X contains exactly the even posi-
tions, we state that a position belongs to X iff it is the second position or if it is the second
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successor of another position in X :

second(x) :=∃y (first(y)∧ x= y+ 1),

Even(X ) :=∀x (x∈X↔ (second(x)∨∃y (x= y+ 2∧ y∈X ))) .

8.6 Syntax and Semantics

We introduce the syntax and semantics of monadic second-order logic on words. They
extend those of first-order logic presented in section 8.2.

8.6.1 Syntax

We add the new atomic formula x∈X to the syntax of first-order logic, as well as
quantification over second-order variables.

Definition 8.19 Let V1={x, y, z, . . .} and V2={X ,Y ,Z, . . .} be two infinite sets of first-
order and second-order variables. Let�={a, b, c, . . .} be a finite alphabet. The setMSO(�)

of monadic second-order formulas over � is the set of expressions generated by the
following grammar:

ϕ ::=Qa(x) | x< y | x∈X | ¬ϕ | ϕ ∨ ϕ | ∃x ϕ | ∃X ϕ .

The abbreviations ϕ1 ∧ ϕ2, ϕ1→ ϕ2, and ∀x ϕ are defined as for FO(�). Furthermore,
we introduce

x /∈X :=¬ x∈X
∀X ϕ :=¬∃X ¬ϕ “ϕ holds for every set X”

∃x∈X ϕ :=∃x (x∈X ∧ ϕ) “some position x in X satisfies ϕ”

∀x∈X ϕ :=∀x (x∈X→ ϕ) “every position x in X satisfies ϕ.”

To define the free variables of a formula, we extend the definition of the first-order case
(see [8.4]), with

free(x∈X )={x,X } and free(∃X ϕ)= free(ϕ) \ {X }.
A formula ϕ ofMSO(�) is a sentence if free(ϕ)=∅, that is, if it has neither first-order nor
second-order free variables.

8.6.2 Semantics

Interpretations of monadic second-order formulas assign positions to first-order variables
and sets of positions to second-order variables.



208 Chapter 8

Definition 8.20 An interpretation of a formula ϕ of MSO(�) is a triple (w,V1,V2) where
w∈�∗ and

• V1 : V1→N is a partial mapping such that V1(x) is defined and satisfies 1≤V1(x)≤ |w|
for every x∈ free(ϕ)∩V1, and
• V2 : V2→ 2N is a partial mapping such that V2(X ) is defined and satisfies V2(X )⊆
{1, . . . , |w|} for every X ∈ free(ϕ)∩V2.

We call V1 and V2 valuations.

As in the first-order case, we often write the mappings V1 and V2 extensionally. For
example, the triple (aba, {x '→ 1}, {X '→ {1, 3},Y '→ ∅}) is an interpretation of Qa(X ), of
x∈X , and of (x∈X ∨ x∈Y ).

Remark 8.21 Recall that the only interpretation of a sentence (w,V) of FO(�) with
w= ε is (ε,⊥). The interpretations of a sentence of MSO(�) over the empty word are the
triples (ε,⊥,V2) such that for every second-order variable X , either V2(X ) is undefined or
V2(X )=∅.
Let us formally define when an interpretation (w,V1,V2) of a formula ϕ satisfies ϕ.

We use the same notations as in definition 8.5. Additionally, given S⊆{1, . . . , |w|}, we let
V2[S/X ] denote the valuation of V2 that assigns S to X and the same value as V2 to every
other second-order variable (with the convention that {1, . . . , |w|} =∅ for w= ε).

Definition 8.22 Let ϕ be a formula of MSO(�), and let (w,V1,V2) be an interpretation
of ϕ. We say that (w,V1,V2) satisfies ϕ, or is amodel of ϕ, if one of the following conditions
holds:

• ϕ=Qa(x) and w[V1(x)] = a;
• ϕ= x< y and V1(x) <V1(y);
• ϕ= x∈X and V1(x)∈V2(X );
• ϕ=¬ϕ′ and (w,V1,V2) �|= ϕ′;
• ϕ= (ϕ1 ∨ ϕ2) and (w,V1,V2) |= ϕ1 or (w,V1,V2) |= ϕ2;
• ϕ=∃x ϕ, w �= ε, and (w,V1[i/x],V2) |= ϕ holds for some i∈ {1, . . . , |w|};
• ϕ=∃X ϕ and (w,V1,V2[S/X ]) |= ϕ holds for some S⊆{1, . . . , |w|}.
We say that two formulas ϕ1, ϕ2 are equivalent, denoted ϕ1≡ ϕ2, if they have the same
models.

Remark 8.23
• Note that the set S from definition 8.22 may be empty. Therefore, for instance, any
interpretation (w,⊥,V2) of ∃X ∀x ¬(x∈X ) such that V2(X )=∅ is a model.
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• Recall that every interpretation (ε,V) of a formula ∀x ϕ of FO(�) is a model, and no
interpretation (ε,V) of ∃x ϕ is a model (remark 8.8). Does this also hold for all formulas
∀X ϕ and ∃X ϕ? The answer is no. For example, let us show that ε �|= ∀X ∃x x∈X . From
definition 8.22, we get

ε �|= ∀X ∃x x∈X
⇐⇒ (ε,⊥,⊥) �|= ∀X ∃x x∈X (by lemma 8.9)

⇐⇒ (ε,⊥, {X '→ ∅}) �|= ∃x x∈X (by lemma 8.9)

⇐⇒ true

Analogously, we have ε |= ∀X ∀x x∈X . Further, ε |= ∃X ∀x x /∈X and ε �|= ∃X ∃x x∈X .
It is easy to see that lemma 8.9 extends to monadic second-order logic: if two inter-

pretations (w,V1,V2) and (w,V ′1,V ′2) of a formula assign the same values to all free
variables, then either both satisfy ϕ or none satisfy the formula. Thus, we can define the
following:

Definition 8.24 Let ϕ be a sentence of MSO(�). A word w∈�∗ satisfies ϕ, denoted w |=
ϕ, if every interpretation (w,V) of ϕ satisfies ϕ or, equivalently, if some interpretation (w,V)

of ϕ satisfies ϕ.
The language L (ϕ) of a sentence ϕ of MSO(�) is the set L (ϕ)={w∈�∗ :w |= ϕ}. A

language L⊆�∗ isMSO-definable if L=L (ϕ) for some formula ϕ of MSO(�).

8.7 Macros and Examples

As for first-order logic, macros are essential to turn monadic second-order logic into a
flexible language. Here are a few macros expressing standard properties of sets:

X =∅ :=∀x x /∈X
X =Y ∪Z :=∀x (x∈X↔ (x∈Y ∨ x∈Z))

X =Y ∩Z :=∀x (x∈X↔ (x∈Y ∧ x∈Z))

X =Y 0Z := (X =Y ∪Z ∧∃W (W =Y ∩Z ∧W =∅))
|X | = 1 :=∃x∀y∈X y= x

|X | = k+ 1 :=∃Y ∃Z (X =Y 0Z ∧ |Y | = k ∧ |Z| = 1)

Example 8.25 We use the macros to give sentences of MSO(�) for two predicates.
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Even number of as and even number of bs. This is the first predicate discussed in the
introduction of the chapter. We give a formalization valid for every � such that a, b∈�.
We first define formulas expressing that x is the first (last) position in X , and that x and y
are neighbor positions in X :

Is_first_in(x,X ) := x∈X ∧∀y (y< x→ y /∈X ))

Is_last_in(x,X ) := x∈X ∧∀y (x< y→ y /∈X ))

Neighbors(x, y,X ) := x∈X ∧ y∈X ∧∀z ((x< z∧ z∧ y)→ z /∈X ) .

Now we express that X can be partitioned into two disjoint sets of positions Xo and Xe, such
that the set Xo contains the first, third, fifth, . . . position of X , the set Xe contains the second,
fourth, sixth, . . . position of X , and the rightmost position of X belongs to Xe. This holds iff
X has even size.

EvenSize(X ) :=∃Xo ∃Xe

X =Xo 0Xe

∧∀x (Is_first_in(x,X )→ x∈Xo)

∧∀x ∀y (Neighbors(x, y,X )→ (x∈Xo↔ y∈Xe))

∧∀x (Is_last_in(x,X )→ x∈Xe)

Given a letter σ ∈�, we define

Even_number_of_σ :=∃X ((x∈X↔Qσ (x))∧EvenSize(X ))

The formula we are looking for is

Even_number_of_a∧Even_number_of_b.

The formula is longer than the regular expression at the beginning of the chapter, but it
is easier to find for a human. Moreover, it is now trivial to find another formula for “even
number of as, bs and cs,” while finding another regular expression is not.

A formula for c∗(ab)∗d∗. Let �={a, b, c, d}. We construct a formula with language
L (c∗(ab)∗d∗). The membership predicate for this language can be informally formulated
as follows:

There is a block of consecutive positions X such that (1) before X , there are only cs; (2) after X , there
are only ds; (3) in X , bs and as alternate; (4) the first letter in X is an a; and (5) the last letter in X
is a b.

This predicate is a conjunction of five smaller predicates. We give formulas expressing each
of the conjuncts.
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• “X is a block of consecutive positions.”

Intuitively, X is a block of consecutive positions if it does not contain a “hole” or,
equivalently, if all positions between two positions of X also belong to X .

Block(X ) :=∀x∈X ∀y∈X
(x< y→∀z ((x< z∧ z< y)→ z∈X ))

• “Before X , there are only cs.”

Before(x,X ) :=∀y∈X x< y

Before_only_c(X ) :=∀x (Before(x,X )→Qc(x))

• “After X , there are only ds.”

After(x,X ) :=∀y∈X y< x

After_only_d(X ) :=∀x (After(x,X )→Qd(x))

• “as and bs alternate in X .”

Alternate(X ) :=∀x∈X ∀y∈X(
y= x+ 1→ ((Qa(x)→Qb(y))∧ (Qb(x)→Qa(y))

))
• “The first letter in X is an a.”

Is_first_in(x,X ) := x∈X ∧∀y (y< x→ y /∈X )

First_is_a(X ) :=∀x (Is_first_in(x,X )→Qa(x))

• “The last letter in X is a b.”

Is_last_in(x,X ) := x∈X ∧∀y (x< y→ y /∈X )

Last_is_b(X ) :=∀x (Is_last_in(x,X )→Qb(x))

Putting everything together, we get the formula

∃X (Block(X )∧Before_only_c(X )∧After_only_d(X )∧
Alternate(X )∧First_is_a(X )∧Last_is_b(X )

)
.

Note that the empty word is a model of the formula, because the empty set of positions
satisfies all conjuncts.
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8.8 All Regular Languages Are Expressible in MSO(�)

We show that, contrary to first-order logic, monadic second-order logic on words can
express all regular languages.

Proposition 8.26 If L⊆�∗ is regular, then L is expressible in MSO(�).

For the proof, we present a generic procedure that, given a regular language over �,
represented by a DFA A, constructs a formula ϕA of MSO(�) such that L (ϕA)=L (A).

Imagine we are given A. There is an obvious way to express the membership predicate of
L (A): a word belongs to L (A) iff the last state of its run on A is accepting. Thus, it suffices
to find a formula of MSO(�) expressing “the last state of the run of A is accepting.” For
this, we introduce the visit record of a word. The visit record of a word w is a mapping
that assigns to each state q the set of positions of w after which the run reaches q. It is the
inverse of the mapping that assigns to each letter of w the state reached by A after reading
it. Formally:

Definition 8.27 Let A= (Q,�, δ, q0,F) be a DFA, and let w= a1 · · · am be a nonempty
word over �. The visit record of w is the mapping Rw : Q→ 2{1,...,m} that assigns to each
state q∈Q the set of positions defined as follows:

Rw(q)=
{
i∈ {1, . . . ,m} : δ̂(q0, a1 · · · ai)= q

}
.

Example 8.28 Figure 8.2 shows aDFA, its run on thewordw= aabbb, and the visit record
Rw. Observe that each position belongs to the visit record of exactly one state. In other
words, Rw(q0), Rw(q1), and Rw(q2) form a partition of the set of positions {1, 2, . . . , 5}.

For every nonempty word, “the run of A on the word is accepting” is equivalent to the
predicate “the last position of the word belongs to the visit record of an accepting state.” Let
us examine this predicate. Assume the states of A are {q0, q1, . . . , qn}, and imagine we are

q0 q1

q2

a

b

a

b

a

b

Run: q0
a−→ q1

a−→ q1
b−→ q2

b−→ q0
b−→ q2

Position: 1 2 3 4 5

Rw(q0)= {4}
Rw(q1)= {1, 2}
Rw(q2)= {3, 5}

Figure 8.2
Example of a run and a visit record.
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able to define a macro expressing the visit record—that is, a macro VisitRecord(X0, . . .Xn)

such that an interpretation (w,⊥,V2) is a model if and only if V2 assigns to X0, . . . ,Xn the
visit record Rw(q0), . . . ,Rw(qn). The predicate is then expressed by the sentence

ψA :=∀X0 · · · ∀Xn ∀x
⎛⎝(VisitRecord(X0, . . . ,Xn)∧ last(x))→

∨
qi∈F

x∈Xi

⎞⎠
and hence, for every nonempty word w, we have w∈L (ψA) iff w∈L (A). It remains to take
care of the empty word, which has no visit record. Since the only first-order quantifier ofψA
is universal, we have ε |=ψA for every DFA A, independently of whether ε ∈L (A) holds
or not, and so we cannot define ϕA :=ψA. This is easy to fix by defining ϕA as follows: if
ε ∈L (A), then ϕA :=ψA, and otherwise, ϕA :=ψA ∧ ϕ, where ϕ is any sentence satisfied
by every word but ε (e.g., ϕ=∃x ¬(x< x)). After this adjustment, we have L (ϕA)=L (A).
For example 8.28, we get

ϕA :=∀X0∀X1∀X2 ∀x ((
(VisitRecord(X0,X1,X2)∧ last(x))→ x∈X2

)∧∃x ¬(x< x)
)
.

It remains to construct the macro VisitRecord(X0, . . . ,Xn). For this, note that the visit
record Rw can also be defined inductively: we first define which component Rw(q) of the
record contains position 1, and then, assuming we knowwhich component contains position
i, we define which component contains position i+ 1.

Lemma 8.29 Let A= (Q,�, δ, q0,F) be a DFA, and let w= a1 · · · am be a nonempty word
over �. The visit record Rw is the unique mapping Q→ 2{1,...,m} satisfying the following
properties for every q, q′ ∈Q and every 1≤ i<m:

(a) 1∈Rw(q) iff q= δ(q0, a1), and
(b) if i∈Rw(q) then i+ 1∈Rw(q′) iff q′ = δ(q, ai).

The proof of the lemma follows immediately from definition 8.27. For example 8.28,
we get

1∈Rw(q) iff q= δ(q0, a)= q1

2∈Rw(q) iff q= δ(q1, a)= q1

3∈Rw(q) iff q= δ(q1, b)= q2
...

Intuitively, conditions (a) and (b) of lemma 8.29 state that the initial position belongs to
the right component of the visit record and that the visit record “respects” the transition
relation of A. We give macros Init(X0, . . . ,Xn) and Respect(X0, . . . ,Xn) expressing these
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predicates, where we assume the states of A to be {q0, q1, . . . , qn}. Given 0≤ i≤ n, let us
define the following auxiliary macro expressing that position x belongs to Xj iff j= i:

InXi(x) :=
⎛⎝x∈Xi ∧

∧
j �=i

x /∈Xj

⎞⎠ .

For condition (a), we take

Init(X0, . . . ,Xn) :=∀x
∧
a∈�

(
(first(x)∧Qa(x))→ InXδ(0,a)(x)

)
,

where we abuse language, and write δ(0, a) for the index of the state δ(q0, a). In words,
Init(X0, . . . ,Xn) expresses that if the letter at position 1 is an a, then position 1 belongs to
Xδ(0,a) and to no other set.

Example 8.30 For the DFA of figure 8.2 with states {q0, q1, q2}, we get
Init(X0,X1,X2)=∀x

(
(first(x)∧Qa(x))→ InX1(x)

)
∧ ((first(x)∧Qb(x))→ InX2(x)

)
.

For condition (b), we define

Respect(X0, . . . ,Xn) :=∀x ∀y

⎛⎜⎜⎝y= x+ 1→
∧
a∈�,

i∈{0,...,n}

(Qa(x)∧ x∈Xi)→ InXδ(i,a)(y)

⎞⎟⎟⎠ .

The formula expresses that if a position x belongs to Xi, and the letter at this position is an
a, then its successor position x+ 1 belongs to Xδ(i,a), and to no other set.

Example 8.31 For the DFA of figure 8.2, this yields:

Respect(X0,X1,X2)=∀x ∀y⎛⎜⎜⎜⎜⎜⎜⎜⎝
y= x+ 1→

⎛⎜⎜⎜⎜⎜⎜⎜⎝

(Qa(x)∧ x∈X0) → InX1(y)
∧(Qb(x)∧ x∈X0) → InX2(y)
∧(Qa(x)∧ x∈X1) → InX1(y)
∧(Qb(x)∧ x∈X1) → InX2(y)
∧(Qa(x)∧ x∈X2) → InX1(y)
∧(Qb(x)∧ x∈X2) → InX0(y)

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Finally, we are done by setting

VisitRecord(X0, . . .Xn) := Init(X0, . . . ,Xn)∧Respect(X0, . . . ,Xn).
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8.9 All Languages Expressible inMSO(�) Are Regular

It remains to prove that MSO-definable languages are regular—that is, for every sentence
ϕ ∈MSO(�), the language L (ϕ) is regular. The proof is by induction on the structure of ϕ.
Since definition 8.11 only defines L (ϕ) for sentences, we must overcome the obstacle that
the subformulas of a sentence are not necessarily sentences.
For this, we define the language of a formula for every formula, sentence or not, in an

appropriate way. Recall that the interpretations of a formula ϕ are triples (w,V1,V2) where
V1 assigns positions to the free first-order variables of ϕ and possibly to others, and V2
assigns sets of positions to the free second-order variables of ϕ and possibly to others. For
example, if �={a, b} and free(ϕ)={x, y,X ,Y }, then two possible interpretations are(

aab,
{
x '→ 1
y '→ 3

}
,
{
X '→ {2, 3}
Y '→ {1, 2}

})
and
(
ba,
{
x '→ 2
y '→ 1

}
,
{
X '→ ∅
Y '→ {1}

})
.

Given an interpretation (w,V1,V2), we encode each assignment of the form x '→ k or
X '→ {k1, . . . , k	} as a bitstring of the same length asw: the string for x '→ k contains exactly
a 1 at position k and 0s everywhere else; the string for X '→ {k1, . . . , k	} contains 1s at
positions k1, . . . , k	 and 0s everywhere else. After fixing an order on the variables, an inter-
pretation (w,V1,V2) can then be encoded as a tuple (w, v1, . . . , vn), where n is the number
of variables, w∈�∗, and v1 · · · vn ∈ {0, 1}∗. In particular, for the two interpretations above,
we respectively get the encodings

w :
x :
y :
X :
Y :

a
1
0
0
1

a
0
0
1
1

b
0
1
1
0

and

w :
x :
y :
X :
Y :

b
0
1
0
1

a
1
0
0
0

.

As all of w, v1, . . . , vn have the same length, we can encode the tuple (w, v1, . . . , vn) as a
word over the alphabet �×{0, 1}n. The encodings above yield the words⎡⎢⎢⎢⎢⎢⎣

a
1
0
0
1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
a
0
0
1
1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
b
0
1
1
0

⎤⎥⎥⎥⎥⎥⎦ and

⎡⎢⎢⎢⎢⎢⎣
b
0
1
0
1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
a
1
0
0
0

⎤⎥⎥⎥⎥⎥⎦ over the alphabet �×{0, 1}4.

We can define the language of ϕ as the set of encodings of themodels of ϕ. However, since
an interpretation must assign values to all free variables of a formula but can assign values
to others, a formula may have models encoded over alphabets �×{0, 1}k for arbitrarily
large values of k. For example, both (ab,⊥,⊥) and (a, {y '→ 1}, {Y '→ {1, 2}) are models



216 Chapter 8

of the formula ∃x Qa(x), but the first is encoded as a word over {a, b}, while the second is
encoded as a word over {a, b}× {0, 1}2.
This problem has a simple solution: consider only the minimal interpretations of the for-

mula that assign values to exactly the free variables of the formula and to no others. Since,
by lemma 8.9, the values assigned to bound variables do not influence whether an interpre-
tation is a model or not, we do not lose any information, and all minimal interpretations are
encoded as words over the same alphabet.
We still need to fix the encoding of the interpretations (w,V1,V2) such that w= ε. Recall

that, since we cannot assign values to first-order variables, only formulas without free
first-order variables can have such interpretations, and they are of the form (ε,⊥, {X1 '→
∅, . . . ,Xk '→ ∅}). We encode all these interpretations by the empty word.

Definition 8.32 Let ϕ be a formula with sets {x1, . . . , xk1} and {X1, . . . ,Xk2} of free
first-order and second-order variables, respectively, where k1, k2≥ 0. Let (w,V1,V2) be a
minimal interpretation of ϕ. The encoding enc(w,V1,V2) of (w,V1,V2) is the word over
alphabet �×{0, 1}k1+k2 defined as follows:
• if w= ε, then enc(w,V1,V2)= ε;
• if w �= ε, then enc(w,V1,V2)= (w, v1, . . . , vk1 , u1, . . . , uk2), where
◦ for every 1≤ i≤ k1 and 1≤ j≤ |w|: vi[j] = 1 iff V1(xi)= j; and

◦ for every 1≤ i≤ k2, 1≤ j≤ |w|: ui[j] = 1 iff j∈V2(Xi).

The language of ϕ, denoted L (ϕ), is the set of encodings of all minimal models of ϕ.

We have thus associated to every formula ϕ a language L (ϕ) over alphabet �×{0, 1}n,
where n≥ 0 is the number of free variables of ϕ. We prove by induction on the structure
of ϕ that L (ϕ) is regular. We do so by exhibiting an NFA accepting L (ϕ). For simplic-
ity, in the rest of the section, we assume �={a, b}. The extension to larger alphabets is
straightforward. Recall that free(ϕ) denotes the set of free variables of ϕ.

Case ϕ =Qa(x). We have free(ϕ)={x}, and hence the minimal models of ϕ are encoded
as words over �×{0, 1}. By definition 8.22, the language L (ϕ) is given by

L (ϕ)=

⎧⎪⎪⎨⎪⎪⎩
[
a1
β1

] · · ·
· · ·
[
ak
βk

]
:

k≥ 1;
a1 . . . ak ∈�k ,β1 . . . βk ∈ {0, 1}k ; and
βi= 1 for a single index i∈ {1, . . . , k}
such that ai= a.

⎫⎪⎪⎬⎪⎪⎭
Observe that k≥ 1 because, by definition, no triple (ε,V1,V2) is an interpretation of Qa(x).
The language L (ϕ) is recognized by this automaton:



Automata and Logic 217

[
a
1

]
[
a
0

]
,
[
b
0

] [
a
0

]
,
[
b
0

]

Case ϕ = x< y. We have free(ϕ)={x, y}, and hence the minimal models of ϕ are encoded
as words over �×{0, 1}2. By definition Definition 8.22, the language L (ϕ) is given by

L (ϕ)=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
⎡⎣a1β1

γ1

⎤⎦ · · ·
· · ·
· · ·

⎡⎣akβk
γk

⎤⎦ :

k≥ 1;
a1 . . . ak ∈�k ,β1 . . . βk , γ1 . . . γk ∈ {0, 1}k ;
βi= 1 for a single index i∈ {1, . . . , k};
γj= 1 for a single index j∈ {1, . . . , k}; and
i< j.

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
It is recognized by this automaton:

⎡⎣a1
0

⎤⎦ ,

⎡⎣b1
0

⎤⎦ ⎡⎣a0
1

⎤⎦ ,

⎡⎣b0
1

⎤⎦
⎡⎣a0
0

⎤⎦ ,

⎡⎣b0
0

⎤⎦ ⎡⎣a0
0

⎤⎦ ,

⎡⎣b0
0

⎤⎦
⎡⎣a0
0

⎤⎦ ,

⎡⎣b0
0

⎤⎦

Case ϕ = x∈X . We have free(ϕ)={x,X }, and hence the minimal interpretations of ϕ are
encoded as words over �×{0, 1}2. By definition 8.22, the language L (ϕ) is given by

L (ϕ)=

⎧⎪⎪⎨⎪⎪⎩
⎡⎣a1β1

γ1

⎤⎦ · · ·
· · ·
· · ·

⎡⎣akβk
γk

⎤⎦ :

k≥ 1;
a1 . . . ak ∈�k ,β1 . . . βk , γ1 . . . γk ∈ {0, 1}k ;
βi= 1 for a single index i∈ {1, . . . , k}; and
βi= 1 implies γi= 1 for all i∈ {1, . . . , k}.

⎫⎪⎪⎬⎪⎪⎭
It is recognized by

⎡⎣a1
1

⎤⎦ ,

⎡⎣b1
1

⎤⎦
⎡⎣a0
0

⎤⎦ ,

⎡⎣b0
0

⎤⎦ ,

⎡⎣a0
1

⎤⎦ ,

⎡⎣b0
1

⎤⎦
⎡⎣a0
0

⎤⎦ ,

⎡⎣b0
0

⎤⎦ ,

⎡⎣a0
1

⎤⎦ ,

⎡⎣b0
1

⎤⎦
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Case ϕ = ¬ψ . We have free(ϕ)= free(ψ), and by induction hypothesis, there exists an
automaton Aψ such that L (Aψ

)=L (ψ).
By definition 8.22, L (ϕ) is the set of encodings of the minimal interpretations of ψ that

do not satisfy ψ . Observe that, in general, L (ϕ) is not equal to L (ψ), as one might first
think. Consider, for example, the instance ϕ=¬ψ =¬Qa(x). The word[

a
1

] [
a
1

] [
a
1

]
belongs neither to L (ψ) nor L (ϕ), because it is not the encoding of any interpretation:
the bitstring for x contains more than one 1. What holds is L (ϕ)=L (ψ)∩Enc(ψ), where
Enc(ψ) is the language of the encodings of all minimal interpretations of ψ , whether they
are models of ψ or not. We construct a DFA Aenc

ψ recognizing Enc(ψ), after which we can
take Aϕ =Aψ ∩Aenc

ψ .
Assume ψ has k1 and k2 free first-order and second-order variables, respectively. By

definition 8.20, which defines the interpretations of a formulaψ , and definition 8.32, which
defines their encodings, we have that a word w over �×{0, 1}k1+k2 belongs to Enc(ψ) if

• w= ε and k1= 0, or
• w �= ε, and each of the bitstrings obtained by projecting w onto the second, third, . . . ,
(k1+ 1)th component of the alphabet contains exactly one occurrence of the letter 1.

We define a DFA Aenc
ψ recognizing Enc(ψ). For clarity, it is convenient to separate the

definition into the cases k1 > 0, that is,ψ has at least one free first-order variable, and k1= 0.
Recall that if k1 > 0, then ψ has no interpretations on the empty word, but if k1= 0, then
the triple (ε,⊥, {X1 '→ ∅, . . . ,Xk2 '→ ∅) is a minimal interpretation. If k1 > 0, then Aenc

ψ is
defined as follows:

• The states are all the strings of {0, 1}k1 , plus a trap state.

The intended meaning of a state, say state 101 for the case k1= 3, is “the automaton has
already read the 1s in the first and the third bitstrings, but not yet read the 1 of the second.”

• The initial state is 0k1 .

Initially, the automaton has not read any 1 for any first-order variable.

• Transitions are defined according to the intended meaning of the states.

For example, if the automaton is in state 100 and reads the letter [a, 0, 0, 1], then the
automaton moves to state 101, indicating that it has now also read the 1 in the third bitstring.
However, if the automaton reads the letter [a, 1, 1, 0], then it moves to the nonaccepting trap
state, because the first bitstring contains at least two 1s, and so the word does not encode
an interpretation. All transitions leaving the trap state lead to the trap state.

• The only final state is 1k1 .
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At this point, the 1s in all bitstrings have been read.
If k1= 0, then Aenc

ψ has a single state, which is both initial and final, and, for every letter
of �×{0, 1}k2 , the corresponding transition leads from this state to itself.

Example 8.33 The formula x< y has two free first-order variables. The states of Aenc
x<y are

{00, 01, 10, 11}. The automaton is depicted in figure 8.3.

Since an interpretation can assign the same position to x and y, we have two transitions
leading from 00 to 11. While such interpretations are not models of x< y, their encodings
must be recognized by Aenc

ψ .

Remark 8.34
• Aenc

ψ only depends on free(ψ). For example, Aenc
Qa(x)=Aenc∃y x<y.

• The number of states of Aenc
ψ grows exponentially in the number of free variables of ψ .

This makes negations expensive, even when the automaton Aψ is deterministic.

Case ϕ = (ϕ1 ∨ ϕ2). We have free(ϕ)= free(ϕ1)∪ free(ϕ2), and by induction hypothesis,
there are automata Aϕi , Aϕ2 such that L

(
Aϕ1

)=L (ϕ1) and L (Aϕ2

)=L (ϕ2).
If free(ϕ1)= free(ϕ2), then we can take Aϕ =Aϕ1 ∪Aϕ2 . But, this needs not be the case.

If free(ϕ1) �= free(ϕ2), then L (ϕ1) and L (ϕ2) are languages over different alphabets �1
and �2, or over the same alphabet but with different intended meanings. Thus, we cannot
just compute their union. For example, if ϕ1=Qa(x) and ϕ2=Qb(y), then both L (ϕ1) and

00 01

10 11

⎡⎣a1
0

⎤⎦ ,

⎡⎣b1
0

⎤⎦

⎡⎣a0
1

⎤⎦ ,

⎡⎣b0
1

⎤⎦
⎡⎣a1
1

⎤⎦ ,

⎡⎣b1
1

⎤⎦ ⎡⎣a0
1

⎤⎦ ,

⎡⎣b0
1

⎤⎦

⎡⎣a1
0

⎤⎦ ,

⎡⎣b1
0

⎤⎦

⎡⎣a0
0

⎤⎦ ,

⎡⎣b0
0

⎤⎦ ⎡⎣a0
0

⎤⎦ ,

⎡⎣b0
0

⎤⎦

⎡⎣a0
0

⎤⎦ ,

⎡⎣b0
0

⎤⎦ ⎡⎣a0
0

⎤⎦ ,

⎡⎣b0
0

⎤⎦
Figure 8.3

Automaton Aencx<y.
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L (ϕ2) are languages over �×{0, 1}, but in (aba, 100)∈L (ϕ1), the bitstring 100 encodes
the position of x, whereas in (aba, 010)∈L (ϕ2), the bitstring 010 encodes the position of y.

This problem is solved by extending L (ϕ1) and L (ϕ2) to languages L1 and L2 over
�×{0, 1}2. In our example, L1 contains the encodings of all interpretations (w, {x '→
n1, y '→ n2}) such that the projection (w, {x '→ n1}) belongs to L (Qa(x)), and similarly, L2
contains the encodings of all interpretations such that (w, {y '→ n2}) belongs to L (Qb(y)).
Let us transform the two-state automaton AQa(x) recognizing L (Qa(x)), that is, the

automaton

[
a
1

]
[
a
0

]
,
[
b
0

] [
a
0

]
,
[
b
0

]

into an automaton A1 recognizing L1. For this, it suffices to “split” every transition of AQa(x)
labeled by [a,β] ∈�×{0, 1} into two transitions, labeled by [a,β, 0] and [a,β, 1]. This
yields the automaton

⎡⎣a1
0

⎤⎦ ,

⎡⎣a1
1

⎤⎦
⎡⎣a0
0

⎤⎦ ,

⎡⎣a0
1

⎤⎦ ,

⎡⎣b0
0

⎤⎦ ,

⎡⎣b0
1

⎤⎦
⎡⎣a0
0

⎤⎦ ,

⎡⎣a0
1

⎤⎦ ,

⎡⎣b0
0

⎤⎦ ,

⎡⎣b0
1

⎤⎦

After constructing A2 in a similar manner, we take Aϕ =A1 ∪A2.
We can use the same procedure to construct an automaton for the case ϕ= ϕ1 ∧ ϕ2. We

only need to modify the very last step and set Aϕ =A1 ∩A2.

Case ϕ = ∃x ψ . We have free(ϕ)= free(ψ) \ {x}, and by induction hypothesis, there is an
automaton Aψ such that L (Aψ

)=L (ψ). We define A∃x ψ as the result of the projection
operation, where we project onto all variables but x. The operation simply corresponds to
removing in each letter of each transition of Aψ the component for variable x. For example,
the automaton A∃x Qa(x) is obtained by removing the second component in all labels of the
automaton for AQa(x):

[
a
1

]
[
a
0

]
,
[
b
0

] [
a
0

]
,
[
b
0

]

AQa(x)

a

a, b a, b

A∃x Qa(x)
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Observe that the automaton for ∃x Qa(x) is nondeterministic even though AQa(x) is a
DFA, because the projection maps [a, 0] and [a, 1] to the same letter.

Case ϕ = ∃X ϕ. We proceed exactly as in the previous case.

Size of Aϕ . The procedure for constructing Aϕ proceeds bottom-up on the syntax tree of
ϕ. It first constructs automata for the atomic formulas in the leaves of the tree and then
proceeds upward: given automata for the children of a node in the tree, it constructs an
automaton for the node itself.
The automaton for a node labeled by a negation can be exponentially larger than the

automaton for its only child. This yields an upper bound for the size of Aϕ equal to a tower
of exponentials, where the height of the tower is the largest number of negations in any path
from the root of the tree to one of its leaves. It can be shown that this very large upper bound
is essentially tight: there are formulas ϕ for which the smallest automaton recognizingL (ϕ)

reaches the upper bound. In other words, monadic second-order logic on words allows us
to express some regular languages in an extremely succinct form.
We conclude the section with an example illustrating all of the parts of the inductive

procedure.

Example 8.35 Consider the language a∗b⊆�∗ over �={a, b}, recognized by this NFA:

b

a

We derive the NFA by giving a formula ϕ such that L (ϕ)=L (a∗b) and then transform-
ing ϕ into an automaton. (We shall see that the procedure is quite laborious.) The formula
states that the last letter is a b and all other letters are as:

ϕ=∃x (last(x)∧Qb(x))∧∀x (¬last(x)→Qa(x)).

We first replace the abbreviations in ϕ by their definitions, yielding

ψ =∃x (last(x)∧Qb(x))∧¬∃x (¬last(x)∧¬Qa(x)).

We transform ψ into an NFA by constructing automata for larger and larger subformulas
of ψ , starting with the atomic formulas. For readability, we let [ψ ′] denote the automaton
for a subformula ψ ′, instead of Aψ ′ .

An automaton for last(x). We first compute an automaton for last(x) :=¬∃y (x< y).
Recall that the automaton [x< y] for x< y is
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⎡⎣a1
0

⎤⎦ ,

⎡⎣b1
0

⎤⎦ ⎡⎣a0
1

⎤⎦ ,

⎡⎣b0
1

⎤⎦
⎡⎣a0
0

⎤⎦ ,

⎡⎣b0
0

⎤⎦ ⎡⎣a0
0

⎤⎦ ,

⎡⎣b0
0

⎤⎦
⎡⎣a0
0

⎤⎦ ,

⎡⎣b0
0

⎤⎦
[x< y]

Applying the projection operation, we get an automaton for ∃y (x< y):

[
a
1

]
,
[
b
1

] [
a
0

]
,
[
b
0

]
[
a
0

]
,
[
b
0

] [
a
0

]
,
[
b
0

] [
a
0

]
,
[
b
0

]

[∃y (x< y)]

It remains to compute the automaton for ¬∃y (x< y). Recall that computing the automa-
ton for the negation of a formula requires more than complementing the automaton. First,
we need an automaton recognizing the set Enc(∃y (x< y)) of encodings of the minimal
interpretations of ∃y (x< y). Since x is a free variable of the formula, we get

[
a
1

]
,
[
b
1

]
[
a
0

]
,
[
b
0

] [
a
0

]
,
[
b
0

]

Aenc
∃y (x<y)

Second, we determinize and complement the automaton for ∃y (x< y):

[
a
1

]
,
[
b
1

]
�×{0, 1}

[
a
0

]
,
[
b
0

]
�×{0, 1}

Finally, we compute the intersection of the last two automata, which yields

[
a
1

]
,
[
b
1

] [
a
0

]
,
[
b
0

]
[
a
0

]
,
[
b
0

] [
a
0

]
,
[
b
0

]

The last state is useless and can be removed, finally yielding the following NFA for last(x):



Automata and Logic 223

[
a
1

]
,
[
b
1

]
[
a
0

]
,
[
b
0

]

[last(x)]

Anautomaton for ∃x (last(x) ∧Qb(x)). Next, we compute an automaton for ∃x (last(x)∧
Qb(x)), the first conjunct of ψ . We start with an NFA for Qb(x):

[
b
1

]
[
a
0

]
,
[
b
0

] [
a
0

]
,
[
b
0

]

[Qb(x)]

The automaton for ∃x (last(x)∧Qb(x)) is the result of intersecting [Qb(x)] and [last(x)] and
projecting onto the first component. This yields

b

a, b

[∃x (last(x)∧Qb(x))]

An automaton for ¬∃x (¬last(x) ∧ ¬Qa(x)). Now we compute an automaton for
¬∃x (¬last(x)∧¬Qa(x)), the second conjunct of ψ . We first obtain an automaton for
¬Qa(x) by intersecting the complement of [Qa(x)] and the automaton for Enc(Qa(x)). The
automaton for Qa(x) is

[
a
1

]
[
a
0

]
,
[
b
0

] [
a
0

]
,
[
b
0

]

[Qa(x)]

After determinization and complementation, we get

[
a
1

]

[
b
1

] [
a
1

]
,
[
b
1

]

[
a
0

]
,
[
b
0

] [
a
0

]
,
[
b
0

]

�×{0, 1}
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For the automaton recognizing Enc(Qa(x)), note that

Enc(Qa(x))=Enc(∃y (x< y)),

because both formulas have the same free variables and so the same interpretations. But we
have already computed an automaton recognizing Enc(∃y (x< y)), and so

[
a
1

]
,
[
b
1

]
[
a
0

]
,
[
b
0

] [
a
0

]
,
[
b
0

]

Aenc
Qa(x)

The intersection of the last two automata yields a three-state automaton for ¬Qa(x), but
after eliminating a useless state, we get

[
b
1

]
[
a
0

]
,
[
b
0

] [
a
0

]
,
[
b
0

]

[¬Qa(x)]

Note that this is the same automaton we obtained for Qb(x), which is fine, because over
alphabet {a, b}, the formulas Qb(x) and ¬Qa(x) are equivalent.

To compute an automaton for ¬last(x), we observe that ¬last(x) is equivalent to
∃y (x< y), for which we have already computed an NFA, and so

[
a
1

]
,
[
b
1

] [
a
0

]
,
[
b
0

]
[
a
0

]
,
[
b
0

] [
a
0

]
,
[
b
0

] [
a
0

]
,
[
b
0

]

[¬last(x)]

Intersecting the automata for ¬last(x) and ¬Qa(x), and subsequently projecting onto the
first component, we obtain an automaton for the sentence ∃x (¬last(x)∧¬Qa(x)):

b a, b

a, b a, b a, b

[∃x (¬last(x)∧¬Qa(x))]

Determinizing, complementing, and removing a useless state yields the following NFA for
¬∃x (¬last(x)∧¬Qa(x)):
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b

a

[¬∃x (¬last(x)∧¬Qa(x))]

Summarizing, the automata for the two conjuncts of ψ are

b

a, b

and b

a

whose intersection yields a three-state automaton, which after removal of a useless state
becomes

b

a

[∃x (last(x)∧Qb(x))∧¬∃x (¬last(x)∧¬Qa(x))]

This ends the derivation.

8.10 Exercises

�� Exercise 119. Give formulations in plain English of the languages described by the 

following formulas of FO({a, b}), and give a corresponding regular expression:

(a) ∃x first(x)
(b) ∀x false
(c) [¬∃x∃y (x< y∧Qa(x)∧Qb(y))] ∧ [∀x (Qb(x)→∃y x< y∧Qa(y))] ∧ [∃x ¬∃y x< y]
�� Exercise 120. Let �={a, b}. 


(a) Give a formula ϕn(x, y) from FO(�), of size O(n), that holds iff y= x+ 2n. Note that
the abbreviation y= x+ k of page 202 has length O(k) and hence cannot be directly used.
(b) Give a sentence from FO(�), of size O(n), for the language Ln={ww :w∈
�∗ and |w| = 2n}.
(c) Show that the minimal DFA accepting Ln has at least 22

n
states.

Hint: Consider residuals.

�� Exercise 121.The nesting depth d(ϕ) of a formula ϕ ofFO({a}) is defined inductively 

as follows:

• d(Qa(x))= d(x< y)= 0,
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• d(¬ψ)= d(ψ),
• d(ϕ1 ∨ ϕ2)=max{d(ϕ1), d(ϕ2)}, and
• d(∃x ψ)= 1+ d(ψ).

Prove that every formula ϕ from FO({a}) of nesting depth n is equivalent to a formula
f of QF having the same free variables as ϕ, and such that every constant k appearing in
f satisfies k≤ 2n. Hint: Modify suitably the proof of theorem 8.17.

�� Exercise 122.Consider theextensionofFO(�)whereadditionofvariables is allowed.�
Give a sentence of this logic for palindromes, that is, for language {w∈�∗ :w=wR}.
�	 Exercise 123. Let � be a finite alphabet. A language L⊆�∗ is star-free if it can be�
expressed by a star-free regular expression, that is, a regular expression where the Kleene
star operation is forbidden, but complementation is allowed. For example, �∗ is star-free
since �∗ =∅, but (aa)∗ is not. In this exercise we show that every star-free language can
be expressed by a sentence of FO(�).

(a) Give star-free regular expressions and FO(�) sentences for the following star-free
languages:
(i) �+,
(ii) �∗A�∗ for some A⊆�,
(iii) A∗ for some A⊆�,
(iv) {w∈�∗ :w does not contain aa}, and
(v) (ab)∗.
(b) Show that finite and co-finite languages are star-free.
(c) Show that for every sentence ϕ ∈FO(�), there exists a formula ϕ+(x, y), with two free
variables x and y, such that for every w∈�+ and for every 1≤ i≤ j≤w,

w |= ϕ+(i, j) iff wiwi+1 · · ·wj |= ϕ.

(d) Give a polynomial-time algorithm that decides whether ε satisfies a given sentence of
FO(�).
(e) Show that any star-free language can be expressed by an FO(�) sentence.

Hint: Use (c).

� � Exercise 124. Give a formula Odd_card(X ) from MSO(�) expressing that the set

of positions X has odd cardinality. Hint: Follow the pattern of Even(X ).

�� Exercise 125. Give formulas of MSO({a, b}) that define the following languages:


(a) aa∗b∗,
(b) the set of words with an odd number of occurrences of a, and
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(c) the set of words such that every two bs with no other b in between are separated by a
block of as of odd length.

� � Exercise 126. Given a formula ϕ from MSO(�) and a second-order variable X not 

occurring in ϕ, show how to construct a formula ϕX with X as an additional free variable
expressing “the projection of the word onto the positions of X satisfies ϕ.” Formally, ϕX

must satisfy the following property: for every interpretation V of ϕX , we have (w,V) |= ϕX

iff (w|V(X ),V) |= ϕ, where w|V(X ) denotes the result of deleting from w the letters at all
positions that do not belong to V(X ).

�� Exercise 127. �

(a) Given two sentences ϕ1, ϕ2 ∈MSO(�), construct a sentence Conc(ϕ1, ϕ2) satisfying
L (Conc(ϕ1, ϕ2))=L (ϕ1) ·L (ϕ2).
(b) Given a sentence ϕ of MSO(�), construct a sentence Star(ϕ) satisfying

L (Star(ϕ))=L (ϕ)∗ .

(c) Give an algorithm RegtoMSO that takes a regular expression r as input and constructs
a sentence ϕ of MSO(�) such that L (ϕ)=L (r), without first constructing an automaton.

Hint: Use exercise 126.

�� Exercise 128. Consider the logic PureMSO(�) with syntax 


ϕ ::=X ⊆Qa | X <Y | X ⊆Y | ¬ϕ | ϕ ∨ ϕ | ∃X ϕ.

Note that formulas of PureMSO(�) do not contain first-order variables. The satisfaction
relation of PureMSO(�) is given by

(w,V) |= X ⊆Qa iff w[p] = a for every p∈V(X ),
(w,V) |= X <Y iff p< p′ for every p∈V(X ), p′ ∈V(Y ),
(w,V) |= X ⊆Y iff V(X )⊆V(Y ),

with the rest as for MSO(�).
Prove that MSO(�) and PureMSO(�) have the same expressive power for sentences—

that is, show that for every sentence φ of MSO(�), there is an equivalent sentence ψ of
PureMSO(�) and vice versa.

�� Exercise 129. Recall the syntax of MSO(�): 


ϕ :=Qa(x) | x< y | x∈X | ¬ϕ | ϕ ∨ ϕ | ∃x ϕ | ∃X ϕ.

We have introduced y= x+ 1 (“y is the successor position of x”) as an abbreviation:

(y= x+ 1) := (x< y)∧¬∃z (x< z∧ z< y).
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Consider now the variant MSO′(�) in which, instead of an abbreviation, y= x+ 1 is part
of the syntax and replaces x< y. In other words, the syntax of MSO′(�) is

ϕ :=Qa(x) | y= x+ 1 | x∈X | ¬ϕ | ϕ ∨ ϕ | ∃x ϕ | ∃X ϕ.

Prove that MSO′(�) has the same expressive power as MSO(�).

�� Exercise 130.�

(a) Give a macro Block_between(X , i, j) ofMSO(�) expressing “X contains the positions
between i and j (inclusively).”
(b) Let 0≤m< n. Give a formula Modm,n of MSO(�) such that Modm,n(i, j) holds
whenever |wiwi+1 · · ·wj| ≡m (mod n)—that is, whenever j− i+ 1≡m (mod n).
(c) Let 0≤m< n. Give a sentence of MSO(�) that defines am(an)∗.
(d) Give a sentence ofMSO({a, b}) that defines the language of words such that every two
bs with no other b in between are separated by a block of as of odd length.

�� Exercise 131. Consider a formula ϕ(X ) ofMSO(�) that does not contain any occur-

rence of predicates of the form Qa(x). Given two interpretations that assign the same set of
positions to X , we have that either both interpretations satisfy ϕ(X ), or none of them does.
Thus, we can speak of the sets of natural numbers satisfying ϕ(X ).

This observation can be used to automatically prove some (very) simple properties of
the natural numbers. Consider, for instance, the following “conjecture”: every finite set of
natural numbers has a minimal element.3 The conjecture holds iff the formula

Has_min(X ) :=∃x∈X ∀y∈X (x≤ y)

is satisfied by every interpretation in which X is nonempty. Construct an automaton for
Has_min(X ), and check that it recognizes all nonempty sets.

� � Exercise 132. The encoding of a set is a word that can be seen as the encoding of�
a number. We can use this observation to express addition in monadic second-order logic.
More precisely, give a formula Sum(X ,Y ,Z) that holds iff nX + nY = nZ , where nX , nY , and
nZ are respectively the numbers encoded by the sets X , Y , and Z using the LSBF-encoding.
For instance, the words

X
Y
Z

⎡⎣01
1

⎤⎦⎡⎣11
0

⎤⎦⎡⎣00
1

⎤⎦ and

⎡⎣11
0

⎤⎦⎡⎣11
1

⎤⎦⎡⎣11
1

⎤⎦⎡⎣11
1

⎤⎦⎡⎣10
0

⎤⎦⎡⎣00
1

⎤⎦⎡⎣00
0

⎤⎦⎡⎣00
0

⎤⎦
should satisfy the formula since the first encodes 2+ 3= 5, and the second encodes
31+ 15= 46.

3. Of course, it also holds for all infinite set, but we cannot prove it using MSO over finite words.



9 Application III: Presburger Arithmetic

Presburger arithmetic is a logical language for expressing properties of numbers by means
of addition and comparison. A typical example of such a property is “x+ 2y> 2z and
2x− 3z= 4y.” The property is satisfied by some triples (nx, ny, nz) of natural numbers, like
(4, 2, 0) and (8, 1, 4), but not by others, like (6, 0, 4) or (2, 2, 4). Valuations satisfying the
property are called solutions or models.
We show how to construct, for a given formula ϕ of Presburger arithmetic, an NFA Aϕ

recognizing the solutions of ϕ. We proceed as follows. In section 9.1, we introduce the syn-
tax and semantics of Presburger arithmetic; in section 9.2, we construct an NFA recognizing
all solutions over the natural numbers; and in section 9.3, we construct an NFA recogniz-
ing all solutions over the integers.

9.1 Syntax and Semantics

Formulas of Presburger arithmetic are constructed out of an infinite set of variables V =
{x, y, z, . . .} and the constants 0 and 1. The syntax of formulas is defined in three steps. First,
the set of terms is inductively defined as follows:

• the symbols 0 and 1 are terms,
• every variable is a term, and
• if t and u are terms, then t+ u is a term.

An atomic formula is an expression t≤ u, where t and u are terms. The set of Presburger
formulas is inductively defined as follows:

• every atomic formula is a formula, and
• if ϕ1 and ϕ2 are formulas, then so are ¬ϕ1, ϕ1 ∨ ϕ2, and ∃x ϕ1.

As usual, variables within the scope of an existential quantifier are bounded and otherwise
free. Besides standard abbreviations like ∀, ∧,→, we also introduce
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n :=
n times︷ ︸︸ ︷

1+ 1+ . . .+ 1, nx :=
n times︷ ︸︸ ︷

x+ x+ . . .+ x,

t≥ t′ := t′ ≤ t, t< t′ := t≤ t′ ∧¬(t= t′),

t= t′ := t≤ t′ ∧ t≥ t′, t> t′ := t′< t.

An interpretation is a function V : V→N. An interpretation V is extended to terms in
the natural way: V(0)= 0, V(1)= 1, and V(t+ u)=V(t)+V(u). The satisfaction relation
V |= ϕ for an interpretation V and a formula ϕ is inductively defined as follows, where
V[n/x] denotes the interpretation that assigns the number n to the variable x and the same
numbers as V to all other variables:

V |= t≤ u iff V(t)≤V(u),

V |=¬ϕ1 iff V �|= ϕ1,

V |= ϕ1 ∨ ϕ2 iff V |= ϕ1 or V |= ϕ2,

V |= ∃x ϕ iff there exists n≥ 0 such that V[n/x] |= ϕ.

It is easy to see that whether V satisfies ϕ or not depends only on the values V assigns to
the free variables of ϕ (i.e., if two interpretations assign the same values to the free variables,
then either both satisfy the formula, or none does). The solutions of ϕ are the projection
onto the free variables of ϕ of the interpretations that satisfy ϕ. If we fix a total order on
the set V of variables and if a formula ϕ has k free variables, then its set of solutions can
be represented as a subset of Nk or as a relation of arity k over the universe N. We call this
subset the solution space of ϕ and denote it by Sol(ϕ).

Example 9.1 The solution space of the formula x− 2≥ 0 is the set {2, 3, 4, . . .}. The free
variables of the formula ∃x (2x= y∧ 2y= z) are y and z. The solutions of the formula are the
pairs {(2n, 4n) : n≥ 0}, where we assume that the first and second components correspond
to the values of y and z, respectively.

Automata encoding natural numbers. We use transducers to represent, compute, and
manipulate solution spaces of formulas. As in section 5.1 of chapter 5, we encode natural
numbers as strings over {0, 1} using the least-significant-bit-first encoding LSBF. If a for-
mula has free variables x1, . . . , xk , then its solutions are encoded as words over {0, 1}k . For
instance, the word

x1
x2
x3

⎡⎣10
0

⎤⎦⎡⎣01
0

⎤⎦⎡⎣10
0

⎤⎦⎡⎣01
0

⎤⎦
encodes the solution (5, 10, 0). The language of a formula ϕ is defined as

L (ϕ)=
⋃

s∈Sol(ϕ)

LSBF(s),
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where LSBF(s) denotes the set of all encodings of the tuple s of natural numbers. In other
words, L (ϕ) is the encoding of the relation Sol(ϕ).

9.2 An NFA for the Solutions over the Naturals

Given a Presburger formula ϕ, we construct a transducer Aϕ such that L (Aϕ

)=L (ϕ).
Recall that Sol(ϕ) is a relation over N whose arity is given by the number of free variables
of ϕ. The last section of chapter 5 implements operations on relations of arbitrary arity.
These operations can be used to compute the solution space of the negation of a formula,
the disjunction of two formulas, and the existential quantification of two formulas:

• The solution space of the negation of a formula with k free variables is the complement
of its solution space with respect to the universe Uk . In general, when computing the com-
plement of a relation, we have to worry about ensuring that the NFAs we obtain only accept
words that encode some tuple of elements (i.e., some cleanup may be necessary to ensure
that automata do not accept words encoding nothing). For Presburger arithmetic, this is not
necessary, because in the LSBF encoding, every word encodes some tuple of numbers.
• The solution space of a disjunction ϕ1 ∨ ϕ2, where ϕ1 and ϕ2 have the same
free variables, is clearly the union of their solution spaces and can be computed as
Union(Sol(ϕ1), Sol(ϕ2)). If ϕ1 and ϕ2 have different sets V1 and V2 of free variables, then
some preprocessing is necessary. Define SolV1∪V2(ϕi) as the set of valuations of V1 ∪V2
whose projection onto Vi belongs to Sol(ϕi). Transducers recognizing SolV1∪V2(ϕi) for
i∈ {1, 2} are easy to compute from transducers recognizing Sol(ϕi), and the solution space
is Union(SolV1∪V2(ϕ1), SolV1∪V2(ϕ2)).
• The solution space of a formula ∃xϕ, where x is a free variable of ϕ, is
Projection_I(Sol(ϕ)), where I contains the indices of all variables with the exception of
the index of x.

It only remains to construct automata recognizing the solution space of atomic formulas.
Consider an expression of the form

ϕ= a1x1+ . . .+ anxn≤ b,

where a1, . . . , an, b∈Z (not N!). Since we allow negative integers as coefficients, for every
atomic formula, there is an equivalent expression in this form (i.e., an expression with
the same solution space). For example, x≥ y+ 4 is equivalent to −x+ y≤−4. Letting
a= (a1, . . . , an), x= (x1, . . . , xn), and denoting the scalar product of a and x by a · x, we
write ϕ= a · x≤ b.
We construct a DFA for Sol(ϕ). The states of the DFA are integers. We choose transitions

and final states of the DFA so that the following property holds:

State q∈Z recognizes the encodings of the tuples c∈Nn such that a · c≤ q. (9.1)
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Given a state q∈Z and a letter ζ ∈ {0, 1}n, let us determine the target state q′ of the transition
δ(q, ζ ) of the DFA. A word w∈ ({0, 1}n)∗ is accepted from q′ iff the word ζw is accepted
from q. Since we use the LSBF encoding, if c∈Nn is the tuple of natural numbers encoded
by w, then the tuple encoded by ζw is 2c+ ζ . So c∈Nn is accepted from q′ iff 2c+ ζ is
accepted from q. Therefore, in order to satisfy property (9.1), we must choose q′ so that
a · c≤ q′ iff a · (2c+ ζ )≤ q. A little arithmetic yields

q′ =
⌊
q− a · ζ

2

⌋
,

and hence we define the transition function of the DFA by

δ(q, ζ )=
⌊
q− a · ζ

2

⌋
.

For the final states, we observe that a state is final iff it accepts the empty word iff it
accepts the tuple (0, . . . , 0)∈Nn. So, in order to satisfy (9.1), we must make state q final iff
q≥ 0. As initial state, we choose the integer b. This leads to the algorithm AFtoDFA(ϕ) of
algorithm 42, where for clarity, the state corresponding to an integer k ∈Z is denoted by sk .

Algorithm 42 Conversion of an atomic formula into a DFA recognizing the LSBF
encoding of its solutions.

AFtoDFA(ϕ)
Input: Atomic formula ϕ= a · x≤ b
Output: DFA Aϕ = (Q,�, δ, q0,F) such that L (Aϕ

)=L (ϕ)

1 Q, δ,F←∅; q0← sb
2 W←{sb}
3 while W �= ∅ do
4 pick sk from W
5 add sk to Q
6 if k≥ 0 then add sk to F
7 for all ζ ∈ {0, 1}n do
8 j←

⌊
k− a · ζ

2

⌋
9 if sj /∈Q then add sj to W
10 add (sk , ζ , sj) to δ

Example 9.2 Consider the atomic formula 2x− y≤ 2. The DFA obtained by applying
AFtoDFA to it is shown in figure 9.1. The initial state is 2. Transitions leaving state 2 are
given by
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]
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,
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1
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0
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0
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1
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[
0
0

]
,
[
0
1

] [
1
0

]
,
[
1
1

]

[
1
0

]

Figure 9.1
DFA for the formula 2x− y≤ 2.

δ(2, ζ )=
⌊
2− (2,−1) · (ζx, ζy)

2

⌋
=
⌊
2− 2ζx+ ζy

2

⌋
,

and hence we have 2
[0,0]−−−→ 1, 2

[0,1]−−−→ 1, 2
[1,0]−−−→ 0, and 2

[1,1]−−−→ 0. States 2, 1, and 0 are
final. The DFA accepts, for example, the word[

0
0

] [
0
1

] [
1
0

] [
1
0

] [
0
1

] [
0
1

]
which encodes x= 12 and y= 50 and, indeed, 24− 50≤ 2. If we remove the last letter,
then the word encodes x= 12 and y= 18 and is not accepted, which indeed corresponds to
24− 18 �≤ 2.

Now, consider the formula x+ y≥ 4. We rewrite it as −x− y≤−4 and apply the algo-
rithm. The resulting DFA is shown in figure 9.2. The initial state is−4. Transitions leaving
−4 are given by

δ(−4, ζ )=
⌊−4− (−1,−1) · (ζx, ζy)

2

⌋
=
⌊−4+ ζx+ ζy

2

⌋
,

and hence we have

−4 [0,0]−−−→−2, −4 [0,1]−−−→−2, −4 [1,0]−−−→−2 and − 4
[1,1]−−−→−1.

Note that the DFA is not minimal, since states 0 and 1 can be merged.

Partial correctness of AFtoDFA is easily proved by showing that for every q∈Z and every
wordw∈ ({0, 1}n)∗, the state q acceptsw iffw encodes c∈Nn satisfying a · c≤ q. The proof
proceeds by induction of |w|.
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Figure 9.2
DFA for the formula x+ y≥ 4.

For |w| = 0, the result follows immediately from the definition of the final states and, for
|w|> 0, from the fact that δ satisfies (9.1) and from the induction hypothesis. Details are
left to the reader. Termination of AFtoDFA also requires a proof: in principle, the algorithm
could keep generating new states forever. We show that this is not the case.

Lemma 9.3 Let ϕ= a · x≤ b and let s=∑k
i=1 |ai|. All states sj added to the workset

during the execution of AFtoDFA(ϕ) satisfy − |b| − s≤ j≤ |b| + s.

Proof The property holds for sb, the first state added to the workset. We show that, at any
point in time, if all the states added to the workset so far satisfy the property, then so does
the next one. Let sj be this next state. There exists a state sk added to the workset in the past,
and ζ ∈ {0, 1}n such that j=# 12 (k− a · ζ )$. Since, by assumption, sk satisfies the property,
we have

− |b| − s≤ k≤ |b| + s

and hence ⌊− |b| − s− a · ζ
2

⌋
≤ j≤

⌊ |b| + s− a · ζ
2

⌋
. (9.2)

Now, we manipulate the right and left sides of (9.2). A little arithmetic yields

− |b| − s≤ − |b| − 2s
2

≤
⌊− |b| − s− a · ζ

2

⌋
,⌊ |b| + s− a · ζ

2

⌋
≤ |b| + 2s

2
≤ |b| + s,

which together with (9.2) leads to

− |b| − s≤ j≤ |b| + s.
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Example 9.4 We compute all natural solutions of the system of linear inequations

2x − y ≤ 2

x + y ≥ 4,

such that both x and y are multiples of 4. This corresponds to computing a DFA for the
Presburger formula

∃z (x= 4z)∧∃w (y= 4w)∧ (2x− y≤ 2)∧ (x+ y≥ 4).

The minimal DFA for the first two conjuncts can be computed using projections and
intersections, but the result is also easy to guess: it is the DFA of figure 9.3 (where a trap
state has been omitted). The solutions are then represented by the intersection of the DFAs
depicted in figure 9.1, figure 9.2 (after merging states 0 and 1), and figure 9.3. The result is
shown in figure 9.4. (Some states from which no final state can be reached are omitted.)

9.2.1 Equations

A slight modification of AFtoDFA directly constructs a DFA for the solutions of a · x= b,
without having to intersect DFAs for a · x≤ b and −a · x≤−b. The states of the DFA are a

q0 q1 q2

[
0
0

] [
0
0

] [
0
0

]
,
[
0
1

]
,
[
1
0

]
,
[
1
1

]
Figure 9.3

DFA for the formula ∃z (x= 4z)∧∃w (y= 4w).

2,−4, q0 1,−2, q1 0,−1, q2 −1, 0, q2 −2, 0, q2

0, 0, q2

[
0
0

] [
0
0

] [
1
0

]
,
[
1
1

]
[
1
0

]
[
0
0

]
,
[
0
1

]

[
0
1

] [
1
0

]
,
[
1
1

]
[
0
1

]

[
0
0

] [
1
0

]
,
[
1
1

]

Figure 9.4
Intersection of the DFAs of figures 9.1–9.3. States from which no final state is reachable have been omitted.



236 Chapter 9

trap state qt accepting the empty language, plus integers satisfying:

State q∈Z recognizes the encodings of the tuples c∈Nn such that a · c= q. (9.3)

For the trap state qt, we take δ(qt, ζ )= qt for every ζ ∈ {0, 1}n. For a state q∈Z and a let-
ter ζ ∈ {0, 1}n, we determine the target state q′ of transition δ(q, ζ ). Given a tuple c∈Nn,
property (9.3) requires c∈L (q′) iff a · c= q′. As in the case of inequations, we have

c∈L (q′) ⇐⇒ 2c+ ζ ∈L (q)

⇐⇒ a · (2c+ ζ )= q (by property [9.3] for q)

⇐⇒ a · c= q− a · ζ
2

.

If q− a · ζ is odd, then, since a · c is an integer, the equation a · c= (q− a · ζ )/2 has no
solution. So, in order to satisfy property (9.3), we must choose q′ satisfying L (q′)=∅, and
so we take q′ = qt. If q− a · ζ is even, then wemust choose q′ satisfying a · c= q′, and hence
we take q′ = (q− a · ζ )/2. Therefore, the transition function of the DFA is given by

δ(q, ζ )=
{
qt if q= qt or q− a · ζ is odd,

(q− a · ζ )/2 if q− a · ζ is even.

For the final states, recall that a state is final iff it accepts the tuple (0, . . . , 0). So qt is
nonfinal and, by property (9.3), q∈Z is final iff a · (0 . . . , 0)= q. Hence, the only final state
is q= 0. The result is algorithm 43. The algorithm does not construct the trap state.

Example 9.5 Consider the formulas x+ y≤ 4 and x+ y= 4. The result of applying
AFtoDFA to x+ y≤ 4 is depicted at the top of figure 9.5. Observe the similarities and dif-
ferences with the DFA for x+ y≥ 4 illustrated in figure 9.2. The bottom of figure 9.5 shows
the result of applying EqtoDFA to x+ y= 4. Note that the transitions are a subset of the
transitions of the DFA for x+ y≤ 4. This example shows that the DFA is not necessarily
minimal, since state −1 can be deleted.

Partial correctness and termination of EqtoDFA are easily proved following similar steps
to the case of inequations.

9.3 An NFA for the Solutions over the Integers

We construct an NFA recognizing the encodings of the integer solutions (positive or neg-
ative) of a formula. In order to deal with negative numbers, we use two’s complements. A
two’s complement encoding of an integer x∈Z is any word a0a1 · · · an over the alphabet
{0, 1}, where n≥ 1, satisfying
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Algorithm 43 Conversion of an equation into a DFA recognizing the LSBF encodings of
its solutions.

EqtoDFA(ϕ)
Input: Equation ϕ= (a · x= b)
Output: DFA A= (Q,�, δ, q0,F) such that L (A)=L (ϕ)

(without trap state)

1 Q, δ,F←∅; q0← sb
2 W←{sb}
3 while W �= ∅ do
4 pick sk from W
5 add sk to Q
6 if k= 0 then add sk to F
7 for all ζ ∈ {0, 1}n do
8 if (k− a · ζ ) is even then
9 j← (k− a · ζ )/2
10 if sj /∈Q then add sj toW
11 add (sk , ζ , sj) to δ

x=
n−1∑
i=0

ai · 2i− an · 2n. (9.4)

We call an the sign bit. For example, 110 encodes 1+ 2− 0= 3, and 111 encodes 1+ 2−
4=−1. If the word has length 1, then its only bit is the sign bit; in particular, the word 0
encodes the number 0, and the word 1 encodes the number−1. The empty word encodes no
number. Observe that all of 110, 1100, 11000, . . . encode 3, and all of 1, 11, 111, . . . encode
−1. In general, it is easy to see that all words of the regular expression a0 . . . an−1ana∗n
encode the same number: for an= 0, this is obvious, and for an= 1, both a0 . . . an−11 and
a0 . . . an−111m encode the same number because

−2m+n+ 2m−1+n+ . . .+ 2n+1= 2n.

This property allows us to encode tuples of numbers using padding. Instead of padding with
0, we pad with the sign bit.

Example 9.6 The triple (12,−3,−14) is encoded by all the words of the regular
expression ⎡⎣01

0

⎤⎦⎡⎣00
1

⎤⎦⎡⎣11
0

⎤⎦⎡⎣11
0

⎤⎦⎡⎣01
1

⎤⎦⎡⎣01
1

⎤⎦∗
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Figure 9.5
DFAs for the formulas x+ y≤ 4 (top) and x+ y= 4 (bottom).

The words⎡⎣01
0

⎤⎦⎡⎣00
1

⎤⎦⎡⎣11
0

⎤⎦⎡⎣11
0

⎤⎦⎡⎣01
1

⎤⎦ and

⎡⎣01
0

⎤⎦⎡⎣00
1

⎤⎦⎡⎣11
0

⎤⎦⎡⎣11
0

⎤⎦⎡⎣01
1

⎤⎦⎡⎣01
1

⎤⎦⎡⎣01
1

⎤⎦
encode the triples (x, y, z) and (x′, y′, z′) given by

x= 0+ 0+ 4+ 8− 0 = 12,

y= 1+ 0+ 4+ 8− 16 = −3,
z= 0+ 2+ 0+ 0− 16 =−14,

x′ = 0+ 0+ 4+ 8+ 0+ 0− 0 = 12,

y′ = 1+ 0+ 4+ 8+ 16+ 32− 64= −3,
z′ = 0+ 2+ 0+ 0+ 16+ 32− 64=−14.
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We construct an NFA (no longer a DFA!) recognizing the integer solutions of an atomic
formula a · x≤ b. As usual, we take integers for the states, and the NFA should satisfy:

State q∈Z recognizes the encodings of the tuples c∈Zn such that a · c≤ q. (9.5)

However, integer states are no longer enough, because no state q∈Z can be final: in the
two’s complement encoding, the empty word encodes no number, and so, since q cannot
accept the empty word by property (9.5), q must be nonfinal. But we need at least one final
state, and so we add to the NFA a unique final state qf without any outgoing transitions,
accepting only the empty word.
Given a state q∈Z and a letter ζ ∈ {0, 1}n, we determine the targets q′ of the transitions

of the NFA of the form q′ ∈ δ(q, ζ ), where ζ ∈ {0, 1}n. (There will be either one or two such
transitions.) A word w∈ ({0, 1}n)∗ is accepted from some target state q iff ζw is accepted
from q. In the two’s complement encoding, there are two cases:

(1) If w �= ε, then ζw encodes the tuple 2c+ ζ ∈Zn, where c is the tuple encoded by w.
(This follows easily from the definition of two’s complements.)
(2) If w= ε, then ζw encodes the tuple −ζ ∈Zn, because in this case, ζ is the sign bit.

In case (1), property (9.5) requires a target state q′ such that a · c≤ q iff a · (2c+ ζ )≤ q′.
Thus, we take

q′ =
⌊
q− a · ζ

2

⌋
.

In case (2), property (9.5) only requires a target state q′ if a · (−ζ )≤ q, and if so, then it
requires q′ to be a final state. So, if q+ a · ζ ≥ 0, then we add

q
ζ−→ qf

to the set of transitions; in this case, the automaton has two transitions leaving state q and
labeled by ζ . Summarizing, we define the transition relation by

δ(q, ζ )=
{{#(q− a · ζ )/2$ , qf

}
if q+ a · ζ ≥ 0,

{#(q− a · ζ )/2$} otherwise.

Observe that the NFA contains all the states and transitions of the DFA for the natural
solutions of a · x≤ b, plus possibly other transitions. All integer states are now nonfinal; the
only final state is qf .

Example 9.7 Figure 9.6 shows the NFA recognizing all integer solutions of 2x− y≤ 2. It
has all states and transitions of the DFA for the natural solutions, plus some more (compare
with figure 9.1). The final state qf and the transitions leading to it are colored. Consider,
for instance, state −1. In order to determine the letters ζ ∈ {0, 1}2 for which qf ∈ δ(−1, ζ ),
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Figure 9.6
NFA for the integer solutions of 2x− y≤ 2.

we compute q+ a · ζ =−1+ 2ζx− ζy for each (ζx, ζy)∈ {0, 1}2 and compare the result to 0.
We obtain that the letters leading to qf are (1, 0) and (1, 1).

9.3.1 Equations

In order to construct an NFA for the integer solutions of an equation a · x= b, we can pro-
ceed as for inequations. The result is again an NFA containing all states and transitions of
the DFA for the natural solutions computed in section 9.2.1, plus possibly some more. The
automaton has an additional final state qf and a transition

q
ζ−→ qf iff q+ a · ζ = 0.

Graphically, we can also obtain the NFA by starting with the NFA for a · x≤ b and then
removing all transitions

q
ζ−→ q′ such that q′ �= (q− a · ζ )/2,

q
ζ−→ qf such that q+ a · ζ �= 0.

Example 9.8 The NFA for the integer solutions of 2x− y= 2 is depicted in figure 9.7. Its
transitions are a subset of those of the NFA for 2x− y≤ 2.

The NFA for the integer solutions of an equation has an interesting property. Since q+
a · ζ = 0 holds iff (q+ a · ζ )/2= 2q/2= q, the NFA has a transition

q
ζ−→ qf iff it also has a self-loop q

ζ−→ q.
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Figure 9.7
NFA for the integer solutions of 2x− y= 2.
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Figure 9.8
Minimal DFA for the integer solutions of 2x− y= 2.

For instance, state 1 of the NFA of figure 9.7 has a colored transition labeled by (0, 1)
and a self-loop labeled by (0, 1). Using this property, it is easy to see that the powerset
construction does not cause a blowup in the number of states: it only adds one extra state
for each predecessor of the final state.

Example 9.9 The DFA obtained by applying the powerset construction to the NFA for
2x− y= 2 is shown in figure 9.8 (the trap state has been omitted). Each of the three
predecessors of qf gets “duplicated.”

Moreover, the DFA obtained by means of the powerset construction is minimal. This can
be proved by showing that any two states recognize different languages. If exactly one of
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the states is final, we are done. If both states are nonfinal, say, k and k′, then they recognize
the solutions of a · x= k and a · x= k′, and so their languages are not only distinct but even
disjoint. If both states are final, then they are the “duplicates” of two nonfinal states k and
k′, and their languages are those of k and k′, plus the empty word. So, again, their languages
are distinct.

9.3.2 Algorithms

The procedures for the construction of the NFAs are described in algorithm 44. Additions
to the previous algorithms are shown in gray.

Algorithm 44 Converting equations and inequations into NFAs accepting the two’s
complement encoding of the solution space.

IneqZtoNFA(ϕ)
Input: ϕ= (a · x≤ b) over Z

Output: NFA A= (Q,�, δ,Q0,F)

such that L (A)=L (ϕ)

1 Q, δ,F←∅; Q0←{sb}
2 W←{sb}
3 while W �= ∅ do
4 pick sk from W
5 add sk to Q
6 for all ζ ∈ {0, 1}n do
7 j←#(k− a · ζ )/2$
8 if sj /∈Q then add sj to W
9 add (sk , ζ , sj) to δ

10 if k+ a · ζ ≥ 0 then
11 add qf to Q and F
12 add (sk , ζ , qf ) to δ

EqZtoNFA(ϕ)
Input: ϕ= (a · x= b) over Z

Output: NFA A= (Q,�, δ,Q0,F)

such that L (A)=L (ϕ)

1 Q, δ,F←∅; Q0←{sb}
2 W←{sb}
3 while W �= ∅ do
4 pick sk from W
5 add sk to Q
6 for all ζ ∈ {0, 1}n do
7 if k− a · ζ is even then
8 if k+ a · ζ = 0 then
9 add sk to F
10 j← (k− a · ζ )/2
11 if sj /∈Q then add sj to W
12 add (sk , ζ , sj) to δ

13 if k+ a · ζ ≥ 0 then
14 add qf to Q and F
15 add (sk , ζ , qf ) to δ

9.4 Exercises

�� Exercise 133. Express the following expressions in Presburger arithmetic:


(a) x= 0 and y= 1 (if 0 and 1 were not part of the syntax),
(b) z=max(x, y) and z=min(x, y).
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� � Exercise 134. How can one determine algorithmically whether two formulas from 

Presburger arithmetic have the same solutions?

�� Exercise 135. Let r≥ 0 and n≥ 1. Give a Presburger formula ϕ such that J |= ϕ iff �
J (x)≥J (y) and J (x)−J (y)≡ r (mod n). Give an automaton that accepts the solutions
of ϕ for r= 0 and n= 2.

�� Exercise 136. Construct an automaton for the Presburger formula ∃y (x= 3y) using 

the algorithms of the chapter.

�� Exercise 137.Algorithm AFtoDFA yields a DFA that recognizes solutions of a linear 

inequation encoded using the LSBF encoding.Wemay also use themost-significant-bit-first
encoding, for example,

MSBF
([

2
3

])
=
[
0
0

]∗ [
1
1

] [
0
1

]
.

(a) Construct a DFA for 2x− y≤ 2, w.r.t. MSBF encodings, by considering the reversal of
the DFA given in figure 9.1 for LSBF encodings.
(b) Rename the states of the DFA obtained in (a) by their minimal state number, and explic-
itly introduce a trap state named 3. Compare values 2x− y and q for tuples [x, y] that lead
to a state q. What do you observe?
(c) Adapt algorithm AFtoDFA to the MSBF encoding.

Hint: Design an infinite automaton obtained from a · c= q and make it finite based on (b).

� � Exercise 138. Suppose it is late and you are craving for chicken nuggets. Since 

you are stuck in the subway, you have no idea how hungry you will be when reaching the
restaurant. Since nuggets are only sold in boxes of 6, 9, and 20, you wonder if it will be
possible to buy exactly the amount of nuggets you will be craving for when arriving. You
also wonder whether it is always possible to buy an exact number of nuggets if one is hungry
enough. Luckily, you can answer these questions since you are quite knowledgeable about
Presburger arithmetic and automata theory.
For every finite set S⊆N, we say that number n∈N is an S-number if n can be obtained as

a linear combination of elements of S. For example, if S={6, 9, 20}, then 67 is an S-number
since 67= 3 · 6+ 1 · 9+ 2 · 20, but 25 is not. For some sets S, there are only finitely many
numbers that are not S-numbers. When this is the case, we say that the largest number that
is not an S-number is the Frobenius number of S. For example, 7 is the Frobenius number
of {3, 5}, and S={2, 4} has no Frobenius number.

To answer your questions, it suffices to come up with algorithms for Frobenius numbers
and to instantiate them with S={6, 9, 20}.
(a) Give an algorithm that decides, on input n∈N and a finite set S⊆finite N, whether n is
an S-number.
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(b) Give an algorithm that decides, on input S⊆finite N, whether S has a Frobenius number.
(c) Give an algorithm that computes, on input S⊆finite N, the Frobenius number of S
(assuming it exists).
(d) Show that S={6, 9, 20} has a Frobenius number, and identify it.

� � Exercise 139. Automata are more expressive than Presburger arithmetic. They can�
represent

ϕ(x, y)= “x is the largest power of 2 that divides y,” and

ψ(x, y)= “x is the largest power of 2 smaller or equal to y,”

while Presburger arithmetic can express neither ϕ nor ψ , since, informally, addition is not
powerful enough to achieve exponentiation. Give automata representing ϕ and ψ , where
numbers are over N and given by LSBF encodings.

� 	 Exercise 140. Converting a Presburger formula over k variables into a DFA yields

an alphabet of 2k letters. In order to mitigate this combinatorial explosion, one can instead
label transitions with boolean expressions. For example, [0, 1] can be written as¬x∧ y, and
the set {[1, 0], [1, 1]} can be written as x. Such expressions can internally be represented,
for example, as binary decision diagrams.

(a) Give DFAs for formulas x< y and y< z, using boolean expressions rather than letters.
(b) Construct a DFA for x< y< z.



II AUTOMATA ON INFINITE WORDS





10 Classes of ω-Automata and Conversions

Automata on infinite words, called ω-automata in this book, were introduced in the 1960s
as an auxiliary tool for proving the decidability of some problems in mathematical logic. As
the name suggests, they are automata whose input is a word of infinite length. Therefore,
the run of an automaton on a word does not terminate.
An ω-automaton makes little sense as a language acceptor that decides whether a word

satisfies a property or not: not many people are willing to wait infinitely long to get an
answer to a question! However, ω-automata still make perfect sense as a data structure, that
is, as a finite representation of a (possibly infinite) set of infinite words.
There are objects that must be represented as infinite words. The example that first

comes to mind are the real numbers. A second example, more relevant for applications,
are program executions. Programs may have nonterminating executions, either because of
programming errors or because they are designed this way. Indeed, many programs whose
purpose is to keep a system running, like routines of operating systems, network infras-
tructures, communication protocols, and so on, are designed to be in constant operation.
Automata on infinite words can be used to finitely represent the set of executions of such
programs. They are an important tool for the theory and practice of program verification.
In the second part of this book, starting now, we develop the theory of ω-automata as

a data structure for languages of infinite words. This first chapter introduces ω-regular
expressions, a textual notation for defining languages of infinite words, and then proceeds
to present different classes of automata on infinite words, most of them with the same
expressive power as ω-regular expressions, and conversion algorithms between them.

10.1 ω-Languages and ω-Regular Expressions

Let � be an alphabet. An infinite word, also called an ω-word, is an infinite sequence
a0a1a2 · · · of letters from �. A set L⊆�ω of ω-words is an infinitary language or
ω-language over �. We denote by �ω the set of all ω-words over �.
The concatenation of a finite word u= a0 · · · an and an ω-word v= b0b1 · · · is the ω-

word uv= a0 · · · anb0b1 · · · , sometimes also denoted u · v. (Observe that the concatenation
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of twoω-words is not defined.)We extend this definition to languages. The concatenation of
a language L1 and an ω-language L2 is the ω-language L1L2={w1w2 ∈�ω :w1 ∈L1,w2 ∈
L2}, also denoted L1 ·L2.
The ω-iteration of a language L⊆�∗ is the ω-language obtained by concatenating

infinitely many nonempty words of L. In other words, Lω={w1w2 · · · :wi ∈L \ {ε}}.
Remark 10.1 Note that {ε}ω=∅ω=∅. Intuitively, it is impossible to construct anω-word
by concatenating words of length 0 or words taken out of the empty set.

We extend regular expressions to ω-regular expressions, a formalism to define ω-
languages.

Definition 10.2 The ω-regular expressions over an alphabet � are defined by the follow-
ing grammar, where r∈RE(�) is an arbitrary regular expression:

s ::= rω | rs1 | s1+ s2.

Sometimes we write r · s1 instead of rs1. The set of all ω-regular expressions over � is
denoted by REω(�).

The languageLω (s)⊆�ω of an ω-regular expression s∈REω(�) is defined inductively
as follows:

• Lω (rω)= (L (r))ω,
• Lω (rs1)=L (r) ·Lω (s1), and
• Lω (s1+ s2)=Lω (s1)∪Lω (s2).

A language L is ω-regular if L=Lω (s) for some ω-regular expression s.

As for regular expressions, we often write s instead of Lω (s) if there is no risk of
confusion.

Example 10.3 Here are some examples of ω-regular expressions and their languages.

• (a+ b)ω denotes the language of all ω-words over {a, b}.
• (a+ b)∗bω denotes the language of all ω-words over {a, b} containing only finitely
many a’s.
• (a∗ab+ b∗ba)ω denotes the language of allω-words over {a, b} containing infinitelymany
as and infinitely many bs; an even shorter expression for this language is ((a+ b)∗ab)ω.
• ((b+ c)∗a(a+ c)∗b(b+ a)∗c)ω denotes the language of all ω-words over {a, b, c} con-
taining infinitely many as, infinitely many bs, and infinitely many cs. Indeed, this is the set
of all ω-words w satisfying: w contains at least one a; after every occurrence of a, there is
a later occurrence of b; after every occurrence of b, there is a later occurrence of c; and,
after every occurrence of c, there is a later occurrence of a. This is precisely the language
denoted by the ω-regular expression.
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Remark 10.4
• Since any word w∈�∗ is also a regular expression, wω is an ω-regular expression. We
have Lω (εω)=∅. If w �= ε, then Lω (wω)={www · · · }, and so Lω (wω) is a language con-
taining a single ω-word. Abusing notation, this word is also denoted wω. Compare with
L (a∗), which is a language containing not one but infinitely many words.
• Recall that the symbol ∅ is part of the syntax of regular expressions and denotes the
language of finite words containing no elements. The symbol is necessary, because a regular
expression r that does not contain any occurrence of ∅ satisfies L (r) �= ∅, and so without
the symbol ∅, no regular expression would denote the empty language. This is no longer
the case for ω-regular expressions. The symbol ∅ is not needed, because Lω (εω)=∅.

10.2 ω-Automata and the Quest for an ω-Trinity

In chapter 1, we introduced NFAs and DFAs, plus auxiliary automata classes. In the realm
of ω-words, we need to introduce different types of ω-automata, each of which contains
nondeterministic and deterministic automata. Let us introduce a precise definition of ω-
automaton and the idea of an automata type.

Semi-automata and runs. A (nondeterministic) semi-automaton is a tuple S= (Q,�,
δ,Q0), where Q, �, δ, and Q0 are defined as for NFAs. A semi-automaton S is deter-
ministic if Q0 is a singleton set, and δ(q, a) is also a singleton set for every q∈Q and
a∈�. Abusing language, we denote a deterministic semi-automaton by S= (Q,�, δ, q0)
and write δ(q, a)= q′ instead of δ(q, a)={q′}. A run of a semi-automaton S on an ω-word
a0a1a2 · · · ∈�ω is an infinite sequence ρ= q0

a0−−→ q1
a1−−→· · · such that q0 ∈Q0, qi ∈Q and

qi+1 ∈ δ(qi, ai) for every i∈N.

Acceptance conditions. Intuitively, runs on ω-words never terminate, and so we cannot
define whether a run is accepting in terms of the state it leads to. Instead, we define accep-
tance in terms of the states visited by the run infinitely often. An acceptance condition
divides the subsets ofQ into accepting and nonaccepting, and a run is accepting if the set of
states it visits infinitely often is accepting. Formally, given a run ρ= q0

a0−−→ q1
a1−−→· · · , let

inf(ρ)={q∈Q : qi= q for infinitely many i∈N}.
An acceptance condition is a mapping α : 2Q→{0, 1}. A run ρ is accepting or satisfies the
acceptance condition if α(inf(ρ))= 1.

ω-automata. A (nondeterministic) ω-automaton is a pair A= (S,α), where S is a semi-
automaton, and α is an acceptance condition. We say that A is deterministic if S is
deterministic. An ω-automaton accepts an ω-word w∈�ω if it has an accepting run on w.
The language recognized by an ω-automaton A is the set Lω (A)={w∈�ω :w is accepted
by A}. We sometimes write A= (Q,�, δ,Q0,α) instead of A= (S,α).
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q0 q1
a

b

b a

Figure 10.1
Example of a semi-automaton.

Example 10.5 Consider the deterministic semi-automaton S of figure 10.1 and the accep-
tance condition α defined by α(Q′)= 1 iff q1 ∈Q′. With this acceptance condition, a run ρ

is accepting iff q1 ∈ inf(ρ). In words, ρ is accepting iff it visits q1 infinitely often. (Observe
that there is no condition on q0. If ρ visits q1 infinitely often, then it is accepting, regardless
of whether it visits q0 finitely or infinitely often.)

The language recognized by the ω-automaton A= (S,α) is the set of all words over {a, b}
containing infinitely many occurrences of a. Indeed, since all transitions labeled by a lead
to q1, the run of A on an ω-word containing infinitely many as visits q1 infinitely often, and
so the word is accepted. Further, since every transition leading to q1 is labeled by a, every
accepting run reads infinitely many as.

Types of ω-automata. Types of ω-automata differ on the types of their acceptance condi-
tions. For example, in the next sections, we will examine Büchi conditions. An acceptance
condition α is a Büchi condition if there exists a set F⊆Q of states such that α(Q′)= 1 iff
Q′ ∩F �= ∅. In words, a run is accepting if it visits at least one state of F infinitely often.

Example 10.6 Consider again the semi-automaton of example 10.5. The acceptance con-
dition α defined by α(Q′)= 1 iff q1 ∈Q′ is a Büchi condition with F={q1}. The acceptance
condition β given by β(Q′)= 1 iff Q′ = {q1} is not a Büchi condition (i.e., there is no
F⊆{q0, q1} such that β(Q′)= 1 iff Q′ ∩F �= ∅). In particular, the language of (S,β) con-
sists of all words containing finitely many bs, but no Büchi condition recognizes the same
language.

Representing acceptance conditions. Observe that a Büchi condition is completely
determined by the set F. Abusing language, we speak of “the Büchi condition F” as an
abbreviation of “the Büchi condition induced by F.” We also call a tuple A= (Q,�, δ,Q0,
F) a Büchi automaton, meaning that A is the automaton (S,α) where S= (Q,�, δ,Q0), and
α is the Büchi condition induced by F. We proceed in the same way for the forthcoming
automata types.

10.2.1 The Quest for an ω-Trinity

In chapter 1, we introduced a trinity of formalisms: regular expressions, DFAs, and NFAs.
As depicted in figure 10.2, we proved that all three express exactly the regular languages,
and we described conversion algorithms between them.
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RE

Regular
languages

NFA DFA

Figure 10.2
Trinity of regular languages. An arrow from X to Y means “for every X there is an equivalent Y .”

In this section, we search for a corresponding ω-trinity for ω-regular languages. Sec-
tions 10.2.2 and 10.2.3 examine two simple types ofω-automata, called Büchi and co-Büchi
automata, and show that they do not form an ω-trinity. Section 10.2.4 introduces a more
sophisticated automata type, Rabin automata, which does.

10.2.2 Büchi Automata

Büchi automata were introduced by J. R. Büchi in the 1960s.

Definition 10.7 Let S= (Q,�, δ,Q0) be a semi-automaton. An acceptance condition
α : 2Q→{0, 1} is a Büchi condition if there exists a set F⊆Q of accepting states such
that α(Q′)= 1 iff Q′ ∩F �= ∅.
A nondeterministic Büchi automaton (NBA) is a pair A= (S,F), where F⊆Q is a Büchi

condition. We refer to a deterministic NBA as a DBA.

Observe that we maintain the symbol F to denote the set of accepting states. We also
maintain the same graphical representation: accepting states are drawn as double circles.
Looking only at the graphical representation, one cannot tell whether an automaton is an
NFA or an NBA, but the context will make it clear.

Example 10.8 The automaton of example 10.5 is a Büchi automaton with {q1} as set of
accepting states. Figure 10.3 depicts four other Büchi automata over the alphabet {a, b, c}.

The top-left automaton, which is nondeterministic, recognizes the ω-words containing
a finite number of as. Intuitively, the automaton can always stay in the initial state until it
reads the last a, guess (correctly) that it is the last one, and move to the state on the right
immediately after.
The top-right automaton recognizes the ω-words in which, for each occurrence of a,

there is a later occurrence of b. So, for instance, it accepts (ab)ω, cω, or (bc)ω but not acω

or ab(ac)ω.
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Figure 10.3
Four Büchi automata.

The bottom-left automaton recognizes the ω-words that contain finitely many occur-
rences of a (possibly zero) or infinitely many occurrences of a and infinitely many
occurrences of b.

Finally, the bottom-right automaton recognizes the ω-words in which, between each
occurrence of a and the next occurrence of c, there is at most one occurrence of b; more
precisely, for any two numbers i< j, if the letter at position i is an a and the first occurrence
of c after i is at position j, then there is at most one number i< k < j such that the letter at
position k is b.

10.2.2.1 Equivalence of NBAs and ω-Regular Expressions
We show that ω-regular expressions and nondeterministic Büchi automata have the same
expressive power. We present algorithms for converting an ω-regular expression into an
equivalent NBA and vice versa.

From ω-regular expressions to NBAs. We give a procedure that transforms an ω-regular
expression s into an equivalent NBA. Using the results of chapter 1, we can transform a
regular expression r into an NFA in three steps:

1. Transform r into an equivalent regular expression r̂ such that either r̂=∅ or r̂ does
not contain any occurrence of the symbol ∅. (See the first part of section 1.4.3.) If
r̂=∅, then output a one-state NFA with no final states and no transitions. Otherwise, move
to the next step.
2. Transform r̂ into an equivalent NFA-ε. The resulting NFA-ε has a unique initial state; a
unique final state, different from the initial state; no transition leading to the initial state; and
no transition leaving the final state. (See the second part of section 1.4.3.)
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3. Transform the NFA-ε into an equivalent NFA. (See algorithm 2 of section 1.4.2.)

The procedure for translating an ω-regular expression s into an NBA is very similar.

1. Transform s into an equivalent ω-regular expression ŝ that does not contain any
occurrence of the symbol ∅.
2. Transform ŝ into an equivalent NBA-ε. An NBA-ε is a tuple A= (Q,�, δ,Q0,F), where
δ : Q× (� ∪ {ε})→P(Q). A run ρ= q0

a0−−→ q1
a1−−→· · · of A is accepting if inf(ρ)∩F �= ∅

and ai ∈� for infinitely many i∈N (this ensures that accepting runs only accept ω-
words). In particular, any NBA-ε containing only ε-transitions recognizes the empty
language.
3. Transform the NBA-ε into an equivalent NBA, using the same algorithm as for NFA-ε.

We describe steps 1 and 2.

Step 1. Given a regular expression r, let r̂ denote the equivalent expression mentioned
above, satisfying that either r̂=∅ or r̂ does not contain any occurrence of ∅. We define
ŝ inductively as follows:

• Case s= rω. If r̂=∅, then ŝ= εω; otherwise, ŝ= (̂r)ω.
• Case s= rs1. If r̂=∅, then ŝ= εω; otherwise, ŝ= r̂ ŝ1.
• Case s= s1+ s2. We take ŝ= ŝ1+ ŝ2.

Step 2. We translate ŝ into an equivalent NBA-ε Âs with a single initial state and no tran-
sitions leading to it. Since ŝ contains no occurrence of ∅, the algorithm of section 1.4.3
transforms every regular expression r appearing in ŝ into an equivalent NFA-ε Ar with a
unique initial state q0; a unique final state qf , different from q0; no transition leading to q0;
and no transition leaving qf . We proceed by induction on the structure of ŝ.

• If ŝ= rω, then let Âs be the result of adding to Ar a transition (qf , a, q) for every transition
of the form (q0, a, q) with a∈� ∪ {ε}. (See the diagram at the top of figure 10.4.)
• If ŝ= rs, then let Âs be the result of merging the unique final state of Ar and the initial
state of As (which is unique by induction hypothesis) and making qf non-accepting. (See
the diagram in the middle of figure 10.4.)
• If ŝ= s1+ s2, then let Âs be the result of “puttingAs1 andAs2 side by side”—that is, taking
the union of their states, transitions, and initial and accepting states, assuming without loss
of generality that they are disjoint, and merging their initial states—which, by induction
hypothesis, have no incoming transitions. (See the diagram at the bottom of figure 10.4.)

The complexity is the same as for regular expressions. Indeed, the number of states of
the NBA-ε is linear in the length of the original ω-regular expression, and then the same
algorithm as for NFAs is applied.
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NFA-ε for r NBA-ε for rω

a1

an
�

a1

an

NFA-ε for r

NBA-ε for s

NBA-ε for r · s

�

NBA-ε for s1

NBA-ε for s2 NBA-ε for s1+ s2

�

Figure 10.4
From ω-regular expressions to Büchi automata.

FromNBAs toω-regular expressions. LetA= (Q,�, δ,Q0,F) be anNBA.We construct
an ω-regular expression sA such that Lω (sA)=Lω (A).

Given states q, q′ ∈Q, we are interested in a regular expression rq,q′ for the finite
words read by finite runs that start at state q and, after leaving q, visit q′ exactly once;
more precisely, a finite word w= a0 a1 . . . ak−1 belongs to L (rq,q′) if there is a run

q0
a0−−→ q1

a1−−→ q2 · · · qk−1 ak−1−−−→ qk such that q0= q, qk = q′, and qi �= q′ for every 1≤ i≤
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k− 1. We can easily compute rq,q′ as follows: first, redirect all transitions of A leading to
state q′ to a new state q′′; second, make q the unique initial state and q′′ the unique final
state; and third, apply NFA-εtoRE (algorithm 3 of chapter 1) to the resulting automaton,
interpreting it as an NFA.
We use the regular expressions rq,q′ to compute the ω-regular expression sA. For each

initial state q0 ∈Q0 and each accepting state q∈F, let Lq0,q⊆Lω (A) be the set of ω-
words accepted by runs of A that start at q0 and visit q infinitely often. We have Lω (A)=⋃

q0∈Q0,q∈F Lq0,q. Every ω-word w∈Lq0,q can be split into an infinite sequence w0w1w2 · · ·
of finite nonempty words, where w0 is the word read by A until it visits q for the first time
after leaving q0, and, for every i> 0, wi is the word read by the automaton between the ith
and the (i+ 1)th visits to q. It follows that w0 ∈L

(
rq0,q
)
, and wi ∈L

(
rq,q
)
for every i> 0.

Thus, we have Lq0,q=Lω

(
rq0,q
(
rq,q
)ω), and hence we can take

sA :=
∑

q0∈Q0,q∈F
rq0,q
(
rq,q
)ω .

Example 10.9 Consider the NBA of figure 10.5.
We compute sA := r0,1(r1,1)ω+ r0,2(r2,2)ω. Let us abbreviate (a+ b+ c) to �. Applying
NFAtoRE and simplifying, we get

r0,1=�∗b r0,2=
(
�+ bb∗(a+ c)

)∗
(b+ c)

r1,1= b+ (a+ c)�∗b r2,2= (b+ c)

Substitution in the expression for sA and simplification yields

sA=�∗b(b+ (a+ c)�∗b)ω+ (�+ bb∗(a+ c)
)∗

(b+ c)(b+ c)ω

≡ (�∗b)ω+�∗(b+ c)ω.

10.2.2.2 Nonequivalence of NBAs and DBAs
Unfortunately, deterministic Büchi automata do not recognize all ω-regular languages, and
so they do not have the same expressive power as NBAs. We show that the language of

0 1

2

b

a, c

b, c

a, b, c b

b, c

Figure 10.5
A Büchi automaton.
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ω-words over {a, b} containing finitely many occurrences of a, which is recognized by a
two-state NBA that “guesses” the last occurrence of a, is not recognized by any DBA.

Proposition 10.10 The language Lω ((a+ b)∗bω) is not recognized by any DBA.

Proof LetL=Lω ((a+ b)∗bω).Weprove thateveryDBAacceptingallwordsofLmustalso
acceptwords thatdonotbelong toL.LetA= (Q, {a, b}, q0, δ,F)beanarbitraryDBAsuch that
L⊆Lω (A). Define δ̂ : Q×{a, b}∗→Q by δ̂(q, ε)= q and δ̂(q,wa)= δ(δ̂(q,w), a). That is,
δ̂(q,w) denotes the unique state reached inA by readingw from state q. Consider theω-word
w0= bω. Sincew0 ∈LandL⊆Lω (A), the runofAonw0 is accepting, andso δ̂(q0, u0)∈F for
somefiniteprefixu0 ofw0.Letw1= u0abω.Wehavew1 ∈L, andsobyL⊆Lω (A), the runofA
onw1 isaccepting,whichimplies δ̂(q0, u0au1)∈F forsomefiniteprefixu0au1 ofw1. Inasimi-
lar fashion,wecontinueconstructingfinitewordsui such that δ̂(q0, u0au1a · · · aui)∈F. Since
Q is finite, there are indices 0≤ i< j such that δ̂(q0, u0a · · · ui)= δ̂(q0, u0a · · · uia · · · uj). It
follows that A has an accepting run on the ω-word

u0a · · · ui(aui+1 · · · auj)ω.
Since a occurs infinitely often in this ω-word, it does not belong to L. Thus, L �=Lω (A),
and we are done.

Since DBA are strictly less expressive than NBA, Büchi automata do not form an ω-
trinity. Indeed, as depicted in figure 10.6, all arrows leading to DBA are missing. So, the
quest for an ω-trinity goes on.

10.2.3 Co-Büchi automata

Recall that a run of a Büchi automaton is accepting if it visits a distinguished set F of states
infinitely often. Intuitively, visiting a state of F is a good thing for you, like, say, going for
a jog, and to be accepted you have to go for a jog again and again. We introduce co-Büchi

ω-RE

ω-Regular
languages

NBA DBA

Figure 10.6
Relations between ω-regular expressions, NBAs, and DBAs. An arrow from X to Y means “for every X there is
an equivalent Y .”
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automata, where a run is accepting if it visits the set F only finitely often. The intuition is
now the opposite; visiting a state of F is a bad thing for you, like smoking a cigarette, and
to be accepted, you must eventually quit.

Definition 10.11 Let S= (Q,�, δ,Q0) be a semi-automaton. An acceptance condition
α : 2Q→{0, 1} is a co-Büchi condition if there exists a set F⊆Qof states such that α(Q′)=
1 iff Q′ ∩F=∅. Abusing language, we speak of the co-Büchi condition F.
A nondeterministic co-Büchi automaton (NCA) is a pair A= (S,F), where F⊆Q is a

co-Büchi acceptance condition. We refer to a deterministic NCA as a DCA.

Observe that a run of an NCA is accepting iff it is not accepting as run of an NBA with
the same set F. (This is the reason for the name “co-Büchi.”) Intuitively, if new research
would prove that jogging is actually bad for you, then the runs that were accepting before
would become nonaccepting and vice versa. In particular, the language recognized by a
DCA A= (S,F) is the complement of the language recognized by the DBA A= (S,F).
(Notice that this holds only for deterministic automata!)

Example 10.12 Consider the automata on the top of figure 10.3, but this time as co-Büchi
automata. A run of the NCA on the top left is accepting iff it stays in the left state forever.
So, the NCA recognizes all ω-words.

A run of the DCA on the top right is accepting iff it eventually stays in the right state
forever. So, the automaton recognizes the set of all ω-words in which there is an occurrence
of a with no later occurrence of b. This is indeed the complement of its language as a
DBA—as should be the case, because the automaton is deterministic.

10.2.3.1 Equivalence of NCAs and DCAs
We show that co-Büchi automata can be determinized, i.e., that for every NCA, there is an
equivalent DCA. Recall that for NFAs, this is achieved by means of the powerset construc-
tion (i.e., algorithm 1 of chapter 1). The following example shows that this approach no
longer works.

Example 10.13 Consider the NCA depicted on the left of figure 10.7. It recognizes the
set of all words containing finitely many occurrences of a.

The powerset construction yields the deterministic semi-automaton shown on the right
of figure 10.7. We claim that no accepting condition on this semi-automaton, of any type,

q0 q1 {q0} {q0, q1}

a, b

a

b

a

b a, b

Figure 10.7
An NCA (left) and the DCA arising from the powerset construction (right).
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q r

a

a

b

Figure 10.8
Running example for the determinization procedure.

recognizes the same language. Consider the ω-words w= aω and w′ = abω, and let ρ, ρ′ be
the runs onw andw′, respectively. Since inf(ρ) and inf(ρ′) are equal (both are the singleton
set containing only the state {q0, q1}), no acceptance condition can make ρ accepting and
ρ′ nonaccepting.

In the rest of the section, we show how to “enhance” the powerset construction. We fix an
NCA A= (Q,�, δ,Q0,F) with n states and construct an equivalent DCA B in three steps:

(a) We define a mapping dag that assigns to each w∈�ω a directed acyclic graph (dag for
short), which we denote dag(w).
(b) We define the breakpoints of a dag and prove that an ω-word w is accepted by A iff
dag(w) contains only finitely many breakpoints.
(c) We construct a DCA B that accepts w iff dag(w) contains finitely many breakpoints.

We use the NCA of figure 10.8 as running example.

The mapping dag. Intuitively, dag(w) is the result of “bundling together” all runs of A
on the ω-word w. Figure 10.9 shows the initial parts of dag(abaω) and dag((ab)ω).

Formally, the directed acyclic graph dag(w) for the ω-word w= a0a1 · · · is a labeled
directed graph whose nodes are elements of Q×N and whose edges are labeled by letters
of �. The graph is inductively defined as follows:

• dag(w) contains a node 〈q, 0〉 for every initial state q∈Q0;
• if dag(w) contains a node 〈q, i〉 and q′ ∈ δ(q, ai), then dag(w) also contains a node
〈q′, i+ 1〉 and an edge 〈q, i〉 ai−→〈q′, i+ 1〉; and
• dag(w) contains no other nodes or edges.

Clearly, q0
σ1−−→ q1

σ2−−→· · · is a run of A iff 〈q0, 0〉 σ1−−→〈q1, 1〉 σ2−−→· · · is an infinite path
of dag(w). So A accepts w iff some infinite path of dag(w) visits states of F only finitely
often.
We partition the nodes of dag(w) into levels, with the ith level containing all nodes of

dag(w) of the form 〈q, i〉. One could be tempted to think that the acceptance condition
“some infinite path of dag(w) visits states of F only finitely often” is equivalent to “only
finitely many levels of dag(w) contain states of F,” but dag(abaω) shows this is false: even
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q, 4q, 0
a
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Figure 10.9
Fragments of dag(abaω) and dag((ab)ω). For clarity, we write q, i instead of 〈q, i〉.

though all paths of dag(abaω) visit states of F only finitely often, infinitely many levels (in
fact, all levels i≥ 3) contain states of F. For this reason, we introduce the set of breakpoint
levels of the graph dag(w), inductively defined as follows:

• The 0th level of dag(w) is a breakpoint.
• If level 	 is a breakpoint, then the next nonempty level 	′> 	 such that every path between
nodes of 	 and 	′ visits a state of F at level 	+ 1, or at level 	+ 2, . . . , or at level 	′ is also
a breakpoint.

We claim that “some infinite path of dag(w) visits states of F only finitely often” is
equivalent to “the set of breakpoint levels of dag(w) is finite.” The argument uses a simple
version of König’s lemma:

Lemma 10.14 Let v0 be a node of a dag G, and let Reach(v0) be the set of nodes of G
reachable from v0. If Reach(v0) is infinite but every node of Reach(v0) has only finitely many
successors, then G has an infinite path starting at v0.

Proof For every i≥ 1, let vi be a successor of vi−1 such that Reach(vi) is infinite. The
conditions of the lemma guarantee that vi exists. Therefore, v0v1v2 · · · is an infinite path.

Let us now prove the claim. If the set of breakpoints is infinite, then in particular, dag(w)

has infinitely many nodes and, by lemma 10.14, contains at least an infinite path. Moreover,
by the definition of a breakpoint, this path visits states of F infinitely often. If the set of
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breakpoint levels is finite, let i be the last breakpoint. If dag(w) is finite, then there are no
infinite paths, and we are done. If dag(w) is infinite, then for every j> i, there is a path πj
from level i to level j that does not visit any state of F. The paths {πj}j>i, put together, form
an acyclic subgraph of dag(w), in which every node has only finitely many successors. By
lemma 10.14, this subgraph contains an infinite path that never visits any state of F, and
the claim is proved.
If we were able to tell that a level is a breakpoint by just examining it, without inspecting

the previous levels, we could construct a DCA as follows: take the set of all possible levels as
states, the possible transitions between levels as transitions, and the breakpoints as accepting
states. The run of this DCA on an ω-word w would be an encoding of dag(w), and it would
be accepting iff dag(w) contains only finitely many breakpoints, as required by the co-
Büchi acceptance condition. However, since levels are just sets of states, this corresponds
to applying the powerset construction used in chapter 1 to determinize NFAs, just with a
different acceptance condition, and we have already seen in example 10.13 that such an
approach cannot work. Intuitively, whether a level is a breakpoint or not cannot be decided
with only the information contained in the level.
The solution is to put additional information in the states. We take for the states of the

DCA pairs [P,O], where O⊆P⊆Q, with the following intended meaning: P is the set of
states of a level, and q∈O iff q is the endpoint of some path starting at the last breakpoint
that has not yet visited any state of F. We call O the set of owing states—states for which
some path “owes” a visit to F. The breakpoints correspond to the state [P,O] such that
O=∅. To ensure that O has this intended meaning, we define the DCA B= (Q̃,�, δ̃, q̃0, F̃)

as follows:

• The initial state q̃0 is the pair [Q0,∅]. (Intuitively, there is no breakpoint before level 0,
and so no paths from that breakpoint to level 0.)
• The transition relation is given by δ̃([P,O], a)= [P′,O′], where P′ = δ(P, a), and

• if O �= ∅, then O′ = δ(O, a) \F, and
• ifO=∅ (i.e., if the current level is a breakpoint, and the automatonmust start searching
for the next one), then O′ = δ(P, a) \F; in other words, all states of the next level that do
not belong to F become owing.

• The states of F̃ are those at which a breakpoint is reached because there are no owing
states, that is, [P,O] ∈ F̃ iff O=∅.
With this definition, a run is accepting iff it contains finitely many breakpoints. The

procedure for the construction is formalized in algorithm 45.
Figure 10.10 shows our running example at the top and the result of applyingNCAtoDCA

on the bottom left. The DCA on the bottom right is the result of applying the powerset
construction, which is not equivalent to the NCA at the top. In particular, it accepts bω,
which is rejected by the NCA, because it has no run on it, and it rejects aω, which is accepted
by the NCA.
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Algorithm 45 Algorithm to convert an NCA into a DCA.

NCAtoDCA(A)

Input: NCA A= (Q,�, δ,Q0,F)

Output: DCA B= (Q̃,�, δ̃, q̃0, F̃) with Lω (A)=Lω (B)

1 Q̃, δ̃, F̃←∅; q̃0←[Q0,∅]
2 W←{q̃0}
3 while W �= ∅ do
4 pick [P,O] from W ; add [P,O] to Q̃
5 if O=∅ then add [P,O] to F̃
6 for all a∈� do
7 P′ = δ(P, a)
8 if O �= ∅ then O′ ← δ(O, a) \F else O′ ←P′ \F
9 add ([P,O], a, [P′,O′]) to δ̃

10 if [P′,O′] /∈ Q̃ then add [P′,Q′] to W

q r

a

a

b

{q},∅ {q, r}, {q}

∅,∅

a

b
b

a

a, b

{q} {q, r}

∅

a

b

b

a

a, b

Figure 10.10
NCA of figure 10.8 (top), output of NCAtoDCA (bottom left), and result of applying the powerset construction
(bottom right).
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ω-RE

ω-regular
languages

NCA DCA

Figure 10.11
Relations between ω-regular expressions, NCAs, and DCAs. An arrow from X to Y means “for every X there is
an equivalent Y .”

For the complexity, observe that the number of states of the DCA is bounded by the
number of pairs [P,O] such that O⊆P⊆Q. For every state q∈Q, there are three mutually
exclusive possibilities: q∈O, q∈P \O, and q∈Q \P. Thus, if A has n states, then B has at
most 3n states.

10.2.3.2 Nonequivalence of NCAs and ω-Regular Expressions
The following proposition shows that, unfortunately, co-Büchi automata do not recognize
all ω-regular languages.1

Proposition 10.15 The language denoted by (b∗a)ω is not recognized by any NCA.

Proof Assume some NCA recognizes L=Lω ((b∗a)ω). Since every NCA can be deter-
minized, some DCA A recognizes L. Look at A as a DBA. The DBA A recognizes the
complement of L: indeed, a word w is recognized by the DBA A iff the run of A on w visits
states of F infinitely often iff w is not recognized by the DCA A. But the complement of L
is Lω ((a+ b)∗bω), and so by proposition 10.10, it is not recognized by any DBA. We have
reached a contradiction, which proves the claim.

So, the trinity diagram for co-Büchi automata, depicted in figure 10.11, is missing the
arrows from the ω-regular expressions and the ω-regular languages to NCAs and DCAs.
The quest for an ω-trinity goes on.

10.2.4 Rabin Automata

The Büchi and co-Büchi conditions require that a distinguished set of states is visited
infinitely and only finitely often, respectively. Rabin conditions generalize both.

1. Every language recognized by a co-Büchi automaton is ω-regular, a fact that will be proved in the next section
for a more general type of ω-automata. Together with proposition 10.15, we obtain that NCAs are strictly less
expressive than NBAs, a counterintuitive fact.
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Definition 10.16 Let S= (Q,�, δ,Q0) be a semi-automaton. ARabin pair is a pair 〈F,G〉
of sets of states (i.e., F,G⊆Q). An acceptance condition α : 2Q→{0, 1} is a Rabin condi-
tion if there exists a setR of Rabin pairs such that α(Q′)= 1 iff Q′ ∩F �= ∅ and Q′ ∩G=∅
for some 〈F,G〉 ∈R. Abusing language, we speak of the Rabin condition R.

A nondeterministic Rabin automaton (NRA) is a pair A= (S,R), where R⊆ 2Q× 2Q is
a Rabin acceptance condition.

In words, a run of a Rabin automaton with acceptance condition R is accepting if it
visits F infinitely often and G finitely often for some Rabin pair 〈F,G〉 ∈R. Given a semi-
automaton with Q as set of states, the following holds:

• ABüchi conditionF is equivalent to the Rabin acceptance conditionR={〈F,∅〉}. Indeed,
the condition requiring that states of the empty set are visited finitely often is vacuously true.
• A co-Büchi acceptance condition G is equivalent to the Rabin acceptance conditionR=
{〈Q,G〉}. Indeed, the condition thatQ is visited infinitely often is vacuously true, since runs
are infinite sequences of states of Q.

10.2.4.1 Equivalence of NRAs and ω-Regular Expressions
We show that for every NBA, there is an equivalent NRA and vice versa. Since NBAs are as
expressive as ω-regular expressions, it follows that NRAs and ω-regular expressions have
the same expressive power.

NBA → NRA. As argued above, given an NBA A= (Q,�, δ,Q0,F), then the NRA
B= (Q,�, δ,Q0, {〈F,∅〉}) satisfies Lω (A)=Lω (B).

NRA→NBA. Let A= (S,R) be an NRA.We consider first the case in whichR contains
a single Rabin pair 〈F,G〉 and construct an equivalent NBA B. Since an accepting run ρ of
A satisfies inf(ρ)∩G=∅, from some point on, ρ only visits states of Q \G. So, ρ consists
of an initial finite part, say ρ0, that may visit all states, and an infinite part, say ρ1, that only
visits states of Q \G. Further, since ρ visits F infinitely often, we can assume that the last
state of ρ0 belongs to (Q \G)∩F. Thus, we construct the NBA B as follows:

• Put two copies S0 and S1 of S “side by side.” The first copy S0 is a full copy, containing
all states and transitions of A, and S1 is a partial copy, containing only the states of Q \G
and the transitions between them (see figure 10.12). Let q0 denote the copy of state q∈Q
in S0 and q1 the copy of state q∈Q \G in S1.
• Add transitions that “jump” from S0 to S1. For every transition q0

a−→ r0 of S0 such that q∈
(Q \G)∩F and r∈Q \G, add a transition q0

a−→ r1 that “jumps” to r1, the “twin state” of
r0 in S1 (dashed colored transitions in figure 10.12). Intuitively, B simulates ρ by executing
the finite prefix ρ0 in A0, then jumping to S1, and executing ρ1 there.
• Choose the Büchi condition of B as FB={q1 : q∈ (Q \G)∩F} (recall that F is the first
component of the Rabin pair of A). This choice guarantees that an accepting run of B
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Q \G
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Figure 10.12
Sketch of the conversion NRA→ NBA, where the given NRA has only one Rabin pair 〈F,G〉. Observe that q0
and r0 belong to F, but they are not accepting states of the resulting NBA.
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Figure 10.13
Semi-automaton of a Rabin automaton.

eventually “jumps” to S1, leaving S0 forever, and thus ensuring that states of G are visited
only finitely often and that the run visits F infinitely often after the jump.

Now, consider the general case in which R={〈F1,G1〉, . . . , 〈Fm,Gm〉}. We put m+ 1
copies of S side by side. The first copy S0 is a full copy, containing all states and transitions
of A, and Si for 1≤ i≤m is a partial copy, containing only the states of Q \Gi and the
transitions between them. The set of accepting states is FB=⋃m

i=1{qi : q∈Fi}. For each Si,
we define jump transitions from S0 to Si as before. Since the copies S1, . . . , Sm are disjoint,
a run of B is accepting iff it eventually jumps from S0 to Si for some 1≤ i≤m and then
visits the states of Fi infinitely often. It follows that Lω (A)=Lω (B).

Example 10.17 Consider the Rabin automaton A= (S,R), where the semi-automaton S
is depicted in figure 10.13, and R={〈a, b〉, 〈b, a〉}, with a :={qa} and b :={qb}.
The accepting runs are those visiting a infinitely often and b finitely often or vice versa.

The procedure above converts A into the NBA of figure 10.14.
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Figure 10.14
Conversion of A into an NBA.

The NBA consists of a full copy S0 of S, plus two partial copies S1 and S2, having (copies
of) Q \ b={qa, qc} and Q \ a={qb, qc} as sets of states, respectively. The “jumps,” dashed
and colored in figure 10.14, connect S0 to S1 and S2. Jumps into S1 must leave S0 from a,
the set of states that must be visited infinitely often in the first Rabin pair, so only the jump
from q0a to q1c is possible. Similarly, the only jump to S2 goes from q0b to q2c .

Complexity. Given anNRAA= (S,F), with n states andmRabin pairs, each of the copies
S0, S1, . . . , Sm has at most n states, and so the NBA B has at most n(m+ 1) states.

10.2.4.2 Equivalence of NRAs and DRAs
Rabin automata can be determinized, and so deterministic Rabin automata recognize all
ω-regular languages. The proof of this result goes beyond the scope of this book and is
omitted (see the bibliographical remarks).

Theorem 10.18 An NRA with n states can be effectively transformed into a DRA with
nO(n) states. Moreover, there exists a family {Ln}n≥2 of languages recognizable by NRAs
with O(n) states such that every equivalent DRA has at least n! states.

In particular, the DRA with the semi-automaton shown in figure 10.15 and a Rabin con-
dition with a single Rabin pair 〈{r}, {q}〉 recognizes the language L= (a+ b)∗bω, which, as
shown in proposition 10.10, is not recognized by any DBA.
Theorem 10.18 also shows that determinization of NRAs is strictly more expensive

than determinization of NFAs but only by a log n-factor in the exponent. Indeed, in the
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Figure 10.15
A semi-automaton.

conversion NFA→ DFA, the number of states goes from n toO(2n) and, in the conversion
NRA→ DRA, from n to nO(n)= 2O(n log n).

10.3 Beyond ω-Trinities

The results of section 10.2.4 show that ω-regular expressions, NRAs, and DRAs constitute
an ω-trinity, as depicted in figure 10.16.

Moreover, the blowup induced by the conversions is in all cases comparable to the blowup
for NFAs: the conversions from regular expressions to NFAs and from ω-regular expres-
sions to NRA are polynomial, and the conversion fromNRA to DRA has single exponential
blowup, albeit with exponent O(n log n) instead of n.

However, the finite word trinity also has further properties. In section 3.1 of chapter 3,
we showed that all boolean operations can be easily implemented on DFAs. In particular:

• DFAs can be complemented in linear time without changing the semi-automaton; it suf-
fices to take another acceptance condition of the same type (change the set of final states
from F to Q \F, maintaining that a run is accepting if its last state is final).
• Union and intersection can be implemented uniformly for DFAs using the pairing oper-
ation. More precisely, given two DFAs A1, A2, there exist two DFAs recognizing L (A1)∪
L (A2) and L (A1)∩L (A2) whose semi-automata are identical and equal to the pairing
[A1,A2] (see definition 3.1 in chapter 3). The DFAs only differ on their sets of final states.

Is there an ω-trinity that also satisfies these properties? We examine this question. In
section 10.3.1, we show that Rabin automata satisfy the property for union but not for inter-
section or complement. In sections 10.3.2 and 10.3.3, we introduce two further automata
types, Streett and parity automata, that “restore the symmetry”: Streett automata satisfy the
property for intersection, but not for union or complement, and parity automata satisfy the
property for complementation, but not for union or intersection. Finally, in section 10.3.4,
we conclude our tour of automata types by introducing Muller automata; they satisfy all
three properties but, as we shall see, at a high price.

Remark 10.19 In the rest of this section, we describe several constructions that do not
necessarily produce automata in normal form, that is, automata such that every state is
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Figure 10.16
Trinity of ω-regular languages through Rabin automata. An arrow from X to Y means “for every X there is an
equivalent Y .”

reachable from some initial state. In all cases, this can be remedied by starting from the
initial states, constructing iteratively only the successors of the states constructed so far.

10.3.1 Rabin Automata, Again

We analyze the complexity of union, intersection, and complementation for DRAs. We
show that union can be implemented using pairing, but intersection cannot. Further,
complementation cannot be implemented without changing the semi-automaton.

Union. Given two DRAs A1= (S1,F1) and A2= (S2,F2), we construct a DRA A1 ∪A2
such that Lω (A1 ∪A2)=Lω (A1)∪Lω (A2). The DRA has the pairing [S1, S2] as semi-
automaton (see definition 3.1 from chapter 3) and the following set of F of Rabin pairs as
acceptance condition:

F = {〈F1×Q2,G1×Q2〉 : 〈F1,G1〉 ∈F1} ∪
{〈Q1×F2,Q1×G2〉 : 〈F2,G2〉 ∈F2}.

To see why Lω (A1 ∪A2)=Lω (A1)∪Lω (A2) holds, consider the case in which F1=
{〈F1,G1〉} andF2={〈F2,G2〉}, and soF ={〈F1×Q2,G1×Q2〉, 〈Q1×F2,Q1×G2〉} (the
general case is analogous). Recall that if the runs of S1 and S2 on anω-wordw= a1a2 · · · are

ρ1= q01
a1−−→ q11

a2−−→· · · ai−→ qi1
ai+1−−−→· · ·

ρ2= q02
a1−−→ q12

a2−−→· · · ai−→ qi2
ai+1−−−→· · ·

then the run of [S1, S2] on w is

ρ=
[
q01
q02

]
a1−−→
[
q11
q12

]
a2−−→· · · ai−→

[
qi1
qi2

]
ai+1−−−→· · ·
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and vice versa. Let inf(ρ) be the set of states of [S1, S2] that appear infinitely often in ρ.
We get:

w∈Lω (A1)∪Lω (A2)

iff inf(ρ1)∩F1 �= ∅ and inf(ρ1)∩G1=∅
or
inf(ρ2)∩F2 �= ∅ and inf(ρ2)∩G2=∅

iff inf(ρ)∩ (F1×Q2) �= ∅ and inf(ρ)∩ (G1×Q2)=∅
or
inf(ρ)∩ (Q1×F2) �= ∅ and inf(ρ)∩ (Q1×G2)=∅

iff ρ satisfies the Rabin acceptance condition
{〈F1×Q2,G1×Q2〉, 〈Q1×F2,Q1×G2〉}

iff w∈Lω (A1 ∪A2).

Observe that this last argument fails if we replace “or” by “and.” Indeed, a run satisfies
a Rabin condition {〈F,G〉, 〈F′,G′〉} iff it satisfies {〈F,G〉} or {〈F′,G′〉}, not {〈F,G〉} and
{〈F′,G′〉}.
Intersection and complement. It is not difficult to find a DRA A= (S,R) such that no
Rabin condition over the semi-automaton S recognizes Lω (A). For example, let S be the
semi-automaton of figure 10.20 from example 10.26. It is easy to give a Rabin condition
such that the resulting DRA recognizes the words containing finitely many as or finitely
many bs, but, as shown in the example, no Rabin condition makes S recognize the words
containing infinitely many as and infinitely many bs. Similarly, one can exhibit DRAs A1=
(S1,R1) and A2= (S2,R2) such that no Rabin condition on the semi-automaton [S1, S2]
recognizes Lω (A1)∩Lω (A2). It is even the case that the smallest semi-automata for these
languages may be exponentially larger than the original ones. We state these results without
proof (see the bibliographical remarks).2

Proposition 10.20 There exists a family {An,Bn}n≥1 of pairs of DRAs with O(n) states
andO(n)Rabin pairs such that everyDRA recognizingLω (An)∩Lω (Bn) has�(2n) states.

Proposition 10.21 There exists a family {An}n≥1 of DRAs with O(n) states and O(n)
Rabin pairs such that every DRA recognizing Lω (An) has at least n! states.
Thus, DRAs behave “asymmetrically” with respect to union and intersection. We intro-

duce Streett automata, which also behave “asymmetrically” but exchanging the roles of
union and intersection.

2. Actually, the interested reader can find a proof of proposition 10.21 as proposition 11.10 of chapter 11.
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10.3.2 Streett Automata

As for Rabin automata, the acceptance condition of Streett automata (NSA) consists of a
collection F ={〈F1,G1〉, . . . , 〈Fm,Gm〉} of Streett pairs.
Definition 10.22 Let S= (Q,�, δ,Q0) be a semi-automaton. A Streett pair is a pair 〈F,G〉
of sets of states, that is, F,G⊆Q. An acceptance condition α : 2Q→{0, 1} is a Streett
condition if there exists a set St of Streett pairs such α(Q′)= 1 iff Q′ ∩F=∅ or Q′ ∩G �= ∅
holds for every 〈F,G〉 ∈St.

A nondeterministic Streett automaton (NSA) is a pair A= (S,St), where St⊆ 2Q× 2Q is
a Streett acceptance condition.

In words, a run of an NSA is accepting if it visits F finitely often or G infinitely often for
every Streett pair 〈F,G〉 ∈St.

Streett automata could also be called co-Rabin automata. Let us see why. Recall that a
run of a DBA A is accepting if it is a rejecting run of the DCA A (i.e., of the same automa-
ton, but with a co-Büchi instead of a Büchi condition) and vice versa. The same holds for
Rabin and Streett automata. Indeed, let F be a set of pairs of the form 〈F,G〉 for F,G⊆Q.
We have:

ρ is a rejecting run of the DSA A= (S,F)

iff ¬∀〈F,G〉 ∈F : inf(ρ)∩F=∅ or inf(ρ)∩G �= ∅
iff ∃〈F,G〉 ∈F : inf(ρ)∩F �= ∅ and inf(ρ)∩G=∅
iff ρ is an accepting run of the DRA A= (S,F).

In other words, if we let LR
ω(A) and LS

ω(A) be the languages of a deterministic automaton
A when F is interpreted as a Rabin and as a Streett condition, respectively, then LS

ω(A)=
LR

ω(A).

10.3.2.1 Equivalence of NSAs and ω-Regular Expressions
We show that for every NBA, there is an equivalent NSA and vice versa, which shows that
NSAs are equivalent to ω-regular expressions.

NBA → NSA. Given an NBA A= (S,F), the NSA B= (S, {〈Q,F〉}), where Q is the set
of states of S, satisfies Lω (A)=Lω (B). Indeed, a run of B is accepting iff inf(ρ)∩Q=∅
or inf(ρ)∩F �= ∅. Since every run visits at least one state infinitely often, this is the case
iff inf(ρ)∩F �= ∅.
NSA → NBA. This conversion requires some more work and involves an exponential
blowup. LetA= (S,St) be anNSA. For every I ⊆St, define I =St \ I andFI =⋃〈F,G〉∈I F.
Applying the definition of the Streett condition and standard rules of propositional logic,
we obtain the following for every run ρ of A:
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ρ is accepting

⇐⇒
∧

〈F,G〉⊆St
(inf(ρ)∩F=∅∨ inf(ρ)∩G �= ∅)

⇐⇒
∨
I⊆St

⎛⎝⎛⎝ ∧
〈F,G〉∈I

inf(ρ)∩F=∅
⎞⎠∧
⎛⎝ ∧
〈F,G〉∈I

inf(ρ)∩G �= ∅
⎞⎠⎞⎠

⇐⇒
∨
I⊆St

⎛⎝inf(ρ)∩
⎛⎝ ⋃
〈F,G〉∈I

F

⎞⎠=∅∧
⎛⎝ ∧
〈F,G〉∈I

inf(ρ)∩G �= ∅
⎞⎠⎞⎠

⇐⇒
∨
I⊆St

⎛⎝inf(ρ)∩FI =∅∧
⎛⎝ ∧
〈F,G〉∈I

inf(ρ)∩G �= ∅
⎞⎠⎞⎠ (10.1)

We consider first the case in which the disjunction over the subsets of St consists of a
single disjunct. (More precisely, the case in which all disjuncts, but the one for a certain
subset I , are vacuously false, and so they can be removed from the condition.) We then
consider the general case.
We assume that I ={〈F0,G0〉, . . . , 〈Fk ,Gk〉} for some k≥ 0; in particular, I is nonempty.

(This can be done without loss of generality: if I =∅, we can equivalently set I ={〈∅,Q〉},
because every run ρ satisfies inf(ρ)∩∅=∅∧ inf(ρ)∩Q �= ∅.) Let LI be the language of
all words for which there is a run ρ of A satisfying (10.1) for I . We construct an NBA B
recognizing LI in two steps.

Construction of B, first step. The first step repeats a construction we already presented
in the conversion NRA→NBA. Let us recall it. Every run ρ satisfying inf(ρ)∩FI =∅ and
inf(ρ)∩G �= ∅ for every 〈F,G〉 ∈ I reaches a point after which the run only visits states of
Q \FI . So, ρ consists of an initial finite part, say ρ0, that may visit all states, followed by an
infinite part, say ρ1, that only visits states of Q \FI . Further, if I �= ∅, then we can assume
that the last state visited by ρ0 belongs toG0. We construct a semi-automaton SI as follows:

• Put two copies S0 and S1 of S “side by side” (figure 10.17 illustrates a case in which
I contains three Streett pairs with second components G0, G1, and G2). The copy S0 is a
full copy, containing all states and transitions of S, and S1 is a partial copy, containing only
the states of Q \FI and the transitions between them. Let q0 denote the copy of state q∈Q
in S0 and q1 the copy of state q∈Q \FI in S1.
• Add transitions that “jump” from S0 to S1. For every transition q

a−→ r of S0 such that
q∈G0 and r∈Q \FI , add a transition q0

a−→ r1. Intuitively, B simulates ρ by executing the
finite prefix ρ0 in S0, then jumping to S

1
, and executing ρ1 there.
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Q \FIQ \FIF

S

S0

S1

G0

G1

G2

G0

G1

G2

G0

G1

G2

Figure 10.17
First step of the conversion NSA → NBA. The figure illustrates a special case in which G0, G1, and G2 are
pairwise disjoint and included in Q \FI .

Construction of B, second step. By definition of the semi-automaton SI , the language
LI contains exactly the words on which SI has a run ρ0ρ1, where ρ0 stays in S0 and
ρ1 is a run of S1 satisfying inf(ρ1)∩G �= ∅ for every 〈F,G〉 ∈ I . Thus, ρ1 visits all of
G0, . . . ,Gk infinitely often. The problem is that this condition is not of Büchi type. To solve
this problem, we replace S1 by another semi-automaton. Observe that a run ρ1 visits each
of G0, . . . ,Gk infinitely often iff the following two conditions hold:

(a) ρ1 eventually visits G0, and
(b) for all 0≤ i<m, every visit of ρ1 to Gi is eventually followed by a later visit to Gi⊕1,
where ⊕ denotes addition modulo k. (Between the visits to Gi and Gi⊕1, there can be
arbitrarily many visits to other sets.)

This suggests replicating S1 into k “copies” S10, . . . , S
1
k−1, but with a modification: the

NBA “jumps” from the ith to the (i⊕ 1)th copy whenever it visits a state of Gi (see
figure 10.18). More precisely, the transitions of the ith copy that leave a state of Gi are redi-
rected to the (i⊕ 1)th copy. This way, visiting the accepting states of each copy infinitely
often is equivalent to visiting the accepting states of the first copy infinitely often. The jumps
from S to S1 are adapted: instead of a jump q0

a−→ r1, we now have q0
a−→ r10. We take B as

the NBA with this structure and G0
1 as Büchi condition.

Formal definition of B. Formally, let A= (Q,�, δ,Q0,St) be an NSA, let I ⊆St, and let
FI =⋃〈F,G〉∈I F. Further, assume I ={〈F0,G0〉, . . . , 〈Fk−1,Gk−1〉}. The NBA B is defined
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Q \FIQ \FIF

S

S0

S10 S11 S12

G0
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G2

G0

G1

G2

Figure 10.18
Second step of the conversion NSA→ NBA, illustrating the replication of S1.

as follows:

• States: {q0 : q∈Q} ∪ {q10, . . . , q1k−1 : q∈Q \FI }.
• Transitions: The set of transitions contains

• (q0, a, r0) for all (q, a, r)∈ δ,
• (q0, a, r10) for all (q, a, r)∈ δ s.t. q∈G0 and r∈Q \FI ,
• (q1i , a, r

1
i ) for all (q, a, r)∈ δ s.t. q∈ (Q \FI ) \Gi and r∈Q \FI , and

• (q1i , a, r
1
i⊕1) for all (q, a, r)∈ δ s.t. q∈ (Q \FI )∩Gi and r∈Q \FI .

• Initial states: {q0 : q∈Q0}.
• Accepting states: {q10 : q∈G0}.

This concludes the description of the construction when the disjunction (10.1) over the
subsets of St only contains one disjunct. Now, consider the general case, with k such dis-
juncts for sets I1, . . . , Ik ⊆St. We proceed again in two steps. In the first step, we take a full
copy S0 of S and partial copies S1, . . . , Sk , one for each of I1, . . . , Ik , constructed as in the
previous case. For each Ij, we add jumps from S0 to Sj, also as before. In the second step,
each of the Sj is replicated, also as before. The forthcoming example 10.23 describes a case
with two disjuncts.



Classes of ω-Automata and Conversions 273

Complexity. If A has n states and m Streett pairs, then the number of states of BI is
bounded by n(m+ 1). Since there exist 2m sets I ⊆F , the number of states ofB isO(2mnm).

Example 10.23 Consider again the automaton of example 10.17 with acceptance condi-
tion St={〈a, b〉, 〈b, a〉}, where a={qa} and b={qb}, but this time interpreted as a Streett
condition. The automaton accepts the ω-words containing finitely many as or infinitely
many bs, and finitely many bs or infinitely many as, with no constraint on the number of
cs. We construct an equivalent NBA. We have

ρ is accepting

iff (inf(ρ)∩ a=∅∨ inf(ρ)∩ b �= ∅)∧ (inf(ρ)∩ b=∅∨ inf(ρ)∩ a �= ∅)
iff (inf(ρ)∩ a=∅∧ inf(ρ)∩ b=∅)∨ (inf(ρ)∩ b �= ∅∨ inf(ρ)∩ a �= ∅) .

Note that we have removed “(inf(ρ)∩ a=∅∧ inf(ρ)∩ a �= ∅)” and “(inf(ρ)∩ b=∅∧
inf(ρ)∩ b �= ∅)” because they are equivalent to false.

Let S be the semi-automaton of theNSA. Intuitively, a run of theNBAstays in the full copy
S0 of S until it “decides” which of the two disjuncts it wants to satisfy, after which it “jumps”
to another copy. Without loss of generality, we request that the run leaves S0 from the set of
states it must visit infinitely often according to the chosen disjunct; if there is more than one
set, then we request it to leave from the first one. This yields the NBA of figure 10.19.
Consider the first disjunct: (inf(ρ)∩ a=∅∧ inf(ρ)∩ b=∅). A run satisfying it must

eventually only visit qc. So the copy S1 of S only contains state qc.Without loss of generality,
we request that the run leaves S0 from qc, and so the only (colored dashed) jump leads from
q0c to q1c .

q0a q0b

q0c

S0

c

b

c

a

ca

b

q1c S10

c

c

q2a0 q2b0

q2c0

S20

q2a1 q2b1

q2c1

S21

c

a a

c

c

c

b

b

c

a

c

a

b

c

a

c

Figure 10.19
Büchi automaton obtained from a Streett automaton.
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Consider now the second disjunct: (inf(ρ)∩ b �= ∅∧ inf(ρ)∩ a �= ∅). The disjunct does
not require any state to be visited only finitely often, and so the NBA contains two full
copies S20 and S21 of S. Intuitively, a run jumps from S0 to S10 when it “decides” to satisfy
this disjunct and then stays in S20 until it visits b and in S21 until it visits a. Jumps from S0

to S20 leave from b; there are two of them, leading from q0b to q2a0 and q2c0 (colored dashed
transitions). Transitions of S20 leaving from b “land” in S21, and transitions of S21 leaving
from a “land” in S20 (colored dotted transitions).

Intersection. As mentioned at the beginning of the section, a run of a DRA is accept-
ing iff it is a rejecting run of the DSA with the same semi-automaton and acceptance
condition, but of Streett type. It follows immediately that the construction shown in the
previous section for union of DRAs is also a construction for intersection of DSAs. Let
us see why. Given an automaton A= (S,F), let LR(A) and LS(A) be its language as a
Rabin and Streett automaton, respectively (i.e., interpreting the pairs of F as Rabin pairs,
or as Streett pairs, respectively). Further, given two automata A1,A2, let A1 ∪A2 be the
automaton defined in the previous section using the pairing construction. There, we proved
LR(A1 ∪A2)=LR(A1)∪LR(A2). Now, we prove LS(A1 ∪A2)=LS(A1)∩LS(A2):

LS(A1 ∪A2)=LR(A1 ∪A2) (as A1 and A2 are deterministic)

=LR(A1)∪LR(A2) (by the previous section)

=LR(A1)∩LR(A2) (by De Morgan’s law)

=LS(A1)∩LS(A2) (as A1 and A2 are deterministic).

Union and complement. In the previous section, we saw that given two DRAs withO(n)
states, the smallest DRA for the union of their languages can have �(2n) states, and that
given a DRA with O(n) states, the smallest DRA recognizing its complement language
can have n! states (proposition 10.20 and proposition 10.21). Using that a run of a DRA is
accepting iff it is a rejecting run of the DSA with the same semi-automaton and acceptance
condition, we obtain the same bounds for union and complementation of Streett automata.

10.3.3 Parity Automata

We now present an automata type for which complementation can be implemented without
changing the semi-automaton, at the price of an exponential blowup for both union and
intersection.
The acceptance condition of parity automata is a chain of sets of states.

Definition 10.24 Let S= (Q,�, δ,Q0) be a semi-automaton. An acceptance condition
α : 2Q→{0, 1} is a parity condition if there exists a sequence P = (F1,F2, . . . ,F2m) of
sets of states, where F1⊆F2⊆ · · ·⊆F2m=Q, such that α(Q′)= 1 iff the smallest index i
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satisfying Q′ ∩Fi �= ∅ is even. (Observe that i exists because F2m=Q.) Abusing language,
we speak of the parity condition P .
A nondeterministic parity automaton (NPA) is a pair A= (S,P), where P ⊆ (2Q)∗ is a

parity acceptance condition.

At first sight, the parity condition looks very different from the Rabin or Streett condi-
tions. We show that this is not the case. Note first that we can reformulate a parity condition
(F1,F2, . . . ,F2m) as follows: a run ρ is accepting iff

inf(ρ)∩F1=∅ and inf(ρ)∩F2 �= ∅,
or inf(ρ)∩ (F1 ∪F2 ∪F3)=∅ and inf(ρ)∩F4 �= ∅,
or · · ·
or inf(ρ)∩ (F1 ∪ · · · ∪F2m−1)=∅ and inf(ρ)∩F2m �= ∅.

SinceF1⊆F2⊆ · · ·F2m, the condition is equivalent to the following: a run ρ is accepting iff

inf(ρ)∩F1=∅ and inf(ρ)∩F2 �= ∅,
or inf(ρ)∩F3=∅ and inf(ρ)∩F4 �= ∅,
or · · ·
or inf(ρ)∩F2m−1=∅ and inf(ρ)∩F2m �= ∅,

and so the parity condition (F1,F2, . . . ,F2m) is equivalent to the Rabin condition

{〈F2m,F2m−1〉, . . . , 〈F3,F2〉, 〈F2,F1〉}.
Therefore, the parity condition is a special case of the Rabin condition in which the
sets appearing in the Rabin pairs form a nonincreasing chain with respect to set inclu-
sion, starting at the set Q. Interestingly, the parity condition is also a special case of the
Streett condition. It is not difficult to prove (see exercise 154) that the parity condition
(F1,F2, · · · ,F2m) is also equivalent to the Streett condition

{〈∅,F1〉, 〈F2,F3〉, . . . , 〈F2m−2,F2m−1〉}.
10.3.3.1 Equivalence of NPAs and ω-Regular Expressions
It is very easy to give conversions NBA→ NPA→ NRA, which prove the equivalence of
NPAs and ω-regular expressions.

NBA→NPA. AnNBAwith statesQ and accepting statesF recognizes the same language
as the same semi-automaton with parity condition (∅,F,Q,Q). Indeed, for every run ρ of
a semi-automaton:

ρ satisfies the parity condition (∅,F,Q,Q)

⇐⇒ (inf(ρ)∩∅=∅∧ inf(ρ)∩F �= ∅)∨ (inf(ρ)∩Q=∅∧ inf(ρ)∩Q �= ∅)
⇐⇒ inf(ρ)∩F �= ∅
⇐⇒ ρ satisfies the Büchi condition F.
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NPA → NRA. By the observation above on the relation between parity and Rabin condi-
tions, an NPA with acceptance condition (F1,F2, . . . ,F2m) recognizes the same language
as the same automaton with Rabin condition {〈F2m,F2m−1〉, . . . , 〈F3,F2〉, 〈F2,F1〉}, and we
are done.
Together, the two conversions NBA→ NPA and NPA→ NRA show that the languages

recognizable by NPAs are exactly the ω-regular languages and that ω-regular expressions
can be translated into NPAs and vice versa with polynomial blowup.

10.3.3.2 Equivalence of NPAs and DPAs
It is possible to modify the determinization of the theorem 10.18 procedure so that it yields
a DPA instead of a DRA. Again, the proof is beyond the scope of the book.

Theorem 10.25 An NPAwith n states can be effectively transformed into a DPAwith nO(n)

states and an acceptance condition with O(n) sets.

10.3.3.3 Boolean Operations for DPAs
It can be shown that union and intersection of DPAs both involve an exponential blowup,
that is, the smallest DPA for the union or the intersection of two DPASwithO(n) states may
have �(2n) states. However, complementation can be very elegantly implemented without
changing the semi-automaton as follows. LetA(S,P) be a DPAwithP = (F1,F2, . . . ,F2m).
Consider the DPA A= (S,P), where

P = (G1,G2, . . . ,G2m+2) := (∅,F1,F2, . . . ,F2m,F2m).

(That is, G1 :=∅, G2 :=F1, and so on.) Let ρ be a run of A. We have

ρ is a rejecting run of A
iff the minimal index i such that inf(ρ)∩Fi �= ∅ is not even
iff the minimal index i such that inf(ρ)∩Fi �= ∅ is odd
iff the minimal index j such that inf(ρ)∩Gj �= ∅ is even
iff ρ is an accepting run of A.

Therefore, Lω

(
A
)=Lω (A).

Example 10.26 Consider the semi-automaton S depicted in figure 10.20. We examine
several languages over � and determine for each of them if there exist Rabin, Streett,
or parity conditions that, added to S, yield Rabin, Streett, or parity automata recogniz-
ing the language. We use the following notation: Q={qa, qb, qc}, a={qa}, b={qb}, and
ab={qa, qb}.
Words containing infinitely many as. Semi-automaton S recognizes this language
with the Rabin condition {〈a,∅〉}, the Streett condition {〈Q, a〉}, and the parity condition
(∅, a,Q,Q).
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Figure 10.20
Example of a semi-automaton.

Words containing infinitely many as or infinitely many bs. Semi-automaton S recog-
nizes this language with the Rabin condition {〈ab,∅〉}, the Streett condition {〈Q, ab〉}, and
the parity condition (∅, ab,Q,Q).

Words containing infinitely many as and infinitely many bs. Semi-automaton S recog-
nizes this language with the Streett condition {〈Q, a〉, 〈Q, b〉}. However, no Rabin condition
allows S to recognize it. To see why, assume the contrary, and let ρ be an accepting run for
(ab)ω. We have inf(ρ)= ab. Since ρ is accepting, the Rabin condition contains at least one
Rabin pair 〈F,G〉 such that F ∩ ab �= ∅ and G∩ ab=∅. But then S accepts no word at all
(case F=∅) or it accepts aω (case qa ∈F) or it accepts bω (case qb ∈F), which in all cases
leads to a contradiction. Finally, since the parity condition is a special case of the Rabin
condition, no parity condition allows S to recognize the language.

Words containing finitelymany as or finitelymany bs. This language is the complement
of the previous one. Since S is deterministic, it recognizes a language with a Rabin (Streett)
condition if it recognizes its complement with a Streett (Rabin) condition. So, S recognizes
this language with the Rabin condition {〈Q, a〉, 〈Q, b〉}, and there is no Streett condition
recognizing it. Further, since the parity condition is a special case of the Streett condition,
no parity condition allows S to recognize the language.

10.3.4 Muller Automata

We have found three different ω-trinities: the Rabin, Streett, and parity trinities. In each of
them, one of the three fundamental boolean operations (union, intersection, and comple-
ment) can be implemented essentially as for DFAs, but the other two cannot and involve
exponential blowups in the number of states. Is there an ω-automaton type in which all
three boolean operations can be implemented as for DFAs, with polynomial blowups in the
number of states?



278 Chapter 10

The answer is “yes, but.” Muller automata, the automata type presented below, allow us
to implement complementation without changing the semi-automaton and to implement
both union and intersection by means of pairing. However, this comes at the price of an
exponential blowup, not in the number of states but in the size of the acceptance condition.
Let us explain this.
In a DFA, the size of an automaton (i.e., the number of bits required to encode it) is

determined by the cardinalities of the set of states and the alphabet. Indeed, a DFA with n
states over an alphabet with m letters has exactly nm transitions and at most n final states.
Therefore, the size of the DFA is �(nm). This is no longer the case for DRAs, DSAs, or
DPAs. Indeed, the acceptance condition of a DRA with n states can contain up to 4n Rabin
pairs, and hence the size of the automaton can be dominated by the size of the acceptance
condition. So, the question of whether all three boolean operations can be implemented “as
for DFAs” can be given both a positive and a negative answer: yes, if we are only interested
in the semi-automaton and the number of states of the resulting automata; no, if we also
take into account the size of the acceptance condition.
To introduce Muller automata, consider again example 10.26. We showed there that no

Rabin automaton with the semi-automaton of figure 10.20 recognizes the language of the
words containing infinitely many as and infinitely many bs. The reason is that the condition
“both qa and qb are visited infinitely often” cannot be expressed using Rabin pairs, although
it can be expressed using Streett pairs. Muller automata solve this problem in a radical way,
by allowing all possible acceptance conditions.

Definition 10.27 Let S= (Q,�, δ,Q0) be a semi-automaton. A nondeterministic Muller
automaton (NMA) is a pair A= (S,α), where α : 2Q→{0, 1} is an acceptance condition.
We represent an acceptance condition α by its associated Muller set, defined as the

set M :={Q′ ⊆Q : α(Q′)= 1}. Abusing language, we speak of the Muller acceptance
condition M and of the NMA A= (S,M).

Example 10.28 Consider the semi-automaton S of example 10.26 depicted in
figure 10.20. Let us give Muller conditions recognizing all four languages of the example.

Words containing infinitely many as. Semi-automaton S recognizes this language with
the Muller condition

{ {qa}, {qa, qb}, {qa, qc}, {qa, qb, qc} }.
(All sets containing qa.)

Words containing infinitely many as or infinitely many bs. Semi-automaton S recog-
nizes this language with the Muller condition

{ {qa}, {qb}, {qa, qc}, {qb, qc}, {qa, qb, qc} }.
(All sets containing qa or qb.)
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Words containing infinitely many as and infinitely many bs. Semi-automaton S recog-
nizes this language with the Muller condition

{ {qa, qb}, {qa, qb, qc} }.
(All sets containing qa and qb.)

Words containing finitely many as or finitely many bs. Semi-automaton S recognizes
this language with the Muller condition

{ {qa}, {qb}, {qc}, {qa, qc}, {qb, qc} }.
(All sets not containing qa or not containing qb.)

10.3.4.1 Equivalence of NMAs and ω-Regular Expressions
We give translations NBA→ NMA→ NBA, which shows that NMAs are as expressive as
ω-regular expressions.

NBA → NMA. Given an NBA A= (S,F) where S= (Q,�, δ,Q0) and a set of states
R⊆Q, let B= (S,M) be the NMA such that R∈M iff R∩F �= ∅—that is,M contains all
subsets of Q that intersect F. We show that, for every word w∈�ω, we have w∈Lω (A) iff
w∈Lω (B):

w∈Lω (A)

iff inf(ρ)∩F �= ∅ for some run ρ of A on w
iff inf(ρ)∈M for some run ρ of B on w (by definition of M)

w∈Lω (B).

While B has the same number of states and transitions as A, the cardinality of M is
2|Q| − 2|Q\F|, which in the worst case is exponential in the number of states of A and B.
For example, a Büchi automaton with states Q={q0, . . . , qn} and Büchi condition {qn} is
transformed into an NMA with a Muller set {F⊆Q : qn ∈F} of cardinality 2n.

NMA → NBA. We present a translation NMA→ NSA→ NBA. Since we already have
a translation NSA→ NBA, it suffices to present a translation NMA→ NSA.
Let A= (S,M) be an NMA with M={F1, . . . ,Fm}. We construct an equivalent NSA

B. By definition of the Muller condition, we have Lω (A)=∪mi=1Lω (Ai), where Ai is the
NMA Ai= (S, {Fi}). So it suffices to translate each Ai into an equivalent NSA Bi and then
define B as the result of putting all these NSAs “side by side.” To construct Bi, it suffices to
convert the Muller condition {Fi} into an equivalent Streett condition St as follows:

ρ is an accepting run of Ai= (S, {Fi}), where S= (Q,�, δ,Q0)

⇐⇒ inf(ρ)=Fi
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⇐⇒ inf(ρ)∩Q \Fi=∅∧
∧
q∈Fi

inf(ρ)∩ {q} �= ∅

⇐⇒ ( inf(ρ)∩Q \Fi=∅∨ inf(ρ)∩∅ �= ∅)∧∧
q∈Fi

(
inf(ρ)∩Q=∅∨ inf(ρ)∩ {q} �= ∅)

⇐⇒ ρ is an accepting run of the NSA Bi= (S,St), where

St={ 〈Q \Fi,∅〉 } ∪ { 〈Q, {q}〉 : q∈Fi }.
Complexity. Let n= |Q| and m= |M|. Each of the NSAs B1, . . . ,Bm has n states and an
acceptance condition containing at most n+ 1 Streett pairs. Each of the equivalent NBAs
has O(2nnm) states, and after putting them side by side, we finally obtain an NBA with
O(2nnm2) states.

10.3.4.2 Equivalence of NMAs and DMAs
We can show that NMAs can be determinized by proving that for every DRA there is an
equivalent DMA. Indeed, we can then combine the translations NMA→ NBA→ NRA
→ DRA→ DMA, where NRA→ DRA follows from theorem 10.18. There exist direct
algorithms, but they are beyond the scope of this book.

DRA → DMA. The conversion is very similar to NBA → NMA. Given a DRA A=
(S,R), we construct the DMA B= (S,M), where a set R⊆Q belongs toM iff there exists
〈F,G〉 ∈R such that R∩F �= ∅ and R∩G=∅. We have

ρ is an accepting run of A
iff inf(ρ)∩F �= ∅ and inf(ρ)∩G=∅ for some 〈F,G〉 ∈R
iff inf(ρ)∈M
iff ρ is an accepting run of B.

10.3.4.3 Boolean Operations on DMAs
Complement. We can easily complement a DMA A= (S,M) while preserving the type
and the semi-automaton. Indeed, the DMA A= (S, 2Q \M) satisfies Lω

(
A
)=Lω (A): for

every word w, we have w∈Lω (A) iff the run ρ of A on w is accepting iff inf(ρ)∈M iff
inf(ρ) /∈ 2Q \M iff ρ is not an accepting run of A iff w /∈Lω

(
A
)
.

Union and intersection. Let A1= (S1,M1) and A2= (S2,M2) be DMAs with sets of
states Q1 and Q2, respectively. Given R⊆Q1×Q2, let

R|1={q1 ∈Q1 : ∃q2 ∈Q2 (q1, q2)∈R},
R|2={q2 ∈Q2 : ∃q1 ∈Q1 (q1, q2)∈R},
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be the projections of R onto Q1 and Q2, respectively. Let us see that the DMAs A1 ∪A2 and
A1 ∩A2 having the pairing [S1, S2] as semi-automaton and Muller conditions

M∪ = {R⊆Q1×Q2 : R|1 ∈M1 or R|2 ∈M2},
M∩ = {R⊆Q1×Q2 : R|1 ∈M1 and R|2 ∈M2},

recognize Lω (A1)∪Lω (A2) and Lω (A1)∩Lω (A2), respectively.
Let w be an arbitrary word, and let ρ1, ρ2, and ρ be the runs of S1, S2, and [S1, S2] on w,

respectively. We have inf(ρ)|i= inf(ρi) for both i∈ {1, 2}. So, we obtain for A1 ∪A2:

w∈Lω (A1)∪Lω (A2)

⇐⇒ inf(ρ1)∈M1 or inf(ρ2)∈M2 (by def. of the Muller condition)

⇐⇒ inf(ρ)|1 ∈M1 or inf(ρ)|2 ∈M2 (by inf(ρ)|i= inf(ρi))

⇐⇒ inf(ρ)∈M∪ (by def. ofM∪)

⇐⇒ w∈Lω (A1 ∪A2) (by def. of A1 ∪A2).

The result for A1 ∩A2 is analogous.

10.3.4.4 Size of the Acceptance Condition
Recall that the conversion NBA→ NMA described in section 10.3.4.1 causes an exponen-
tial blowup in the size of the acceptance condition. A Büchi automaton with (by definition)
one set of accepting states may be translated into a Muller automaton with exponentially
many sets of accepting states.
We show that the exponential blowup is not a feature of the specific conversion we have

presented; any other conversion will have the same problem. In fact, we prove this for
any conversion from ω-regular expression to NMAs. (Observe that, since the conversion
ω-regular expression → NBA only causes a polynomial blowup in size, any conversion
NBA→ NMA must then cause an exponential one.)
Consider, for every n≥ 1, the ω-regular expression sn= ((a(bb)∗)n#)ω over the alphabet

{a, b, #}. Words of Lω (sn) are of the form w1#w1#w2#w3# · · · , where every wi contains
exactly n occurrences of a separated by possibly different but even numbers of bs. The ω-
language Lω (sn) is recognized by the DMA shown in figure 10.21. It only has 2n+ 1 states
but a very large acceptance condition, containing all 2n sets of the form {q0, . . . , qn} ∪
R, where R⊆ {̂q1, . . . , q̂n}. The next proposition shows that every NMA recognizing this
language has an acceptance condition of at least this size.

Proposition 10.29 Let �={a, b, #}. For all n≥ 1, the acceptance condition of any NMA
recognizing the language of the ω-regular expression sn=

(
(a(bb)∗)n#

)ω contains at least
2n sets of states.
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q0 q1 q2 · · · qn

q̂1 q̂2 · · · q̂n

a a a a

b b b b b b

#

Figure 10.21
A DMA recognizing the language of the ω-regular expression

(
(a(bb)∗)n#

)ω . The acceptance condition consists
of all subsets of {q0, q̂1, . . . , q̂n} that contain q0.

Proof Fix an arbitrary n≥ 1, and let A be the DMA of figure 10.21, with set of states
Q. It is easy to see that A recognizes L (sn), and so it suffices to show that the acceptance
condition of any NMA equivalent to A, contains at least 2n sets of states. Before proceeding,
we make the following claim:

Claim 1. Let Lω (q) denote the language recognized by A with q∈Q as initial state. For
every two distinct states q, q′ of A, we have Lω (q)∩Lω

(
q′
)=∅.

Proof Let u∈Lω (q) and u′ ∈Lω

(
q′
)
. We prove u �= u′. Since every accepting run visits

q0 infinitely often, u and u′ contain infinitely many occurrences of #. Consider three cases:

• q= q0 and q′ �= q0. Then u contains exactly n occurrences of a before the first occurrence
of #, but u′ contains fewer.
• q∈ {qi, q̂i} and q′ ∈ {qj, q̂j} for i �= j. Then u contains exactly n− i occurrences of a before
the first occurrence of #, and u′ contains n− j.
• {q, q′} = {qi, q̂i} for some i. Let ku be the number of occurrences of b in u before the first
occurrence of #. Define ku′ analogously. Then ku and ku′ have different parity.

Let B be an NMA equivalent to A with set of states R; further, let Lω (r) denote the lan-
guage recognized by B with r∈R as initial state. Without loss of generality, we assume that
Lω (r) �= ∅ for every r∈R (if Lω (r)=∅, then r can be removed). We make two claims:

Claim 2. For every r∈R, there is a unique state q∈Q such that Lω (r)=Lω (q).

Proof Let r∈R. Since A and B are equivalent, we haveLω (r)⊆⋃q∈Q Lω (q). So, by claim
1, it suffices to show that some state q∈Q satisfies Lω (r)⊆Lω (q). Let w be any finite
word leading from some initial state r0 of B to r, and let q be the unique state of A such that
q0

w−→ q. We prove Lω (r)⊆Lω (q).

u∈Lω (r)
⇒ B has an accepting run ρu= r

u−→ from r
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⇒ B has an accepting run ρ= r0
w−→ r

u−→ from r0 (because inf(ρ)= inf(ρu))
⇒ wu∈Lω (B) (because r0 is an initial state)
⇒ wu∈Lω (A) (because A and B are equivalent)
⇒ A has an accepting run ρ′ = q0

w−→ q
u−→· · ·

⇒ A has an accepting ρ′u= q
u−→· · · from q (because inf(ρ′u)= inf(ρ′))

⇒ u∈Lω (q).

Before stating the third claim, we need a definition. For every 1≤ i≤ n, let Ri={r∈
R : Lω (r)=Lω (̂qi)}. Observe that, by claim 2, Ri �= ∅ for every 1≤ i≤ n, and by claim 1,
Ri ∩Rj �= ∅ for every i �= j.

Claim 3. Let q0
u−→ q

v−→· · · and r0 u−→ r
v−→· · · be accepting runs of A and B on a word

uv. For every 1≤ i≤ n, we have q= q̂i iff r∈Ri.

Proof Since the suffixes q
v−→· · · and r

v−→· · · visit the same states infinitely often as the
runs themselves, we have v∈Lω (q)∩Lω (r). Claim 1 and claim 2 yield Lω (q)=Lω (r).
If q= q̂i, then r∈Ri by the definition of Ri. If r∈Ri, then q= q̂i by the definition of Ri and
claim 2.

Proof of the proposition. For every H ⊆{1, . . . , n}, consider the word
wH =

(
a(bb)k1a(bb)k2a · · · (bb)kn#

)ω
where ki= 1 if i∈H , and ki= 0 otherwise. For example, if n= 4 andH ={1, 3}, then wH =
(abbaabba#)ω. Let ρA

H and ρB
H be accepting runs of A and B onwH . We have q̂i ∈ inf(ρA

H ) iff
i∈H . By claim 3, ρB

H visits Ri infinitely often iff i∈H , and so inf(ρH
B )∩Ri �= ∅ iff i∈H .

It follows inf(ρH
B ) �= inf(ρH ′

B ) for every two distinct subsets H ,H ′ ⊆ {1, . . . , n}, and thus
|M| ≥ 2n.

10.4 Summary

In chapter 1 and chapter 3, we have shown that automata on finite words and regular expres-
sions form a trinity and that all boolean operations can be implemented in linear or quadratic
time with deterministic automata as data structure. The fact that a single type of automata
simultaneously enjoys all of these properties is often taken for granted. It should not be.
It is a remarkable fact, which, as we have seen in this chapter, does not hold anymore for
automata on infinite words.
Table 10.1 summarizes the contents of the chapter. The first column lists automata types.

The next two columns indicate which of the properties of an ω-trinity hold, and the last
three columns indicate which of the properties concerning boolean operations hold. More
precisely, the meaning of each column is as follows:
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Table 10.1
Summary of the results of this chapter. The first column lists automata types, and the other columns
indicate which types satisfy each property. An underlined Y indicates that the type enjoys the prop-
erty, and moreover, the underlying conversion or algorithm only requires polynomial time.

Automaton Type Expr. Det. Union Inters. Comp.

NFA/DFA Y Y Y Y Y

NBA/DBA (Büchi) Y N Y N N
NCA/DCA (Co-Büchi) N Y N Y N
NRA/DRA (Rabin) Y Y Y N N
NSA/DSA (Streett) Y Y N Y N
NPA/DPA (Parity) Y Y N N Y
NMA/DMA (Muller) Y Y Y Y Y

• Expr. Every ω-regular expression (for the row NFA/DFA, every regular expression) can
be converted into an automaton of this type.
• Det. For every nondeterministic automaton of this type, there is an equivalent determin-
istic automaton of the same type.
• Union.Union of deterministic automata of this type can be implemented using the pairing
construction.
• Inters. Intersection of deterministic automata of this type can be implemented using the
pairing construction.
• Comp. Complementation of deterministic automata of this type can be implemented
without changing the semi-automaton or the type of the acceptance condition.

The entries of the table are as follows: N (the property does not hold), Y (the prop-
erty holds, but the underlying conversion or algorithm requires exponential time), and
Y (the property holds and the underlying conversion or algorithm only requires polyno-
mial time). In particular, Y indicates that the resulting automaton has polynomial size in
the input.
The consequence of these results is that for each application, one must choose the ade-

quate type of ω-automaton. Our main application in this book is automatic verification,
and for this purpose, in the next chapter, we choose generalized Büchi automata, a type of
ω-automata whose acceptance condition lies between the Büchi and Streett conditions.

10.5 Exercises

�� Exercise 141. Construct Büchi automata and ω-regular expressions, as small as pos-

sible, recognizing the following ω-languages over the alphabet {a, b, c}. Recall that inf(w)

is the set of letters of {a, b, c} that occur infinitely often in w.

(a) {w∈ {a, b, c}ω : {a, b}⊇ inf(w)},
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(b) {w∈ {a, b, c}ω : {a, b}= inf(w)},
(c) {w∈ {a, b, c}ω : {a, b}⊆ inf(w)}.
�� Exercise 142. Construct Büchi automata and ω-regular expressions, as small as pos- �
sible, recognizing the following ω-languages over the alphabet {a, b, c}. Recall that inf(w)

is the set of letters of {a, b, c} that occur infinitely often in w.

(a) {w∈ {a, b, c}ω : {a, b, c}= inf(w)},
(b) {w∈ {a, b, c}ω : if a∈ inf(w) then {b, c}⊆ inf (w)}.
�� Exercise 143.Give deterministic Büchi automata for the followingω-languages over �
�={a, b, c}:
(a) {w∈�ω :w contains at least one c},
(b) {w∈�ω : every a in w is immediately followed by a b},
(c) {w∈�ω : between two successive as in w there are at least two bs}.
�� Exercise 144. Prove or disprove the following statements: �

(a) For every Büchi automaton A, there exists an NBA Bwith a single initial state and such
that Lω (A)=Lω (B).
(b) For every Büchi automaton A, there exists an NBA B with a single accepting state and
such that Lω (A)=Lω (B).

�� Exercise 145. Recall that every finite set of finite words is a regular language. Prove 

that this does not hold for infinite words. More precisely:

(a) Prove that every nonempty ω-regular language contains an ultimately periodic ω-word
(i.e., an ω-word of the form uvω for some finite words u∈�∗ and v∈�+).
(b) Give an ω-word w such that {w} is not an ω-regular language. Hint: Use (a).

�� Exercise 146.Consider the class of nondeterministic automata over ω-words with the 

following acceptance condition: an infinite run is accepting iff it visits an accepting state
at least once. Show that no such automaton accepts the language of all words over {a, b}
containing infinitely many a and infinitely many b.

� � Exercise 147. The limit of a language L⊆�∗ is the ω-language lim(L), defined as 

follows: w∈ lim(L) iff infinitely many prefixes of w are words of L (e.g., the limit of (ab)∗
is {(ab)ω}).
(a) Determine the limit of the following regular languages over {a, b}:
(i) (a+ b)∗a,
(ii) the set of words containing an even number of a,
(iii) a∗b.
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(b) Prove the following: Anω-language is recognizable by a deterministic Büchi automaton
iff it is the limit of a regular language.
(c) Exhibit a nonregular language whose limit is ω-regular.
(d) Exhibit a nonregular language whose limit is not ω-regular.

�� Exercise 148. Let L1= (ab)ω and let L2 be the ω-language of all ω-words over {a, b}

containing infinitely many a and infinitely many b.

(a) Exhibit three different DBAs with three states recognizing L1.
(b) Exhibit six different DBAs with three states recognizing L2.
(c) Show that no DBA with at most two states recognizes L1 or L2.

�� Exercise 149. Find ω-regular expressions for the following languages:�

(a) {w∈ {a, b}ω : k is even for each subword bakb of w},
(b) {w∈ {a, b}ω :w has no occurrence of bab}.
� � Exercise 150. In definition 2.20, we introduced the quotient A/P of an NFA A with

respect to a partition P of its states. In lemma 2.22, we proved L (A)=L (A/P	) for the
language partition P	 that puts two states q1, q2 in same the block iff LA(q1)=LA(q2). Let
B= (Q,�, δ,Q0,F) be an NBA. Given a partition P ofQ, define the quotient B/P of Bwith
respect to P as for an NFA.

(a) Let P	 be the partition of Q that puts two states q1, q2 of B in same block iff Lω,B(q1)=
Lω,B(q2), where Lω,B(q) denotes the ω-language containing the words accepted by B with
q has initial state. Does Lω (B)=Lω (B/P	) always hold?
(b) Let CSR be the coarsest stable refinement of the equivalence relation with equivalence
classes {F,Q \F}. Does Lω (A)=Lω (A/CSR) always hold?

� � Exercise 151. Let L be an ω-language over alphabet �, and let w∈�∗. The w-

residual of L is the ω-language Lw={w′ ∈�ω :ww′ ∈L}. An ω-language L′ is a residual
of L if L′ =Lw for some word w∈�∗. We show that the theorem stating that a language
of finite words is regular iff it has finitely many residuals does not extend to ω-regular
languages.

(a) Prove this statement: If L is an ω-regular language, then it has finitely many residuals.
(b) Disprove this statement: Every ω-language with finitely many residuals is ω-regular.

Hint: Consider a nonultimately periodic ω-word w and its language Tailw of infinite tails.

�� Exercise 152. The solution to exercise 150(2) shows that the reduction algorithm for

NFAs that computes the partition CSR of a given NFA A and constructs the quotient A/CSR
can also be applied to NBAs. Generalize the algorithm so that it works for NGAs.
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�� Exercise 153. Let L={w∈ {a, b}ω :w contains finitely many a}. �

(a) Give a deterministic Rabin automaton for L.
(b) Give an NBA for L and try to “determinize” it by using the NFA to DFA powerset
construction. What is the language accepted by the resulting DBA?
(c) What ω-language is accepted by the following Muller automaton with acceptance
condition {{q0}, {q1}, {q2}}? And with acceptance condition {{q0, q1}, {q1, q2}, {q2, q0}}?

q2

q0 q1

a b

c

a, b, c

a, b, ca, b, c

(d) Show that any Büchi automaton that accepts the ω-language of (c), under the first
acceptance condition, has more than three states.
(e) For every m, n∈N>0, let Lm,n be the ω-language over alphabet {a, b} described by the
ω-regular expression (a+ b)∗((ambb)ω+ (anbb)ω).
(i) Describe a family of Büchi automata accepting the family of ω-languages
{Lm,n}m,n∈N>0 .
(ii) Show that there exists c∈N such that for all m, n∈N>0, the language Lm,n is accepted
by a Rabin automaton with at most max(m, n)+ c states.
(iii) Modify your construction in (ii) to obtain Muller automata instead of Rabin automata.
(iv) Convert the Rabin automaton for Lm,n obtained in (ii) into a Büchi automaton.

� � Exercise 154. Show that a parity condition (F1,F2, . . . ,F2m) is equivalent to the 

Streett condition {〈∅,F1〉, 〈F2,F3〉, . . . , 〈F2m−2,F2m−1〉}.





11 Boolean Operations: Implementations

In chapters 3 and 5 of part I of the book, we implemented the list of operations on sets of
objects and relations between objects shown in table 0.1 of chapter 0. The implementation
assumes that objects are encoded as finite words and uses automata on finite words as data
structure. In this chapter and in chapter 12, we undertake the same task, but assuming that
objects are encoded as ω-words and using automata on infinite words as data structure.
The list of table 0.1 is split into three parts: operations on sets, tests on sets, and operations

on relations. In this chapter, we deal with the operations on sets: union, intersection, and
complement. Chapter 12 will deal with the tests on sets. There is no chapter devoted to the
operations on relations, because their implementation, at least in a first approximation, does
not require new ideas beyond those of chapter 5.
In chapter 10, we have already implemented union, intersection, and complement using

deterministic Muller automata (DMA) as data structure. However, all three operations have
worst-case exponential blow up (see table 10.1). The conversions of the chapter also allow
us to use deterministic Rabin, Streett, or parity automata as data structure, but in each case,
two out of the three operations still have exponential blow up.
We can do better by going from deterministic to nondeterministic automata. We present

an implementation based on nondeterministic generalized Büchi automata (NGA), an
automata type whose acceptance condition can be seen as a generalization of the Büchi
condition—hence the name—or as a special case of the Streett condition. In particular, the
implementation directly constructs a complement NGA without determinizing the original
NGA first.
The chapter is divided into four sections. In section 11.1, we introduce NGAs and give a

simple NGA→ NBA conversion. In section 11.2, we show that union and intersection can
be elegantly implemented on NGAs, as in the case of finite words.More precisely, given two
NGAswith n1 and n2 states, we can construct union and intersection NGAswithO(n1+ n2)
and O(n1n2) states, respectively. In section 11.3, we undertake the much harder task of
implementing complementation. The complementation procedure is indirect, in the sense
that we present a direct complementation procedure for NBAs and use the NGA→ NBA
conversion to lift it to a procedure for NGAs.
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11.1 Generalized Büchi Automata

Recall that Büchi automata have one set of accepting states, which accepting runs must visit
infinitely often. Generalized Büchi automata have a collection of sets of accepting states,
and accepting runs must visit each set in the collection infinitely often.

Definition 11.1 Let S= (Q,�, δ,Q0) be a semi-automaton. An acceptance condition on
S is a generalized Büchi condition if there exists a set G⊆ 2Q of sets of states such that a
run ρ is accepting iff it visits every set of G infinitely often (i.e., iff inf(ρ)∩F �= ∅ for every
F ∈G).
A nondeterministic generalized Büchi automaton (NGA) is a tuple A= (Q,�, δ,Q0,F),

where F⊆Q is a generalized Büchi condition.

Example 11.2 Consider the structure S from example 10.26, which is recalled in
figure 11.1.
With the generalized Büchi condition {{qa}, {qb}}, the language of S is the set of words

containing infinitely many as and infinitely many bs. With the generalized Büchi condition
{{qa, qb}}, which is also a standard Büchi condition, S recognizes the set of words containing
infinitely many as or infinitely many bs.

Observe that Büchi automata correspond to generalized Büchi automata whose accep-
tance condition contains a single set of accepting states. However, we can also seeNGAs as a
special class of nondeterministic Streett automata. Recall that a Streett acceptance condition
is a setS of Streett pairs 〈F,G〉 such that a run ρ is accepting iff for every 〈F,G〉 ∈S , the run
visits F finitely often orG infinitely often, that is, if inf(ρ)∩F=∅ or inf(ρ)∩G �= ∅ holds
for every 〈F,G〉 ∈S . It follows that a generalized Büchi condition G={F0, . . . ,Fm−1} is
equivalent to the Streett condition S ={〈Q,F0〉, . . . , 〈Q,Fm−1〉}. Indeed, since no run can
visit Q finitely often, because runs are infinite by definition, the condition that a run visits

qa qb

qc

a b

c

b

c

a

ca

b

Figure 11.1
Example of a semi-automaton.
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Q finitely often or Fi infinitely often, corresponding to the Streett pair 〈Q,Fi〉, is equivalent
to requiring only that the run visits Fi infinitely often.

In section 10.3.2.1, we described a conversion NSA → NBA. Since NGAs are a spe-
cial case of Streett automata, the conversion can also be applied to them. However, in
this special case, the conversion becomes much simpler. Let A= (S,G) be a NGA with
G={F0, . . . ,Fm−1}. As observed in section 10.3.2.1, a run ρ of S visits each set of G
infinitely often iff it eventually visits F0, and for every 0≤ i≤m− 1, every visit of ρ to
Fi is eventually followed by a later visit to Fi⊕1, where ⊕ denotes addition modulo m. So,
the NBA contains replicas S0, . . . , Sm−1 of S, with the modification that transitions of Si
leaving the replica qi of a state q∈Fi are redirected to Si⊕1. The Büchi acceptance condi-
tion is {q0 : q∈F0}, that is, a state is accepting if it is the replica in S0 of one of the states
of F0. Algorithm 46 describes the procedure in detail.

Algorithm 46 Conversion from NGA to NBA.

NGAtoNBA(A)

Input: NGA A= (Q,�,Q0, δ,G), where G={F0, . . . ,Fm−1}
Output: NBA A′ = (Q′,�, δ′,Q′0,F′)
1 Q′, δ′,F′ ←∅; Q′0←{q0 : q∈Q0}
2 W←Q′0
3 while W �= ∅ do
4 pick qi from W
5 add qi to Q′

6 if q∈F0 and i= 0 then add q0 to F′

7 for all a∈�, r∈ δ(q, a) do
8 if q /∈Fi then
9 if ri /∈Q′ then add ri to W

10 add (qi, a, ri) to δ′

11 else /* q∈Fi */
12 if ri⊕1 /∈Q′ then add ri⊕1 to W
13 add (qi, a, ri⊕1) to δ′

14 return (Q′,�, δ′,Q′0,F′)

11.2 Union and Intersection

Let A1= (S1,G1) and A2= (S2,G2) be two NGAs, where S1= (Q1,�, δ1,Q01), S2=
(Q2,�, δ2,Q02), G1={F1

1 , . . . ,F
m1
1 }, and G2={F1

2 , . . . ,F
m2
2 }. Assume without loss of

generality that Q1 and Q2 are disjoint sets.
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Union. Let S1 ∪ S2 be the result of putting S1 and S2 side by side, that is, S1 ∪ S2= (Q1 ∪
Q2,�, δ1 ∪ δ2,Q01 ∪Q02). Let m=max{m1,m2}, and assume without loss of generality
that m=m1. For every 1≤ i≤m, let

Fi=
{
Fi
1 ∪Fi

2 if i≤m2,

Fi
1 ∪Q2 otherwise,

and define G={F1, . . . ,Fm}. We show that the NGA A1 ∪A2= (S1 ∪ S2,G) satisfies
Lω (A1 ∪A2)=Lω (A1)∪Lω (A2).
Note that, since Q1 and Q2 are disjoint, a run of S1 ∪ S2 is either a run of S1 or a run of

S2. If ρ is a run of S1, then it never visits any state of Q2, and so

ρ is an accepting run of A1 ∪A2

⇐⇒
m∧
i=1

inf(ρ)∩Fi �= ∅ (by def. of G)

⇐⇒
m∧
i=1

inf(ρ)∩Fi
1 �= ∅ (as ρ does not visit Q2)

⇐⇒ ρ is an accepting run of A1 (by def. of G1).
Similarly, if ρ is a run of A2, then it never visits any state ofQ1, and so ρ is an accepting run
of A1 ∪A2 iff it is an accepting run of A2. It follows that ρ is an accepting run of A1 ∪A2
iff it is an accepting run of A1 or an accepting run of A2, and we are done.

Intersection. Let [S1, S2] be the pairing of S1 and S2—that is, the semi-automaton
[S1, S2] = (Q1×Q2,�, δ,Q01×Q02), where δ([q1, q2], a)= δ(q1, a)× δ(q2, a). Define

G={F1
1 ×Q2, . . . ,F

m1
1 ×Q2} ∪ {Q1×F1

2 , . . . ,Q1×Fm2
2 }.

Note that G contains m1+m2 sets. We show that the NGA A1 ∩A2= ([S1, S2],G) satisfies
Lω (A1 ∩A2)=Lω (A1)∩Lω (A2).
If ρ is a run of [S1, S2], then its projections ρ1 and ρ2 onto Q1 and Q2 are runs of S1 and

S2 satisfying inf(ρ)|1= inf(ρ1) and inf(ρ)|2= inf(ρ2), where inf(ρ)|i is the projection of
inf(ρ) onto Qi. Thus, we have

ρ is an accepting run of A1 ∩A2

⇐⇒
m1∧
i=1

inf(ρ)∩ (Fi
1×Q2) �= ∅ and

m2∧
i=1

inf(ρ)∩ (Q1×Fi
2) �= ∅
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(by definition of G)

⇐⇒
m1∧
i=1

inf(ρ)|1 ∩Fi
1 �= ∅ and

m2∧
i=1

inf(ρ)|2 ∩Fi
2 �= ∅

(by definition of projection)

⇐⇒
m1∧
i=1

inf(ρ1)∩Fi
1 �= ∅ and

m2∧
i=1

inf(ρ2)∩Fi
2 �= ∅

(since inf(ρ)|1= inf(ρ1) and inf(ρ)|2= inf(ρ2))

⇐⇒ ρ1 is an accepting run of A1 and ρ2 is an accepting run of A2.

Algorithm 47 describes the algorithmic implementation that only constructs the states of
the pairing reachable from the initial states.

Algorithm 47 NGA intersection.

IntersNGA(A1,A2)

Input: NGAs A1= (Q1,�, δ1,Q01,G1), A2= (Q2,�, δ2,Q02,G2), where
G1={F1

1 , . . . ,F
m1
1 }, G2={F1

2 , . . . ,F
m2
2 }

Output:NGA A1 ∩A2= (Q,�, δ,Q0,G), where G={F1, . . . ,Fm1+m2},
satisfying Lω (A1 ∩A2)=Lω (A1)∩Lω (A2)

1 Q, δ,F←∅; Q0←Q01×Q02

2 W←Q0

3 while W �= ∅ do
4 pick [q1, q2] from W
5 add [q1, q2] to Q
6 for all i= 1 to m1 do
7 if q1 ∈Fi

1 then add [q1, q2] to Fi

8 for all i= 1 to m2 do
9 if q2 ∈Fi

2 then add [q1, q2] to Fm1+i

10 for all a∈� do
11 for all q′1 ∈ δ1(q1, a), q′2 ∈ δ2(q2, a) do
12 if [q′1, q′2] /∈Q then add [q′1, q′2] to W
13 add ([q1, q2], a, [q′1, q′2]) to δ
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q0 q1
b

c

a

r0 r1

a
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b, c b

Figure 11.2
Two NGAs.

F1

F2

q0, r0 q0, r1

q1, r0 q1, r1

a

b

a

bc

Figure 11.3
Intersection of the two NGAs from figure 11.2.

Example 11.3 Consider again the first two Büchi automata of example 10.8 as depicted
in figure 11.2, but this time as NGAs with one set of accepting states: F1

1 ={q1} for the
automaton on the left and F1

2 ={r1} for the one on the right.
For union, the construction yields an NGA whose semi-automaton is the result of

putting the two semi-automata above “side by side,” with acceptance condition {F1
1 ∪F1

2}=
{{q1, r1}}. For intersection, we obtain the NGA of figure 11.3, with acceptance condition
{F1,F2}, where F1=F1

1 ×Q2={[q1, r0], [q1, r1]} and F2=Q1×F1
2 ={[q0, r1], [q1, r1]}.

The result is no longer an NBA.
Since accepting runs must visit both F1 and F2 infinitely often, they are the runs that

travel back an forth infinitely between [q0, r1] and [q1, r0] (no infinite run ever visits
[q1, r1]). In particular, state [q1, r1] can be removed without changing the language. Com-
pare with the result we would obtain if the two automata were NFAs. In that case, the
resulting NFA would have the same semi-automaton, but the only accepting state would
be [q1, r1].
A special case. Note that A1 ∩A2 is not necessarily an NBA, even when A1 and A2 are
NBAs. We do obtain an NBA if, additionally, G1={F1

1}= {Q1}—that is, when A1 is an
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NBA in which every state is accepting. Indeed, according to the definition above, in this
case, we get

G={F1
1 ×Q2} ∪ {Q1×F1

2}= {Q1×Q2,Q1×F1
2},

and since every run of A1 ∩A2 visits states of Q1×Q2 infinitely often, we can replace G
by the Büchi condition Q1×F1

2 . Observe that this is exactly the result we obtain when
we consider A1 and A2 as NFAs. In other words, in this special case, we can compute an
automaton for the intersection by means of the same algorithm we used for automata on
finite words. While this case seems to be very special, it will be relevant in the application
to verification in chapter 13.

11.3 Complement

Recall that an NFA is complemented by first converting it into an equivalent DFA and then
exchanging the final and nonfinal states of the DFA. For NGAs, this approach cannot work,
because not every NGA has an equivalent DGA. To see why, observe that the conversion
NGA→ NBA shown in section 11.1 preserves determinism—that is, it is also a conver-
sion DGA→ DBA. Therefore, if for every NGA there is an equivalent DGA, then we can
produce the chain of conversions NBA→ NGA→ DGA→ DBA, contradicting the fact
that not every NBA has an equivalent DBA (proposition 10.10).
We can complement NGAs using the results of chapter 10 for Muller automata. Indeed,

we can use a chain of conversions NGA→ NMA→ DMA to transform an NGA A into an
equivalent DMA B, which can be converted into a DMA B recognizing Lω (A), which can
be converted into an equivalent NGA A using the conversion DMA→ NBA. However, this
requires to use determinization procedures for ω-automata, like those announced, but not
presented, in theorem 10.18 or theorem 10.25. These constructions are more involved than
the ones presented so far in this book. More important, they are difficult to handle algorith-
mically; in particular they often producemany redundant states that can be removed without
changing the language. Naive implementations spend much time exploring and construct-
ing such states, which makes them very inefficient. Therefore, efficient implementations
must design heuristics to detect and remove redundant states as early as possible, and this
is difficult to do.
In this chapter, we follow a different approach. We describe a construction for the direct

complementation of NBAs, bypassing the determinization step.1 In order to complement
an NGA, we first transform it into an NBA using the conversion of section 11.1 and then
apply the complementation procedure for NBAs.
The complementation procedure for NBAs builds upon section 10.2.3, in which we pre-

sented a determinization procedure for NCAs. We assume that the reader is familiar with

1. Which, since not every NBA has an equivalent DBA, does not even exist!



296 Chapter 11

it. Given an NCA A, the procedure introduced a mapping dag that assigns to each word w
a directed acyclic graph dag(w) “bundling” all runs of A on w, in the sense that the runs
of A on w correspond to the paths of the dag. The procedure then constructed a DCA B
satisfying for every word w

A accepts w
iff some path of dag(w) visits accepting states of A finitely often
iff the run of w in B visits accepting states of B finitely often
iff B accepts w.

We present the complementation procedure for NBA in a similar way. Fix an NBA
A= (S,F), where S= (Q,�, δ,Q0) is a semi-automaton with n states. Our goal is to build
another NBA A such that for every word w

A rejects w
iff no path of dag(w) visits accepting states of A infinitely often
iff some run of w in A visits accepting states of A infinitely often
iff A accepts w.

In a first step, we introduce the notion of odd ranking of an ω-word. For the moment,
it suffices to say that a ranking of w is the result of decorating the nodes of dag(w) with
numbers, that w may have multiple rankings, and that an odd ranking is a ranking in which
certain nodes have odd rank. The definition of ranking will ensure that

A rejects w
iff no path of dag(w) visits accepting states of A infinitely often
iff dag(w) has an odd ranking.

In the second step, we reuse the construction we applied to determinize NCAs, but this
time to construct an NBAA. Intuitively, the runs ofA on awordw correspond to the rankings
of dag(w), and the odd rankings correspond to the accepting runs. This yields

dag(w) has an odd ranking
iff A has an accepting run on w
iff A accepts w.

11.3.1 Rankings and Level Rankings

In the rest of the chapter, we use the NBA of figure 11.4 as running example.
Recall that the directly acyclic graph dag(w) of w∈�ω is the result of bundling together

the runs of A on w (see section 10.2.3). Figure 11.5 depicts the initial fragments of
dag(abaω) and dag((ab)ω) (ignore the numbers on top of the states for the moment).

A ranking of dag(w) is a mapping Rw that associates to each node of dag(w) a natural
number in the range [0, 2n], called a rank, satisfying two properties:
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Figure 11.4
Running example for the complementation procedure.
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0 0

a
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ab b

Figure 11.5
Two rankings of the running example.

(a) the rank of a node is greater than or equal to the rank of its children, and
(b) the ranks of accepting nodes are even.

By (a), the ranks of the nodes along an infinite path form a nonincreasing sequence, and
so there is a node such that all its infinitely many successors in the path have the same rank;
we call this number the stable rank of the path.

Example 11.4 Figure 11.5 shows two possible rankings for the dags dag(abaω) and
dag((ab)ω) of our running example. For each node 〈q, i〉, the rank Rw(〈q, i〉) is the number
on top of the node. Both dags have a single infinite path, with stable ranks 1 and 0,
respectively.

Recall that the ith level of dag(w) is the set of nodes of the form 〈q, i〉. A ranking Rw of
dag(w) can be decomposed into an infinite sequence lr1, lr2, . . . of level rankings, where the
level ranking lri is defined as follows: lri(q)=Rw(〈q, i〉) if 〈q, i〉 is a node of dag(w), and
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lri(q)=⊥ otherwise. Further, for two level rankings lr and lr′ and a letter a∈�, we write
lr

a'→ lr′ to denote, intuitively, that lr′ can be the a-successor of lr in a ranking. Formally, we
have lr

a'→ lr′ if the following holds for every state q′:

• lr′(q′) �=⊥ iff lr(q) �=⊥ for some q such that q
a−→ q′.

(Informally: the states of lr′ are the a-successors of the states of lr.)
• lr(q)≥ lr′(q′) for every q such that lr(q) �=⊥ and q

a−→ q′.
(Informally: the rank of a state of lr is at least as large as the rank of its a-successors in lr′.)

Example 11.5 If we represent a level ranking lr of our running example by the vector[
lr(q0)
lr(q1)

]
,

then the rankings of example 11.4 correspond to the sequences[
4
⊥
] [

0
2

] [
1
⊥
] [

1
0

]ω
[

1
⊥
] [

1
0

]([
0
⊥
] [

0
0

])ω

and we have [
4
⊥
]

a'→
[

0
2

]
b'→
[

1
⊥
](

a'→
[

1
0

])ω

[
0
⊥
]

a'→
[

1
0

](
b'→
[

0
⊥
]

a'→
[

0
0

])ω

.

We prove the following fundamental property of rankings, which requires to introduce
odd rankings.

Definition 11.6 For every word w, a ranking of dag(w) is odd if

1. every infinite path of dag(w) visits nodes of odd rank infinitely often, and
2. the initial nodes 〈q0, 0〉 for q0 ∈Q0 have rank 2n.

For example, the top ranking of figure 11.5 is an odd ranking, because its only infinite
path visits infinitely often nodes of rank 1. The ranking at the bottom is not odd, because
only the first node of its unique infinite path has an odd ranking, and the rank of the initial
node is not 4. The following proposition characterizes the words rejected by A as those
whose dag admits an odd ranking.
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Proposition 11.7 Let n be the number of states of A. For every word w∈�ω, w is rejected
by A iff dag(w) has an odd ranking.

Proof ⇐) Assume that dag(w) has an odd ranking. Then every infinite path of dag(w)

has odd stable rank, and so it only contains finitely many nodes with even rank. Since all
accepting nodes have even ranks, no path of dag(w) visits accepting nodes infinitely often.
So w is rejected by A.
⇒) Assume that w is rejected by A. We construct a ranking that is almost odd, defined as

a ranking that satisfies property 1 of definition 11.6, and such that every initial node 〈q0, 0〉
has rank at most 2n. This suffices, because we can then increase the ranks of the initial
nodes to 2n, if necessary, since this change preserves all properties of a ranking.

Given two directed acyclic graphs (dags) D and D′, let D′ ⊆D denote that D′ can be
obtained from D through deletion of some nodes and all their adjacent edges. We proceed
in two steps. First we assign ranks to nodes, and then we prove that the assignment satisfies
all properties of an odd ranking.

Assigning ranks to nodes.We define a function f that assigns to each node 〈q, l〉 of dag(w)

a natural number f (q, l). We first inductively define an infinite chain D0⊇D1⊇D2⊇ · · ·
of dags and define f (q, l) as the number i such that 〈q, l〉 belongs to Di but not to Di+1.
We say that a node of a (possibly finite) dag D⊆ dag(w) is

• crosshatched iff it has only finitely many descendants;
• hatched iff it has infinitely many descendants, but none of them (including the node itself)
is accepting; and
• solid otherwise.

In particular, hatched nodes are not accepting. Observe also that the children of a
crosshatched node are crosshatched, and the children of a hatched node are crosshatched
or hatched. Now we define the following (see figure 11.6 for an example):

• D0= dag(w),
• D2i+1 is the result of deleting all the crosshatched nodes of D2i, and
• D2i+2 is the result of deleting all the hatched nodes of D2i+1.

Proving that f is an odd ranking. Asmentioned above, it suffices to prove that f is almost
an odd ranking. The proof is divided into four parts:

(1) f assigns all nodes a number in the range [0, 2n].
(2) If 〈q′, l′〉 is a child of 〈q, l〉, then f (q′, l′)≤ f (q, l).
(3) If 〈q, l〉 is an accepting node, then f (q, l) is even.
(4) Every infinite path of dag(w) visits nodes 〈q, l〉 such that f (q, l) is odd infinitely often.
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q0, 0 q0, 1

q1, 1

q0, 2 q0, 3

q1, 3

q0, 4

q1, 4

D0:
a

a

a

a

a

ab

q0, 0

q1, 1

q0, 2 q0, 3 q0, 4

D1:

a

a a

b

q0, 0

q1, 1

D2:

a

Figure 11.6
Initial fragments of the dags D0, D1, and D2 for dag(abaω). The map f assigns to dag(abaω) the ranking shown
at the top of example 11.4, with the exception that f assigns rank 2 to 〈q0, 0〉. However, increasing the rank of
〈q0, 2〉 to 4 preserves all properties of an odd ranking.

Part 1 f assigns all nodes a number in the range [0, 2n].
We prove that the dag D2n+1 is empty, which implies that f assigns all nodes of dag(w) a
number in the range [0, 2n] by the definition of f . By the definition of D2n+1, it suffices to
show that D2n is finite. For this we proceed as follows: we prove by induction on i that for
every i≥ 0, the levels of D2i eventually have at most (n− i) nodes; formally, there exists
	i≥ 0 such that for every 	≥ 	i, the 	th level of D2i contains at most (n− i) nodes. Taking
i= n, we obtain that the levels of D2n eventually contain 0 nodes, and so that D2n is finite.
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Base case i= 0. Since for every state q, a level contains at most one node of the form 〈q, 	〉,
every level of dag(w)=D0 contains at most n nodes.

Induction step i> 0. Assume now that the hypothesis holds for i; we prove it for i+ 1.
Consider the dag D2i. If D2i is finite, then D2i+1 is empty. Thus, D2i+2 is empty as well,
and we are done. So, assume that D2i is infinite. We make the following claim:

Claim 1: D2i+1 contains some hatched node.

Proof of claim 1: Assume that no node inD2i+1 is hatched. We show that dag(w) contains a
path that visits accepting nodes infinitely often, contradicting the assumption that A rejects
w. It suffices to prove that every node of D2i+1 has a descendant, different from itself, that
is accepting. Let 〈q, 	〉 be an arbitrary node of D2i+1. Since D2i+1 is obtained by removing
all crosshatched nodes from D2i, the node has at least one child. Since, by assumption, the
child is not hatched, the child has an accepting descendant, and we are done.

Let 〈q, 	〉 be a hatched node inD2i+1, which exists by claim 1. We prove that the levels of
D2i+2 eventually contain at most n− (i+ 1) nodes. By induction hypothesis, we know that
the levels of D2i eventually contain at most n− i nodes. Therefore, it suffices to show that
the levels of D2i+2 eventually contain at least one node less than the same level of D2i. We
do this. Since 〈q, 	〉 is a node ofD2i+1, it is not crosshatched inD2i. Thus, 〈q, l〉 has infinitely
many descendants in D2i. By König’s lemma (lemma 10.14), D2i contains an infinite path
π =〈q, 	〉〈q1, 	+ 1〉〈q2, 	+ 2〉 . . .. We claim the following:

Claim 2: No node of π is in D2i+2.

Proof of claim 2: Since all nodes of π have infinitely many descendants, none of them is
crosshatched inD2i, and so π also exists inD2i+1. Since 〈q, 	〉 is hatched and, by definition,
the children of a hatched node are crosshatched or hatched, π is a hatched path. So every
node of π is deleted from D2i+1 to obtain D2i+2, and the claim is proved.

By the claim, every level after the 	th level has at least one node less in D2i+2 than in
D2i, and we are done.

Part 2 If 〈q′, l′〉 is a child of 〈q, l〉, then f (q′, l′)≤ f (q, l).

This follows from the definition of f and from the fact that the children of a crosshatched
node in D2i are crosshatched, and the children of a hatched node in D2i+1 are hatched.

Part 3 If 〈q, l〉 is an accepting node, then f (q, l) is even.

If f (q, l) is odd, then 〈q, l〉 is hatched at D2i+1 for some i, and so q is not accepting.

Part 4 Every infinite path of dag(w) visits nodes 〈q, l〉 such that f (q, l) is odd infinitely
often.
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It suffices to prove that the stable rank of every infinite path of dag(w) is odd. Since w is
rejected by A, every infinite path of A visits the accepting states of A finitely often. Take an
arbitrary infinite path of dag(w), and let 〈q, l〉 be the first node of the path that is assigned
the stable rank. Since 〈q, l〉 has infinitely many descendants (it belongs to an infinite path),
it cannot have received its rank because it was a crosshatched node of a dag D2i. So, it
received its rank because it was a hatched node of a dag D2i+1. Thus, 〈q, l〉 is assigned rank
2i+ 1, which is odd.

11.3.2 The Complement NBA A

Given an NBA A= (Q,�, δ,Q0,F), we construct an NBA A such that for every word w:

(a) A run of A on w is a ranking of dag(w) with ranks in the range [0, 2n] and vice versa.
(b) An accepting run of A on w is an odd ranking of dag(w) and vice versa.

Such an automaton satisfies for every word w:

A rejects w

⇐⇒ dag(w) has an odd ranking (by proposition 11.7)

⇐⇒ A has an accepting run on w

⇐⇒ A accepts w.

Thus, it recognizes the complement of the language of A.
Using the representation of a ranking as an infinite sequence of level rankings, it is easy

to construct a semi-automaton satisfying (a):

• The states are the level rankings with ranks in the range [0, 2n], that is, the mappings
lr : Q→[0, 2n] ∪ {⊥} such that lr(q) is even for every accepting state q.
• The (unique) initial state is the level ranking lr0 given by lr0(q)= 2n if q∈Q0, and lr(q)=
⊥ otherwise.
• The transitions are the triples (lr, a, lr′), where lr and lr′ are level rankings, a∈�, and
lr

a'→ lr′ holds.

If we could define a Büchi acceptance condition on this semi-automaton such that the
resulting NBA also satisfies condition (b), we would be done. However, we cannot decide
if a ranking is odd or not if the only information we have is which level rankings are visited
infinitely often. Fortunately, we already solved a very similar problem in section 10.2.3.1 of
chapter 10, when we used the breakpoint construction to determinize NCAs. Let us briefly
recall what we did.

Breakpoint construction. In section 10.2.3.1, we introduced the set of breakpoint
levels—or just breakpoints—of a dag dag(w):
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• The 0th level of dag(w) is a breakpoint.
• If level 	 of dag(w) is a breakpoint, then the next level 	′> 	 such that every path between
nodes of 	 and 	′ (excluding nodes of 	 and including nodes of 	′) visits an accepting state
is also a breakpoint.

We then proved the following:

some path of dag(w) visits accepting states finitely often

iff the set of breakpoints of dag(w) is finite,

which is logically equivalent to

every path of dag(w) visits accepting states infinitely often

iff the set of breakpoints of dag(w) is infinite.

Finally, we defined the states of the DCA as the pairs [P,O], where P is the set of states
of a level, and O contains the states of P that owe a visit to the accepting states (see sec-
tion 10.2.3.1 for the formal definition); further, the accepting states are the breakpoints,
defined as the pairs where O=∅.
Adapting the breakpoint construction for NCA → DCA. We redefine the set of
breakpoints of dag(w):

• The 0th level of dag(w) is a breakpoint.
• If level 	 is a breakpoint, then the next level 	′> 	 such that every path between nodes of
	 and 	′ (excluding nodes of 	 and including nodes of 	′) visits a node of odd rank is also
a breakpoint.

That is, we replace the visits to accepting nodes in the previous definition by visits
to the nodes of odd rank. The same proof as in section 10.2.3.1 now yields the
following:

every path of dag(w) visits nodes of odd rank infinitely often

iff the set of breakpoints of dag(w) is infinite.

Finally, we define the states of A as the pairs [lr,O], where lr is a level ranking, and O is
the set of nodes of the ranking that owe a visit to a node of odd rank. The accepting states
are the breakpoints (i.e., the pairs [lr,O] with O=∅). Let us give a precise definition and
summarize the correctness proof.

Formal definition of A. Let A= (Q,�, δ,Q0,F) be an NBA. The NBA A is defined as
follows:
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States: The states are pairs [lr,O], where lr is a level ranking with ranks in the range [0;
2n], and O⊆Q is a set of owing states.

Transitions: The transitions are triples [lr,O] a−→[lr′,O′] such that lr
a'→ lr′ and

O′ =
{
{q∈ δ(O, a) : lr′(q) is even} if O �= ∅,
{q∈Q : lr′(q) is even} if O=∅.

Initial states: The only initial state is the pair [lr0,∅].
Accepting states: A state [lr,O] is accepting if O=∅.

The proof that A recognizes Lω (A) follows from chaining these three facts:

• A run of A on w is accepting iff the ranking of dag(w) encoded by the run contains
infinitely many breakpoints.
This follows immediately from the fact that the accepting states of A are the breakpoints.

• A ranking of dag(w) contains infinitely many breakpoints iff it is odd.
In section 10.2.3, we proved that the set of breakpoints of dag(w) is infinite iff every

path of dag(w) visits accepting states infinitely often. Exactly the same proof yields now:
the set of breakpoints of a ranking of dag(w) is infinite iff every path of the ranking visits
accepting states of A infinitely often (i.e., iff the ranking is odd).
• dag(w) has an odd ranking iff A rejects w.

This is the fundamental property of rankings.

The pseudocode for the complementation algorithm, constructing only the reachable
states, is described in algorithm 48. In the pseudocode, we let lr0 denote the level ranking
given by lr(q)= 2|Q| if q∈Q0 and lr(q)=⊥ otherwise. Further, lr

a'→ lr′ denotes that for
every q′ ∈Q, (1) lr′(q′) �=⊥ iff lr(q) �=⊥ for some q such that q

a−→ q′, and (2) if lr′(q′) �=⊥,
then lr(q)≥ lr′(q′) for every q such that lr(q) �=⊥ and q

a−→ q′.

Complexity. Let n be the number of states of A. Recall that level rankings are mappings
lr : Q→{⊥}∪ [0, 2n]. So there at most (2n+ 2)n level rankings, and so A has at most
(2n+ 2)n · 2n ∈ nO(n) states. In order to compare this with the complexity of complemen-
tation for NFAs, observe that nO(n)= 2O(n log n) and that, given an NFA with n states, the
complementation algorithm yields an automaton with at most 2n states. Thus, for NBAs,
we get an extra log n factor in the exponent.

Example 11.8 We construct the complements A1 and A2 of the only two NBAs over
alphabet {a} having one state and one transition (depicted in figure 11.7).
We have Lω (A1)={aω} and Lω (A2)=∅. The construction yields the automata of
figure 11.8.
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Algorithm 48 Algorithm to complement an NBA.

CompNBA(A)

Input: NBA A= (Q,�, δ,Q0,F)

Output: NBA A= (Q,�, δ, q0,F) with Lω

(
A
)=Lω (A)

1 Q, δ,F←∅
2 q0←[lr0,∅]
3 W←{[lr0,∅]}
4 while W �= ∅ do
5 pick [lr,O] from W ; add [lr,O] to Q
6 if O=∅ then add [lr,O] to F
7 for all a∈�, lr′ s.t. lr a'→ lr′ do
8 if O �= ∅ then O′ ← {q∈ δ(O, a) : lr′(q) is even}
9 else O′ ← {q∈Q : lr′(q) is even }
10 add ([lr,O], a, [lr′,O′]) to δ

11 if [lr′,O′] /∈Q then add [lr′,O′] to W
12 return (Q,�, δ, q0,F)

We explain why, beginning with A1. A state of A1 is a pair 〈lr,O〉, where lr is the rank
of the state q (since there is only one state, we can identify lr and lr(q)). The initial state
is 〈2,∅〉. Let us compute the successors of 〈2,∅〉 under the letter a. Let 〈lr′,O′〉 be a suc-
cessor. Since δ(q, a)={q}, we have lr′ �=⊥, and since q is accepting, we have lr′ �= 1. So,
either lr′ = 0 or lr′ = 2. In both cases, the visit to a node of odd rank is still “owed,” which
implies O′ = {q}. So, the successors of 〈2,∅〉 are 〈2, {q}〉 and 〈0, {q}〉. Let us now com-
pute the successors of 〈0, {q}〉. Let 〈lr′,O′〉 be a successor. We have lr′ �=⊥ and lr′ �= 1 as
before, but now, since ranks cannot increase along a path, we also have lr′ �= 2. Thus, lr′ = 0,
and since the visit to the node of odd rank is still “owed,” the only successor of 〈0, {q}〉 is
〈0, {q}〉. Similarly, the successors of 〈2, {q}〉 are 〈2, {q}〉 and 〈0, {q}〉. Since 〈2,∅〉 is the only
accepting state, A1 recognizes the empty ω-language.
Let us now construct A2. The difference with A1 is that, since q is no longer accepting, it

can also have odd rank 1. So, 〈2,∅〉 has three successors: 〈2, {q}〉, 〈1,∅〉, and 〈0, {q}〉. The

q q

A1: A2:

a a

Figure 11.7
Two NBAs with a single state and transition.
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Figure 11.8
Complement of the NBAs from figure 11.7.

successors of 〈1,∅〉 are 〈1,∅〉 and 〈0, {q}〉. The accepting states are 〈2,∅〉 and 〈1,∅〉, and A2
recognizes aω.

11.3.3 A Lower Bound on the Size of A

We exhibit a family {Ln}n≥1 of ω-languages such that Ln is accepted by a Büchi automaton
An with n+ 1 states and any Büchi automaton accepting the complement of Ln has at least
n! ∈ 2�(n log n) states.

Let �n={1, . . . , n, #}. We associate to a word w∈�ω
n a directed graph Gw. The nodes

of Gw are the numbers {1, . . . , n}, and there is an edge from node i to node j iff the finite
word ij occurs infinitely often in w.

Example 11.9 Consider the words w= (12#1#2)ω and v= (12#)ω over �2={1, 2, #}.
• Gw contains two nodes, 1 and 2, and two edges, 1→ 2 and 2→ 1.
• Gv has the same nodes but only one edge, 1→ 2.

Let Ln be the language of words w∈�ω
n such thatGw has at least one cycle. For example,

for the words of example 11.9, we have w∈L2 and v /∈L2. Let Ln denote the complement
of Ln (i.e., the set of words w such that Gw is acyclic).
In the rest of the section, we prove the following proposition:

Proposition 11.10 For all n≥ 1, the language Ln is recognized by an NBA with n+ 1
states, and every NBA recognizing Ln has at least n! states.
An NBA for Ln. Let An be the NBA with states {1, 2, . . . ,n, ch}, initial states {1, . . . ,n},
accepting state ch, and the following transitions:

• i
σ−→ i for every 1≤ i≤ n and every σ ∈�n, and

• i
i−→ ch and ch

j−→ j for every 1≤ i, j≤ n. (Intuitively, ch is an “interchange station” that
allows one to move from i to j by reading ij.)
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1, . . . , 5, #1, . . . , 5, #

1, . . . , 5, #

Figure 11.9
The Büchi automaton A5.

Figure 11.9 depicts A5. We prove that An recognizes Ln in two steps.

(1) If w∈Ln, then An accepts w.

Choose a cycle i0i2 · · · ik−1i0 of Gw. We construct an accepting run of An by picking i0 as
the initial state and iteratively applying the following rule, where j⊕ 1 is an abbreviation
for (j+ 1) mod k:

If the current state is ij, stay in ij until the next occurrence of ij ij⊕1 in w, and then take

ij
ij−→ ch

ij⊕1−−−→ ij⊕1

to move from ij to ij⊕1.

By definition of Gw, state ch is visited infinitely often, and so w is accepted.

Example 11.11 Consider again the word w= (12#1#2)ω of example 11.9. The graph Gw
has the cycle 1→ 2→ 1. The accepting run of A2 on w is

1
1−→ ch

2−→ 2
#−→ 2

1−→ 2
#−→ 2

2−→ ch
1−→ 1

1−→ ch
2−→ 2 · · · .

(2) If An accepts w, then w∈Ln.
We show that every node i of Gw has at least one outgoing edge i→ j, which proves that
Gw contains a cycle. Let ρ be an accepting run of An on w. Since ρ is accepting, it cannot
stay in any of the states 1, . . . ,n forever, and hence for each i∈ inf(ρ), there is j∈ inf(ρ)

such that the sequence i ch j of states occurs infinitely often in ρ. Since the only path of An
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matching this sequence of states is

i
i−→ ch

j−→ j,

the finite word ij occurs infinitely often in w, and so i→ j is an edge of Gw.

Every NBA recognizing Ln has at least n! states. We need some preliminaries. Let τ =
〈τ1, . . . , τn〉 denote a permutation of 〈1, . . . , n〉. We make two observations:

(a) (τ#)ω ∈Ln for every permutation τ .
Indeed, the graph G((τ #)ω) is just the path τ1−→τ2−→· · ·−→τn, which is acyclic.
(b) If a word w contains infinitely many occurrences of two different permutations τ and
τ ′ of 〈1, . . . , n〉, then w∈Ln.
Since τ and τ ′ are different, there are i, j∈ {1, . . . , n} such that i precedes j in τ and j

precedes i in τ ′. Since w contains infinitely many occurrences of τ , the graphGw has a path
from i to j. Since it also contains infinitely many occurrences of τ ′, the graph also has a
path from j to i. Hence, Gw contains a cycle, which implies w∈Ln.

Now, let A be a Büchi automaton recognizing Ln, and let τ , τ ′ be two arbitrary permu-
tations of 1, . . . , n. By (a), there exist runs ρ and ρ′ of A accepting (τ #)ω and (τ ′ #)ω,
respectively. We prove that the intersection of inf(ρ) and inf(ρ′) is empty. This implies that
A has at least as many accepting states as there are permutations of 1, . . . , n, which proves
the proposition. We proceed by contradiction. Assume q∈ inf(ρ)∩ inf(ρ′). We construct
an accepting run ρ′′ by concatenating finite paths ρ and ρ′ as follows:

(0) Starting from the initial state of ρ, follow ρ until it reaches q.
(1) Starting from q, follow ρ′ until it returns to q for the first time, after having visited some
accepting state and having read the word τ ′ at least once in between.
(2) Starting from q, follow ρ until it returns to q for the first time, after having visited some
accepting state and having read the word τ at least once in between.
(3) Go to (1).

The word accepted by ρ′′ contains infinitely many occurrences of both τ and τ ′. By (b),
this word belongs to Ln, contradicting Lω (A)=Ln.

11.4 Exercises

� � Exercise 155. Consider the two Büchi automata (NBAs) below. Interpret them as

generalized Büchi automata (NGAs), construct their intersection, and convert the resulting
NGA into an NBA.



Boolean Operations: Implementations 309

p q r

A:

b

a

c

a

b

s t

B:

a

a, c

b

� � Exercise 156. Let Lσ ={w∈ {a, b, c}ω :w contains infinitely many σ ’s}. Give deter- 

ministic Büchi automata for languages La, Lb, and Lc; construct the intersection of these
automata interpreted as NGAs; and convert the resulting NGA as a Büchi automaton.

�� Exercise 157. Give Büchi automata for the following ω-languages: �

(i) L1={w∈ {a, b}ω :w contains infinitely many as},
(ii) L2={w∈ {a, b}ω :w contains finitely many bs}, and
(iii) L3={w∈ {a, b}ω : each occurrence of a in w is followed by a b}.
Construct the intersection of these automata interpreted as NGAs, and convert the resulting
NGA as a Büchi automaton.

� � Exercise 158. An ω-automaton has acceptance on transitions if the acceptance 

condition specifies which transitions must appear infinitely often in a run. All classes of
ω-automata (Büchi, Rabin, etc.) can be defined with acceptance on transitions rather than
states.
Give minimal deterministic automata, for the language of words over {a, b} containing

infinitely many a and infinitely many b, of the following kinds: (a) Büchi (with state-based
accepting condition), (b) generalizedBüchi (with state-based accepting condition), (c)Büchi
with acceptance on transitions, and (d) generalized Büchi with acceptance on transitions.

�� Exercise 159. Consider the following Büchi automaton over �={a, b}: 


q0 q1

a, b b

b

(a) Sketch dag(ababω) and dag((ab)ω).
(b) Let rw be the ranking of dag(w) defined by

rw(q, i)=

⎧⎪⎪⎨⎪⎪⎩
1 if q= q0 and 〈q0, i〉 appears in dag(w),

0 if q= q1 and 〈q1, i〉 appears in dag(w),

⊥ otherwise.

Are rababω and r(ab)ω odd rankings?
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(c) Show that rw is an odd ranking if and only if w �∈Lω (B).
(d) Build a Büchi automaton accepting Lω (B) using the construction seen in the chapter.

Hint: By (c), it is sufficient to use {0, 1} as ranks.
�� Exercise 160. Design algorithms for the following decision problems:�

(a) Given finite words u, v, x, y∈�∗, decide whether the ω-words uvω and xyω are equal.
(b) Given a Büchi automaton A and finite words u, v, decide whether A accepts the
ω-word uvω.

Assume that you can algorithmically test whether the language of a given Büchi automaton
is empty or not (we will cover such procedures in chapter 12).

� � Exercise 161. Show that, for every DBA A with n states, there is an NBA B�
with 2n states such that Lω (B)=Lω (A). Explain why your construction does not work
for NBAs.

� 	 Exercise 162. A Büchi automaton A= (Q,�, δ,Q0,F) is weak if no strongly con-

nected component (SCC) of A contains both accepting and nonaccepting states—that is,
every SCC C⊆Q satisfies either C⊆F or C⊆Q \F.
(a) Prove that a Büchi automaton A is weak iff for every run ρ either inf(ρ)⊆F or inf(ρ)⊆
Q \F.
(b) Prove that the algorithms for union, intersection, and complementation of DFAs are
correct for weak DBAs. More precisely, show that the algorithms return weak DBAs recog-
nizing respectively the union, intersection, and complement of the languages of the input
automata.

� � Exercise 163. Give algorithms that directly complement deterministic Muller and

parity automata, without going through Büchi automata.

� � Exercise 164. Let A= (Q,�, q0, δ, {〈F0,G0〉, . . . , 〈Fm−1,Gm−1〉}) be a determin-

istic automaton. What is the relation between the languages recognized by A seen as a
deterministic Rabin automaton and seen as a deterministic Streett automaton?

�	 Exercise 165. Consider Büchi automata with universal accepting condition (UBA):

an ω-word w is accepted if every run of the automaton on w is accepting, that is, if every
run of the automaton on w visits accepting states infinitely often.
Recall that automata on finite words with existential and universal accepting conditions

recognize the same languages (see exercise 21). Prove that this does not hold for automata
on ω-words by showing that, for every UBA, there is a DBA that recognizes the same
language. This implies that the ω-languages recognized by UBAs are a proper subset of
ω-regular languages.
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Hint: On input w, the DBA checks that every path of dag(w) visits some final state infinitely
often. The states of the DBA are pairs (Q′,O) of sets of the UBA where O⊆Q′ is a set of
“owing” states. Loosely speaking, the transition relation is defined to satisfy the following
property: after reading a prefix w′ of w, the DBA is at the state (Q′,O) given by

• Q′ is the set of states reached by the runs of the UBA on w′;
• O is the subset of states of Q′ that “owe” a visit to a final state of the UBA (see the
construction for the complement of a Büchi automaton).





12 Emptiness Check: Implementations

After implementing boolean operations on NGAs in chapter 11, we present an implemen-
tation of the tests on sets of objects shown in table 0.1 of chapter 0. The list contains four
sets: membership, emptiness, containment, and equivalence. We only consider emptiness,
as all other tests can be reduced to it:

• The membership test Member(x,X ) takes as input an object x and a set of objects X ,
encoded, respectively, as anω-word and anω-regular language over some alphabet�. How-
ever, the test is only well defined after we fix a finite representation for ω-words, which for
cardinality reasons only can represent a countable subset of �ω. We can limit the test to
ω-words w for which there exists an ω-regular expression s such that Lω (s)={w}. In this
case, the membership test can be reduced to the emptiness set by converting s into an ω-
automaton, computing its intersection with the ω-automaton for the ω-regular language
encoding X , and conducting an emptiness test on the result.
• As seen in chapter 3, testing the inclusion L1⊆L2 reduces to testing the emptiness of
L1 ∩L2, and testing the equivalence L1=L2 reduces to testing the inclusions L1⊆L2 and
L2⊆L1.

We present efficient algorithms for checking whether a given NGA A= (Q,�, δ,Q0,
G) recognizes the empty language. Since transition labels are irrelevant for checking
emptiness, in this chapter, we redefine δ as a set of pairs of states:

δ :={(q, q′)∈Q×Q : (q, a, q′)∈ δ for some a∈�}
We assume that initially, the algorithms only know the setQ0 of initial states ofA. Further,

the algorithms can query δ—that is, they can submit a state q to an oracle that returns
δ(q) and the collection of sets F ∈G such that q∈F. So, the algorithms must determine
if A recognizes the empty language while exploring it, and only “forward” exploration is
possible. In particular, the algorithms can contain loops of the form “for q′ ∈ δ(q) do · · · ”
but no loops of the form “for q′ ∈ δ−1(q) do · · · ”; computing the predecessors of a state is
not a primitive operation. We say that these algorithms operate on-the-fly.
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Example 12.1 To illustrate the notion of an on-the-fly algorithm, consider the problem of
deciding whether an NFA, not necessarily in normal form, recognizes the empty language.
An NFA recognizes a nonempty language iff some final state is reachable from some initial
state. In principle, this can be checked by means of a forward search that explores the NFA
from the initial states, looking for final states, or by a backward search that explores the
NFA backward from the final states, looking for initial states. The first algorithm works
on-the-fly: it can be implemented even if initially only Q0 is known and δ can be queried.
The second one does not work on-the-fly.

To understand the advantage of on-the-fly algorithms, consider the problem of deciding
whether the intersection of the languages of two NGAs, say A1 and A2, is empty. We can
first use IntersNGA (algorithm 47) to construct an NGA A recognizing Lω (A1)∩Lω (A2)

and then apply the emptiness algorithm to it, but this requires to construct the complete
automaton A. We can do better by observing that IntersNGA constructs A in a “forward
manner” too, starting at the initial states and iteratively constructing the successors of the
states [q1, q2] constructed so far. This allows us to link the intersection and emptiness algo-
rithms: a query δ([q1, q2]) to the oracle of the on-the-fly emptiness algorithm is answered
by the intersection algorithm, which computes the successors of [q1, q2] in A according
to IntersNGA. The composite algorithm may be able to determine that A has a nonempty
language after having constructed only a small part of it.
On-the-fly emptiness algorithms are needed for the on-the-fly approach to automatic ver-

ification described in section 7.4.2 of chapter 7, where the reader can find a more detailed
discussion.
We need a few graph-theoretical notions. If (q, r)∈ δ, then r is a successor of q and q is a

predecessor of r. A path is a sequence q0, q1, . . . , qn of states such that qi+1 is a successor
of qi for every i∈ {0, . . . , n− 1}; we say that the path leads from q0 to qn. Note that a path
may consist of only one state; in this case, the path is empty and leads from a state to itself.
A cycle is a nonempty path that leads from a state to itself. We write q� r to denote that
there is a path from q to r.
Clearly, A is nonempty iff it has an accepting lasso—that is, a path q0q1 . . . qn−1qn such

that qn= qi for some i∈ {0, . . . , n− 1} and {qi, qi+1, . . . , qn−1} ∩F �= ∅ for every F ∈G.
The lasso consists of a path q0 . . . qi, followed by a cycle qiqi+1 . . . qn−1qi. We are inter-
ested in emptiness checks that on input A report EMPTY or NONEMPTY (sometimes
abbreviated to EMP and NEMP) and in the latter case return an accepting lasso as a witness
of nonemptiness.
The chapter is divided into two sections, which present algorithms based on depth-first

search (DFS) and breadth-first search (BFS) of the NGA, respectively. In all algorithms, we
first consider the special case in which the automaton is an NBA. Emptiness of GAs can
then be checked by applying the conversion NGA→ NBA, but for all algorithms except
one, we present a more efficient alternative that sidesteps the conversion.
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12.1 Emptiness Algorithms Based on Depth-First Search

We present two emptiness algorithms that explore A using depth-first search (DFS). We
start with a brief description of DFS and some of its properties.
A DFS of A is the result of conducting DFSs from each initial state of A. Assume one of

these DFSs starts at an initial state q0. If the current state q still has unexplored outgoing
transitions, then one of them is selected. If the transition leads to a not yet discovered state
r, then r becomes the current state. If all of q’s outgoing transitions have been explored, then
the search “backtracks” to the state fromwhich qwas discovered (i.e., this state becomes the
current state). The process continues until q0 becomes the current state again and all its out-
going transitions have been explored. Algorithm 49 provides a pseudocode implementation
(ignore algorithm DFS_Tree for the moment).

Observe that DFS is nondeterministic, since we do not fix the order in which the states
of δ(q) are examined by the for loop. Since, by hypothesis, every state of an automaton
is reachable from the initial state, we always have S=Q after termination. Moreover, after
termination, every state q �= q0 has a distinguished input transition—the one that led to the
discovery of q during the search. It is well known that the graph with states as nodes and
these distinguished transitions as edges is a tree with root q0, called a DFS-tree. If some
path of the DFS-tree leads from q to r, then we say that q is an ascendant of r, and r is a
descendant of q (in the tree).
It is easy to modify DFS so that it returns a DFS-tree, together with timestamps for the

states. The algorithm, which we callDFS_Tree, is shown below, on the right of DFS. While

Algorithm 49 Depth-first search algorithm.

DFS(A)
Input: NGA A= (Q,�, δ,Q0,F)

1 S←∅
2 for all q0 ∈Q0 do dfs(q0)

3 proc dfs(q)
4 add q to S
5 for all r∈ δ(q) do
6 if r /∈ S then dfs(r)
7 return

DFS_Tree(A)
Input: NGA A= (Q,�, δ,Q0,F)

Output: Time-stamped tree (S,T , d, f )
1 S←∅
2 T←∅; t← 0
3 dfs(q0)

4 proc dfs(q)
5 t← t+ 1; d[q]← t
6 add q to S
7 for all r∈ δ(q) do
8 if r /∈ S then
9 add (q, r) to T ; dfs(r)
10 t← t+ 1; f [q]← t
11 return (S,T , d, f )
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timestamps are not necessary for conducting a search, many algorithms based on depth-first
search use them for other purposes.1 Each state q is assigned two timestamps. The first one,
d[q], records the time at which q is first discovered, and the second, f [q], the time at which
the search finishes examining the outgoing transitions of q. Since we are only interested in
the relative order in which states are discovered and finished, we assume that the timestamps
are integers ranging between 1 and 2|Q|, that is, we assume that the clock only ticks when
a state is discovered or when the search from a state finishes.
In our analyses, we also assume that at every time point, a state is white, gray, or black.

A state q is white during the interval [0, d[q]), gray during the interval [d[q], f [q]), and
black during the interval [f [q], 2|Q|]. So, loosely speaking, q is white if it has not been yet
discovered, gray if it has already been discovered but still has unexplored outgoing edges,
and black if all its outgoing edges have been explored. Timestamp 0 refers to the initial
moment where the whole graph is white, that is, no state has been discovered yet. It is easy
to see that at all times, the gray states form a path (the gray path) starting at q0 and ending
at the state being currently explored, that is, at the state q such that dfs(q) is being currently
executed; moreover, this path is always part of the DFS-tree.

Example 12.2 The following picture shows the DFS-tree and the discovery and finishing
times of two possible runs of DFS_Tree on a NBA. Thick colored transitions belong to the
DFS-tree. The interval [d, f ) on top of a state gives the discovery time d and finishing time
f . The interval corresponds to the time during which the state is gray. At time 0, all states
are white, and at time 2|Q| = 12, they are all black.

q0 q1 q2 q3 q4

q5

[1, 12) [2, 11) [4, 9) [5, 8) [6, 7)

[3, 10)

q0 q1 q2 q3 q4

q5

[1, 12) [2, 11) [3, 8) [4, 7) [5, 6)

[9, 10)

1. In the rest of the chapter, and in order to present the algorithms in amore compact form, we omit the instructions
for computing the timestamps and just assume they are there.



Emptiness Check: Implementations 317

Observe that in the first run, the DFS-tree is just a path. Notice also that the discovery and
finishing times do not completely determine a run. For example, in the first run, we do not
knowwhether theDFSexplored the transitionq5→ q0 beforeq5→ q2 or theotherwayround.
In the second run, the gray path is q0 at time 1, q0q1q2q3 at time 4, and q0q1q5 at time 9.

We recall without proof two important properties of depth-first searches. Both follow
easily from the fact that a procedure call suspends the execution of the caller, which is only
resumed after the execution of the callee terminates.

Theorem 12.3: parenthesis theorem. Let I(q) denote the interval [d[q], f [q]], and let
I(q)≺ I(r) denote that f [q]< d[r] holds. In a DFS-tree, for any two states q and r, one of
the following four conditions holds:

• I(q)⊆ I(r) and q is a descendant of r;
• I(r)⊆ I(q) and r is a descendant of q;
• I(q)≺ I(r), and neither q is a descendant of r, nor r is a descendant of q; and
• I(r)≺ I(q), and neither r is a descendant of q, nor q is a descendant of r.

Theorem 12.4: white-path theorem. In a DFS-tree, r is a descendant of q (and so I(r)⊆
I(q)) if and only if, at time d[q] − 1, state r can be reached from q along a path of white
states.

Example 12.5 In the first run of example 12.2 for every two states qi and qj, we have
I(qi)⊆ I(qj) or I(qj)⊆ I(qi). By the parenthesis theorem, either qi is a descendant of qj or
vice versa, which implies that the DFS-tree is a path, as is indeed the case.
Now, compare the discovery times of q2 and q5 in the first and second runs. In the first

run, we have d[q2] = 4 and d[q5] = 3. So at time 2, the path q5→ q2 is white. By the white-
path theorem, q2 is a descendant of q5 in the DFS-tree, and so, by the parenthesis theorem,
I(q2)⊆ I(q5). In the second run, we have d[q2] = 3 and d[q5] = 9. So at time 8 no path from
q5 to q2 is white. By the white-path theorem and the parenthesis theorem, I(q2)≺ I(q5).

12.1.1 The Nested-DFS Algorithm

Let A be an NBA. To determine if A is empty, we can search for the accepting states of A and
check if at least one of them belongs to a cycle. A naive implementation proceeds in two
phases, searching for accepting states in the first and for cycles in the second. The runtime
is quadratic: since an automaton with n states and m transitions has O(n) accepting states,
and since searching for a cycle containing a given state takes time O(n+m), we obtain a
bound of O(n2+ nm).
We introduce the nested-DFS algorithm, which runs in time O(n+m). It uses the first

phase not only to discover the reachable accepting states but also to sort them. The searches
of the second phase are conducted according to the order determined by the sorting. As we
shall see, conducting the search in this order avoids repeated visits to the same state.



318 Chapter 12

The first phase is carried out by a DFS, and the accepting states are sorted by increasing
finishing (not discovery!) time. This is known as the postorder induced by the DFS. Assume
that in the second phase, we have already performed a search starting from the state q and
the search has failed (i.e., no cycle of A contains q). Suppose we proceed with a search
from another state r (which implies f [q]< f [r]), and this search discovers some state s that
had already been discovered by the search starting at q. We claim that it is not necessary to
explore the successors of s again. More precisely, we claim that s �� r, and so it is useless
to explore the successors of s, because the exploration cannot return any cycle containing
r. The proof of the claim is based on the following lemma:

Lemma 12.6 If q� r and f [q]< f [r] in some DFS-tree, then some cycle of A contains q.

Proof Let π be a path leading from q to r, and let s be the first node of π that is discovered
by the DFS. By definition, we have d[s] ≤ d[q]. We prove that q �= s, q� s and s� q hold,
which implies that some cycle of A contains q.

• q �= s. If s= q, then at time d[q] − 1, the path π is white, and so I(r)⊆ I(q) by the white-
path theorem. This contradicts f [q]< f [r].
• q� s. Obvious, because s belongs to π .
• s� q. Since d[s] ≤ d[q] and s �= q, we have d[s]< d[q]. By the parenthesis theorem, we
either have I(q)⊆ I(s) or I(s)≺ I(q). We show that the latter is impossible. By minimality
of s, at time d[s] − 1, the subpath of π leading from s to r is white. Hence, by the white-path
theorem, we have I(r)⊆ I(s). But I(r)⊆ I(s) and I(s)≺ I(q) contradict f [q]< f [r], and so
I(s)≺ I(q) does not hold. It follows I(q)⊆ I(s), and hence q is a descendant of s, by the
parenthesis theorem. This implies s� q.

Example 12.7 The NBA of example 12.2 contains a path from q1 to q0. Moreover, the
depicted DFS-trees satisfy f [q1] = 11< 12= f [q0]. As guaranteed by lemma 12.6, some
cycle contains q1, namely, the cycle q1q5q0.

To prove our previous claim, we assume that s� r holds, and derive a contradiction.
Since s was previously discovered by the search starting at q, we have q� s, and so q� r.
Since f [q]< f [r], by lemma 12.6, some cycle of A contains q, contradicting the assumption
that the search from q failed.

Hence, during the second phase, we only need to explore a transition at most once—
namely, when its source state is discovered for the first time. This guarantees the correctness
of this algorithm:

• Perform a DFS from each initial state of A, and output the accepting states in postorder.2

Let q1, . . . , qk be the output of the search, that is, f [q1]< · · ·< f [qk].

2. Notice that this does not require to apply any sorting algorithm; it suffices to output an accepting state
immediately after blackening it.
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• For i= 1 to k, perform a DFS from the state qi, with the following changes:
• if the search visits a state q that was already discovered by any of the searches starting
at q1, . . . , qi−1, then the search backtracks;
• if the search visits qi, it stops and returns NONEMPTY.

• If none of the searches from q1, . . . , qk returns NONEMPTY, return EMPTY.

Example 12.8 We apply the algorithm to the NBA of example 12.1. Assume that the first
DFS proceeds as depicted in the first run. The search outputs the accepting states in pos-
torder, that is, in the order q2, q1, q0. Figure 12.1 shows the transitions explored during the
searches of the second phase. Transitions explored during the search starting at accepting
state qi have a label of the form “i.j.”
The search from q2 explores the transitions labeled by 2.1, 2.2, and 2.3. The search from

q1 explores the transitions 1.1, . . . , 1.5. Notice that the search backtracks after exploring 1.1,
because the state q2 was already visited by the previous search. Moreover, this search is suc-
cessful, because transition 1.5 reaches state q1, and so a cycle containing q1 has been found.

The running time of the algorithm can be easily determined. The first DFS runs in
O(|Q| + |δ|) time. During the searches of the second phase, each transition is explored
at most once, and so they can be executed together in time O(|Q| + |δ|).
12.1.1.1 Nesting the two searches
Recall that we are looking for algorithms that return an accepting lasso when A is nonempty.
The algorithm we have described is not good for this purpose. Define the DFS-path of a
state as the unique path of the DFS-tree leading from the initial state to it. When the second
phase answers NONEMPTY, the DFS-path of the state being currently explored, say q, is an
accepting cycle but usually not an accepting lasso. For an accepting lasso, we can prefix this
path with the DFS-path of q obtained during the first phase. However, since the first phase
cannot foresee the future, it does not know which accepting state, if any, will be identified
by the second phase as belonging to an accepting lasso. So either the first search must store
the DFS-paths of all the accepting states it discovers, or a third phase is necessary, in which
a new DFS-path is recomputed.
This problem can be solved by nesting the first and the second phases: whenever the

first DFS blackens an accepting state q, we immediately launch a second DFS to check if q

q0 q1 q2 q3 q4

q5

1.5

1.2

1.1 2.1
2.2

2.3

1.4 1.3

Figure 12.1
An execution of the nested-DFS algorithm.



320 Chapter 12

is reachable from itself. We obtain the nested-DFS algorithm, due to Courcoubetis, Vardi,
Wolper, and Yannakakis:

• Perform a DFS from each initial state.
• Whenever the search blackens an accepting state q, launch a new DFS from q. If
this second DFS visits q again (i.e., if it explores some transition leading to q), stop
with NONEMPTY. Otherwise, when the second DFS terminates, continue with the first
DFS.
• If the first DFS terminates for every initial state, output EMPTY.

An implementation is shown in algorithm 50. For clarity, the program on the left does
not include the instructions for returning an accepting lasso. A variable seed is used to store

Algorithm 50 Nested depth-first search algorithm.

NestedDFS(A)
Input: NBA A= (Q,�, δ,Q0,F)

Output: EMP if Lω (A)=∅
NEMP otherwise

1 S←∅
2 for all q0 ∈Q0 do dfs1(q0)
3 report EMP

4 proc dfs1(q)
5 add [q, 1] to S
6 for all r∈ δ(q) do
7 if [r, 1] /∈ S then dfs1(r)
8 if q∈F then seed← q; dfs2(q)
9 return

10 proc dfs2(q)
11 add [q, 2] to S
12 for all r∈ δ(q) do
13 if r= seed then report NEMP
14 if [r, 2] /∈ S then dfs2(r)
15 return

NestedDFSwithWitness(A)
Input: NBA A= (Q,�, δ,Q0,F)

Output: EMP if Lω (A)=∅
NEMP otherwise

1 S←∅; succ← false
2 for all q0 ∈Q0 do dfs1(q0)
3 report EMP

4 proc dfs1(q)
5 add [q, 1] to S
6 for all r∈ δ(q) do
7 if [r, 1] /∈ S then dfs1(r)
8 if succ then return [q, 1]
9 if q∈F then
10 seed← q; dfs2(q)
11 if succ then return [q, 1]
12 return

13 proc dfs2(q)
14 add [q, 2] to S
15 for all r∈ δ(q) do
16 if [r, 2] /∈ S then dfs2(r)
17 if r= seed then
18 succ← true
19 if succ then return [q, 2]
20 return
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the state from which the second DFS is launched. The instruction report X produces the
output X and stops the execution. The set S is usually implemented by means of a hash
table. Notice that it is not necessary to store states [q, 1] and [q, 2] separately. Instead, when
a state q is discovered, either during the first or the second search, it is stored at the hash
address, and two extra bits are used to store which of the following three possibilities hold:
only [q, 1] has been discovered so far, only [q, 2], or both. So, if a state is encoded by a
bitstring of length c, then the algorithm needs c+ 2 bits of memory per state.
The algorithm on the right is a modification of NestedDFS that returns either EMP or an

accepting lasso. It uses a global boolean variable succ (for success), initially set to false.
If dfs2(q) observes that r= seed holds, it sets succ to true. This causes procedure calls in
dfs1(q) and dfs2(q) to be replaced by return [q, 1] and return [q, 2], respectively. The lasso
is produced in reverse order (i.e., with the initial state at the end).

12.1.1.2 A small improvement
We show that dfs2 can already return NONEMPTY if it discovers a state that belongs to
the DFS-path of dfs1. Let qk be an accepting state. Assume that dfs1 discovers qk and
that the DFS-path of qk in dfs1 is q0q1 · · · qk−1qk . Assume further that dfs2(qk) discov-
ers qi for some 0≤ i≤ k− 1 and that the DFS-path of dfs2 is qkqk+1 · · · qk+lqi. The path
q0q1 · · · qk−1qk · · · qk+lqi is a lasso, and, since qk is accepting, it is an accepting lasso. So,
stopping with NONEMPTY is correct. Implementing this modification requires to keep
track during dfs1 of the states that belong to the DFS-path of the state being currently
explored. Notice, however, that we do not need information about their order. So we can
use a set P to store the states of the path and implement P as, for example, a hash table. We
do not need the variable seed anymore, because the case r= seed is subsumed by the more
general r∈P. A pseudocode implementation is given in algorithm 51.

Algorithm 51 Improved nested depth-first search algorithm.

ImprovedNestedDFS(A)
Input: NBA A= (Q,�, δ,Q0,F)

Output: EMP if Lω (A)=∅, NEMP otherwise
1 S←∅; P←∅
2 for all q0 ∈Q0 do dfs1(q0)
3 report EMP

4 proc dfs1(q)
5 add [q, 1] to S; add q to P
6 for all r∈ δ(q) do
7 if [r, 1] /∈ S then dfs1(r)
8 if q∈F then dfs2(q)
9 remove q from P
10 return

11 proc dfs2(q)
12 add [q, 2] to S
13 for all r∈ δ(q) do
14 if r∈P then report NEMP
15 if [r, 2] /∈ S then dfs2(r)
16 return
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12.1.1.3 Extension to NGAs
Contrary to the other algorithms studied in the coming sections, the nested-DFS algo-
rithm cannot be generalized to emptiness of NGAs by conducting some minor changes
in the pseudocode. The simplest way to extend it to NGAs is by applying the conversion
NGA → NBA. Given an NGA with accepting condition {F0, . . . ,Fm−1}, the conversion
“replicates” each state m times. Since the nested-DFS algorithm visits each state at most
twice, this gives at most 2m calls to dfs for each state q of the NGA. Let us now (informally)
argue that any generalization of the nested-DFS algorithm requires at least m calls in the
worst case. For this, observe that, while any NBA accepting a nonempty language has an
accepting lasso q0 . . . qiqi+1 . . . qn= qi such that the states q0, q1 . . . , qn−1 are distinct, this
is no longer true for NGAs. For example, every lasso of the NGA having the same semi-
automaton as the NBA of figure 11.9 and accepting condition {{1}, . . . , {5}} visits the state
ch at least five times. If we assume that a generalization of the nested-DFS algorithm starts
a new DFS-search whenever the current search hits a state of a set Fi of accepting states
that has not been visited before, then, when applied to this NGA, the algorithm will call
dfs(ch) at least five times.

12.1.1.4 Evaluation
The strong point of the nested-DFS algorithm is its very modest space requirements. Apart
from the space needed to store the stack of calls to the recursive procedures, the algo-
rithm just needs two extra bits for each state of the automaton. However, in many practical
applications, the automaton can easily have millions or tens of millions of states, and each
state may require many bytes of storage. In these cases, the two extra bits per state are
negligible.
The algorithm has two weak points. First, as explained above, it cannot be easily gen-

eralized to NGAs. Moreover, it is not optimal, in the following sense. A search-based
algorithm explores an NBA A starting from the initial states. At each point t in time,
the algorithm has explored a subset of the states and the transitions of the algorithm, which
form a sub-NBA At= (Qt,�, δt,Q0t,Ft) of A. Clearly, a search-based algorithm can only
report NONEMPTY at time t if At contains an accepting lasso. A search-based algorithm is
optimal if the converse holds, that is, if it reports NONEMPTY at the earliest time t such that
At contains an accepting lasso. It is easy to see that NestedDFS is not optimal. Consider the
automaton on the left of figure 12.2. Initially, the algorithm chooses between the transitions
(q0, q1) and (q0, q2). Assume it chooses (q0, q1) (the algorithm does not know that there
is a long tail behind q2). The algorithm explores (q0, q1) and then (q1, q0) at some time t.
The automaton At already contains an accepting lasso, but since q0 has not been blackened
yet, dfs1 continues its execution with (q0, q2) and explores all transitions of A before dfs2
is called for the first time and reports NONEMPTY. So the time elapsed between the first
moment at which the algorithm has enough information to report NONEMPTY and the
moment at which the report occurs can be arbitrarily long.
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q0

q1

q2 qn−1 qn q0

q1

q2 qn−1 qn

qn+1

Figure 12.2
Two bad examples for NestedDFS.

The automaton on the right of figure 12.2 shows another problem of algorithm
NestedDFS related to nonoptimality. If it selects (q0, q1) first, then, since qn pre-
cedes q0 in postorder, dfs2(qn) is executed before dfs2(q0), and it succeeds, reporting
q0q2 · · · qnqn+1qn, instead of the much shorter lasso q0q1q0.

In the next section, we describe an algorithm that, while also based on DFS, calls dfs(q)
at most once for every state q, can be easily extended to NGAs, and is optimal.

12.1.2 An Algorithm Based on Strongly Connected Components

Recall that the nested-DFS algorithm searches for accepting states of A and then checks if
they belong to some cycle. We design another algorithm that, loosely speaking, proceeds
the other way round: it searches for states that belong to some cycle of A and checks if they
are accepting.

12.1.2.1 Strongly connected components, roots, and the active graph
A strongly connected component (SCC) of A is a maximal set of states S⊆Q such that
q� r for every q, r∈ S.3 Observe that every state belongs to exactly one SCC. The first
state of an SCC that is discovered by a DFS is called the root of the SCC (with respect to
this DFS).
Let us fix a time t, and let At be the subgraph of A containing the states and transitions of

A explored by the DFS up to time t. We call At the explored graph. An SCC of At (not of A!)
is active if it is currently visited by the gray path (i.e., if at least one of its states appears in
the gray path), and inactive otherwise. A state is active if its SCC in At is active. (Observe
that an active state may not belong to the gray path, as long as some other state of the SCC
does.) The active graph at time t is the subgraph of At containing the active states and the
discovered transitions between them.

Example 12.9 Figure 12.3 shows a DFS on a graph with six states A, B, . . . , F. Each state
is labeled with the interval given by its discovery and finishing times. At state D, the search
explores the curved edge first and, at states E and F, the straight edge first. The right part
of the picture shows three snapshots of the DFS, taken at three different times. Unexplored

3. Note that a path consisting of just a state q and no transitions is a path leading from q to q.
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Figure 12.3
A DFS (left) and the explored and active graphs at three different snapshots (right). Bold solid colored nodes and
edges are active; hatched colored nodes are inactive.

states and edges are dotted. The explored graph contains all solid states and edges. The
active graph contains the bold colored states and edges.

• First snapshot: Before backtracking from B. The gray path is A, B. The active SCCs are
{A} and {B,C}, with roots A and B, respectively. The explored graph and the active graph
coincide.
• Second snapshot: After exploring the edge E→F. The gray path is A, D, F, E. The active
SCCs are {A}, {D}, and {E, F}. States B and C are now explored but inactive.
• Third snapshot: Before backtracking from D. The gray path is A, D. The active SCCs are
{A} and {D, E, F}.
We analyze the structure of the active graph with the help of several observations:

(1) If r is the root of an SCC, then d[r] ≤ d[q] for every state q of the SCC; in other words,
the root is the first state of an SCC discovered by the DFS.

This follows from the definition of a root.
(2) If r is the root of an SCC, then f [r] ≥ f [q] for every state q of the SCC; in other words,
the root is also the last state of the SCC blackened by the DFS.
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At time d[r] − 1, there are white paths from r to all states of the SCC. By the white-path
theorem, all states of the SCC are discovered before backtracking from r. By the parenthesis
theorem, the DFS backtracks from all states of the SCC before it backtracks from r.
(3) An SCC becomes inactive when the DFS backtracks from its root (i.e., when it is
blackened).

This follows immediately from (2).
(4) An inactive SCC of At is also an SCC of A.

This follows from (2) and (3).
(5) At every moment, the roots of all currently active SCCs occur in the gray path.

This follows from (3) and the fact that the root of an active SCCmust be on the gray path.
(6) Let q be an active state of At, and let r be the root of its SCC. No state s such that
d[r]< d[s]< d[q] is an active root.
Assume s is an active root such that d[r]< d[s]< d[q]. We show that r and s belong to

the same SCC, contradicting that s is a root. It suffices to show that both r� s and s� r
hold. For r� s, observe that, by (5), both r and s are on the gray path, and r precedes s in
the path because d[r]< d[s]. For s� r, observe that, since s is active and d[s]< d[q], state
q is discovered during the execution of dfs(s), and so s� q; moreover, since r is the root of
the SCC of q, we have q� r, and so s� r.
(7) If q and r are active states of At and d[q] ≤ d[r], then q� r.

Let q′ and r′ be the roots of the SCCs of q and r. Then, q� q′ and r′� r, and so it suffices
to prove q′� r′. Since q′ and r′ are roots, they belong to the gray path by (5), and so at least
one of q′� r′ and r′� q′ holds. By (6), we have d[q′] ≤ d[r′], and so q′� r′ holds.

From (1) to (7), we get that the active graph has a necklace structure sketched in
figure 12.4. The chain of the necklace is the gray path, and the beads of the necklace
are the active SCCs. All roots of the active SCCs belong to the gray path, but the gray
path may also contain other nodes. Given two consecutive roots q and r in the gray path
such that d[q]< d[r], the SCC of q contains exactly the active nodes s discovered between
q (inclusive) and r (exclusive). Formally, the SCC of q contains all nodes s such that
d[q] ≤ d[s]< d[r].
12.1.2.2 The Algorithm
The algorithm maintains the explored graph and the necklace structure of the active graph
while the DFS is conducted. More precisely, the algorithm maintains the following data:

• The set S of states visited by the DFS so far.
• Themapping rank : S→N that assigns to each state a number in the order they are discov-
ered, called the discovery rank of the state. Formally, the discovery rank of q is the number
of states of S immediately after q is visited.
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s0

SCC of s0

root labeled with
some number i

labeled with numbers
from [i, j)
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trivial SCC with
accepting state

gray path

Figure 12.4
Structure of the active graph.

• The mapping act : S→{true, false} that assigns true to a state iff it is currently active.
• The necklace stack N . The elements of N are of the form (r,C), where C is the set of
states of an active SCC, and r is its root. We call the pair (r,C) a bead. The oldest bead
(i.e., the one with the oldest root) is at the bottom of the stack, and the newest is at the top.

After the initialization step, the DFS is always either exploring a new edge (which may lead
to a new state or to a state already visited) or backtracking along an edge explored earlier.We
show how to update S, rank, act, and N after an initialization, exploration, or backtracking
step, so that, assuming they satisfy their definitions before the step, they continue to satisfy
them after it. Further, we show how to check after each step whether the explored graph
contains an accepting lasso.

Initialization. Initially, both the explored and active graphs consist only of the initial state
q0 and no edges. The necklace has only one bead—namely, (q0, {q0}). Thus, we initialize
S to q0; set rank(q0) and act(q0) to 1 and true, respectively; and push (q0, {q0}) onto N .

Exploration of new edges. Assume the algorithm explores a new edge from state q to state
r. Assume further that S, rank, act, and N match the current explored and active graphs and
that the explored graph does not contain an accepting lasso. We distinguish six cases.

(i) r is a new state (i.e., r /∈ S).
Then the explored graph is extended with state r, which is active. So, we add r to S, and

set rank(r) and act(r) to |S| and true, respectively. Since r forms a trivial SCC, we push a
new bead (r, {r}) to N . Finally, we recursively call dfs(r).
The following figure shows the explored and active graphs before and after the DFS

explores the edge B→C, discovering C. The value of N is updated from (A, {A})(B, {B})
(with the bottom of the stack on the left) to (A, {A})(B, {B})(C, {C}).
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(ii) r has been visited by the DFS before and is inactive. Formally, r∈ S and act(r)= false.

Since r is inactive, its SCC has already been completely explored by the DFS (by (2)
and (3)). So, q and r belong to different SCCs, and in particular, r �� q. It follows that the
new edge from q to r cannot create an accepting lasso, if there was none before. So in this
case, no data structure needs to be updated, and no recursive DFS call is started.
The following figure shows the explored and active graphs before and after the DFS

explores the edge F→C, which is currently inactive.
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(iii) r has been visited by the DFS before, is active, and was discovered strictly after q.
Formally, r∈ S, act(r)= true, and rank(r) > rank(q).

In this case, both q and r are active and already belong to the necklace. Since rank(r) >

rank(q), either q and r belong to the same SCC, or the SCC of q is before the SCC of r
in the necklace. In both cases, the new edge does not change the structure of the necklace.
It cannot create an accepting lasso either, if no accepting lasso existed before. No state
changes its active/nonactive status. So, again, there is nothing to do, and no recursive DFS
call is started.
The following figure shows the explored and active graphs before and after the DFS

explores the edge D→E. Observe that E was discovered after D.
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(iv) r has been visited by the DFS before, is active, and was not discovered strictly after q.
Formally, r∈ S, act(r)= true, and rank(r)≤ rank(q).

Observe that rank(r)≤ rank(q) implies d[r] ≤ d[q] and so, because of (7), we have r� q.
So, q and r belong to the same SCC of the automaton. Let r′ be the root of the SCC of r
in the necklace. Since the DFS explores an edge from q to r, state q is the last state of the
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gray path, that is, the end of the necklace. So, all SCCs of the necklace from r′ upward must
be merged into one SCC. For example, if in figure 12.4, the search would now discover an
edge leading from the last gray state to the state labeled by i, then the last four SCCs would
have to be merged. The merge is achieved as follows. We pop beads (s,C) from N and
keep merging the sets C, stopping when the bead satisfies rank(s)≤ rank(r), which implies
r′ = s. Then, we push a new bead (s,D), where D is the result of the merge.
The edge from q to r can create a first accepting lasso only if one of the merged SCCs

was hitherto consisting of just an accepting state and no edges. Therefore, while popping
beads from N , we simply check whether any of the roots is an accepting state.
The following figure shows the explored and active graphs before and after the DFS

explores the edge E→D. Before exploring the edge the value of N is (A, {A}), (D, {D}),
(F, {E, F}). We pop the last two beads, merging the SCCs {D} and {E, F}, and push the new
bead (D, {D, E, F}). If D is a final state, the algorithm returns NEMP.
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D E F

The following figure gives another example where rank(r)= rank(q) and hence r= q. It
shows the explored and active graphs before and after the DFS explores the edge C→C.
We pop (C, {C}) and push it back. If C is a final state, then the algorithm reports NEMP.
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D E F

Backtracking. Assume that the algorithm has already explored all the edges leaving a
state q and now proceeds to backtrack from q. Notice that q is active. We consider two
cases:

(v) q is a root of the active graph.

Then, before backtracking from q, the top element of N is of the form (q,C). After
backtracking, q and its entire SCC become inactive by (3), and they do not belong to the
active graph anymore. So we pop (q,C) from N and set act(r) to false for every r∈C.
The following figure shows the explored and active graphs before and after the DFS back-

tracks from D. The SCC {D, E, F} becomes inactive, and the bead (D, {D, E, F}) is popped
from N .
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A B C

D E F

A B C

D E F

(vi) q is not a root of the active graph.

Then, by (2) and (3), the root of the SCC of q is active and remains active after
backtracking. The active graph does not change, and there is nothing to do.
The following figure shows the explored and active graphs before and after the DFS

backtracks from E. At that moment, the SCC of E is {D, E, F}, with root D. Neither the
explored nor the active graph change.

A B C

D E F

A B C

D E F

The pseudocode for the algorithm, which we call SCCsearch, is described in algo-
rithm 52. The initialization is carried out in lines 1–2. Case (i) corresponds to r /∈ S in
line 8. Case (ii) does not require to do anything, which is indeed what happens when the
conditions at lines 8 and 9 do not hold. Cases (iii) and (iv) are dealt with uniformly in the
repeat-until loop. Indeed, if d[r]> d[q] (case (iii)), then the loop is executed exactly once,
with the result that the top stack element is popped from the stack in line 12 and pushed
again in line 15. If d[r] ≤ d[q] (case (iv)), then the loop performs the necessary merge of
SCCs. Finally, the two backtracking cases correspond to lines 16–18.

12.1.2.3 Runtime
We show that SCCsearch(A) runs in timeO(n+m), where n andm are the numbers of states
and transitions of A, respectively. For the sake of simplicity, we consider set unions to be
atomic. A finer implementation and analysis, left as an exercise, yields the same complexity
if such unions are not atomic. The total number of steps of type (i) to (vi) is 2m, because
the DFS traverses each transition twice, once in the direction of the transition and once in
the opposite direction, when it backtracks from the destination state. Steps of types (i) to
(iii) and (vi) only require to perform a constant number of operations on the data structures
and take time O(m) together. Now, consider the steps of type (iv) and (v).

• Type (iv). The beads that enter the necklace N during a run of SCCsearch(A) are either
beads of the form (q, {q}) pushed into N at line 6 or beads obtained by removing two or
more beads from N , merging them, and adding the result back to N in line 15. Since there
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Algorithm 52 SCC-based search algorithm.

SCCsearch(A)
Input: NBA A= (Q,�, δ,Q0,F)

Output: EMP if Lω (A)=∅, NEMP otherwise
1 S,N←∅; n← 0
2 dfs(q0)
3 report EMP

4 proc dfs(q)
5 n← n+ 1; rank(q)← n
6 add q to S; act(q)← true; push (q, {q}) onto N
7 for all r∈ δ(q) do
8 if r /∈ S then dfs(r)
9 else if act(r) then
10 D←∅
11 repeat
12 pop (s,C) from N ; if s∈F then report NEMP
13 D←D∪C
14 until rank(s)≤ rank(r)
15 push (s,D) onto N
16 if q is the top root in N then
17 pop (q,C) from N
18 for all r∈C do act(r)← false

are n of the former, and each merge decreases the number of beads by 1 or more, at most n
of the latter are pushed onto N . So line 13 is executed O(n) times.
• Type (v). Steps of type (v) pop a bead (q,C) from N at line 17 and then set the active bits
of all states of C to false at line 18; for this, they traverse the list representing C. Since all
transitions from q have already been explored, q is black. By (2), all states of C are also
black, and so none of them is ever active again. So every state is deactivated exactly once
at line 18, and the algorithm spends time O(n) executing it.

12.1.2.4 Extension to NGAs
We show that SCCsearch can be easily extended to an emptiness check for NGAs,
without using the conversion NGA → NBA. We have the following characterization of
nonemptiness:
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Fact 12.10 Let A be an NGA with accepting condition G. It is the case that Lω (A) �= ∅
iff some SCC S of A satisfies S ∩F �= ∅ for every F ∈G.
Assume G={F0,F1, . . . ,Fm−1}. Let [m]= {0, . . . ,m− 1}. Let us label each state q with

the indices Iq⊆ [m] of the acceptance sets it belongs to. For example, Iq={1, 3} if q belongs
to F1 and F3. We extend beads with a third component; a bead is now a triple (q,C, I),
where q is a state, C is a set of states, and I is an index set. We modify SCCsearch so
that I =∪q∈CIq holds for every bead (q,C, I) that enters the necklace, and let it report
nonemptiness if I = [m]. It suffices to adjust the pseudocode as follows:

line SCCsearch for NBA SCCsearch for NGA

6 push(q, {q}) push(q, {q}, Iq)
10 D←∅ D←∅; J←∅
12 pop(s,C); if s∈F . . . pop(s,C, I)
13 D←D∪C D←D∪C; J← J ∪ I
15 push(s,D) push(s,D, J); if J = [m] then report NEMP
17 pop(q,C) pop(q,C, I)

12.1.2.5 Evaluation
Recall that the weak points of the nested-DFS algorithm were that it cannot be directly
extended to NGAs, and it is not optimal. In comparison, the SCC-based algorithm extends
to NGAs and is optimal. Indeed, an accepting lasso can only appear after a step of type (iv),
and if it appears then the algorithm returns NEMP before exploring any other transition.
The strong point of the nested-DFS algorithm was its very modest space requirements:

just two extra bits for each state of A. Let us examine the space needed by the SCC-based
algorithm. It is convenient to compute it for automata recognizing the empty language,
because in this case, both the nested-DFS and the SCC-based algorithmsmust visit all states.
Because of the check rank[s] ≤ rank[r], the algorithm needs to store the rank of each

state. This is done by extending the hash table S. In principle, we need log n bits to store a
rank; however, in practice, a rank is stored using a word of memory, because if the number
of states of A exceeds 2w, where w is the number of bits of a word, then A cannot be stored
in main memory anyway. So the hash table S requires c+w+ 1 bits per state, where c is
the number of bits required to store a state (the extra bit is the active bit).
The stack N does not need to store the states themselves but the memory addresses at

which they are stored. Ignoring hashing collisions, this requires w additional bits per state.
For generalized Büchi automata, we must also add the k bits needed to store the set of
indices. So the algorithm uses a total of c+ 3w+ 1 bits per state (c+ 3w+ k+ 1 in the
version for NGA), compared to the c+ 2 bits required by the nested-DFS algorithm. Inmost
cases,w is much smaller than c, and so the influence of the additional memory requirements
on the performance is small.
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12.2 Algorithms Based on Breadth-First Search

In this section, we describe algorithms for checking emptiness based on breadth-first search
(BFS). As in the previous section, we first present an algorithm for NBAs and then extend
it to one for NGAs.
No linear-time BFS-based emptiness check is known, so this section may appear super-

fluous at first. However, BFS-based algorithms can be suitably described using operations
and checks on sets of states, which allows us to implement them using automata as data
structures. In many cases, the gain obtained by the use of the data structure more than
compensates for the quadratic worst-case behavior, making the algorithms competitive.
Breadth-first search maintains the set of states that have been discovered but not yet

explored, often called the frontier or boundary. A BFS from a setQ′ of states (in this section,
we consider searches from an arbitrary set of states of A) initializes both the set of discov-
ered states and its frontier to Q′ and then proceeds in rounds. In a forward search, a round
explores the outgoing transitions of the states in the current frontier; the new states found
during the round are added to the set of discovered states, and they become the next frontier.
A backward BFS proceeds similarly but explores incoming transitions rather than outgo-
ing ones. The pseudocode implementations of both BFS variants, shown in algorithm 53,
use two variables S and B to store the set of discovered states and the boundary, respec-
tively. We assume the existence of oracles that, given the current boundary B, return either
δ(B)=∪q∈Bδ(q) or δ−1(B)=∪q∈Bδ−1(q).

Algorithm 53 Forward and backward BFS algorithms.

ForwardBFS(A, Q′)
Input: NBA A= (Q,�, δ,Q0,F),

Q′ ⊆Q

1 S,B←Q′

2 repeat
3 B← δ(B) \ S
4 S← S ∪B
5 until B=∅

BackwardBFS(A, Q′)
Input: NBA A= (Q,�, δ,Q0,F),

Q′ ⊆Q

1 S,B←Q′

2 repeat
3 B← δ−1(B) \ S
4 S← S ∪B
5 until B=∅

Both BFS variants compute the successors or predecessors of a state exactly once, that
is, if in the course of the algorithm, the oracle is called twice with arguments Bi and Bj,
respectively, then Bi ∩Bj=∅. To prove this in the forward case (the backward case is anal-
ogous), observe that B⊆ S is an invariant of the repeat loop and that the value of S never
decreases. Now, let B1, S1,B2, S2, . . . be the sequence of values of the variables B and S
right before the ith execution of line 3. We have Bi⊆ Si by the invariant, Si⊆ Sj for every
j≥ i, and Bj+1 ∩ Sj=∅ by line 3. So Bj ∩Bi=∅ for every j> i.
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As data structures for the sets S and B, we can use a hash table and a queue, respectively.
But we can also take the set Q of states of A as a finite universe and use automata for
fixed-length languages to represent both S and B. Moreover, we can represent δ⊆Q×Q by
a finite transducer Tδ and reduce the computation of δ(B) and δ−1(B) in line 3 to computing
Post(B, δ) and Pre(B, δ), respectively.

12.2.1 Emerson–Lei’s Algorithm

Let A be an NBA. A state q of A is live if some infinite path starting at q visits accepting
states infinitely often. Clearly, A is nonempty if and only if at least one initial state is live.
We describe an algorithm due to Emerson and Lei for computing the set of live states. For
every n≥ 0, the n-live states of A are inductively defined as follows:

• every state is 0-live, and
• a state q is (n+ 1)-live if some path containing at least one transition leads from q to an
accepting n-live state.

Loosely speaking, a state q is n-live if starting from q, it is possible to visit accepting
states n times. Let L[n] denote the set of n-live states of A. We have the following:

Lemma 12.11 The following holds:

(a) L[n] ⊇L[n+ 1] for every n≥ 0.
(b) The sequence L[0] ⊇L[1] ⊇L[2]⊇ · · · reaches a fixpoint L[i] (i.e., there is a least index
i≥ 0 such that L[i+ 1] =L[i]), and L[i] is the set of live states.
Proof We prove (a) by induction on n. The case where n= 0 is trivial. Assume n> 0, and
let q∈L[n+ 1]. There is a path containing at least one transition that leads from q to an
accepting state r∈L[n]. By induction hypothesis, r∈L[n− 1], and so q∈L[n].
To prove (b), first notice that, since Q is finite, the fixpoint L[i] exists. Let L be the set of

live states. Clearly, L⊆L[i] for every i≥ 0. Moreover, since L[i] =L[i+ 1], every state of
L[i] has a proper descendant that is accepting and belongs to L[i]. So L[i] ⊆L.

Emerson–Lei’s algorithm computes the fixpoint L[i] of the sequence L[0] ⊇L[1] ⊇
L[2]⊇ · · · . To compute L[n+ 1] given L[n], we observe that a state is (n+ 1)-live if some
nonempty path leads from it to an n-live accepting state, and so

L[n+ 1] =BackwardBFS(Pre(L[n] ∩F, δ)).

The pseudocode for the algorithm is shown on the left-hand side of algorithm 54; the
variable L is used to store the elements of the sequence L[0],L[1],L[2], . . ..

The repeat loop is executed at most |Q| + 1-times, because each iteration but the last one
removes at least one state from L. Since each iteration takes timeO(|Q| + |δ|), the algorithm
runs in time O(|Q| · (|Q| + |δ|)).
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Algorithm 54 Emerson–Lei’s algorithm.

EmersonLei(A)
Input: NBA A= (Q,�, δ,Q0,F)

Output: EMP if Lω (A)=∅,
NEMP otherwise

1 L←Q
2 repeat
3 OldL←L
4 L←Pre(L∩F, δ)
5 L←BackwardBFS(L)

6 until L=OldL
7 if Q0 ∩L �= ∅ then report NEMP
8 else report NEMP

EmersonLei2(A)
Input: NBA A= (Q,�, δ,Q0,F)

Output: EMP if Lω (A)=∅,
NEMP otherwise

1 L←Q
2 repeat
3 OldL←L
4 L←Pre(L∩F, δ)
5 L←BackwardBFS(L \ (OldL∩F))

6 until L=OldL
7 if Q0 ∩L �= ∅ then report NEMP
8 else report NEMP

The algorithm may compute the predecessors of a state twice. For instance, if q∈F and
there is a transition (q, q), then after line 4 is executed, the state still belongs to L. The
version on the right of algorithm 54 avoids this.

12.2.1.1 Generalization to NGAs
Emerson–Lei’s algorithm can be easily generalized to NGAs. The generalization of the first
version is described in algorithm 55.

Proposition 12.12 GenEmersonLei(A) reports NEMP iff Lω (A) �= ∅.

Proof For every k≥ 0, redefine the n-live states of A as follows: every state is 0-live, and
q is (n+ 1)-live if some path having at least one transition leads from q to a n-live state of
F(n mod m). Let L[n] denote the set of n-live states. Proceeding as in lemma 12.11, we can
easily show that L[(n+ 1) ·m] ⊇L[n ·m] holds for every n≥ 0.
We claim that the sequence L[0] ⊇L[m] ⊇L[2 ·m]⊇ · · · reaches a fixpoint L[i ·m] (i.e.,

there is a least index i≥ 0 such that L[(i+ 1) ·m] =L[i ·m]), and L[i ·m] is the set of live
states. Since Q is finite, the fixpoint L[i ·m] exists. Let q be a live state. There is a path
starting at q that visits Fj infinitely often for every j∈ {0, . . . ,m− 1}. In this path, every
occurrence of a state of Fj is always followed by some later occurrence of a state of
F(j+1) mod m, for every j∈ {0, . . . ,m− 1}. So, q∈L[i ·m]. We now show that every state
of L[i ·m] is live. For every state q∈L[(i+ 1) ·m], there is a path π =πm−1πm−2 · · ·π0
such that for every j∈ {0, . . . ,m− 1}, the segment πj contains at least one transition and
leads to a state of L[i ·m+ j] ∩Fj. In particular, π visits states of F0, . . . ,Fm−1, and
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Algorithm 55 Generalized Emerson–Lei’s algorithm.

GenEmersonLei(A)
Input: NGA A= (Q,�, δ, q0, {F0, . . . ,Fm−1})
Output: EMP if Lω (A)=∅, NEMP otherwise

1 L←Q
2 repeat
3 OldL←L
4 for i= 0 to m− 1
5 L←Pre(L∩Fi, δ)
6 L←BackwardBFS(L)

7 until L=OldL
8 if Q0 ∩L �= ∅ then report NEMP
9 else report NEMP

since L[(i+ 1) ·m] =L[i ·m], it leads from a state of L[(i+ 1) ·m] to another state of
L[(i+ 1) ·m]. So every state of L[(i+ 1) ·m] =L[i ·m] is live, which proves the claim.
Since GenEmersonLei(A) computes the sequence L[0] ⊇L[m] ⊇L[2 ·m]⊇ · · · , after

termination, L contains the set of live states.

12.2.2 A Modified Emerson–Lei’s Algorithm

There exist many variants of Emerson–Lei’s algorithm that have the same worst-case com-
plexity but try to improve the efficiency, at least in some cases, by means of heuristics. We
present here one of these variants, which we call the modified Emerson–Lei’s algorithm
(MEL). We only present a version for checking emptiness of NBAs.
Given a set S⊆Q of states, let inf(S) denote the states q∈ S such that some infinite

path starting at q contains only states of S. Instead of computing Pre(OldL∩F, δ) at each
iteration step, MEL computes Pre(inf(OldL)∩F, δ).

In the following, we show thatMEL, shown in algorithm 56, is correct and then compare
it with Emerson–Lei’s algorithm. As we shall see, while MEL introduces the overhead of
repeatedly computing inf-operations, it still makes sense in many cases because it reduces
the number of executions of the repeat loop.
To prove correctness, we claim that, after termination, L contains the set of live

states. Recall that the set of live states is the fixpoint L[i] of the sequence L[0] ⊇L[1] ⊇
L[2]⊇ · · · . By definition of liveness, we have inf(L[i])=L[i]. Let us define L′[0] =Q,
and L′[n+ 1] =Pre+(inf(L′[n])∩F, δ). Clearly, MEL computes the sequence L′[0] ⊇
L′[1] ⊇L′[2]⊇ · · · . Since L[n] ⊇L′[n] ⊇L[i] for every n> 0, we have that L[i] is also
the fixpoint of the sequence L′[0] ⊇L′[1] ⊇L′[2]⊇ · · · , and so MEL computes L[i].
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Algorithm 56 Modified Emerson–Lei’s algorithm.

MEL(A)
Input: NBA A= (Q,�, δ, q0,F)

Output: EMP if Lω (A)=∅, NEMP otherwise

1 L←Q
2 repeat
3 OldL←L
4 L← inf(OldL)

5 L←Pre(L∩F, δ)
6 L←BackwardBFS(L)

7 until L=OldL
8 if Q0 ∩L �= ∅ then report NEMP
9 else report NEMP

10 function inf (S)
11 repeat
12 OldS← S
13 S← S ∩Pre(S, δ)
14 until S=OldS
15 return S

Since inf(S) can be computed in time O(|Q| + |δ|) for any set S, MEL runs in time
O(|Q| · (|Q| + |δ|)).

Interestingly, we have already met Emerson–Lei’s algorithm in chapter 11. In the proof
of proposition 11.7, we defined a sequence D0⊇D1⊇D2⊇ · · · of infinite acyclic graphs.
In the terminology of this chapter, D2i+1 was obtained from D2i by removing all nodes
having only finitely many descendants, and D2i+2 was obtained from D2i+1 by removing
all nodes having only nonaccepting descendants. This corresponds to D2i+1= inf(D2i) and
D2i+2=Pre+(D2i+1 ∩F, δ). So, in fact, we can look at this procedure as the computation
of the live states of D0 using MEL.

12.2.3 Comparing the Algorithms

We give two families of examples showing that MEL may outperform Emerson-Lei’s
algorithm but not always.

A case whereMEL is better. Consider the automaton of figure 12.5. The ith iteration of
Emerson–Lei’s algorithm removes qn−i+1. The number of calls to BackwardBFS is (n+ 1),
although a simple modification allowing the algorithm to stop if L=∅ spares the (n+ 1)th
operation. On the other hand, the first inf -operation of MEL already sets the variable L to
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q0 q1 qn−1 qn

Figure 12.5
An example in which the MEL-algorithm outperforms the Emerson–Lei algorithm.

q0,1 q0,2 q1,1 q1,2 qn,1 qn,2

Figure 12.6
An example in which Emerson–Lei’s algorithm outperforms the MEL-algorithm.

the empty set of states, and so, with the same simple modification, the algorithm stops after
one iteration.

A case where MEL is not better. Consider the automaton from figure 12.6. The ith iter-
ation of Emerson–Lei’s algorithm removes q(n−i+1),1 and q(n−i+1),2, and so the algorithm
calls BackwardBFS (n+ 1) times. The ith iteration of theMEL-algorithm removes no state
as a result of the inf-operation, and states q(n−i+1),1 and q(n−i+1),2 as a result of the call to
BackwardBFS. So, in this case all inf operations are redundant.

12.3 Exercises

�� Exercise 166. Let B be the following Büchi automaton: 


(a) Execute the emptiness algorithm NestedDFS on B. Assume that states are picked in
ascending order with respect to their indices.
(b) Recall that NestedDFS is a nondeterministic algorithm, and different choices of runs
may return different lassos. Which lassos of B can be found by NestedDFS?

q0 q1

q2

q6

q3

q5 q4 q7 q8

a

b a

a

b

a

b
b

a

a b a
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(c) Show that NestedDFS is not optimal by exhibiting some search sequence on B.
(d) Execute the SCC-based emptiness algorithm on B. Assume that states are picked in
ascending order with respect to their indices.
(e) Execute the SCC-based emptiness algorithm on B. Assume that transitions labeled by
a are picked before those labeled by b.
(f) Which lassos of B can be found by the SCC-based algorithm?

�� Exercise 167. Let A be an NBA, and let At be the sub-NBA of A containing the states

and transitions discovered by a DFS up to (and including) time t. Show that if a state q
belongs to some cycle of A, then it already belongs to some cycle of Af [q].

� � Exercise 168. Recall from exercise 162 that a Büchi automaton is weak if�
none of its strongly connected components contains both accepting and nonaccepting
states. Give an emptiness algorithm for weak Büchi automata. What is the complexity of
your algorithm?

�� Exercise 169. Execute SCCsearch on the Büchi automaton below. When a state has

many outgoing transitions, pick letters in this order: a< b< c.

q0 q1 q2

q3 q4 q5

q6
a b

a

ca

b

bc

b

a

b

� � Exercise 170. Recall that SCCsearch runs in time O(|Q| + |δ|) if we consider set

unions as atomic. However, set unions are generally not constant-time operations. Explain
how beads can be implemented so that SCCsearch truly runs in linear time.

Hint: Can two beads share a state?

� � Exercise 171. Recall that exercise 170 gives an implementation of SCCsearch that

truly works in linear time. Let us now take the memory usage into account. Let at and bt
denote, respectively, the number of active states and the number of beads at time t. Let
f (t) be the number of bits used at time t to store the current beads. Let w be the size of an
address.
The solution of exercise 170 satisfies f (t)= 2(at+ bt)w. Indeed, it uses two addresses

per active state (one pointing to the state itself and one to its successor), plus two extra
addresses per bead (for the head and tail). Give an implementation of SCCsearch that halves
the memory usage—namely, one that runs in linear time and satisfies f (t)= (at+ bt)w.

Hint: Use two stacks, one for roots and one for active states.
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� � Exercise 172. Consider Muller automata with accepting condition {F}, that is, ρ �
is accepting iff inf(ρ)=F. Give an efficient algorithm for checking emptiness of these
automata. Hint: Adapt SCCsearch.

�� Exercise 173. Execute Emerson–Lei’s algorithm and MEL on this NBA: 


q0

q1

q2

q3

q4

q5

q6

q7

q8

q9

�� Exercise 174.ExecuteGenEmersonLei on the following generalizedBüchi automata, �
with accepting condition F ={{q1, q8}, {q2, q6}, {q4, q9}}:

q0

q1

q2

q3

q4

q5

q6

q7

q8

q9

�� Exercise 175. This exercise deals with a variation of Emerson–Lei’s algorithm. 


(a) For every R, S⊆Q, let pre+(R, S) be the set of states q such that there is a nonempty
path π from q to some state of R where π only contains states from S. Give an algorithm to
compute pre+(R, S).
(b) Execute the algorithm from (a) on the following automaton, where states from R and S
are respectively solid and hatched:

(c) Show that the following modification of Emerson–Lei’s algorithm is correct:
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MEL2(A)
Input: NBA A= (Q,�, δ,Q0,F)

Output: EMP if Lω (A)=∅, NEMP otherwise
1 L←Q
2 repeat
3 OldL←L
4 L← pre+(L∩F,L)

5 until L=OldL
6 if q0 ∈L then report NEMP
7 else report NEMP

(d) What is the difference between the sequences of sets computed by MEL and MEL2?



13 Application I: Verification and Temporal Logic

Recall that, intuitively, liveness properties are those stating that the system will eventually
do something good. More formally, they are properties that are only violated by infinite
executions of the system. In other words, by examining only a finite prefix of an infinite
execution, it is not possible to determinewhether the infinite execution satisfies the property.
In this chapter, we apply the theory ofω-automata to the problem of automatically verifying
liveness properties.

13.1 Automata-Based Verification of Liveness Properties

In chapter 7, we introduced some basic concepts about systems: configurations, possible
executions, and executions. We extend these notions to the infinite case. An ω-execution
of a system is an infinite sequence c0c1c2 . . . of configurations where c0 is some initial
configuration, and for every i≥ 1, configuration ci is a legal successor—according to the
semantics of the system—of configuration ci−1. Note that according to this definition, if
a configuration has no legal successors, then it does not belong to any ω-execution. Usu-
ally, this is undesirable, and it is more convenient to assume that such a configuration c
has exactly one legal successor—namely, c itself. In this way, every reachable configura-
tion of the system belongs to some ω-execution. The terminating executions are then the
ω-executions of the form c0 · · · cn−1cω

n for some terminating configuration cn. The set of
terminating configurations can usually be identified syntactically. For instance, in a pro-
gram, the terminating configurations are usually those in which control is at some particular
program line.
In chapter 7, we showed how to construct a system NFA recognizing all the executions

of a given system. The same construction can be used to define a system NBA recognizing
all the ω-executions.
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1, 0, 0 5, 0, 0

1, 1, 0 2, 1, 0 4, 1, 0

1, 0, 1 5, 0, 1

1, 1, 1 2, 1, 1 3, 1, 1 4, 0, 1

i

[1, 0, 0]

[1, 1, 0]

[1, 0, 1]

[1, 1, 1]

[5, 0, 0]

[2, 1, 0] [4, 1, 0]

[1, 1, 0]
[5, 0, 1]

[2, 1, 1] [3, 1, 1] [4, 0, 1]

[1, 0, 1]

[5, 0, 0]

[5, 0, 1]

Figure 13.1
System NBA of the simple program.

Example 13.1 Let us reconsider the simple program of chapter 7:

1 while x= 1 do
2 if y= 1 then
3 x← 0
4 y← 1− x
5 end

Its system NFA is depicted in the middle of figure 7.1. The system NBA is the result of
adding self-loops to the states [5, 0, 0] and [5, 0, 1] as depicted in figure 13.1.

13.1.1 Checking Liveness Properties

In section 7.5 of chapter 7, we introduced safety and liveness properties. Intuitively, safety
properties state that “nothing bad ever happens” and liveness properties that “something
good eventually happens.” In order to check if a system satisfies a safety property, we
construct a system NFA recognizing the set E of executions of the system and a regular
expression for the setV of potential executions of the system that violate a given safety prop-
erty. Checking that the safety property holds amounts to checking thatE∩V =∅ holds. This
can be done automatically by converting the regular expression into a property NFA, com-
puting its intersection with the systemNFA, and checking that the resulting NFA recognizes
the empty language.
We explained in section 7.5 that extending this approach to liveness properties required to

develop a theory of automata on ω-words. Indeed, consider a liveness property like “even-
tually every execution of the program terminates” (in example 13.1, this is the property
“eventually every execution of the program reaches a configuration of the form [5, x, y]”).
No finite execution of the program witnesses that the property is violated, because the
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execution might be extended to a longer one ending at such a configuration. The viola-
tions are ω-words that do not contain any configuration of the form [5, x, y], and expressing
and manipulating sets of ω-words require a theory of ω-automata.
We now have such a theory in place. We can replace regular expressions with ω-regular

expressions andNFAswith NGAs (which includeNBAs as special case). In section 10.2.2.1
of chapter 10, we have seen how to convertω-regular expressions into NBAs. In section 11.2
of chapter 11, we have given an algorithm to intersect NGAs. Finally, in chapter 12, we have
presented algorithms to check emptiness of NGAs. Let us apply these constructions to an
example.

Example 13.2 We check two liveness properties of the program from example 13.1.

First property. We wish to know whether all full executions of the program starting at
configurations satisfying x= y terminate. Let � be the set of all configurations, and let At5
be the set of all configurations [	, x, y] such that 	= 5. An ω-regular expression for the set
of violations is

([1, 0, 0]+ [1, 1, 1]) (� \At5)ω.
Indeed, the language of this expression is the set of potential executions that start at a
configuration satisfying x= y and never terminate.

Translating the expression into a property NBA yields the automaton of figure 13.2,
where we use colors as identifiers of the states.
We now apply IntersNGA to the system NBA of figure 13.1 and the NBA of figure 13.2.

Note that we are in the special case discussed at the end of section 11.2: in one of the NBAs,
all states are accepting.
In this case, IntersNGA and IntersNFA coincide, and we obtain the NBA of figure 13.3,

whose states are graphically represented by coloring a state of the system NBA with the
color of a state of the property NBA. Since this NBA does not contain any accepting lasso,
it recognizes the empty language, and so the system satisfies the property.

Second property. We wish to know whether all full executions that visit line 4 terminate.
Let� be the set of all configurations, and let At4 and At5 be the sets of configurations where
the program is at line 4 and at line 5, respectively. An ω-regular expression for the set of

[1, 0, 0]

[1, 1, 1]

� \At5

Figure 13.2
NBA for the first property.
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1, 0, 0

1, 0, 1

1, 1, 1 2, 1, 1 3, 1, 1 4, 0, 1

i

[1, 0, 0]

[1, 1, 1] [2, 1, 1] [3, 1, 1] [4, 0, 1]

[1, 0, 1]

Figure 13.3
NBA obtained from IntersNGA (first property).

�

At4

� \At5

Figure 13.4
NBA for the second property.

1, 0, 0 5, 0, 0

1, 1, 0 2, 1, 0 4, 1, 0 1, 1, 0 2, 1, 0

1, 0, 1 5, 0, 1

1, 1, 1 2, 1, 1 3, 1, 1 4, 0, 1 1, 0, 1

i

[1, 0, 0]

[1, 1, 0]

[1, 0, 1]

[1, 1, 1]

[5, 0, 0]

[2, 1, 0] [4, 1, 0] [1, 1, 0] [2, 1, 0]

[4, 1, 0]
[5, 0, 1]

[2, 1, 1] [3, 1, 1] [4, 0, 1] [1, 0, 1]

[5, 0, 0]

[5, 0, 1]

Figure 13.5
NBA obtained from IntersNGA (second property).

violations is
�∗At4(� \At5)ω.

The translation of this property into anNBA is depicted in figure 13.4. Applying IntersNGA,
we obtain the automaton depicted in figure 13.5. The emptiness algorithm returns that this
NBA accepts the word

([1, 1, 0] [2, 1, 0] [4, 1, 0])ω

which corresponds to a full execution that violates the property.
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13.1.2 Networks of Automata and Fairness

In chapter 7, we used Lamport-Burns’ mutual exclusion algorithm to illustrate how to
check safety properties of concurrent programs modeled using networks of automata. The
program text and the network of automata are shown in algorithm 39 and figure 7.5 of chap-
ter 7. We apply the theory of ω-automata to check the most important liveness property of
a mutual exclusion algorithm: if a process tries to access its critical section, it eventually
will. We call it the finite waiting property.
Figure 13.6 shows the asynchronous product arising from the network of automata mod-

eling the algorithm. From the asynchronous product, we easily obtain a system NBA: as
in example 13.1, it suffices to add the initial state i, connecting it to the initial state of the
asynchronous product; relabel every transition with its target configuration; and make all
stats accepting. Observe that in this case, every configuration has at least a successor, and
so no self-loops need to be added.
Recall that a configuration of the system is a fourtuple [b0, b1, 	0, 	1], where b0, b1 ∈

{0, 1}, 	0 ∈ {nc0, t0, c0}, and 	1 ∈ {nc1, t1, q1, q′1, c1}. The set of all configurations, which we

0, 0, nc0, nc1 1, 1, t0, t1 1, 1, t0, q1 1, 0, t0, q′1

1, 0, t0, nc1 1, 1, c0, t1 0, 1, nc0, q1

1, 0, c0, nc1 1, 1, c0, q1 1, 0, c0, q′1

0, 0, nc0, q′1

0, 1, nc0, t1 1, 1, t0, c1

0, 1, nc0, c1

b0= 1 b1← 0

b0← 1

b1← 1

b1← 1

b0← 1 b1= 1 b1= 1 b0= 1

b0= 0 b0← 1
b1= 0b1← 0

b1← 0

b1= 0 b1← 1

b0← 0

b0= 1

b0← 0

b1← 0

b1= 0

b0= 1

b0← 0

b1← 0

b0← 1

b0= 0

b0← 0 b0← 1

Figure 13.6
Asynchronous product of the Lamport–Burns algorithm. Solid (respectively, dotted) transitions correspond to
moves by process 0 (respectively, process 1).



346 Chapter 13

denote by �, contains sixty elements, of which, as shown in figure 13.6, only fourteen are
reachable.
For i∈ {0, 1}, let NCi,Ti,Ci be the sets of configurations in which process i is in the

noncritical section, is trying to access the critical section, and is in the critical section,
respectively. The possible ω-executions that violate the finite waiting property for process
i are represented by the ω-regular expression

si=�∗ Ti (� \Ci)
ω.

We can check this property using the same procedure as in example 13.2. The property
NBA has again two states. The result of the check for process 0 yields that the property
fails. One of the possible counterexamples is the ω-execution

[0, 0, nc0, nc1] [1, 0, t0, nc1] [1, 1, t0, t1]ω.
In this execution, both processes request access to the critical section, but, from then
on, process 1 never makes any further step. Only process 0 continues operating, but
all it does is repeatedly check that the current value of b1 is 1. Intuitively, this corre-
sponds to process 1 crashing after requesting access. But we do not expect the finite
waiting property to hold even if processes may crash while waiting. So, in fact, our
definition of the finite waiting property was wrong. We can repair the definition by refor-
mulating the property as follows: in any ω-execution in which both processes execute
infinitely many steps, if process 0 tries to access its critical section, then it eventually
will. The condition that both processes must move infinitely often is called a fairness ass-
umption.

The task now is to give an ω-regular expression formalizing the property. We face the
problem that the label of a transition of the system NBA does not currently contain infor-
mation about which process is making a move. We solve this problem by enriching the
alphabet of the system NBA. Instead of labeling a transition only with the name of the tar-
get configuration, we also label it with the number of the process responsible for the move
leading to that configuration: 0 if the transition is solid and 1 if it is dotted. For instance,
the transition

[0, 0, nc0, nc1] [1,0,t0,nc1]−−−−−−−→[1, 0, t0, nc1]
becomes

[0, 0, nc0, nc1] ([1,0,t0,nc1],0)−−−−−−−−−→[1, 0, t0, nc1]
to reflect the fact that [1, 0, t0, nc1] is reached by a move of process 0. The new alphabet of
the NBA is �×{0, 1}. If we let M0 :=�×{0} and M1 :=�×{1} denote the “moves” of
process 0 and process 1, respectively, then the ω-regular expression

inf= ((M0+M1)
∗M0M1

)ω
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represents allω-executions in which both processes move infinitely often. Further,Lω (si)∩
Lω (inf) (where si is suitably rewritten to account for the larger alphabet) is the set of
violations of the reformulated finite waiting property.
To check if some ω-execution is a violation, we can construct NGAs for si and inf and

compute their intersection with the system NBA. For process 0, the check yields that the
property indeed holds. For process 1, the property still fails because of, for instance, the
full execution

([0, 0, nc0, nc1] [0, 1, nc0, t1] [1, 1, t0, t1] [1, 1, t0, q1]
[1, 0, t0, q′1] [1, 0, c0, q′1] [0, 0, nc0, q′1]

)ω
in which process 1 repeatedly tries to access its critical section but always lets process 0
access first.

13.2 Linear Temporal Logic

In the previous section, we have formalized properties of systems using ω-regular expres-
sions or NGAs. This becomes rather difficult for all but the easiest properties. For instance,
the NGA or the ω-regular expression for the modified finite waiting property is already
quite involved, and it is difficult to be convinced that they have the intended meaning. In this
section, we introduce a new language for specifying safety and liveness properties, called
linear temporal logic (LTL). LTL is closer to natural language than ω-regular expressions
but still has a formal semantics.
Formulas of LTL are constructed from a setAP of atomic propositions. Intuitively, atomic

propositions are abstract names for basic properties of configurations, whose meaning is
fixed only after a concrete system is considered. Formally, given a system with a set C
of configurations, the meaning of the atomic propositions is fixed by a valuation function
V : AP→ 2C that assigns to each abstract name the set of configurations at which it holds.

Example 13.3 Consider the program of example 13.1. Let C be the set of configurations
of the program. We choose

AP={at_1,at_2, . . . ,at_5,x=0,x=1,y=0,y=1}
and define the valuation function V : AP→ 2C as follows:

• V(at_i)={[	, x, y] ∈C : 	= i} for every i∈ {1, . . . , 5},
• V(x=0)={[	, x, y] ∈C : x= 0}, and similarly for the other cases.

Under this valuation, at_i expresses that the program is at line i, and x=j expresses that
the current value of x is j.
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Atomic propositions are combined by means of the usual boolean operators and the tem-
poral operators X (“next”) and U (“until”). Intuitively, as a first approximation, X ϕ means
“ϕ holds at the next configuration” (the configuration reached after one step of the pro-
gram), and ϕ Uψ means “ϕ holds until a configuration is reached satisfying ψ .” The set of
LTL formulas over AP is defined as follows.

Definition 13.4 Let AP be a finite set of atomic propositions. The set LTL(AP) of LTL
formulas over AP is the set of expressions generated by the grammar

ϕ ::= true | p | ¬ϕ1 | ϕ1 ∧ ϕ2 | Xϕ1 | ϕ1 U ϕ2 .

Formulas are interpreted on infinite sequences σ = σ0σ1σ2 · · · , where σi⊆AP for every
i≥ 0. We call these sequences computations. The executable computations of a system are
the computations σ for which there exists an ω-execution c0c1c2 · · · such that for every
i≥ 0, the set of atomic propositions satisfied by ci is exactly σi. We formally define when a
computation satisfies a formula.

Definition 13.5 For every computation σ over AP, let σ j denote the suffix σjσj+1 · · · of σ ;
in particular, σ 0= σ . The satisfaction relation σ |= ϕ (read “σ satisfies ϕ”) is inductively
defined by

• σ |= true,
• σ |= p iff p∈ σ0,
• σ |=¬ϕ iff σ �|= ϕ,
• σ |= ϕ1 ∧ ϕ2 iff σ |= ϕ1 and σ |= ϕ2,
• σ |=Xϕ iff σ 1 |= ϕ, and
• σ |= ϕ1 U ϕ2 iff ∃k≥ 0 s.t. σ k |= ϕ2 and σ i |= ϕ1 for all 0≤ i< k.

Observe that, in the last line above, if k= 0, then the condition σ i |= ϕ1 for all 0≤ i< 0
is true for every ϕ1, because the set of indices i satisfying 0≤ i< 0 is empty. Intuitively, if
ϕ2 already holds initially, then it is not necessary for ϕ1 to hold at any position. We use the
following abbreviations:

• false,∨,→ and↔, defined in the usual way.
• Fϕ= trueU ϕ (“eventually ϕ,” or “now or sometime in the future ϕ”). According to the
semantics above, σ |=Fϕ holds iff there exists k≥ 0 such that σ k |= ϕ. Observe that if σ |=
ϕ, then σ 0 |= ϕ, and so σ |=Fϕ.
• Gϕ=¬F¬ϕ (“always ϕ” or “globally ϕ”). According to the semantics above, σ |=Gϕ

holds iff σ k |= ϕ for every k≥ 0.

The set of computations that satisfy a formula ϕ is denoted by Lω (ϕ). A system satisfies
ϕ if all its executable computations satisfy ϕ.
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Example 13.6 The system NBA of example 13.1 has exactly four ω-executions:

e1= [1, 0, 0] [5, 0, 0]ω,
e2= ([1, 1, 0] [2, 1, 0] [4, 1, 0])ω ,

e3= [1, 0, 1] [5, 0, 1]ω,
e4= [1, 1, 1] [2, 1, 1] [3, 1, 1] [4, 0, 1] [1, 0, 1] [5, 0, 1]ω.

The corresponding executable computations for the set AP of example 13.3 are

σ1= {at_1,x=0,y=0} {at_5,x=0,y=0}ω,
σ2= ({at_1,x=1,y=0} {at_2,x=1,y=0} {at_4,x=1,y=0})ω ,

σ3= {at_1,x=0,y=1} {at_5,x=0,y=1}ω,
σ4= {at_1,x=1,y=1} {at_2,x=1,y=1} {at_3,x=1,y=1} {at_4,x=0,y=1}

{at_1,x=0,y=1} {at_5,x=0,y=1}ω.
We give some examples of LTL properties:

• ϕ0=x=1 ∧ Xy=0 ∧ XXat_4. In natural language: the value of x in the first configu-
ration of the execution is 1, the value of y in the second configuration is 0, and in the third
configuration, the program is at location 4. We have σ2 |= ϕ0, and σ1, σ3, σ4 �|= ϕ0.
• ϕ1=Fat_5. In natural language: the execution eventually reaches a configuration in
which the program is at line 5. Since this is the line corresponding to the termination
of the execution, program satisfies this property if all its executions terminate. We have
σ1, σ3, σ4 |= ϕ1, but σ2 �|= ϕ1, and so the program does not satisfy the property. Observe that
σ1, σ2, σ3, σ4 |=Fat_1, because σ 0

1 , σ
0
2 , σ

0
3 , σ

0
4 |=at_1.

• ϕ2=x=0Uat_5. In natural language: x stays equal to 0 until the execution reaches
location 5. However, this description is ambiguous: Do executions that never reach location
5 satisfy the property? Do executions that set x to 1 immediately before reaching location 5
satisfy the property? The formal definition removes the ambiguities: the answer to the first
question is “no”; to the second, “yes.” We have σ1, σ3 |= ϕ2 and σ2, σ4 �|= ϕ2.
• ϕ3=at_5Ux=0. In natural language: the execution stays at location 5 until x takes the
value 0. But, again, the description is ambiguous. We certainly have σ2, σ4 �|= ϕ3, but do σ1
and σ3, for which x is initially 0, satisfy the property? The formal definition says “yes.” As
mentioned before, if σ 0 |= ϕ, then σ |=ψ U ϕ for any ψ .
• ϕ4=y=1∧F(y=0∧at_5)∧¬(F(y=0∧Xy=1)). In natural language: the initial con-
figuration satisfies y= 1, the execution terminates in a configuration with y= 0, and y never
increases during the execution. This is one of the properties we analyzed in chapter 7, and
it is not satisfied by any ω-execution.
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Example 13.7 We express properties of Lamport-Burns’ algorithm (see chapter 7) using
LTL formulas. As system NBA, we use the one in which transitions are labeled with the
name of the target configuration and with the number of the process responsible for the
move leading to that configuration. We take AP={NC0,T0,C0,NC1,T1,C1,M0,M1}, with
the obvious valuation.

• The mutual exclusion property is expressed by the formula

G(¬C0 ∨¬C1).

The algorithm satisfies the formula.
• The property that process i cannot access the critical section without having requested it
first is expressed by

¬(¬Ti UCi).

Both processes satisfy this property.
• The naive finite waiting property for process i is expressed by

G(Ti→FCi).

The modified version in which both processes must execute infinitely many moves is
expressed by

(GFM0 ∧GFM1)→G(Ti→FCi).

Observe how fairness assumptions can be very elegantly expressed in LTL. The assumption
itself is expressed as a formulaψ , and the property that ω-executions satisfying the fairness
assumption also satisfy ϕ is expressed by ψ→ ϕ.
None of the processes satisfies the naive version of the finite waiting property. Process 0

satisfies the modified version but not process 1.
• The bounded overtaking property for process 0 is expressed by

G(T0→ (¬C1 U (C1 U (¬C1 UC0)))).

The formula states that whenever T0 holds, the computation continues with a (possibly
empty) interval at which ¬C1 holds, followed by a (possibly empty) interval at which C1
holds, followed by a (possibly empty) interval at which ¬C1 holds, followed by a point at
which C0 holds. The property holds.

Example 13.8 Formally speaking, it is not correct to say “ϕ Uψ means that some future
configuration satisfies ϕ, and until then, all configurations satisfy ψ .” The reason is that
formulas do not hold at configurations but at computations. The correct phrasing is: “the
suffix of the computation starting at the next configuration satisfies ϕ, and some suffix of
the computation satisfies ψ .”
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To illustrate this point, let AP={p, q}, and consider the formula ϕ= (Fp)U q and the
computation τ =∅ ∅ {q} ∅ {p} ∅ω. One might think that τ does not satisfy ϕ, because
no configuration before the one satisfying q satisfies p. But that is not the case; we have
τ |= ϕ. Indeed, the suffix τ 2={q} ∅ {p} ∅ω satisfies q, and the suffixes τ 0= τ and τ 1=
∅ {q} ∅ {p} ∅ω satisfy Fp; the fact that p only holds after q holds is irrelevant.

13.3 From LTL Formulas to Generalized Büchi Automata

We present an algorithm that, given a formula ϕ ∈LTL(AP), returns an NGA Aϕ over the
alphabet 2AP recognizing Lω (ϕ). Then we derive a fully automatic procedure that, given
a system and an LTL formula, decides whether all executable computations of the system
satisfy the formula.

13.3.1 Satisfaction Sequences and Hintikka Sequences

We define the satisfaction sequence and the Hintikka sequence of a computation σ and a
formula ϕ. We first need to introduce the notions of closure of a formula and atom of the
closure.

Definition 13.9 Given a formula ϕ, the negation of ϕ is the formula ψ if ϕ=¬ψ and the
formula¬ϕ otherwise. The closure cl(ϕ) of a formula ϕ is the set containing all subformulas
of ϕ and their negations. A nonempty set α⊆ cl(ϕ) is an atom of cl(ϕ) if it satisfies the
following properties:

(a0) If true∈ cl(ϕ), then true∈α.
(a1) For every ϕ1 ∧ ϕ2 ∈ cl(ϕ): ϕ1 ∧ ϕ2 ∈α if and only if ϕ1 ∈α and ϕ2 ∈α.
(a2) For every ¬ϕ1 ∈ cl(ϕ): ¬ϕ1 ∈α if and only if ϕ1 /∈α.

The set of all atoms of cl(ϕ) is denoted by at(ϕ).

Observe that if α is the set of all formulas of cl(ϕ) satisfied by a computation, then α

is necessarily an atom. Indeed, every computation satisfies true; if a computation satisfies
the conjunction of two formulas, then it satisfies each of the conjuncts; and finally, if a
computation satisfies a formula, then it does not satisfy its negation and vice versa. Notice
as well that, because of (a2), if cl(ϕ) contains k formulas, then every atom of cl(ϕ) contains
exactly k/2 formulas.

Example 13.10 The closure of the formula p∧ (pU q) is

{p, ¬p, q, ¬q, pU q, ¬(pU q), p∧ (pU q), ¬ (p∧ (pU q))}.
We claim that the only two atoms containing p∧ (pU q) are

{p, q, pU q, p∧ (pU q)} and {p, ¬q, pU q, p∧ (pU q)}.
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Let us see why. By (a2), an atom always contains either a subformula or its negation but
not both. So in principle, there are sixteen possibilities for atoms, since we have to choose
exactly one of p and ¬p, q and ¬q, pU q and ¬(pU q), and p∧ (pU q) and ¬ (p∧ (pU q)).
Since we look for atoms containing p∧ (pU q), we are left with eight possibilities. But,
by (a1), every atom α containing p∧ (pU q) must contain both p and pU q. Thus, the only
freedom left is the possibility to choose q or ¬q. None of these choices violates any of the
conditions, and so exactly two atoms contain p∧ (pU q).

Definition 13.11 The satisfaction sequence for a computation σ and a formula ϕ is the
infinite sequence of atoms

sats(σ , ϕ)= sats(σ , ϕ, 0) sats(σ , ϕ, 1) sats(σ , ϕ, 2) · · ·
where sats(σ , ϕ, i) is the atom containing the formulas of cl(ϕ) satisfied by σ i.

Intuitively, the satisfaction sequence of a computation σ is obtained by “completing” the
computation: while σ only indicates which atomic propositions hold at each point in time,
the satisfaction sequence also indicates which atoms hold.

Example 13.12 Let ϕ= pU q, and consider σ1={p}ω and σ2= ({p} {q})ω. We have

sats(σ1, ϕ)={p, ¬q, ¬(pU q)}ω,
sats(σ2, ϕ)= ({p, ¬q, pU q} {¬p, q, pU q})ω .

Observe that σ satisfies ϕ if and only if ϕ ∈ sats(σ , ϕ, 0) (i.e., if and only if ϕ belongs to
the first atom of σ ).
Satisfaction sequences have a semantic definition: in order to know which atom holds

at a point, one must know the semantics of LTL. Hintikka sequences provide a syntactic
characterization of satisfaction sequences. The definition of a Hintikka sequence does not
involve the semantics of LTL, that is, someonewho ignores the semantics can still determine
whether a given sequence is a Hintikka sequence or not. We prove that a sequence is a
satisfaction sequence if and only if it is a Hintikka sequence.

Definition 13.13 A pre-Hintikka sequence for ϕ is an infinite sequence α0α1α2 · · · of
atoms satisfying the following conditions for every i≥ 0:

(	1) For every Xϕ1 ∈ cl(ϕ):
Xϕ1 ∈αi iff ϕ1 ∈αi+1.

(	2) For every ϕ1 U ϕ2 ∈ cl(ϕ):

ϕ1 U ϕ2 ∈αi iff ϕ2 ∈αi, or ϕ1 ∈αi and ϕ1 U ϕ2 ∈αi+1.

A pre-Hintikka sequence is a Hintikka sequence if it also satisfies
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(g) For every ϕ1 U ϕ2 ∈αi, there exists j≥ i such that ϕ2 ∈αj.

A pre-Hintikka or Hintikka sequence α matches a computation σ if σi⊆αi for every i≥ 0.

Note that conditions (	1) and (	2) are local: in order to determine if α satisfies them, we
only need to inspect every pair αi,αi+1 of consecutive atoms. On the contrary, condition (g)
is global, since the distance between the indices i and j can be arbitrarily large.

Example 13.14 Let ϕ=¬(p∧ q)U (r∧ s). We consider several sequences and examine
whether they are Hintikka sequences.

• Let α1={p, ¬q, r, s, ϕ}. The sequence αω
1 is not a Hintikka sequence for ϕ, because α1

is not an atom; indeed, by (a1), every atom containing r and s must contain r∧ s.
• Let α2={¬p, r, ¬ϕ}. The sequence αω

2 is not a Hintikka sequence for ϕ, because α2 is
not an atom; indeed, by (a2), every atom must contain either q or ¬q and either s or ¬s.
• Let α3={¬p, q, ¬r, s, r∧ s, ϕ}. The sequence αω

3 is not a Hintikka sequence for
ϕ, because α3 is not an atom; indeed, by (a2), every atom must contain either (p∧ q) or
¬(p∧ q).
• Let α4={p, q, (p∧ q), r, s, r∧ s, ¬ϕ}. The set α4 is an atom, but the sequence αω

4 is
not a Hintikka sequence for ϕ, because it violates condition (	2): since α4 contains (r∧ s),
it must also contain ϕ.
• Let α5={p, ¬q, ¬(p∧ q), ¬r, s, ¬(r∧ s), ϕ}. The set α5 is an atom, and the sequence
αω
5 is a pre-Hintikka sequence. However, it is not a Hintikka sequence because it violates

condition (g): since α5 contains ϕ, some atom in the sequence must contain (r∧ s), which
is not the case.
• Let α6={p, q, (p∧ q), r, s, (r∧ s), ϕ}. The sequences (α6)

ω and (α5 α6)
ω are two

examples of Hintikka sequences for ϕ.

It follows immediately from the definition of Hintikka sequences that if α=α0α1α2 · · ·
is a satisfaction sequence, then every pair αi,αi+1 satisfies (	1) and (	2), and the sequence
α itself satisfies (g). So, every satisfaction sequence is a Hintikka sequence. The follow-
ing theorem shows that the converse also holds: every Hintikka sequence is a satisfaction
sequence.

Theorem 13.15 Let σ be a computation and let ϕ be a formula. The unique Hintikka
sequence for ϕ matching σ is the satisfaction sequence sats(σ , ϕ).

Proof As observed above, it follows from the definitions that sats(σ , ϕ) is a Hintikka
sequence for ϕ matching σ . To show that no other Hintikka sequence matches sats(σ , ϕ),
let α=α0α1α2 · · · be a Hintikka sequence for ϕ matching σ , and let ψ be an arbitrary
formula of cl(ϕ). We prove that for all i≥ 0: ψ ∈αi if and only if ψ ∈ sats(σ , ϕ, i). The
proof is by induction on the structure of ψ .
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• ψ = true. We have true∈ sats(σ , ϕ, i) and, since αi is an atom, true∈αi.
• ψ = p for an atomic proposition p. Since α matches σ , we have p∈αi if and only if p∈ σi.
By definition of satisfaction sequences, p∈ σi if and only if p∈ sats(σ , ϕ, i). Thus, p∈αi if
and only if p∈ sats(σ , ϕ, i).
• ψ = ϕ1 ∧ ϕ2. We have

ϕ1 ∧ ϕ2 ∈αi

⇐⇒ ϕ1 ∈αi and ϕ2 ∈αi (by condition (a1))

⇐⇒ ϕ1 ∈ sats(σ , ϕ, i) and ϕ2 ∈ sats(σ , ϕ, i) (by. ind. hypothesis)
⇐⇒ ϕ1 ∧ ϕ2 ∈ sats(σ , ϕ, i) (by def. of sats(σ , ϕ)).

• ψ =¬ϕ1 or ψ =Xϕ1. The proofs are very similar to the last one.
• ψ = ϕ1 U ϕ2.

(a) If ϕ1 U ϕ2 ∈αi, then ϕ1 U ϕ2 ∈ sats(σ , ϕ, i).
By condition (	2) of the definition of a Hintikka sequence, we have to consider two cases:

• ϕ2 ∈αi. By induction hypothesis, ϕ2 ∈ sats(σ , ϕ), and hence ϕ1 U ϕ2 ∈ sats(σ , ϕ, i).
• ϕ1 ∈αi and ϕ1 U ϕ2 ∈αi+1. By condition (g), there is at least one index j≥ i such that
ϕ2 ∈αj. Let jm be the smallest of these indices. We prove the result by induction on jm− i.
If i= jm, then ϕ2 ∈αjm , and we proceed as in the case ϕ2 ∈αi. If i< jm, then since ϕ1 ∈αi, we
have ϕ1 ∈ sats(σ , ϕ, i) (by induction on ψ). Since ϕ1 U ϕ2 ∈αi+1, we have either ϕ2 ∈αi+1
or ϕ1 ∈αi+1. In the first case, we have ϕ2 ∈ sats(σ , ϕ, i+ 1), and so ϕ1 U ϕ2 ∈ sats(σ , ϕ, i).
In the second case, by induction hypothesis (on jm− i), we have ϕ1 U ϕ2 ∈ sats(σ , ϕ, i+ 1),
and so ϕ1 U ϕ2 ∈ sats(σ , ϕ, i).
(b) If ϕ1 U ϕ2 ∈ sats(σ , ϕ, i), then ϕ1 U ϕ2 ∈αi.

We consider again two cases.
• ϕ2 ∈ sats(σ , ϕ, i). By induction hypothesis, ϕ2 ∈αi, and hence ϕ1 U ϕ2 ∈αi.
• ϕ1 ∈ sats(σ , ϕ, i) and ϕ1 U ϕ2 ∈ sats(σ , ϕ, i+ 1). By the definition of a satisfaction
sequence, there is at least one index j≥ i such that ϕ2 ∈ sats(σ , ϕ, j). Proceed now as in
case (a).

13.3.2 Constructing the NGA for an LTL Formula

Given a formula ϕ, we construct an NGA Aϕ recognizing Lω (ϕ). By the definition of a
satisfaction sequence, a computation σ satisfies ϕ if and only if ϕ ∈ sats(σ , ϕ, 0). Moreover,
by theorem 13.15, sats(σ , ϕ) is the (unique) Hintikka sequence for ϕ matching σ . Thus, Aϕ

recognizes the computations σ satisfying: the first atom of the unique Hintikka sequence
for ϕ matching σ contains ϕ.
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To achieve this, we apply the following strategy:

(a) Define the states and transitions of the automaton so that the runs of the NGA Aϕ are
all the sequences

α0
σ0−−→α1

σ1−−→α2
σ2−−→· · ·

such that σ = σ0σ1 · · · is a computation, and α=α0α1 · · · is a pre-Hintikka sequence of ϕ

matching σ .
(b) Define the sets of accepting states so that a run is accepting if and only if its
corresponding pre-Hintikka sequence is also a Hintikka sequence.

Condition (a) determines all but the accepting states of Aϕ :

• the alphabet of Aϕ is 2AP;
• the states of Aϕ are atoms of ϕ;
• the initial states are the atoms α such that ϕ ∈α; and
• the output transitions of a state α, where α is an atom, are the triples α

σ−→β such that
σ matches α, and the pair α,β satisfies conditions (	1) and (	2) (where α and β play the
roles of αi and αi+1).

The sets of accepting states of Aϕ are determined by condition (g). By definition of Hin-
tikka sequences, we must guarantee that in every run α0

σ0−−→α1
σ1−−→· · · , if any αi contains

a subformula ϕ1 U ϕ2, then there is j≥ i such that ϕ2 ∈αj. By condition (	2), this amounts
to ensuring that every run contains infinitely many indices i such that ϕ2 ∈αi, or infinitely
many indices j such that ¬(ϕ1 U ϕ2)∈αj. Thus, we choose the sets of accepting states as
follows:

• The accepting condition contains a set Fϕ1 U ϕ2 of accepting states for each subformula
ϕ1 U ϕ2 of ϕ. An atom belongs to Fϕ1 U ϕ2 if it does not contain ϕ1 U ϕ2 or if it contains ϕ2.

The pseudocode for the translation is described in algorithm 57.

Example 13.16 We construct the automaton Aϕ for the formula ϕ= pU q. The closure
cl(ϕ) has eight atoms, corresponding to all the possible ways of choosing between p and¬p,
q and¬q, and pU q and¬(pU q). However, we can easily see that the atoms {p, q,¬(pU q)},
{¬p, q,¬(pU q)}, and {¬p,¬q, pU q} have no output transitions, because those transitions
would violate condition (	2). Since states without output transitions cannot appear in any
run, they can be removed, and we are left with the five atoms shown in figure 13.7.
The three atoms on the left contain pU q, and so they become the initial states. Figure 13.7

uses some conventions to simplify the graphical representation. Observe that every transi-
tion of Aϕ leaving an atom α is labeled by α ∩AP. For instance, all transitions leaving the
state {¬p, q, pU q} are labeled with {q}, and all transitions leaving {¬p, ¬q, ¬(pU q)}
are labeled with ∅. Therefore, since the label of a transition can be deduced from its source
state, we omit transition labels in the figure.
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Algorithm 57 Algorithm to convert an LTL formula into an NGA.

LTLtoNGA(ϕ)
Input: formula ϕ over AP
Output: NGA Aϕ = (Q, 2AP,Q0, δ,F) with Lω

(
Aϕ

)=Lω (ϕ)

1 Q0←{α ∈ at(ϕ) : ϕ ∈α}; Q←∅; δ←∅
2 W←Q0

3 while W �= ∅ do
4 pick α from W
5 add α to Q
6 for all ϕ1 U ϕ2 ∈ cl(ϕ) do
7 if ϕ1 U ϕ2 /∈α or ϕ2 ∈α then add α to Fϕ1 U ϕ2

8 for all β ∈ at(ϕ) do
9 if α,β satisfies (	1) and (	2) then
10 add (α,α ∩AP,β) to δ

11 if β /∈Q then add β to W
12 F←∅
13 for all ϕ1 U ϕ2 ∈ cl(ϕ) do F←F ∪ {Fϕ1 U ϕ2}
14 return (Q, 2AP,Q0, δ,F)

Moreover, since ϕ only has one subformula of the form ϕ1 U ϕ2, the NGA is in fact
an NBA, and we can represent the accepting states as for NBAs. The accepting states of
FpU q are the atoms that do not contain pU q—the two atoms on the right—and the atoms
containing q—the leftmost atom and the atom at the top.
Consider, for example, the atoms

α={¬p,¬q,¬(pU q)} and β ={p,¬q, pU q}.
Automaton Aϕ contains a transition α

{p}−−→β because {p} matches β, and α,β satisfy con-
ditions (	1) and (	2). Condition (	1) holds vacuously, since ϕ contains no subformulas of
the form Xψ , while condition (	2) holds as pU q �∈α and q /∈β and p /∈α. On the other
hand, there is no transition from β to α as it would violate condition (	2): pU q∈β, but
neither q∈β nor pU q∈α.

NGAs obtained from LTL formulas by means of LTLtoNGA have a very particular
structure:

• As observed above, all transitions leaving a state carry the same label.
• Every computation accepted by the NGA has a single accepting run.
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p, q, pU q

p,¬q, pU q

¬p, q, pU q

¬p,¬q,¬(pU q)

p,¬q,¬(pU q){p, q}

{p, q}
{p}

{p, q}
{q}

{p, q}

∅

{p, q}

{p}

{p}

{q}

{q}

{q}

∅

{q}

∅

∅ {p}

∅

{p}

Figure 13.7
An NGA (NBA) for the formula pU q, with three initial states and four accepting states.

By definition of the NGA, if α0
σ0−−→α1

σ1−−→· · · is an accepting run, then α0 α1 · · · is the
satisfaction sequence of σ0 σ1 · · · . Since the satisfaction sequence of a given computation
is by definition unique, there can be only one accepting run.
• The sets of computations recognized by any two distinct states of the NGA are disjoint.

Let σ be a computation, and let sats(σ , ϕ)= sats(σ , ϕ, 0) sats(σ , ϕ, 1) . . . be its satisfac-
tion sequence. Then σ is only accepted from the state sats(σ , ϕ, 0).

13.3.3 Size of the NGA

Let n be the length of the formula ϕ. It is easy to see that the set cl(ϕ) has sizeO(n). Thus,
the NGA Aϕ has at most O(2n) states. Since ϕ contains at most n subformulas of the form
ϕ1 U ϕ2, the automaton Aϕ has at most n sets of accepting states.

We now prove a matching lower bound on the number of states. We exhibit a family of
formulas {ϕn}n≥1 such that ϕn has length O(n), and every NGA recognizing Lω (ϕn) has
at least 2n states. For this, we exhibit a family {Dn}n≥1 of ω-languages over an alphabet �
such that for every n≥ 0:

(a) every NGA recognizing Dn has at least 2n states, and
(b) there is a formula ϕn ∈LTL(�) of length O(n) such that Lω (ϕn)=Dn.
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Note that in (2), we are abusing language, because if ϕn ∈LTL(�), then Lω (ϕn) contains
words over the alphabet 2� , and so Lω (ϕn) and Dn are languages over different alphabets.
With Lω (ϕn)=Dn, we mean that for every computation σ ∈ (2�)ω, we have σ ∈Lω (ϕn)

iff σ ={a1}{a2}{a3} · · · for some ω-word a1a2a3 · · · ∈Dn.
We let �={0, 1, #} and choose the language Dn as follows:

Dn={ww#ω :w∈ {0, 1}n}.
(a) Every NGA recognizing Dn has at least 2n states.

Assume that an NGA A= (Q, {0, 1, #}, δ, q0, {F1, . . . ,Fk}) with |Q|< 2n recognizes Dn.
For every word w∈ {0, 1}n, there is a state qw such that A accepts w #ω from qw. By the
pigeonhole principle, we have qw1 = qw2 for two distinct words w1,w2 ∈ {0, 1}n. But then A
accepts w1w2#ω, which does not belong to Dn, contradicting the hypothesis.
(b) There is a formula ϕn ∈LTL(�) of length O(n) such that Lω (ϕn)=Dn.

We need three auxiliary formulas. The first one expresses that at every position, exactly
one atomic proposition holds:

ϕn1=G[(0∨ 1∨ #)∧¬(0∧ 1)∧¬(0∧ #)∧¬(1∧ #)].
The second expresses that # does not hold at any of the first 2n positions, and it holds at all
later positions:

ϕn2=¬ #∧
(2n−1∧

i=1
Xi¬ #

)
∧X2nG #.

The third formula expresses that if the atomic proposition holding at a position is 0 or 1,
then n positions later the atomic proposition holding is the same one, or #:

ϕn3=G[(0→Xn(0∨ #))∧ (1→Xn(1∨ #))].
Clearly, ϕn= ϕn1 ∧ ϕn2 ∧ ϕn3 is the formula we are looking for. Observe that ϕn contains

O(n) characters.

13.4 Automatic Verification of LTL Formulas

We sketch a procedure for the automatic verification of properties expressed by LTL
formulas. The input to the procedure is

• a system NBA As obtained either directly from the system or by computing the asyn-
chronous product of a network of automata,
• a formula ϕ of LTL over a set of atomic propositions AP, and
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• a valuation ν : AP→ 2C , where C is the set of configurations of As, describing for each
atomic proposition the set of configurations at which the proposition holds.

The procedure follows these steps:

(1) Compute an NGA Av for the negation of the formula ϕ. Automaton Av recognizes all
the computations that violate ϕ.
(2) Compute an NGA Avs recognizing the executable computations of the system that
violate the formula.
(3) Check emptiness of Avs.

Step (1) can be carried out by applying LTLtoNGA and step (3) by any of the algorithms
of chapter 12. For step (2), observe first that the alphabets of Av and As are different: the
alphabet of Av is 2AP, while the alphabet of As is the set C of configurations of the system.
So, we first apply the valuation V to transform Av into an automaton, say A′v, with C as

alphabet. For example, if q
{p1,p2}−−−−→ q′ is a transition of Av, where p1 and p2 are two atomic

propositions, then A′v contains a transition q
c−→ q′ for every configuration c such that c∈

V(p1)∩V(p2). The NGA Avs can then be computed as the result of applying IntersNGA to
A′v and As (algorithm 47 in chapter 11).

Example 13.17 In example 13.2, we proved the following property of the program
of example 13.1: all full executions starting at configurations satisfying x= y terminate
(first property of the example). For this, we represented the property by an ω-regular
expression. Let us now examine the same property, but this time expressing it as an LTL
formula.
We choose the set of atomic propositions AP={at_5,x=y}. The valuation assigns

to at_5 all configurations where the program is at line 5 and to x=y all configurations
where the values of variables x and y coincide. The LTL property we wish to verify
is ϕ=x=y→Fat_5. The smallest NGA Av for ¬ϕ=x=y∧G¬at_5 is depicted in
figure 13.8.

q0 q1
{x=y}

∅

{x=y}
Figure 13.8

An NGA for ¬ϕ=x=y∧G¬at_5.
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Applying the valuation, we obtain that the sets C∅ and C{x=y} of configurations satisfying
the corresponding sets of atomic propositions are

C∅ = {[	, x, y] : 	 �= 5 and x �= y}= {[	, 0, 1], [	, 1, 0] : 	 �= 5},
C{x=y} = {[	, x, y] : 	 �= 5 and x= y}= {[	, 0, 0], [	, 1, 1] : 	 �= 5}.

Both sets contain eight configurations. The automaton A′v is the result of replacing in Av the
transition (q0, {x=y}, q1) by eight transitions of the form (q0, c, q0), one for each configu-
ration c∈Cx=y, and proceeding similarly with the other two transitions. From this moment
on, we proceed as in example 13.2. The NGA Avs is exactly the one shown in example 13.2
for the first property. Since it contains no accepting lasso, the program satisfies the property.

Observe that steps (1) to (3) can be carried out simultaneously. The states of Avs are pairs
[α, c], where α is an atom of ϕ, and c is a configuration of the system. Let us see in detail
how to compute their successors. Algorithm 58 takes a pair [α, c] as input and returns its
successors in the NGA Avs. The algorithm first computes the successors of c in As. Then, for
each successor c′ of c, it computes the set P of atomic propositions satisfied by c′ according
to the valuation. Finally, the algorithm computes the set of atoms β such that β matches P
and the pair α,β satisfies conditions (	1) and (	2) of definition 13.13. The successors of
[α, c] are all the pairs [β, c′].

Algorithm 58 Computation of successors.

Succ([α, c])
1 S←∅
2 for all c′ ∈ δs(c) do
3 P←∅
4 for all p∈AP do
5 if c′ ∈ ν(p) then add p to P
6 for all β ∈ at(ϕ) matching P do
7 if α,β satisfies (	1) and (	2) then add c′ to S
8 return S

This algorithm can be inserted in the algorithm for the emptiness check. For instance, if
we use SCCsearch, then we just replace

6 for all r∈ δ(q) do

by a call to Succ:

6 for all [β, c′] ∈ Succ([α, c]) do
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13.5 Exercises

�� Exercise 176. Prove formally the following equivalences: 


(a) ¬Xϕ≡X¬ϕ

(b) ¬Fϕ≡G¬ϕ

(c) ¬Gϕ≡F¬ϕ

(d) XFϕ≡FXϕ

(e) XGϕ≡GXϕ

�� Exercise 177. The weak until operator W has the following semantics: �

σ |= ϕ1W ϕ2 ⇐⇒ ∃k≥ 0 : (σ k |= ϕ2 and ∀0≤ i< k σ i |= ϕ1), or ∀k≥ 0 (σ k |= ϕ1).

Prove the following equivalences:

pW q≡Gp∨ (pU q)≡F¬p→ (pU q)≡ pU (q∨Gp).

� � Exercise 178. Let AP={p, q} and �= 2AP. Give LTL formulas defining the 

following languages:

(a) {p, q} ∅ �ω

(b) �∗ ({p}+ {p, q}) �∗ {q} �ω

(c) �∗ {q}ω
(d) {p}∗ {q}∗ ∅ω

�� Exercise 179. Let AP={p, q, r}. Give LTL formulas that hold for the computations �
satisfying the following properties. If you are unsure of the exact meaning of the property,
then choose an interpretation. Here are two solved examples:

• p is false before q: Fq→ (¬pU q).
• p becomes true before q: ¬qW (p∧¬q).
Now it is your turn:

(a) p is true between q and r.
(b) p precedes q before r.
(c) p precedes q after r.

(d) after p and q eventually r.
(e) p alternates between true and false.
(f) p, and only p, holds at even positions,
and q, and only q, holds at odd positions.

� � Exercise 180. Let AP={p, q} and let �= 2AP. Give Büchi automata for the ω- 

languages over � defined by the following LTL formulas:

(a) XG¬p
(b) (GFp)→ (Fq)
(c) p∧¬(XFp)

(d) G(pU (p→ q))
(e) Fq→ (¬qU (¬q∧ p))
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� � Exercise 181. Say which of the following equivalences hold. For every equiva-�
lence that does not hold, give an instantiation of ϕ and ψ together with a computation
that disproves the equivalence.

(a) X(ϕ ∨ψ)≡Xϕ ∨Xψ

(b) X(ϕ ∧ψ)≡Xϕ ∧Xψ

(c) X(ϕ Uψ)≡ (Xϕ UXψ)

(d) F(ϕ ∨ψ)≡Fϕ ∨Fψ

(e) F(ϕ ∧ψ)≡Fϕ ∧Fψ

(f) G(ϕ ∨ψ)≡Gϕ ∨Gψ

(g) G(ϕ ∧ψ)≡Gϕ ∧Gψ

(h) GF(ϕ ∨ψ)≡GFϕ ∨GFψ

(i) GF(ϕ ∧ψ)≡GFϕ ∧GFψ

(j) ρ U (ϕ ∨ψ)≡ (ρ U ϕ)∨ (ρ Uψ)

(k) (ϕ ∨ψ)U ρ≡ (ϕ U ρ)∨ (ψ U ρ)

(l) ρ U (ϕ ∧ψ)≡ (ϕ U ρ)∧ (ψ U ρ)

(m) (ϕ ∧ψ)U ρ≡ (ϕ U ρ)∧ (ψ U ρ)

� � Exercise 182. Let V ∈ {F,G}∗ be a sequence made of the temporal operators F and

G. Show that FGp≡V FGp and GFp≡V GFp.

�� Exercise 183.Recall that a formula is a tautology if all computations satisfy it. Which

of the following formulas of LTL are tautologies? If the formula is not a tautology, then give
a computation that does not satisfy it.

(a) Gp→Fp
(b) G(p→ q)→ (Gp→Gq)
(c) F(p∧ q)↔ (Fp∧Fq)
(d) ¬Fp→F¬Fp

(e) (Gp→Fq)↔ (pU (¬p∨ q))
(f) (FGp→GFq)↔G(pU (¬p∨ q))
(g) G(p→Xp)→ (p→Gp)

� 	 Exercise 184. We say that an LTL formula is negation-free if negations only occur

in front of atomic formulas (that is, ¬true or ¬a where a is an atomic proposition). In this
exercise, we show how to construct a deterministic Büchi automaton for negation-free LTL
formulas. In the remainder, we assume that ϕ denotes such a formula over a set of atomic
propositions AP. We inductively define the formula af(ϕ, ν), read “ϕ after ν” where ν ∈ 2AP,
as follows:

af(true, ν)= true, af(ϕ ∧ψ , ν)= af(ϕ, ν)∧ af(ψ , ν),

af(false, ν)= false, af(ϕ ∨ψ , ν)= af(ϕ, ν)∨ af(ψ , ν),

af(a, ν)= af(a∈ ν, ν), af(Xϕ, ν)= ϕ,

af(¬a, ν)= af(a /∈ ν, ν), af(ϕ Uψ , ν)= af(ψ , ν)∨ (af(ϕ, ν)∧ ϕ Uψ).

We extend it to finite words: af(ϕ, ε)= ϕ and af(ϕ, νw)= af(af(ϕ, ν),w) for every ν ∈ 2AP
and every finite word w. Prove the following statements:



Application I: Verification and Temporal Logic 363

(a) For every formula ϕ, finite word w∈ (2AP)∗ and ω-word w′ ∈ (2AP)ω:
ww′ |= ϕ ⇐⇒ w′ |= af(ϕ,w).

So, intuitively, af(ϕ,w) holds “after reading w” iff ϕ holds “at the beginning” of ww′.
(b) For every negation-free formula ϕ: w |= ϕ iff af(ϕ,w′)≡ true for some finite prefix w′
of w.
(c) For every formula ϕ andω-wordw∈ (2AP)ω: af(ϕ,w) is a positive boolean combination
of subformulas of ϕ.
(d) For every formula ϕ of length n: the set of formulas {af(ϕ,w) :w∈ (2AP)∗} has at most
22

n
equivalence classes up to LTL-equivalence.

(e) There exists a deterministic Büchi automaton recognizing Lω (ϕ) with at most 22
n

states, where n is the length of ϕ. Hint: Use (b)–(d).

�� Exercise 185. In this exercise, we show that the reduction algorithm of exercise 150(2) 

does not reduce the Büchi automata generated from LTL formulas, as well as show that a
little modification to the algorithm LTLtoNGA (algorithm 57) can alleviate this problem.

Let ϕ be a formula of LTL(AP), and let Aϕ =LTLtoNGA(ϕ).

(a) Prove that the reduction algorithm of exercise 150(2) does not reduce A, that is, show
that A=A/CSR.
(b) Prove that Lω

(
Bϕ

)=Lω

(
Aϕ

)
, where Bϕ is the result of modifying Aϕ as follows:

• add a new state q0 and make it the unique initial state.

• for every initial state q of Aϕ , add a transition q0
q∩AP−−−−→ q to Bϕ (recall that q is an atom

of cl(ϕ), and so q∩AP is well defined).

• replace every transition q1
q1∩AP−−−−→ q2 of Aϕ by q1

q2∩AP−−−−→ q2.

(c) Construct the automaton Bϕ for the automaton of figure 13.7.
(d) Apply the reduction algorithm of exercise 150(2) to Bϕ . Is the resulting automaton
minimal?

�� Exercise 186. Let A= (Q,�, δ, q0,F) be an automaton such that Q=P×[1..n] for �
some finite set P and n≥ 1. Automaton A models a system made of n processes. A state
(p, i)∈Q represents the current global state p of the system, and the last process i that was
executed.
We define two predicates execj and enabj over Q indicating whether process j is

respectively executed and enabled. More formally, for every q= (p, i)∈Q and j∈ [1..n], let
execj(q) ⇐⇒ i= j,

enabj(q) ⇐⇒ (p, i)−→ (p′, j) for some p′ ∈P.



364 Chapter 13

(a) Give LTL formulas over Qω for the following statements:

(i) All processes are executed infinitely often.
(ii) If a process is enabled infinitely often, then it is executed infinitely often.
(iii) If a process is eventually permanently enabled, then it is executed infinitely often.
(b) The three above properties are known respectively as unconditional, strong, and weak
fairness. Show the following implications, and show that the reverse implications do not
hold:

unconditional fairness =⇒ strong fairness =⇒ weak fairness.

�� Exercise 187. In this exercise, we prove that, in the worst case, the number of states of

the smallest deterministic Rabin automaton for an LTL formula can be doubly exponential
in the size of the formula. Let �0={a, b}, �1={a, b, #} and �={a, b, #, $}. For every
n≥ 0, let us define the ω-language Ln⊆�ω as follows:

Ln=
∑
w∈�n

0

�∗1 # w # �∗1 $ w #ω.

Informally, an ω-word belongs to Ln iff

• it contains a single occurrence of $,
• the word to the left of $ is of the formw0#w1# · · · #wk for some k≥ 1 and (possibly empty)
words w0, . . . ,wk ∈�∗0 ,
• the ω-word to the right of $ consists of a word w∈�n

0 followed by an infinite tail #
ω, and

• w is equal to at least one of w0, . . . ,wn.

Show the following statements:

(a) There is an infinite family {ϕn}n≥0 of formulas of LTL(�) such that ϕn has size O(n2)
and Lω (ϕn)=Ln. Here, “Lω (ϕn)=Ln” stands for σ ∈Lω (ϕn) iff σ ={a1}{a2}{a3} · · · for
some ω-word a1a2a3 · · · ∈Ln.
(b) The smallest deterministic Rabin automaton recognizing Ln has at least 22

n
states.
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In chapter 8, we showed that the languages expressible in monadic second-order logic on
finite words are exactly the regular languages, and we derived an algorithm that, given a
formula, constructs an NFA accepting exactly the set of interpretations of the formula.
This result can be easily extended to the case of infinite words: in the forthcoming sec-
tion 14.1, we show that the languages expressible inmonadic second-order logic onω-words
are exactly the ω-regular languages.
In chapter 9, we introduced Presburger arithmetic, a logical language for expressing prop-

erties of the integers, and showed how to construct, for a given formula ϕ of Presburger
arithmetic, an NFA Aϕ recognizing the solutions of ϕ. In the forthcoming section 14.2, we
extend this result to linear arithmetic, a language for describing properties of real numbers
with the same syntax as Presburger arithmetic.

14.1 Monadic Second-Order Logic on ω-Words

Monadic second-order logic on ω-words has the same syntax as its counterpart on finite
words and a very similar semantics as well.

Definition 14.1 Let X1={x, y, z, . . .} and X2={X ,Y ,Z, . . .} be two infinite sets of first-
order and second-order variables. Let�={a, b, c, . . .} be a finite alphabet. The setMSO(�)

of monadic second-order formulasover� is the set of expressions generated by the grammar

ϕ ::=Qa(x) | x< y | x∈X | ¬ϕ | ϕ ∨ ϕ | ∃x ϕ | ∃X ϕ

An interpretationofa formulaϕ isapair (w,V)wherew∈�ω, andV isamapping thatassigns
every free first-order variable x a position V(x)∈N and every free second-order variable X
a set of positions V(X )⊆N.1 (The mapping may also assign positions to other variables.)

1. In chapter 8 it was convenient to split V into two mappings V1 and V2 for first and second-order variables,
respectively. This is no longer necessary, and so now we write just V .
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The satisfaction relation (w,V) |= ϕ between a formula ϕ of MSO(�) and an interpreta-
tion (w,V) of ϕ is defined as follows:

(w,V) |= Qa(x) iff w[V(x)] = a,
(w,V) |= x< y iff V(x) <V(y),

(w,V) |= ¬ϕ iff (w,V) �|= ϕ,
(w,V) |= ϕ1 ∨ ϕ2 iff (w,V) |= ϕ1 or (w,V) |= ϕ2,
(w,V) |= ∃x ϕ iff some i∈N satisfies (w,V[i/x]) |= ϕ,
(w,V) |= x∈X iff V(x)∈V(X ),
(w,V) |= ∃X ϕ iff some S⊆N satisfies (w,V[S/X ]) |= ϕ,

where w[i] is the letter of w at position i, V[i/x] is the interpretation that assigns i to x
and otherwise coincides with V , and V[S/X ] is the interpretation that assigns S to X and
otherwise coincides with V —whether V is defined for x and X or not.
If (w,V) |= ϕ, then we say that (w,V) is a model of ϕ. Two formulas are equivalent

if they have the same models. The language L (ϕ) of a sentence ϕ ∈MSO(�) is the set
L (ϕ)={w∈�ω :w |=φ}, where w |=φ iff w is a model of φ w.r.t. the empty mapping. An
ω-language L⊆�ω is MSO-definable if L=L (ϕ) for some formula ϕ ∈MSO(�).

Example 14.2 The language a∗bω over alphabet {a, b} can be expressed by the formula

∃x ∀y [(y< x)↔Qa(y)].
Variable x refers to the position of the first b.

14.1.1 Expressive Power of MSO(�) on ω-Words

We show that the ω-languages expressible in monadic second-order logic are exactly the ω-
regular languages. The proof is very similar to its counterpart for languages of finite words
(proposition 8.26) and actually even a bit simpler.

Proposition 14.3 If L⊆�ω is ω-regular, then L is definable in MSO(�).

Proof Let A= (Q,�, δ,Q0,F) be an NBA with Q={q0, . . . , qn} and Lω (A)=L. We
construct a formula ϕA such that for all w∈�ω, w |= ϕA iff w∈Lω (A).

We start with some notations. Let w= a1a2 · · · ∈�ω, and let

Pq=
{
i∈N : q∈ δ̂(q0, a1 · · · ai)

}
.

In words, i∈Pq iff A can be in state q immediately after reading letter ai.
We can construct a formula VisitRecord(X0, . . . ,Xn) with free second-order variables

X0, . . . ,Xn exactly as in proposition 8.26. This formula has the property that V(Xi)=Pqi
holds for every model (w,V) and for every 0≤ i≤ n. In words, VisitRecord(X0, . . .Xn) is
only true when Xi takes the value Pqi for every 0≤ i≤ n. Thus, we can take the following
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formula, which further states that accepting states are visited infinitely often:

ϕA :=∃X0 · · · ∃Xn VisitRecord(X0, . . . ,Xn)∧∀x ∃y
⎛⎝x< y∧

∨
qi∈F

y∈Xi

⎞⎠ .

It remains to prove thatMSO-definable ω-languages are ω-regular. Given a sentence ϕ ∈
MSO(�), we encode an interpretation (w,V) as an ω-word. We proceed as for finite words.
Consider, for instance, a formula with first-order variables x, y and second-order variables
X ,Y . Consider the interpretation⎛⎜⎜⎝a(ab)ω,

x '→ 2
y '→ 6
X '→ set of prime numbers
Y '→ set of even numbers

⎞⎟⎟⎠
We encode it as

x
y
X
Y

a
0
0
0
0

a
1
0
1
1

b
0
0
1
0

a
0
0
0
1

b
0
0
1
0

a
0
1
0
1

b
0
0
1
0

a
0
0
0
1

· · ·
· · ·
· · ·
· · ·
· · ·

corresponding to the ω-word⎡⎢⎢⎢⎢⎢⎣
a
0
0
0
0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
a
1
0
1
1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
b
0
0
1
0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
a
0
0
0
1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
b
0
0
1
0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
a
0
1
0
1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
b
0
0
1
0

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
a
0
0
0
1

⎤⎥⎥⎥⎥⎥⎦
· · ·

· · ·

· · ·

over alphabet �×{0, 1}4.

Definition 14.4 Let ϕ be a formula with n free variables, and let (w,V) be an interpreta-
tion of ϕ. We denote by enc(w,V) the word over the alphabet �×{0, 1}n described above.
The ω-language of ϕ is Lω (ϕ)={enc(w,V) : (w,V) |= ϕ}.

A proof by induction on the structure of ϕ shows that Lω (ϕ) is ω-regular. The proof is a
straightforward modification of the proof for the case of finite words; it constructs a NGA
Aϕ such that Lω

(
Aϕ

)=Lω (ϕ). Operations on NFAs are replaced by their corresponding
operations on NGAs.
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14.2 Linear Arithmetic

Linear arithmetic is a language for describing properties of real numbers. It has the same
syntax as Presburger arithmetic (see chapter 9), but formulas are interpreted over the reals,
instead of the natural numbers or the integers. Given a formula ϕ of linear arithmetic, we
show how to construct an NGA Aϕ recognizing the solutions of ϕ. Section 14.2.1 discusses
how to encode real numbers as ω-words, and section 14.2.2 constructs the NGA.

14.2.1 Encoding Real Numbers

We encode real numbers as infinite words in two steps. First, we encode reals as pairs of
numbers and then these pairs as words.
We encode each real number x∈R as a pair (xI , xF), where xI ∈Z, xF ∈ [0, 1] and x=

xI + xF . We call xI and xF the integer and fractional parts of x. So, for instance, (1, 1/3)
encodes 4/3, and (−1, 2/3) encodes −1/3 (not −5/3). Every integer is encoded by two
different pairs, for example, 2 is encoded by (1, 1) and (2, 0). We are not bothered by this;
note that in the standard decimal representation of real numbers, integers also have two
representations; for example, 2 is represented by both 2.0 and 1.9.
We encode each pair (xI , xF) as an infinite word wI �wF . The word wI is a two’s com-

plement encoding of xI (see chapter 9). However, unlike in chapter 9, we use the MSBF
encoding instead of the LSBF encoding. This is not essential, but it leads to a more elegant
construction. Thus, wI is any word wI = anan−1 · · · a0 ∈ {0, 1}+ satisfying

xI =−an · 2n+
n−1∑
i=0

ai · 2i. (14.1)

The ω-word wF is any infinite sequence b1b2b3 · · · ∈ {0, 1}ω satisfying

xF =
∞∑
i=1

bi · 2−i. (14.2)

The onlyω-word b1b2b3 · · · for which we have xF = 1 is 1ω. So, in particular, the encodings
of the integer 1 are the ω-words of 0∗1 � 0ω and 0∗0 � 1ω. Equation (14.2) also has two solu-
tions for some fractions, for example, the encodings of 1/2 are theω-words of 0∗0 � 10ω and
0∗0 � 01ω. Other fractions have a unique form, for example, 0∗0 � (01)ω for 1/3.

Example 14.5 Numbers 3.3, 3, and −3.75 are encoded by
3.3 '→ 0∗011 � (01)ω,

3 '→ 0∗011 � 0ω and 0∗010 � 1ω,

−3.75 '→ 1∗100 � 010ω and 1∗100 � 001ω.

When encoding tuples of reals, we use padding to make the symbols � fall on the same
column. For instance, a possible encoding of the triple (−6.75, 12.3, 3) is
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⎡⎣10
0

⎤⎦ ⎡⎣11
0

⎤⎦ ⎡⎣01
0

⎤⎦ ⎡⎣00
1

⎤⎦ ⎡⎣10
1

⎤⎦ ⎡⎣�

�

�

⎤⎦ ⎡⎣00
0

⎤⎦ ⎡⎣11
0

⎤⎦ ⎛⎝⎡⎣00
0

⎤⎦ ⎡⎣01
0

⎤⎦⎞⎠ω

.

14.2.2 Constructing an NGA for the Real Solutions

Given a linear arithmetic formula ϕ, we construct anNGAAϕ accepting the encodings of the
solutions of ϕ. If ϕ is a negation, disjunction, or existential quantification, then we proceed
as in chapter 9, replacing the operations on NFAs and transducers by operations on NGAs.
Let us now consider an atomic formula of the form ϕ= a · x≤ b. TheNGAAϕ (whichwill

actually be an NBA) must accept the encodings of all tuples c∈Rn satisfying a · c≤ b. We
decompose the problem into two subproblems for integer and fractional parts. Given c∈Rn,
let cI and cF be the integer and fractional part of c for some encoding of c. For instance, if
c= (2.3,−2.75, 1), then we can have cI = (2,−3, 1) and cF = (0.3, 0.25, 0), corresponding
to the encoding

[010 � (01)ω, 101 � 010ω, 001 � 0ω],
or cI = (2,−3, 0) and cF = (0.3, 0.25, 1), corresponding to

[00010 � (01)ω, 11101 � 001ω, 00000 � 1ω].
Let α+ and α− be respectively the sum of the positive and negative components of a; for
instance, if a= (1,−2, 0, 3,−1), then α+ = 4 and α− =−3. We show the following:

Proposition 14.6 It is the case that c∈Rn is a solution of ϕ= a · x≤ b iff:

• a · cI ≤ b−α+, or
• a · cI =β for some integer β ∈ [b−α+ + 1, b−α−] and a · cF ≤ b−β.

Proof First note that, since cF ∈ [0, 1]n, we have a · cF ∈ [α−,α+].
⇒) Let us assume that a · cI > b−α+, as we are otherwise done. Since c is a solution

of ϕ, we have a · cI + a · cF = a · (cI + cF)= a · c≤ b. In particular, this means that a · cI ≤
b− a · cF and hence that a · cI ≤ b−α−. By assumption, this implies that a · cI =β, where
β ∈ [b−α+ + 1, b−α−]. Furthermore, a · cF ≤ b− a · cI = b−β.
⇐) If a · cI ≤ b−α+, then we are done since

a · c= a · cI + a · cF ≤ (b−α+)+ a · cF ≤ (b−α+)+α+ = b.

Thus, let us assume that a · cI =β for some integer β ∈ [b−α+ + 1, b−α−] such that a ·
cF ≤ b−β. We are done since a · c= a · cI + a · cF =β + a · cF ≤β + (b−β)= b.

To simplify the notation, let β− = b−α+ + 1 and β+ = b−α−. By proposition 14.6, we
can decompose the solution space of ϕ as follows:

Sol(ϕ)={cI + cF : a · cI < β−}∪
⋃

β−≤β≤β+
{cI + cF : a · cI =β and a · cF ≤ b−β}.
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Example 14.7 We use ϕ= 2x− y≤ 0 as a running example. We have [α−,α+]= [1, 2],
b= 0 and [β−,β+]= [−1, 1]. Thus, (x, y)∈R2 is a solution of ϕ iff one of the following
conditions holds:

• 2xI − yI ≤−2,
• 2xI − yI =−1∧ 2xF − yF ≤ 1,

• 2xI − yI = 0∧ 2xF − yF ≤ 0,
• 2xI − yI = 1∧ 2xF − yF ≤−1.

Observe that solutions of a · cI < β− and a · cI =β can be computed using algorithms
IneqZtoNFA and EqZtoNFA of section 9.3. Recall that both algorithms use the LSBF encod-
ing, but it is easy to transform their output into NFAs for the MSBF encoding: since the
algorithms deliver NFAs with exactly one final state, it suffices to reverse the transitions of
the NFA and exchange the initial and accepting states. This way, the new automaton rec-
ognizes a word w iff the old one recognizes its reverse wR, and so it recognizes exactly the
MSBF encodings.

Example 14.8 Figure 14.1 shows NFAs for the solutions of 2xI − yI ≤−2 in LSBF (left)
and MSBF encodings (right). The NFA on the right is obtained by reversing the transitions
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Figure 14.1
NFAs for the solutions of 2x− y≤−2 over Z with LBSF (left) and MSBF (right) encodings.
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Figure 14.2
NFAs for the solutions of 2x− y=−1 over Z with LBSF (left) and MSBF (right) encodings.

and exchanging the initial and final states. Similarly, figure 14.2 shows NFAs for the
solutions of 2xI − yI =−1.

It remains to show how to compute an automaton for the solutions of an inequation of
the form a · xF ≤β − b. This is done in the next section.

14.2.2.1 A DBA for the Solutions of a · xF ≤ β − b
We construct a DBA recognizing the solutions of formulas of the form a · xF ≤ d such that
0≤ xF ≤ 1. The algorithm is similar to AFtoNFA from section 9.2. The states of the DBA are
integers. We choose transitions and accepting states so that the following property holds:

q∈Z recognizes the encodings of the tuples cF ∈ [0, 1]n s.t. a · cF ≤ q. (14.3)

However, recall that a · cF ∈ [α−,α+] for every cF ∈ [0, 1]n, and therefore:

• all states q≥α+ accept all tuples of reals in [0, 1]n and can be merged with state α+, and
• all states q< α− accept no tuples in [0, 1]n and can be merged with state (α− − 1).

Calling these two merged states “all” and “none,” respectively, the states of the DBA (not
all of them may be reachable from the initial state) are

all, none and {q∈Z :α− ≤ q< α+}.
All of these states but none are accepting, and the initial state is β. Let us now define the set
of transitions. Given a state q and a letter ζ ∈ {0, 1}n, let us determine the target state q′ of
the unique transition labeled by ζ from q. Clearly, if q= all, then q′ = all, and if q= none,
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then q′ = none. If q∈Z, then we compute the value v that q′ must have in order to satisfy
property 14.3, and then we set

q′ =

⎧⎪⎪⎨⎪⎪⎩
q if v∈ [α−,α+),

none if v< α−,
all if v≥α+.

To compute v, observe that a word w∈ ({0, 1}n)ω is accepted from q′ iff the word ζw is
accepted from q. Thus, the tuple c′ ∈Rn encoded by w and the tuple c∈Rn encoded by ζw
are related by the following equation:

c= 1
2
ζ + 1

2
c′. (14.4)

Since c′ is accepted from q′ iff c is accepted by q, to fulfill property 14.3, we must choose
v so that a · ( 12ζ + 1

2c
′)≤ q holds iff a · c′ ≤ v holds. We get v= 2q− a · ζ , and so we define

the transition function of the DBA as follows:

δ(q, ζ )=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
q if q∈ {none, all},
2q− a · ζ if 2q− a · ζ ∈ [α−,α+),

none if 2q− a · ζ <α−,
all if 2q− a · ζ ≥α+.

Example 14.9 Figure 14.3 depicts the DBA for 2xF − yF ≤ 1, where the trap state none
has been omitted for the sake of readability. Since α+ = 2 and α− =−1, the possible
states are {all, none,−1, 0, 1}. The initial state is 1. Let us determine the target state of
the transitions leaving state 1. We instantiate the definition of δ(q, ζ ) with q= 1, α+ = 2
and α− =−1, and get

1
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Figure 14.3
DBA for the solutions of 2x− y≤ 1 over {0, 1}2.
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δ(1, ζ )=

⎧⎪⎪⎨⎪⎪⎩
2− 2ζx+ ζy if 2− 2ζx+ ζy ∈ {−1, 0, 1},
none if 2− 2ζx+ ζy <−1,
all if 2− 2ζx+ ζy≥ 2,

which can be simplified to

δ(1, ζ )=
{
all if ζx= 0,

ζy otherwise.

Recall that, by property 14.3, a state q∈Z accepts the encodings of the pairs (xF , yF)

such that 2xF − yF ≤ q. This allows us to immediately derive the DBAs for 2xF − yF ≤ 0
and 2xF − yF ≤−1: they are the DBA of figure 14.3 with 0 as initial state, and the same
DBA with −1 as initial state, respectively.

The procedure to construct the DBA for a · xF ≤ d is summarized in algorithm 59.

Algorithm 59 Converting an inequality into a DBA recognizing the MSBF encodings of
its solutions.

IneqtoDBA(ϕ)
Input: Inequation ϕ= a · xF ≤ d
Output: DBA A= (Q,�, δ, q0,F) such that Lω (A)=L (ϕ)

(without trap state)
1 Q, δ,F←∅; q0← d
2 W←{d}
3 α−←∑i:ai<0 ai; α

+←∑i:ai≥0 ai
4 while W �= ∅ do
5 pick q from W
6 add q to Q
7 add q to F
8 for all ζ ∈ {0, 1}n do
9 q′ ← 2q− a · ζ
10 if q′ ≥α− then
11 if q= all or q′ ≥α+ then q′ ← all
12 if q′ /∈Q then add q′ to W
13 add (q, ζ , q′) to δ

Example 14.10 Let ϕ= 2x− y≤ 0.We construct the full NBAAϕ by putting all the pieces
together. Recall that (x, y)∈R2 is a solution of ϕ iff (at least) one of the following conditions
holds:
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(i) 2xI − yI ≤−2,
(ii) 2xI − yI =−1∧ 2xF − yF ≤ 1,

(iii) 2xI − yI = 0∧ 2xF − yF ≤ 0,
(iv) 2xI − yI = 1∧ 2xF − yF ≤−1.

The top of figure 14.4 depicts an NBA for (i). This NBA is easily obtained from the NFA
for the solutions of 2xI − yI ≤−2 depicted on the right of figure 14.1.
The NBA at the bottom of figure 14.4 recognizes pairs (x, y)∈R2 satisfying (ii), (iii),

or (iv). To construct it, we “concatenate” the NFA on the right of figure 14.2 and the DBA of
figure 14.3. The resulting NBA recognizes the solutions of 2xI − yI =−1 and 2xF − yF ≤ 1,
which is adequate for (ii). For (iii) and (iv), we respectively connect state 0 to 0 and 1 to−1
(with �).
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Figure 14.4
NBA for the real solutions of 2x− y≤ 0 satisfying (i) (top) and (ii), (iii), or (iv) (bottom).
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14.3 Exercises

� � Exercise 188. Give an MSO({a, b}) sentence for each of the following ω-regular 

languages:

(a) Finitely many as: (a+ b)∗bω

(b) Infinitely many bs: ((a+ b)∗b)ω

(c) as at each even position: (a(a+ b))ω

What regular languages would you obtain if your sentences were interpreted over finite
words?

� � Exercise 189. Let us revisit exercise 131 over infinite words rather than finite ones. 

Consider a formula φ(X ) of MSO(�) that does not contain any occurrence of predicates of
the formQa(x). Given two interpretations that assign the same set of positions to X , we have
that either both interpretations satisfy φ(X ), or none of them does. Thus, we can speak of
the sets of natural numbers satisfying φ(X ). This observation can be used to automatically
prove some (very) simple properties of the natural numbers. Consider, for instance, the fol-
lowing “conjecture”: every set of natural numbers has a minimal element.2 The conjecture
holds iff the formula

Has_min(X ) :=∃x∈X ∀y∈X (x≤ y)

is satisfied by every interpretation in which X is nonempty. Construct an automaton for
Has_min(X ), and check that it recognizes all nonempty sets.

�� Exercise 190. Construct a DBA for xF + 3 · yF ≤ 2 using IneqtoDBA. �

�� Exercise 191. Let ϕ be a formula from linear arithmetic s.t. V |= ϕ iff V(x)≥V(y)≥ 

0. Give an NBA that accepts the solutions of ϕ (over R), without necessarily following the
construction presented in the chapter.

� � Exercise 192. Reconsider Exercise 191 with a strict inequality, i.e. V(x) > �
V(y)≥ 0.

�� Exercise 193. Linear arithmetic cannot express the operations y=5x6 (ceiling) and 

y=#x$ (floor). Explain how they can be implemented with Büchi automata.

�� Exercise 194. Let c be an irrational number such as π , e, or
√
2. Show that no formula 


from linear arithmetic is such that V |= ϕ iff V(x)= c.

2. We only proved the case of finite sets in exercise 131. Here, we handle finite and infinite sets.
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�� Exercise 1. Give a regular expression for the language of all words over �={a, b}
(a) beginning and ending with the same letter.
(b) having two occurrences of a at distance 3.
(c) with no occurrence of the subword aa.

Solution: Let us write �∗ for (a+ b)∗. The expressions are as follows:

(a) a+ b+ a�∗a+ b�∗b
(b) �∗a��a�∗
(c) (a+ ε)(b∗ + ba)∗ or equivalently (b∗ + ab)∗(ε+ a)

� � Exercise 3. Show that the language of the regular expression r= (a+ ε)(b∗ + ba)∗
is the language A of all words over {a, b} that do not contain any occurrence of aa.

Solution:

• L (r)⊆A. Let w∈L (r). By definition of r, we have w= u1u2 · · · un for some n≥ 1 and
some words u1 ∈ {ε, a} and u2, . . . , un ∈L (b∗ + ba). For the sake of contradiction, assume
that w contains an occurrence of aa. Since none of the ui contains aa, there must exist some
i∈ {1, . . . , n− 1} such that ui ends with a and ui+1 starts with a. The only possible case for
ui+1 is ui+1= u1= a, which means that i= 0. This is a contradiction.
• A⊆L (r). Let w∈A. There exist n≥ 0 and i, j1, j2, . . . jn, k≥ 0 such that

• w= biabj1abj2 · · · abjnabk , and
• j1, j2, . . . , jn > 0.
If i= 0, then w∈L (r) since

w= a bj1−1 ba · · · bjn−1 ba bk ∈L (a b∗ ba · · · b∗ ba b∗
)⊆L (r) .

If i> 0, then w∈L (r) since

w= bi−1 ba bj1−1 ba · · · bjn−1 ba bk ∈L (ε b∗ ba b∗ ba · · · b∗ ba b∗
)⊆L (r) .
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�� Exercise 5.

(a) Prove that for all languages A and B, the following holds: A⊆B =⇒ A∗ ⊆B∗.
(b) Prove that the regular expressions ((a+ ab)∗ + b∗)∗ and �∗ represent the same lan-
guage, where �={a, b} and where �∗ stands for (a+ b)∗.

Solution:

(a) Let us assume that A⊆B. Let w∈A∗. We must show that w∈B∗. If w= ε, then w is
trivially in B∗. Otherwise, there exist n> 0 and words v1, . . . , vn ∈A such that w= v1 · · · vn.
Since A⊆B, we know that vi ∈B for every i∈ {1, . . . , n}, and so w= v1 . . . vn ∈B∗.
(b) The language �∗ contains all words over alphabet �, so in particular, it con-
tains all words from L (((a+ ab)∗ + b∗)∗). For the other direction, let A=� and B=
L ((a+ ab)∗ + b∗). We have A⊆B. Thus, by (a), we have A∗ ⊆B∗, which means that
�∗ ⊆L (((a+ ab)∗ + b∗)∗).

�� Exercise 7. For each of the following properties, provide a syntax that describes the
regular expressions r satisfying the property.

(a) L (r)=∅,
(b) L (r)={ε},
(c) ε ∈L (r),
(d) (L (r)=L (rr)) =⇒ (L (r)=L (r∗)).

Solution:

(a) They are the regular expressions generated by the “two-level” syntax

r ::=∅ | rs | sr | r+ r

where s denotes an arbitrary regular expression. A simple proof by induction shows that if
r is generated by this syntax, then L (r)=∅. For the converse, let t be an arbitrary regular
expression such that L (t)=∅. If t=∅, then we are done because t is generated by the
syntax. The cases t= ε and t= a are impossible. If t= t1t2, then we have L (t1)=∅ or
L (t2)=∅; by induction hypothesis, either t1 or t2 is generated by the syntax, and thus so
is t. If t= t1+ t2, then we have L (t1)=∅ and L (t2)=∅; by induction hypothesis, both t1
and t2 are generated by the syntax, and thus so is t.
(b) They are the regular expressions generated by the syntax

r ::= ε | s∗ | rr | s+ r | r+ s | r+ r | r∗
where s denotes an arbitrary regular expression from (a).
(c) They are the regular expressions generated by the syntax

r ::= ε | rr | r+ s | s+ r | s∗
where s denotes an arbitrary regular expression.
(d) Suppose that L (r)=L (rr). We have

L (rrr)=L (rr)L (r)=L (r)L (r)=L (rr)=L (r) .
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Hence, by repeated application of this argument, we obtain L (ri)=L (r) for every i≥ 1.
In particular, this means that L (r)=L (rr) implies L (r∗)={ε} ∪L (r). We use this
observation to prove that the implication holds iff L (r) �= ∅.
⇒): AssumeL (r)=∅. We haveL (rr)=∅=L (r), butL (r)=∅ �= {ε}=L (r∗), and so the
implication does not hold.
⇐): Assume L (r) �= ∅. We consider two cases.

• Case ε ∈L (r). If L (r)=L (rr) then L (r∗)={ε} ∪L (r) by the above observation.
Since ε ∈L (r), we get L (r∗)={ε} ∪L (r)=L (r), and so the implication holds.
• Case ε /∈L (r). Let k be the length of a shortest word in L (r). The shortest word in
L (rr) has length 2k. Since ε /∈L (r), we have k > 0 and so 2k �= k. Thus, L (rr) �=L (r),
and the implication holds vacuously.

Consequently, the regular expressions satisfying the implication are exactly those whose
language is nonempty. These are the regular expressions generated by the syntax

r ::= ε | a | rr | s+ r | r+ s | s∗
where s denotes an arbitrary regular expression.

� � Exercise 8. Use the solution to exercise 7 to define inductively the predicates
IsEmpty(r), IsEpsilon(r), and HasEpsilon(r) over regular expressions given by

• IsEmpty(r)⇔ (L (r)=∅),
• IsEpsilon(r)⇔ (L (r)={ε}),
• HasEpsilon(r)⇔ (ε ∈L (r)).

Solution:

• IsEmpty(r) is defined by

IsEmpty(∅)= true,

IsEmpty(ε)= IsEmpty(a)= IsEmpty(r∗)= false,

IsEmpty(r1+ r2)= IsEmpty(r1)∧ IsEmpty(r2),

IsEmpty(r1r2)= IsEmpty(r1)∨ IsEmpty(r2).

• IsEpsilon(r) is defined by

IsEpsilon(ε)= true,

IsEpsilon(∅)= IsEpsilon(a)= false,

IsEpsilon(r1+ r2)= (IsEpsilon(r1)∧ IsEmpty(r2))∨
(IsEmpty(r1)∧ IsEpsilon(r2))∨
(IsEpsilon(r1)∧ IsEpsilon(r2)),

IsEpsilon(r1r2)= IsEpsilon(r1)∧ IsEpsilon(r2),

IsEpsilon(r∗)= IsEpsilon(r)∨ IsEmpty(r).
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• HasEpsilon(r) is defined by

HasEpsilon(ε)=HasEpsilon(r∗)= true,

HasEpsilon(∅)=HasEpsilon(a)= false,

HasEpsilon(r1+ r2)=HasEpsilon(r1)∨HasEpsilon(r2),

HasEpsilon(r1r2)=HasEpsilon(r1)∧HasEpsilon(r2).

� � Exercise 10. Let L⊆{a, b}∗ be the language described by the regular expression
a∗b∗a∗a.

(a) Give an NFA-ε that accepts L.
(b) Give an NFA that accepts L.
(c) Give a DFA that accepts L.

Solution:

(a)

a

ε

b

a

a

(b)

a

b

b

a

a

a

(c)

b

a

a

b

b

a

a

b

a, b

� � Exercise 11. Let |w|σ denote the number of occurrences of letter σ in word w. For
every k≥ 2, let Lk,σ ={w∈ {a, b}∗ : |w|σ mod k= 0}.
(a) Give a DFA with k states that accepts Lk,σ .
(b) Show that any NFA accepting Lm,a ∩Ln,b has at least m · n states.

Hint: Consider using the pigeonhole principle.
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Solution:

(a) Graphically, the automaton A is as follows:

q0

q1

q2

qk−1

σ σ

σ

�= σ

�= σ

�= σ

�= σ

σ

Formally, we define A= ({q0, q1, . . . , qk−1}, {a, b}, δ, {q0}, {q0}) where

δ(qi, x)=
{
q(i+1 mod k) if x= σ ,
qi if x �= σ .

(b) Let A= (Q, {a, b}, δ,Q0,F) be a minimal NFA that accepts Lm,a ∩Ln,b. For the sake of
contradiction, suppose that |Q|<m · n. Let wi,j= aibj. Since wi,ja(m−1)ib(n−1)j ∈L (A), the
word wi,j can be read in A—that is, there exist pi,j ∈Q0 and qi,j ∈Q such that

pi,j
wi,j−→ qi,j.

By the pigeonhole principle, there exist 0≤ i, i′<m and 0≤ j, j′< n such that (i, j) �= (i′, j′)
and qi,j= qi′,j′ . Moreover, since A is minimal, qi,j can reach some final state qf ∈F through
some v∈�∗, as otherwise, qi,j could be removed. Therefore, we have

pi,j
wi,jv−−→ qf and pi′,j′

wi′ ,j′v−−−→ qf .

This means that wi,jv∈L (A) and wi′,j′v∈L (A). Thus, we have

(i+ |v|a) mod m= 0= (i′ + |v|a) mod m,

(j+ |v|b) mod n= 0= (j′ + |v|b) mod n.

This implies i= i′ and j= j′, which is a contradiction. Hence, |Q| ≥m · n as claimed.

�� Exercise 15. Prove or disprove: Every regular language is recognized by an NFA

(a) having one single initial state,
(b) having one single final state,
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(c) whose initial states have no incoming transitions,
(d) whose final states have no outgoing transitions,
(e) all of the above,
(f) whose states are all initial,
(g) whose states are all final.

Which of the above hold for DFAs? Which ones for NFA-ε?

Solution: For NFAs:

(a) Yes. We can add a single initial state q0, make all former initial states q∈Q0 nonini-
tial, and add transitions δ(q0, a)= δ(q, a). Moreover, we make q0 final iff some q∈Q0 was
final.
(b) Yes. The argument is symmetric to (a).
(c) Yes. This follows from (a).
(d) Yes. This follows from (b).
(e) No. There is no such NFA accepting a∗.
(f) No. There is no such NFA accepting {a}, as it would otherwise also accept ε.
(g) No. There is no such NFA accepting {a}, as it would otherwise also accept ε.

For NFA-ε, the same holds except for (e), which is true. Indeed, we can add a single initial
and final state respectively connected to the former initial and final states with ε-transitions.
For DFAs:

(a) Yes. We do the same as for NFAs.
(b) No. There is no such DFA accepting {ε, a}.
(c) Yes. This follows from (a).
(d) No. There is no such DFA accepting {ε, a}.
(e) No. It is already false for NFAs.
(f) No. It is already false for NFAs.
(g) No. It is already false for NFAs.

�� Exercise 16. Given a regular expression r, construct an NFA A that satisfies L (A)=
L (r) and the following properties:

• initial states have no incoming transitions,
• accepting states have no outgoing transitions,
• all input transitions of a state (if any) carry the same label,
• all output transitions of a state (if any) carry the same label.

Apply your construction on r= (a(b+ c))∗.

Solution: Let A= (Q,�, δ,Q0,F) be an NFA such that L (A)=L (r). We define
A′ = (Q′,�′, δ′,Q′0,F′) as
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Q′ =Q×�2,

Q′0=Q0×�2,

F′ =F×�2,

δ′ = {((q, x, y), y, (r, y, z)) : (q, y, r)∈ δ, x, y∈�}.
Clearly, every state (q, x, y) only has incoming transitions labeled with x and only has out-
going transitions labeled with y. To deal with the initial and final states, we modify A′
by copying every initial and final state and deleting all incoming or outgoing transitions,
respectively.

Alternatively, it is possible to construct an NFA inductively from r. If r is ∅, ε, or a, then
we can take A as one of these three automata:

a

If r= r1+ r2 or r= r1r2, then by induction hypothesis, there exist NFAs A1=
(Q1,�, δ1,Q01,F1) and A2= (Q2,�, δ2,Q02,F2) that satisfy the above properties for r1
and r2. In the former case, it suffices to put A1 and A2 side by side. In the latter case,
we would like to “glue A2 to the end of A1.” However, since transitions with different let-
ters cannot enter a common state, we make |�| copies of A1. More formally, we construct
A= (Q,�, δ,Q0,F), where

Q = {qa : q∈Q1, a∈�} ∪Q2,

δ = {(pa, b, qa) : q∈ δ1(p, b), a∈�} ∪
{(pa, a, q) : p∈F1, a∈�, q∈ δ2(Q02, a)} ∪ δ2,

Q0 = {qa : q∈Q01},
F = F2.

It remains to handle the case of r= s∗. By induction hypothesis, there exists an NFA
A= (Q,�, δ,Q0,F) that satisfies the above properties for s. Let us construct an NFA
A′ = (Q′,�, δ′,Q′0,F′) that satisfies the claim. Note that s∗ is equivalent to ε+ s+. So it
suffices to deal with s+ and add a disjoint singleton NFA for ε. Informally, we wish to con-
nect F′ to Q′0 with ε-transitions. However, we cannot use ε-transitions. Moreover, we must
respect the constraints. Hence, we make 1+ |�| copies of each accepting state of A. The
purpose of the first copy is to satisfy the fact that accepting states cannot have outgoing
transitions. Each other copy is associated to the letter that may leave an accepting state.
Formally, we define

Q′ = Q∪ {qa : q∈F, a∈�},
δ′ = δ ∪ {(p, b, qa) : q∈F ∩ δ2(p, b), a∈�} ∪

{(pa, a, q) : p∈F, a∈�, q∈ δ(Q0, a)},
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Q′0 = Q0,

F′ = F.

Let us apply the construction on r= (a(b+ c))∗. We obtain the following NFAs for a and
b+ c:

a b

c

By applying the construction for concatenation, we obtain

a

a

a

b

c

b

c

By cleaning the NFA, we obtain

a

a

b

c

By applying the construction for the Kleene star, we obtain
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a

a

b

b

b

b

c

c

c

c

a

a
a

a

By cleaning the NFA, we obtain an NFA for (a(b+ c))∗ that satisfies all of the constraints:

a

a

b

b

c

c

a

a
a

a

�� Exercise 17. Convert this NFA-ε to an NFA using the algorithm NFAεtoNFA:

p

q

r

s

ε

ε

b

a

ε
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Solution: We obtain the resulting NFA B in seven steps:

Iter. B= (Q′,�, δ′,Q′0,F′) δ′′ (ε-transitions) WorksetW

0 p {(p, ε, q), (p, ε, r)}

1
p p

q
ε {(p, ε, r), (p, a, q),

(p, b, s)}

2
p

p

q

r

ε

ε

{(p, a, q), (p, b, s),
(p, ε, s)}

3 p

q
a

p

q

r

ε

ε

{(p, b, s), (p, ε, s),
(q, a, q), (q, b, s)}

4 p

q

s
a

b

p

q

r

ε

ε

{(p, ε, s), (q, a, q),
(q, b, s)}

5 p

q

s
a

b

p

q

r

s
ε

ε
ε {(q, a, q), (q, b, s)}

6 p

q

s
a

b

a
p

q

r

s
ε

ε
ε {(q, b, s)}

7
p

q

s
a

b

a

b p

q

r

s
ε

ε
ε ∅
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� � Exercise 19. Let �n={1, 2, . . . , n}, and let Ln be the set of all words w∈�n such
that at least one letter of �n does not appear in w. So, for instance, 1221, 32, 1111∈L3 and
123, 2231 /∈L3.
(a) Give an NFA for Ln with O(n) states and transitions.
(b) Give a DFA for Ln with 2n states.
(c) Show that any DFA for Ln has at least 2n states.
(d) Do the bounds of (a), (b), and (c) also hold for Ln?

Solution:

(a)

· · ·

�n \ {1} �n \ {n}

(b) We construct a DFA A= (Q,�nδ, q0,F) whose states are subsets of the alphabet:

Q=P(�n),

δ(S, a)= S ∪ {a} for every S ∈Q, a∈�n,

q0=∅,
F=Q \ {�n}.

(c) For every word w∈�∗n , let α(w) denote the subset of letters of �n that appear in w.
Let An= (Q,�n, δ, q0,F) be a DFA recognizing Ln. Let w1,w2 be two words such that
α(w1) �=α(w2), and let q1, q2 ∈Q be the states such that

q0
w1−−→ q1 and q0

w2−−→ q2.

We claim that q1 �= q2. Since α(w1) �=α(w2), we may assume w.l.o.g. that α(w1) �⊆α(w2).
Thus, there is a word v such that w1v contains all letters of �n, but w2v does not. By
definition of Ln, we have w1v /∈Ln and w2v∈Ln, which implies q1 �= q2, and we are done.
By the claim, the number of states of An is larger than or equal to the number of subsets

of �n, and hence An has at least 2n states.
(d) Clearly, (b) holds as we can simply complement the DFA for Ln. Moreover, (c) holds
because the minimal DFAs for a language and for its complement have the same number
of states. We prove that (a) does not hold, that is, that every NFA for Ln has 2n states.

Let�1,�2 be two different subsets of�n, and let w1 ∈�∗1 and w2 ∈�∗2 . Let A be an NFA
that recognizes Ln. We show that A has runs ρ1 on w1 and ρ2 on w2, leading to different
states q1 and q2. Since �1 �=�2, w.l.o.g. there are words v1 and v2 such that w1v1,w2v2 ∈
Ln, but w2v1 /∈Ln. Let ρ1, ρ2 be accepting runs for w1v1 and w2v2. Let q1 and q2 be the
states reached by the runs after reading w1 and w2. If q1= q2, then w2v1 ∈Ln, which is a
contradiction. Thus, q1 �= q2.
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�� Exercise 20. Let Mn be the language of the following regular expression:

(0+ 1)∗0(0+ 1)n−10(0+ 1)∗.

These are the words containing at least one pair of 0s at distance n. For example,
101101, 001001, 000000∈M3 and 101010, 000111, 011110 /∈M3.

(a) Give an NFA for Mn with O(n) states and transitions.
(b) Give a DFA for Mn with �(2n) states.
(c) Show that any DFA for Mn has at least 2n states.

Solution:

(a) We give an NFA for M3; the generalization to Mn is straightforward:

0 0, 1 0, 1 0

0, 1 0, 1

(b) The DFA has 2n+ 1 states: one for each word from {0, 1}n and one final state qf . Intu-
itively, the DFA is at state b1 · · · bn ∈ {0, 1}n if these are the last n letters that were read.
Accordingly, for every b2 · · · bn ∈ {0, 1}n−1, the DFA has four transitions of the form

0b2 · · · bn 0−→ qf ,

0b2 · · · bn 1−→ b2 · · · bn1,

1b2 · · · bn 0−→ b2 · · · bn0,

1b2 · · · bn 1−→ b2 · · · bn1.
Initially, the DFA has not yet read anything, but this is equivalent to having read only 1s so
far: in both cases, there can be no pair of 0s at distance n before n steps. Thus, we take 1n
as the initial state.
(c) The proof is very similar to the one of exercise 19(c): one may show that the states
reached by the DFA after reading any two distinct words w1,w2 ∈ {0, 1}n must be different.

�	 Exercise 21.Recall that an NFA A accepts a wordw if at least one of the runs of A on
w is accepting. This is sometimes called the existential accepting condition. Consider the
variant where A accepts word w if all runs of A on w are accepting (in particular, if A has no
run on w, then it trivially accepts w). This is called the universal accepting condition. Note
that a DFA accepts the same language with both the existential and the universal accepting
conditions.
Intuitively, we can imagine an automaton with universal accepting condition as executing

all runs in parallel. After reading a word w, the automaton is simultaneously in all states
reached by all runs labeled by w and accepts if all those states are accepting.
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Consider the language Ln={ww :w∈ {0, 1}n}.
(a) Give an automaton of size O(n) with universal accepting condition that recognizes Ln.
(b) Prove that every NFA (and so in particular every DFA) recognizing Ln has at least 2n
states.
(c) Give an algorithm that transforms an automaton with universal accepting condition into
a DFA recognizing the same language. This shows that automata with universal accepting
condition recognize the regular languages.

Solution:

(a) Note that v∈Ln iff for every 1≤ i≤ n the ith and i+ nth letters of v coincide. This is a
conjunction of conditions. We construct a universal automaton that has a run on v for each
of these conditions, and the run accepts iff the condition holds.

The automaton has a spine of states q0, . . . , qn, with transitions qi
0,1−−→ qi+1 for every

0≤ i≤ n− 1. At every state qi, the automaton can leave the spine remembering the (i+ 1)th
letter by means of transitions

qi
0−→ r1 and qi

1−→ r′1.

The automaton then reads the next n− 1 letters by transitions ri
0,1−−→ ri+1 and r′i

0,1−−→ r′i+1
for every 1≤ i≤ n− 1 and checks whether the (i+ n)th letter matches the (i+ 1)th letter
by transitions

rn
0−→ qf and r′n

1−→ qf ,

where qf is the unique final state.
(b) We use the same technique as in exercise 19. Let A be an NFA recognizing Ln. For every
word ww∈ {0, 1}2n, the automaton A has at least one accepting run on ww. Let qw be the
state reached by one such run after reading the first w. We claim that for any two different
words w,w′ ∈ {0, 1}n, the states qw, qw′ are different. For the sake of contradiction, suppose
that qw= qw′ . Automaton A has an accepting run on ww′, obtained by concatenating the
first half of the accepting run on ww and the second half of the accepting run on ww′. Since
ww′ /∈Ln, this is a contradiction. Consequently, A has a different state qw for each word
ww∈ {0, 1}2n, and hence it has at least 2n states.
(c) It suffices to replace line 6 of NFAtoDFA by if Q′ ⊆F then addQ′ toF . In other words,
all states of Q′ must be accepting rather than at least one.

� 	 Exercise 22. The existential and universal accepting conditions can be combined,
yielding alternating automata. The states of an alternating automaton are partitioned into
existential and universal states. An existential state q accepts a wordw, denotedw∈L (q), if
eitherw= ε and q∈F orw= aw′ and there exists a transition (q, a, q′) such thatw′ ∈L (q′).
A universal state q accepts a word w if either w= ε and q∈F or w= aw′ and w′ ∈L (q′)
for every transition (q, a, q′). The language recognized by an alternating automaton is the
set of words accepted by its initial state.
Give an algorithm that transforms an alternating automaton into a DFA recognizing the

same language.
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Solution: As an example, let us consider this alternating automaton A:

q0

q1

q4

q2

q3

∃

∃ ∀

∃∀

a

a

b

b

b

After reading the letter a, the automaton is in either state q1 or q4, which we can write
as q1 ∨ q4. If the automaton reads b from q1, then it is in q1. If it reads b from q4, then it is
“in both” q2 and q3, which we write as q2 ∧ q3. Altogether, reading the word ab in A leads
to q1 ∨ (q2 ∧ q3). If we substitute each state qi by true iff qi is accepting, then the resulting
boolean value indicates whether the word is accepted. In our example, ab is accepted since
false∨ (true∧ true)= true.
Now, consider an arbitrary alternating automaton A. Let Q={q1, . . . , qn} be its set of

states. The above example suggests to define the states of the DFA as the set of all positive
boolean formulas over variablesQ. However, since there are infinitely many such formulas,
we define the states as the equivalence classes of formulas (where, as usual, two formulas
are equivalent if they are true for the same valuations of the variables).
The initial state is the (equivalence class of) the formula q0. The final states are the for-

mulas that are true when all accepting states are set to true and all nonaccepting states to
false. Given a formula f , the unique formula f ′ such that (f , a, f ′) belongs to the transition
relation is defined as follows. For each state q:

• If q is existential and (q, a, q1), . . . , (q, a, qn) are the output transitions of q, then replace
every occurrence of q in f by (q1 ∨ · · · ∨ qn). If n= 0, then replace it by false.
• If q is universal and (q, a, q1), . . . , (q, a, qn) are the output transitions of q, then replace
every occurrence of q in f by (q1 ∧ · · · ∧ qn). If n= 0, then replace it by true.

For example, the resulting DFA for the alternating automaton above is

q0 q1 ∨ q4 q1 ∨ (q2 ∧ q3)
a b

� � Exercise 24. Execute algorithm NFAεtoNFA on the following NFA-ε over �=
{a1, . . . , an} to show that the algorithmmay increase the number of transitions quadratically:

q0 q1 q2 qn−1 qn

a1

ε

a2

ε

an

ε
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Solution: Let us execute the algorithm by prioritizing ε-transitions. The contents of the
workset W evolve as follows during the first few iterations:

Iter. W

0 {(q0, a1, q1), (q0, ε, q1)}
1 {(q0, a1, q1), (q0, a2, q2), (q0, ε, q2)}
2 {(q0, a1, q1), (q0, a2, q2), (q0, a3, q3), (q0, ε, q3)}
...

...

n− 1 {(q0, a1, q1), (q0, a2, q2), (q0, a3, q3), . . . , (q0, an, qn), (q0, ε, qn)}
n {(q0, a1, q1), (q0, a2, q2), (q0, a3, q3), . . . , (q0, an, qn)}

n+ 1 {(q0, a2, q2), (q0, a3, q3), . . . , (q0, an, qn), (q1, a2, q2), (q1, ε, q2)}
n+ 2 {(q0, a2, q2), (q0, a3, q3), . . . , (q0, an, qn), (q1, a2, q2), (q1, a3, q3), (q1, ε, q3)}
...

...

2n− 1 {(q0, a2, q2), (q0, a3, q3), . . . , (q0, an, qn), (q1, a2, q2), (q1, a3, q3), . . . , (q1, an, qn), (q1, ε, qn)}
2n {(q0, a2, q2), (q0, a3, q3), . . . , (q0, an, qn), (q1, a2, q2), (q1, a3, q3), . . . , (q1, an, qn)}

Thus, after these iterations, we have discovered transitions

{(q0, aj, qj) : 0< j≤ n} ∪ {(q1, aj, qj) | 1< j≤ n},
whichwill all be part of the resultingNFA. By continuing the execution, wewill discover the
set of transitions {(qi, aj, qj) : 0≤ i< j< n}, which has size (n− 1)+ . . .+ 1= n(n− 1)/2.
Thus, the resulting NFA has a quadratic number of transitions:

q0 q1 q2 qn−1 qn

a1 a2 an

a2

an−1

an

an−1

an

an−1

an

�� Exercise 27. Let L be a regular language over �. Show that the following languages
are also regular by constructing automata:
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(a)
√
L={w∈�∗ :ww∈L},

(b) Cyc(L)={vu∈�∗ : uv∈L}.
Solution: Let A= (Q,�, δ,Q0,F) be an NFA that accepts L.

(a) Intuitively, we construct an automaton B that guesses an intermediate state p and then
reads w simultaneously from an initial state q0 and from p. The automaton accepts if it
simultaneously reaches p and some qF ∈F. Formally, let B= (Q′,�, δ′,Q′0,F′) be such
that

Q′ =Q×Q×Q,

Q′0={(p, q, p) : p∈Q, q∈Q0},
F′ = {(p, p, q) : p∈Q, q∈F},

and, for every p, q, r∈Q and a∈�,

δ′((p, q, r), a)={(p, q′, r′) : q′ ∈ δ(q, a), r′ ∈ δ(r, a)}.
(b) Intuitively, we construct an automaton B that guesses a state p and reads a prefix v of
the input word until it reaches a final state. Then, automaton B moves nondeterministically
to an initial state from which it reads the remainder u of the input word, and it accepts if it
reaches p. More formally, let B= (Q′,�, δ′,Q′0,F′) be such that

Q′ =Q×{0, 1}×Q,

Q′0={(p, 0, p) : p∈Q},
F′ = {(p, 1, p) : p∈Q},

and, for every p, q∈Q and a∈� ∪ {ε},

δ′((p, b, q), a)=
⎧⎨⎩
{(p, b, q′) : q′ ∈ δ(q, a)} if a∈�,
{(p, 1, q′) : q′ ∈Q0} if a= ε, b= 0 and q∈F,
∅ otherwise.

� � Exercise 28. For every n∈N, let MSBF(n) be the set of most-significant-bit-first
encodings of n (i.e., the words that start with an arbitrary number of leading zeros, fol-
lowed by nwritten in binary). For example, MSBF(3)=L (0∗11), MSBF(9)=L (0∗1001),
and MSBF(0)=L (0∗). Similarly, let LSBF(n) denote the set of least-significant-bit-first
encodings of n (i.e., the set containing for eachwordw∈MSBF(n) its reverse). For example,
LSBF(6)=L (0110∗) and LSBF(0)=L (0∗).

(a) Construct and compare DFAs recognizing the set of even numbers w.r.t. the unary
encoding (where n is encoded by the word 1n), the MSBF-encoding, and the LSBF-
encoding.
(b) Do the same for the set of numbers divisible by 3.
(c) Give regular expressions corresponding to the languages of (b).
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Solution:

(a) Here are the three DFAs:

• Unary encoding:
1

1

• MSBF encoding:
0 1

1

0

• LSBF encoding:

0

0, 1

(b) The DFA for the unary encoding is, loosely speaking, a cycle of length 3. We now
give a DFA for the MSBF encoding. The idea is that the state reached after reading a word
w corresponds to the remainder of the number represented by w when dividing by 3. We
therefore take as statesQ={0, 1, 2}with 0 as both initial and final state. If a wordw encodes
a number k, thenwa encodes the number 2k+ a. Thus, for every state q∈ {0, 1, 2}, we define

δ(q, a)= (2q+ a) mod 3.

This yields the automaton:

0 1 2

0 1
1 0

1 0

To obtain a DFA for the LSBF encoding, we “reverse” the DFA as follows: exchange initial
and final states, and reverse the transitions. In general, this yields anNFA, but in this case the
result of this operation is the same automaton! Thus, we have shown that a binary number
b1b2 · · · bn is divisible by 3 iff the number bnbn−1 · · · b1 is also divisible by 3.
(c) For the unary encoding, we can take (111)∗. For the two other encodings, we can take
the regular expression (0+ 1(01∗0)∗1)∗.
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�� Exercise 29. Consider this DFA over alphabet {[0, 0], [0, 1], [1, 0], [1, 1]}:

0 1 2

[
0
0

] [
1
1

][
1
0

] [
0
0

]

[
0
1

][
1
1

]

A word w encodes a pair of natural numbers (X (w),Y (w)), where X (w) and Y (w) are
obtained by reading the top and bottom rows inMSBF encoding. For instance, the following
word encodes (44, 19):

w=
[
1
0

] [
0
1

] [
1
0

] [
1
0

] [
0
1

] [
0
1

]
.

Show that the above DFA recognizes the set of words w such that X (w)= 3 ·Y (w) (i.e., the
solutions of the equation x− 3y= 0).

Solution: Wewrite ∅ to denote the implicit trap state. Let f : �∗→Z be defined as f (w)=
X (w)− 3 ·Y (w). Note that −3≤ f (c)≤ 1 for all c∈�. Further, by the definition of the
MSBF-encoding, f (wc)= 2f (w)+ f (c) for every w∈�∗ and c∈�. We will show, for all
w∈�∗, that δ(q0,w)= f (w) if f (w)∈ {0, 1, 2}, and δ(q0,w)=∅ otherwise. As the only final
state is 0, this shows that w is accepted iff f (w)= 0. The proof proceeds by induction on the
length of w. Clearly, f (ε)= 0= δ(q0, ε). For the induction step, let w∈�∗ and c∈�. We
consider the following two cases:

• If f (w)∈ {0, 1, 2}, then f (wc)= 2f (w)+ f (c) (as above). It is easy to check for all q∈
Q that δ(q, c)= 2q+ f (c) holds if 2q+ f (c)∈ {0, 1, 2}, and δ(q, c)=∅ otherwise. Using
the induction hypothesis, we have δ(q0,wc)= δ(δ(q0,w), c)= δ(f (w), c), and the statement
follows.
• If δ(q0,w)=∅, then by induction hypothesis, we have either f (w)≥ 3 or f (w)≤−1. For
the former, we have f (wc)= 2f (w)+ f (c)≥ 6− 3= 3, and for the latter, 2f (w)+ f (c)≤
−2+ 1≤−1. (Recall −3≤ f (c)≤ 1.) In both cases, we have shown f (wc) /∈ {0, 1, 2};
correspondingly, δ(∅, c)=∅ (due to ∅ being the trap state) implies the statement.

� 	 Exercise 30. Algorithm NFAtoRE transforms a finite automaton into a regular
expression representing the same language by iteratively eliminating states of the automa-
ton. In this exercise, we present an algebraic reformulation of the algorithm. We represent
an NFA as a system of language equations with as many variables as states and solve the
system by eliminating variables. A language equation over an alphabet � and a set V of
variables is an equation of the form r1= r2, where r1 and r2 are regular expressions over
� ∪V . For instance, X = aX + b is a language equation. A solution of a system of equa-
tions is a mapping that assigns to each variable X a regular expression over �, such that the
languages of the left- and right-hand sides of each equation are equal. For instance, a∗b is
a solution of X = aX + b because L (a∗b)=L (aa∗b+ b).
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(a) Arden’s lemma states that, given two languages A,B⊆�∗, the smallest language X ⊆
�∗ satisfying X =AX +B is the language A∗B. Moreover, if ε �∈A, then the solution is
unique. Prove Arden’s lemma.
(b) Consider the following system of equations, where variables X and Y represent
languages (regular expressions) over the alphabet �={a, b, c, d, e, f }:

X = aX + bY + c

Y = dX + eY + f .

Find the unique solution with the help of Arden’s lemma.
Hint: As a first step, consider X not as a variable but as a constant language, and solve the
equation for Y using Arden’s lemma.
(c) We can associate to any NFA A= (Q,�, δ, {q0},F) a system of linear equations as fol-
lows. We take Q as variables, which we call here X ,Y ,Z, . . ., with X as initial state. The
system has the following equation for each state Y :

Y =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

∑
(Y ,a,Z)∈δ

aZ if Y /∈F,

⎛⎝ ∑
(Y ,a,Z)∈δ

aZ

⎞⎠+ ε if Y ∈F.

Consider the DFA (1)(a) from the Tour of Conversions on page 35.
Let X ,Y ,Z,W be the states of the automaton, read from top to bottom and from left to

right. The associated system of linear equations is

X = aY + bZ+ ε Y = aX + bW

Z= bX + aW W = bY + aZ.

Compute the solution of this system by iteratively eliminating variables. Start with Y , then
eliminate Z, and finallyW . Compare with the elimination procedure depicted in step (1) of
the Tour of Conversions on page 35.

Solution:

(a) We first show that A∗B is a solution of X =AX +B:

A∗B=
⎛⎝⋃

k≥0
Ak

⎞⎠B

=
⋃
k≥0

AkB (by distributivity)

=B∪
⋃
k≥1

AkB
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=B∪A

⎛⎝⋃
k≥0

Ak

⎞⎠B (by distributivity)

=A(A∗B)∪B.

Now, let L be an arbitrary solution of X =AX +B. We must show that A∗B⊆L. Since
L=AL+B, we have

L=AL+B

L=A(AL+B)+B =B+AB+A2L

L=A(A(AL+B)+B)+B=B+AB+A2B+A3L

...

and so, by induction, we get for all k≥ 0

L=Ak+1L∪
k⋃

	=0
A	B.

In particular, this implies A	B⊆L for every 	≥ 0, and hence A∗B⊆L.

To conclude, let us consider the case where ε /∈A. Let w∈L and k= |w|. We have w /∈
Ak+1L and hence w∈⋃0≤	≤k A	B⊆A∗B. Thus, L⊆A∗B, which implies L=A∗B.
(b) By Arden’s lemma, the unique solution of the equation

Y = dX + eY + f = eY + (dX + f )

is the language e∗(dX + f ) independently of the value of X . Substituting into the equation
for X , we obtain

X = aX + be∗(dX + f )+ c

= (a+ be∗d)X + be∗f + c,

which by Arden’s lemma yields

X = (a+ be∗d)∗(be∗f + c)

Y = e∗(d(a+ be∗d)∗(be∗f + c)+ f ).

(c) In order to eliminate Y , we simply substitute the equation Y = aX + bW into the
remaining equations, yielding

X = aaX + abW + bZ+ ε

Z= bX + aW

W = aZ+ baX + bbW .
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Similarly, we may eliminate Z:

X = aaX + abW + bbX + baW + ε= (aa+ bb)X + (ab+ ba)W + ε

W = abX + aaW + baX + bbW = (aa+ bb)W + (ab+ ba)X .

By Arden’s lemma, the parametrized unique solution forW is (aa+ bb)∗(ab+ ba)X . So,
we obtain the single equation

X = (aa+ bb)X + (ab+ ba)(aa+ bb)∗(ab+ ba)X + ε

= (aa+ bb+ (ab+ ba)(aa+ bb)∗(ab+ ba)
)
X + ε,

whose unique solution is

X = (aa+ bb+ (ab+ ba)(aa+ bb)∗(ab+ ba)
)∗ .

This is the same regular expression as obtained in the chapter. In fact, the elimination
of states corresponds to the elimination of the corresponding variables in the underlying
system of linear equations.

� � Exercise 31. Consider a deck of cards (with arbitrary many cards) in which black
and colored cards alternate, the top card is black, and the bottom card is colored. The set
of possible decks is given by the regular expression (BR)∗. Cut the deck at any point into
two piles, and then perform a perfect riffle shuffle to yield a new deck (where cards strictly
alternate). For example, we can cut a deck with six cards 123456 (with 1 as the top card)
into two piles 12 and 3456, and the riffle yields 345162 (we start the riffle with the first pile).
Give a regular expression over the alphabet {B,R} describing the possible configurations of
the decks after the riffle.
Hint: After the cut, the last card of the first pile can be black or colored. In the first case,
the two piles belong to (BR)∗B and R(BR)∗ and in the second case to (BR)∗ and (BR)∗. Let
Rif(r1, r2) be the language of all decks obtained by performing a riffle on decks taken from
L (r1) and L (r2). We are looking for a regular expression for

Rif
(
(BR)∗B,R(BR)∗

)+Rif
(
(BR)∗, (BR)∗

)
.

Use exercise 30 to set up a system of equations over the variables X =Rif((BR)∗B,R(BR)∗)
and Y =Rif((BR)∗, (BR)∗), and solve it.

Solution: By definition of a riffle, for every regular expressions r, r1, r2 and letters
a, b∈�:

Rif(r, ε)= r,

Rif(ε, r)= r,

Rif(r1+ r2, r)=Rif(r1, r)+Rif(r2, r),

Rif(r, r1+ r2)=Rif(r, r1)+Rif(r, r2),

Rif(r1a, r2b)=Rif(r1, r2)ba.
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Applying these identities, we get

Rif
(
(BR)∗B,R(BR)∗

)=Rif
(
(BR)∗B, (RB)∗R

)
=Rif

(
(BR)∗, (RB)∗

)
RB,

Rif
(
(BR)∗, (RB)∗

)=Rif
(
ε+ (BR)∗BR, ε+ (RB)∗RB

)
= (BR)∗ + (RB)∗ +Rif

(
(BR)∗B, (RB)∗R

)
BR.

By introducing variables X and Y for Rif ((BR)∗B,R(BR)∗) and Rif ((BR)∗, (RB)∗), we
obtain the following system of equations:

X =YRB

Y = (BR)∗ + (RB)∗ +XBR.

Substituting Y in the equation for X yields

X = ((BR)∗ + (RB)∗ +XBR
)
RB= ((BR)∗ + (RB)∗

)
RB+XBR

whose unique solution is

X = ((BR)∗ + (RB)∗
)
RB(BR)∗.

Substituting in the equation for Y yields

Y = ((BR)∗ + (RB)∗
) (

ε+RB(BR)∗BR
)
.

�� Exercise 32. Let L be an arbitrary language over a one-letter alphabet. Prove that L∗
is regular.

Solution: We assume that L �= ∅ and L �= {ε}, as the claim is otherwise trivial. Let w∈L
be the shortest nonempty word of L. Let v0= ε. Note that v0{w}∗ ⊆L∗. If L∗ = v0{w}∗, then
we are done. Otherwise, let v1 ∈L∗ be the shortest word such that v1 ∈L∗ \ v0{w}∗. We have
(v0+ v1){w}∗ ⊆L∗. If L∗ = (v0+ v1){w}∗, then we are done. Otherwise, we can continue
this process by picking the shortest word vi ∈L∗ \ (v0+ v1+ . . .+ vi−1){w}∗ and checking
whether L∗ = (v0+ v1+ . . .+ vi){w}∗. Let p= |w|. This process is guaranteed to terminate
in n< p steps, which means that L= (v0+ v1+ . . .+ vn){w}∗, which is regular. Indeed,
for the sake of contradiction, suppose it does not terminate in less than p steps. By the
pigeonhole principle, there exists 0≤ i< p such that |vp| ≡ |vi| (mod p). Since |vi|< |vp|,
we have vp ∈ vi{w}∗, which contradicts the way vp was picked.
� � Exercise 34. Let Kn= (Vn,En) be the complete directed graph of n nodes, that is,
with nodes Vn={1, . . . , n} and edges En={(i, j) : 1≤ i, j≤ n}. A path of Kn is a sequence
of nodes, and a circuit is a path that begins and ends in the same node. Let An=
(Qn,�n, δn, q0n,Fn) be the DFA defined by Qn={1, . . . , n} ∪ {⊥}, �n={ai,j : 1≤ i, j≤ n},
q0n= 1, Fn={1} and

δn(q, ai,j)=
{⊥ if q=⊥ or q �= i,
j otherwise (if q= i).
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The language accepted by An consists of all words encoding circuits of Kn from node 1 to
itself. For example, the following DFA A3 accepts a1,3a3,2a2,1, which encodes the circuit
1321 of K3.

1

3

2

a1,2

a2,1

a1,3

a3,1 a2,3

a3,2a1,1 a2,2

a3,3

The size of a regular expression r, denoted |r|, is defined recursively as 1 if r∈ {ε,∅}∪�n;
|r1| + |r2| if r= r1+ r2 or r= r1r2; and |s| if r= s∗. Similarly, we define the length of r,
denoted len(r), as 1 if r∈ {ε,∅}∪�n; max(len(r1), len(r2)) if r= r1+ r2; len(r1)+ len(r2)
if r= r1r2; and len(s) if r= s∗. Note that |r| ≥ len(r).
A path expression r is a regular expression over �n that encodes paths of Kn. We seek

to show that any path expression for L (An), and hence any regular expression, must have
length �(2n). As a consequence, this means that DFAs can be exponentially more succinct
than regular expressions.

(a) Let π be a circuit of Kn and let r be a path expression. We say that r covers π if L (r)
contains a word uwv such that w encodes π . Furthermore, we say that r covers π∗ if L (r)
covers πk for every k≥ 0. It can be shown that if r covers π2·len(r), then it covers π∗.

From this, show that if r covers π∗ and no proper subexpression of r does, then r= s∗
for some expression s, and every word of L (s) encodes a circuit starting at a node of π .
(b) For every 1≤ k≤ n+ 1, let [k] denote the permutation of {1, 2, . . . , n+ 1} that cycli-
cally shifts every index k positions to the right. More formally, node i is renamed to i+ k
if i+ k≤ n+ 1 and to i+ k− (n+ 1) otherwise. Let π [k] be the result of applying the
permutation to π . For example, if n= 4 and π = 24142, we obtain

π [1] = 35253, π [2] = 41314, π [3] = 52425, π[4] = 13531, π [5] = 24142=π .

Let π be a circuit of Kn. Show that π [k] is a circuit of Kn+1 that does not pass through
node k.
(c) Let us define a circuit gn of Kn inductively:

g1= 11,

gn+1= 1 (gn[1])2n (gn[2])2n · · · (gn[n+ 1])2n for every n≥ 1.

In particular, we have

g1= 11,

g2= 1 (22)2 (11)2,

g3= 1 (2 (33)2 (22)2)4 (3 (11)2 (33)2 3)4 (1 (22)2 (11)2)4.
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Prove, using (a)–(b), that every path expression r covering gn is such that |r| ≥ 2n−1.
(d) Show that any regular expression rn such that L (rn)=L (An) is such that |rn| ≥ 2n−1.

Solution:

(a) Let r be a path expression that covers π∗ and with no proper subexpression of r covering
π∗. For the sake of contradiction, suppose r is not of the form s∗. If r= r1+ r2, then, since
r covers π2·len(r), either r1 or r2 covers π2·len(r). This means that either r1 or r2 covers π∗,
which contradicts the minimality of r. Similarly, if r= r1r2, then, since r covers π4·len(r)+1,
either r1 or r2 covers π2·len(r), which is a contradiction.
Thus, we have r= s∗ for some s. Let us consider two words of L (s):

w1= ai1,i2ai2,i3 · · · aik−1,ik and w2= aj1,j2aj2,j3 · · · aj	−1,j	 .
Since r is a path expression and r= s∗, the words w1w1, w1w2, w2w1, and w2w2 encode
paths. Consequently, we have i1= ik = j1= ik = j	. Thus, all words of L (s) encode circuits
starting and ending at the same node, say i. It remains to prove that i is a node of π . For
the sake of contradiction, suppose it is not the case. For every k≥ 1, any shortest word
of L (s∗) that covers πk must also be a word of s, because the first and last letters of a
word of L (s) cannot be used to encode π . It follows that s covers π∗, contradicting the
assumption that no proper subexpression of r covers π∗.
(b) Since π is a path ofKn, it does not pass through node n+ 1. The node permuted to node
k by the permutation [k] is n+ 1. Thus, the circuit π[k] does not pass through node k.
(c) We proceed by induction. The claim is obvious for n= 1 since |r| ≥ 1= 21−1. Now,
let r be a path expression covering gn+1 such that no proper subexpression of r covers
gn+1. By definition, r covers (gn[i])2n for every 1≤ i≤ n+ 1. Thus, by (a), either r covers
(gn[i])∗ for every 1≤ i≤ n+ 1, or len(r)≥ 2n−1. Let us assume the former, as we are done
in the latter case since |r| ≥ len(r). Expression r contains, for every 1≤ i≤ n+ 1, a minimal
subexpression ri covering (gn[i])∗. By (a), ri= s∗i for some expression si. Let s be ofminimal
size among s1, . . . , sn+1. By (a), there is a node j such that every word of L (s) encodes a
circuit starting at j. Consider s∗ and s∗j . By induction hypothesis, each of them has size
at least 2n−2. By minimality of s∗, we have that s∗j cannot be a proper subexpression of
s∗. Thus, there are two possible cases: (1) neither s∗ is a subexpression of s∗j , nor s∗j is a
subexpression of s∗, or (2) s∗ is a subexpression of s∗j . Let us handle both cases.
(1) We have |r| ≥ |s∗|+ |s∗j | ≥ 2n−2+ 2n−2= 2n−1.
(2) Recall that sj covers gn[j], which by (b) does not pass through node j. By (a), no word
of L (sj) can encode a circuit starting at j. Recall that every word of L (s) encodes a circuit
starting at j. This implies s �= sj, and hence s∗ is a proper subexpression of sj. It follows that
sj[s∗/ε] (i.e., the result of substituting s∗ by ε in sj), still covers (gn[ j])∗, since the substitu-
tion only loses circuits containing j, which (gn[j])∗ does not visit. By induction hypothesis,
|sj[s∗/ε]| ≥ 2n−2. Since |s∗| ≥ 2n−2, we obtain |sj| ≥ 2n−1. Since s∗j is a subexpression of r,
we finally conclude that |r| ≥ 2n−1.
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(d) Let rn be a regular expression such that L (rn)=L (An). Note that L (rn) encodes all
circuits from node 1 to itself. Thus, in particular, it covers circuit gn. By (d), we have
|rn| ≥ 2n−1.

�� Exercise 35. Let us introduce weakly acyclic DFAs, NFAs, and regular expressions:

• A DFA A= (Q,�, δ, q0,F) is weakly acyclic if δ(q,w)= q implies δ(q, a)= q for every
letter a occurring in w.
• An NFA A= (Q,�, δ,Q0,F) is weakly acyclic if q∈ δ(q,w) implies δ(q, a)={q} for
every letter a occurring in w.
• Weakly acyclic regular expressions over an alphabet � are regular expressions gener-
ated by

r ::=∅ |�∗ |�∗ar | r+ r where �,�⊆� and a∈� \�.

Finally, a regular language isweakly acyclic if it is recognized by some weakly acyclic DFA.
Show the following statements:

(a) An NFA A= (Q,�, δ, q0,F) is weakly acyclic iff it satisfies any of the following three
conditions:

(i) the binary relation �⊆Q×Q, given by q� q′ iff δ(q,w)={q′} for some word w, is a
partial order;
(ii) each strongly connected component of the underlying directed graph of A contains a
single state; and
(iii) the underlying directed graph of A does not contain any simple cycle beyond self-
loops.

(b) If A is a weakly acyclic NFA, then B=NFAtoDFA(A) is a weakly acyclic DFA.
(c) For everyweakly acyclic regular expression r, there is a weakly acyclic DFA that accepts
L (r).
(d) For every weakly acyclic NFA A, there is a weakly acyclic regular expression for L (A).

Since everyweakly acyclic DFA is also aweakly acyclic NFAby definition, we conclude that
a language is weakly acyclic iff it is recognized by a weakly acyclic DFA iff it is recognized
by a weakly acyclic NFA iff it is the language of a weakly acyclic regular expression.

Solution:

(a) We only prove (i), because (ii) and (iii) follow immediately from (i) and the definitions
of strongly connected components and simple cycle.
⇒) Assume q∈ δ(q,w) implies δ(q, a)={q} for every letter a occurring in w. We prove
that the relation � is a partial order. For every state q, we have δ(q, ε)={q} and so q� q,
which proves that� is reflexive. Since q′ ∈ δ(q,w) and q′′ ∈ δ(q′,w′) implies q′′ ∈ δ(q,ww′),
we conclude that q� q′ and q′ � q′′ implies q� q′′, which proves that � is transitive. It
remains to show that � is antisymmetric. For this, we assume that q� q′ and q′ � q hold
and show that q= q′. By definition of �, there exist words w,w′ ∈�∗ and a state q′ such
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that q′ ∈ δ(q,w) and q∈ δ(q′,w′)={q}. It follows that q∈ δ(q,ww′) and so, by definition of
weakly acyclic NFAs, we have δ(q, a)={q} for every letter a occurring in either w or w′.
This implies δ(q,w)={q}. Since q′ ∈ δ(q,w) by assumption, we get q= q′.
⇐) Assume that � is a partial order and that δ(q,w)={q} holds for some state q and
word w. For every letter a occurring in w, there are words w′,w′′ ∈�∗ such that w=
w′aw′′. Letting q′, q′′ be the states such that δ(q,w′) = {q′} and δ(q′, a)={q′′}, we have
δ(q′′,w′′) = {q}, and from the definition of �, we get q� q′ � q′′ � q. Since � is a partial
order by assumption, this implies q= q′ = q′′, and so δ(q, a)= q.
(b) Let A= (Q,�, δ,Q0,F). Recall that the states of B are sets of states from A and that
Q1

a−→Q2 is a transition of B iff δ(Q1, a)=Q2. Hence, by (a), applied to B, it suffices to
show that the relation �⊆ 2Q× 2Q defined by Q1�Q2 iff δ(Q1,w)=Q2 for some word w
is a partial order. It was shown in (a) that the relation is reflexive and transitive for any DFA,
and so it suffices to show that� is antisymmetric (i.e., that δ(Q1,w1)=Q2 and δ(Q2,w2)=
Q1 implies Q1=Q2).

Assume δ(Q1,w1)=Q2 and δ(Q2,w2)=Q1. We say that a state q∈Q1 is cyclic if there
is some n≥ 1 such that q∈ δ(q, (w1w2)

n). We prove that every state of Q1 is cyclic, which
showsQ1=Q2. For the sake of contradiction, supposeQ1 contains some acyclic state q. We
can pick q minimal w.r.t. �. Since δ(Q1,w1w2)=Q1 by assumption, there is some q′ ∈Q1
such that q∈ δ(q′,w1w2), and so q7 q′. Since q is acyclic, we have q′ �= q, and so q8 q′. By
minimality of q, the state q′ is cyclic. Since A is weakly acyclic, we have δ(q′, a)={q′} for
every letter a that occurs in w1w2, and so, in particular, δ(q′,w1w2)={q′}. This contradicts
q �= q′.
(c) We proceed by structural induction on expression r. The claim is obvious for both r=
∅ and r=�∗. Assume r=�∗ar for some �⊆� and a /∈�. By induction, there exists
a weakly acyclic DFA A= (Q,�, δ, q0,F) such that L (A)=L (r). The following weakly
acyclic DFA accepts �∗aL (r):

q0

A

� a

� \ (�∪ {a})
�

Assume r is of the form r1+ r2. By induction, there exist weakly acyclic DFAs A1=
(Q1,�, δ1, q01,F1) andA2= (Q2,�, δ2, q02,F2) such thatL (Ai)=L (ri) for both i∈ {1, 2}.
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TheNFA A= (Q1 ∪Q2,�, δ1 ∪ δ2, {q01, q02},F1 ∪F2) acceptsL (r). Moreover, by (b),B=
NFAtoDFA(A) is a weakly acyclic DFA that accepts L (A). Thus, we are done.
(d) Let A= (Q,�, δ,Q0,F) be a weakly acyclic NFA. If we omit the self-loops of A, then
we obtain a directed acyclic graph and hence finitely many paths. Therefore, L (A) is a
finite union of languages of the form �∗1a1 · · ·�∗nan�∗ where �1, . . . ,�n,�⊆� and each
ai /∈�i.

Solutions for Chapter 2

�� Exercise 36. For each language L⊆{a, b, c}∗ below, say whether L has finitely many
residuals, and, if so, describe the residuals.

(a) (ab+ ba)∗,
(b) (aa)∗,
(c) {anbncn : n≥ 0}.
Solution:

(a) We have Lε =L ((ab+ ba)∗), La=L (b(ab+ ba)∗), Lb=L (a(ab+ ba)∗), and Lc=∅.
All other residuals are equal to one of these four.
(b) We have Lε =L ((aa)∗), La=L (a(aa)∗), and Lb=∅. All other residuals are equal to
one of these three.
(c) Every prefix of a word of the form anbncn has a different residual. For all other words,
the residual is the empty set. Thus, there are infinitely many residuals.

� � Exercise 37. Consider the most-significant-bit-first (MSBF) encoding of natural
numbers over alphabet �={0, 1}. Recall that every number has infinitely many encodings,
because all the words of 0∗w encode the same number as w. Construct the minimal DFAs
accepting the following languages, where �4 denotes all words of length 4:

(a) {w :MSBF−1(w) mod 3= 0} ∩�4.
(b) {w :MSBF−1(w) is a prime} ∩�4.

Solution:

(a) The DFA must recognize the encodings of {0, 3, 6, 9, 12, 15}—that is, the language

{0000, 0011, 0110, 1001, 1100, 1111}.
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Thus, we obtain

0

1

1

0

1

00

11

0 0

1

(b) The DFA must recognize the encodings of {2, 3, 5, 7, 11, 13}—that is, the language

{0010, 0011, 0101, 0111, 1011, 1101}.
Thus, we obtain

0

1

0

1

1

0, 1

0, 1

0

1 0

11

�� Exercise 38. Prove or disprove the following statements:

(a) A subset of a regular language is regular.
(b) A superset of a regular language is regular.
(c) If L1 and L1L2 are regular languages, then L2 is regular.
(d) If L2 and L1L2 are regular languages, then L1 is regular.

Solution: All statements are false. Since ∅ and�∗ are both regular, any of (a) or (b) would
imply that every language is regular, which is certainly not the case (e.g. A={an2 : n≥ 0}
is not regular). For (c), let L1=L (a∗) and let L2=A. We have L1L2=L (a∗), which is
regular, but L2 is not. Similarly, (d) is disproved with L1=A and L2=L (a∗).
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�� Exercise 39. Consider the following DFA A:

q0

q1

q2

q3

q4

q5

q6

a

b

a

b

a

b

b

a

a

b

a

b

a

b

(a) Compute the language partition of A.
(b) Construct the quotient of A with respect to its language partition.
(c) Give a regular expression for L (A).

Solution:

(a)

Iter. Block to split Splitter New partition

0 — — {q0, q1, q2, q3, q5, q6}, {q4}
1 {q0, q1, q2, q3, q5, q6} (b, {q4}) {q0, q2, q6}, {q1, q3, q5}, {q4}
2 none, partition is stable — —

The language partition is P	={{q0, q2, q6}, {q1, q3, q5}, {q4}}.
(b)

[q0]P	 [q1]P	 [q4]P	

a

b a

b

a

b
(c) (a+ b)∗ab.
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�� Exercise 43. Let A1 and A2 be DFAs with n1 and n2 states such that L (A1) �=L (A2).
Show that there exists a word w of length at most n1+ n2− 2 such that w∈ (L (A1) \
L (A2))∪ (L (A2) \L (A1)).
Hint: Consider the NFA obtained by putting A1 and A2 “side by side” and CSR(A).

Solution: Let A be the NFA obtained by taking the disjoint union of A1 and A2. Since
L (A1) �=L (A2), automaton A has at least one final and one nonfinal state. Thus, the pro-
cedure that computes CSR(A) initially has a partition of two blocks. Since every split
increases the number of blocks by 1, and the maximal possible number of blocks is
n1+ n2, the algorithm performs at most n1+ n2− 2 splits. Hence, it suffices to show
that if two states q1 and q2 are put in different blocks at the kth split, then the language
(L (q1) \L (q2))∪ (L (q2) \L (q1)) contains a word w of length at most k. We prove this
by induction on k. If k= 0, then exactly one of q1 or q2 is a final state, and we can take
w= ε. If k > 0, then right before q1 and q2 are put in different blocks, there is a letter a and
transitions

q1
a−→ q′1 and q2

a−→ q′2,

such that q′1 and q
′
2 already belong to different blocks. By induction hypothesis, the language(L (q′1) \L (q′2))∪ (L (q′2) \L (q′1))

contains a word w′ of length k− 1. Thus, we can take w= aw′.

� � Exercise 44. Let �={a, b}. Let Ak be the minimal DFA such that L (Ak)={ww :
w∈�k}.
(a) Construct A2.
(b) Construct a DFA that accepts L (Ak).
(c) How many states does Ak contain for k > 2?

Solution:

(a) The trap state is omitted for the sake of readability:

qε

qa

qb

qaa

qab

qba

qbb

ra

rb

rε

a

b

a

b

a

b

a

a

b

b

a

b
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(b) We generalize the construction given in (a) for k= 2: state qw indicates that word w
has been read so far, and state rw indicates that w must be read in order to accept. More
formally, let Ak = (Q,�, δ, q0,F) be the following automaton, which we complete with a
trap state:

Q={qw :w∈�∗, |w| ≤ k} ∪ {rw :w∈�∗, |w|< k},
δ={(qu, a, qua) : |u|< k} ∪

{(qav, a, rv) : a∈�, |v| = k− 1} ∪
{(rav, a, rv) : a∈�, |v|< k− 1},

q0= qε,

F={rε}.
(c) Note that Ak defined in (b) has f (k)= (2k+1− 1)+ (2k − 1)+ 1= 3 · 2k − 1 states. We
show that Ak is minimal. To prove it, we show that L (Ak) has f (k) residuals. To simplify
the notation, let L=L (Ak).

• We have Lv=∅ for every v∈�∗ such that |v|> 2k. Hence, ∅ is our first residual.
• For every word v of length at most k− 1, we have Lv={uvu : u∈�∗, |vu| = k}. Note that
all of these sets contain at least two words, and they are all distinct. There are as many of
them as words of length at most k, and so we get

∑k−1
i=0 2i= 2k − 1 new residuals.

• For every word v such that k≤ |v| ≤ 2k, we have v= v1v2v3, where |v1v2| = k and |v1| =
|v3|. If v1 �= v3, then Lv=∅, which is not a new residual. If v1= v3, then Lv={v2} is a new
residual as all other residuals we have seen so far had either zero or at least two words. Thus,
we get a new residual for everyword v2 of length 0≤ |v2| ≤ k, and hence

∑k
i=0 2i= 2k+1− 1

residuals.

In total, we have at least 1+ (2k − 1)+ (2k+1− 1)= 3 · 2k − 1 residuals, which matches
the upper bound given by the number of states of Ak .

�� Exercise 45. For every language L⊆�∗ and wordw∈�∗, let wL={u∈�∗ : uw∈L}.
A language L′ ⊆�∗ is an inverse residual of L if L′ = wL for some w∈�∗.

(a) Determine the inverse residuals of the first two languages of exercise 36: (ab+ ba)∗
and (aa)∗.
(b) Show that a language is regular iff it has finitely many inverse residuals.
(c) Does a language always have as many residuals as inverse residuals?

Solution:

(a) • We give the inverse residuals of L=L ((ab+ ba)∗) as regular expressions:
εL= (ab+ ba)∗, aL= (ab+ ba)∗b,
bL= (ab+ ba)∗a, aaL=∅.
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All other inverse residuals are equal to one of these four. The language has the same number
of residuals and inverse residuals, but they are not same languages.
• We give the inverse residuals of (aa)∗ as regular expressions:

εL= (aa)∗, aL= (aa)∗a, bL=∅.
All other inverse residuals are equal to one of these three. In this case, the residuals and the
inverse residuals of the language coincide.
(b) Let L be a language and let LR be the reverse of L (see exercise 14). We have u∈ wL iff
uw∈L iff wRuR ∈LR iff uR ∈ (LR)w

R
. Thus, K is an inverse residual of L iff KR is a residual

of LR. In particular, the number of inverse residuals of L is equal to the number of residuals
of LR. Consequently:

L is regular
iff LR is regular (by exercise 14)
iff LR has finitely many residuals
iff L has finitely many residuals.

(c) No. Consider the language L over {a, b} containing all words ending with a (i.e., (a+
b)∗a). The language has two residuals:

Lw=
{
(a+ b)∗a+ ε if w ends with a,
(a+ b)∗a if w ends with b or w= ε.

but three inverse residuals:

wL=
⎧⎨⎩

(a+ b)∗a if w= ε,
(a+ b)∗ if w ends with a,
∅ if w ends with b.

� 	 Exercise 48. A DFA with negative transitions (DFA-n) is a DFA whose transitions
are partitioned into positive and negative transitions. A run of a DFA-n is accepting if

• it ends in a final state and the number of occurrences of negative transitions is even, or
• it ends in a nonfinal state and the number of occurrences of negative transitions is odd.

The intuition is that taking a negative transition “inverts the polarity” of the acceptance
condition.

(a) Show that the language accepted by a DFA-n is regular.
(b) Give a DFA-n for a regular language L, which has fewer states than the minimal DFA
for L.
(c) Show that the minimal DFA-n for a language is not necessarily unique.

Solution:

(a) Let A= (Q,�, δ, q0,F) be a DFA-n. We construct a DFA B that behaves as A but that
also remembers the parity of the number of occurrences of negative transitions. This allows
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the automaton to determine whether the current state should be accepting or not. More
formally, let B= (Q′,�, δ′, q′0,F′) be the DFA such that

Q′ =Q×{0, 1},

δ′((q, x), a)=
{
(δ(q, a), 1− x) if (q, a) is negative,
(δ(q, a), x) otherwise,

q′0= (q0, 0),

F′ = {(q, 0) : q∈F} ∪ {(q, 1) : q /∈F}.
A simple induction shows that L (B)=L (A).
(b) Let L={w∈ {a}∗ : |w|a is even}. The minimal DFA that accepts L has two states. The
following DFA-n, with a single negative transition, accepts L:

a

(c) Let L={w∈ {a, b}∗ :w ends with a ⇐⇒ |w|b mod 2= 1}. The minimal DFA that
accepts L has four states. The following DFA-n, whose negative transitions are colored
and dashed, both accept L:

a
ab

b

a

b

a
b

Let us show that these automata are indeed minimal. Suppose they are not. This means
that there exists a DFA-n A with a single state q that accepts L. It must necessarily
loop upon reading a and b. Moreover, q is initial and also final since ε ∈L (A). The a-
transition must be negative, as otherwise a∈L (A). Similarly, the b-transition must be
negative, as otherwise b∈L (A). This implies that ab∈L (A), which is a contradiction since
ab /∈L.
� � Exercise 49. We say that a residual of a regular language L is composite if it is the
union of other residuals of L and that it is prime otherwise. Show that every regular language
L is recognized by an NFAwhose number of states is equal to the number of prime residuals
of L.

Solution: We define an NFA AL= (QL ∪ {q0},�, δL,Q0,FL) where

• QL is the set of prime residuals of L;
• for every K ∈QL and every a∈�, we define δ(K, a) as the set K of prime residuals of L
such that

⋃
K ′∈K K ′ =Ka;

• Q0 is the set of prime residuals of L such that
⋃

K∈Q0
K=L; and

• FL is the set of prime residuals of L that contain the empty word.
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We claim that a word w∈�∗ is accepted from state K iff w∈K. This implies L (AL)=L as
desired.
We proceed by induction on |w|. If w= ε, then w is accepted from state K iff K ∈FL iff

ε ∈K. Assume that w= av for some letter a and word v. If w is accepted from K, then there
existsK ′ ∈ δ(K, a) such that v is accepted fromK ′. By induction hypothesis, we have v∈K ′.
Since K ′ ⊆Ka, we have v∈Ka and hence w= av∈K. Conversely, if w∈K, then we have
v∈Ka. By definition of δ, we have v∈K ′ for some K ′ ∈ δ(K, a). By induction hypothesis,
v is accepted from K ′, which implies that w is accepted from K.

�� Exercise 53. Let Rev(A) be the algorithm of exercise 14 that, given an NFA A as input,
returns a trimmed NFA AR such that L (AR)=L (A)R, where LR denotes the reverse of L.
Recall that an NFA is trimmed if every state accepts at least one word (see exercise 52).
Prove that, for every NFA A, the following DFA is the unique minimal DFA that accepts
L (A):

NFAtoDFA(Rev(NFAtoDFA(Rev(A)))).

Solution: Let B=NFAtoDFA(Rev(A)) and C=Rev(B). The following holds:

L (B)=L (A)R and L (C)=L (B)R= (L (A)R
)R=L (A) .

Since B is deterministic, NFA C is reverse-deterministic. Moreover, since B has one single
initial state, C has a single final state. Finally, by definition of Rev, C is trimmed. Thus,
by exercise 52, D=NFAtoDFA(C) is a minimal DFA recognizing the same language as C,
which is L (A).

�� Exercise 54.

(a) Let �={a, b}. Find a language L⊆�∗ that has infinitely many residuals and that
satisfies |Lw|> 0 for all w∈�∗.
(b) Let �={a}. Find a language L⊆�∗, such that Lw=Lw

′ =⇒w=w′ for all words
w,w′ ∈�∗.

Solution:

(a) L={ww :w∈�∗}. First we prove that L has infinitely many residuals by showing that
for each pair of words of the infinite set {aib : i≥ 0}, the corresponding residuals are not
equal. Let u= aib and v= ajb be such that i< j. We have Lu �=Lv since u∈Lu, but u /∈Lv.
For the second half of the statement, observe that w∈Lw for any word w∈�∗.
(b) Let L={a2n : n≥ 0}. Let i< j. We show that La

i �=La
j
. Let di and dj denote respectively

the distance from i and j to the closest larger power of 2 (e.g., if i= 13, then di= 16− i= 3).
If di < dj, then we are done since adi ∈Lai and adi /∈Laj . Similarly, if di > dk , then adi /∈Lai
and adi ∈Laj . Thus, assume di= dj. Let d′i and d′j denote the distance from i and j to the
second closest larger power of 2 (e.g., if i= 13, then d′i = 32− i= 19). These two numbers
must be unequal since the gaps between powers of 2 are strictly increasing. Thus, we are
done by repeating the above argument.
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�� Exercise 55.Recall themaster automatonM defined in section 2.1.1. DoesM have. . .

(a) other states than ∅ and �∗ that can only reach themselves?
(b) states that cannot be reached from any other state?
(c) states that can reach all other states?
(d) states with infinitely many immediate predecessors?
(I.e., states L such that L′ a−→L for infinitely many states L′?)
(e) two states having the same successor for every letter of �?
(f) bottom strongly connected components with infinitely many states?
(A bottom strongly connected component is a maximal set of states S such that for every
state s∈ S, the set of states reachable from S is exactly S.)
(g) bottom strongly connected components with arbitrarily many states?

Solution: Let L,L′ denote both a language and a regular expression for it.

(a) No. The only two such states are ∅ and �∗. If a state L can only reach itself, then the
canonical DFA for L has one state. There are two DFAs with one state, differing in whether
this state is final or not. They recognize the languages �∗ and ∅, and so these are the only
two states of M .
(b) No. For every language L, consider the language L′ = a ·L. We have L′ �=L, because the
shortest words of L are strictly shorter than the shortest words of L′. The master automaton
has a transition L′ a−→L. For example, in figure 2.4, we have a�+ b(ε+�2�)

a−→�.
(c) No. The states reachable from a state L are the states of the canonical DFA for L, and
there are only finitely many of them.
(d) It depends. If� has at least two elements, then every language of the form a ·L+ b ·L′′,
where a �= b and L′′ is arbitrary, has a transition a ·L+ b ·L′′ a−→L, and so every language L
has infinitely many predecessors. If the alphabet contains only one letter, say a, then L has
exactly two predecessors—namely, the languages aL and aL+ ε.
(e) Yes. Let L be any regular language such that ε ∈L. Languages L and L \ {ε} have
the same successors for every letter in the alphabet. In figure 2.4, we have �

a−→ ε, and
�+ ε

a−→ ε, which is not depicted.
(f ) No. If there were, then there would be states that can reach infinitely many other
states.
(g) Yes. Fix n≥ 0 and a∈�. For every 0≤m< n, let Lm be the language of all words
w∈�∗ such that the number of as in w is congruent to m modulo n. The set of languages
{L0, . . . ,Lm} is a bottom strongly connected component of the master automaton. For exam-
ple, over �={a, b}, there is a bottom strongly connected component consisting of words
with an odd number of as and words with an even number of as:

b∗a(b+ (ab∗a))∗ (b+ (ab∗a))∗

a

a

bb
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� � Exercise 56. Recall the master automaton M defined in section 2.1.1. A symmetry
is a bijection f on the states of the master automaton such that L

a−→L′ iff f (L)
a−→ f (L′).

Loosely speaking, after applying f , we still obtain the same graph. Show that the bijection
given by f (L)=L is a symmetry.

Solution: We have La= (L)a since

w∈La iff w /∈La iff aw /∈L iff aw∈L iff w∈ (L)a.

Let us show L
a−→L′ iff L a−→L′. Assume L

a−→L′. We have L′ =La. Further, L
a−→(L)a

holds by definition of the master automaton. Since (L)a=La= f (La), we get L
a−→L′.

Now, assume L
a−→L′. By the result we have just proved, we have L a−→L′, and so L a−→L′.

Observe, however, that the symmetry exchanges final and nonfinal states. Indeed, we have
ε ∈L iff ε /∈L. In figure 2.4, this symmetry is graphically represented as a reflection on the
horizontal axis.

�� Exercise 57. Recall that weakly acyclic DFAs were introduced in exercise 35. Show
that weakly acyclic DFAs are closed under minimization (i.e., prove that the uniqueminimal
DFA equivalent to a given weakly acyclic DFA is also weakly acyclic).

Solution: Let A= (Q,�, δ, q0,F) be a weakly acyclic DFA. Given two states p, q∈Q, we
write p� q if p

w−→ q for some word w∈�∗. As shown in exercise 35(a), the relation � is
a partial order.
Let B be the minimal DFA equivalent to A. For the sake of contradiction, suppose that

B is not weakly acyclic. By exercise 35(a), B has a cycle of length at least 2. Since the
states of B are equivalence classes of the language partition of A, this cycle contains two
distinct states Q1,Q2⊆Q. Since B is minimal, we have L (Q1) �=L (Q2), and L (Q1) �=
∅ �=L (Q2). By definition of B, q

w1−−→ r
w2−−→ s holds in A for some q, s∈Q1, r∈Q2, and

words w1,w2 ∈�∗. By definition of�, we have q� r� s. Moreover, we have q �= s because
otherwise, Awould not be weakly acyclic. Since q, s∈Q1 and r∈Q2, we haveL (q)=L (s)
and L (q) �=L (r) �=L (s). We show that this leads to a contradiction.

Let w=w1w2, and let �⊆� be the set of letters that occur in w. Let smax be the maximal

state of A w.r.t. � such that q
wn−−→ smax for some n≥ 1. We have L (q)w=L (s)=L (q).

Therefore, by repeating this identity n times, we obtain L (q)=L (q)w
n =L (smax). Fur-

ther, since smax is maximal, we have smax
w−→ smax. Finally, since A is weakly acyclic,

smax
a−→ smax for every letter a∈�. SoL (q)=L (smax)=�∗L for some nonempty language

L. Since L (r)=L (q)w1 and w1 ∈�∗, we have L (r)=�∗L. Thus, L (q)=L (r), which is
a contradiction.

Solutions for Chapter 3

� � Exercise 60. Give a regular expression for the words over {0, 1} that do not contain
010 as subword.
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Solution: Different solutions are possible (e.g., (1+ 00∗11)∗(0∗ + 00∗1)) which we can
obtain as follows. First, we construct an NFA for the words containing 010 as a subword:

q0 q1 q2 q3

0, 1 0, 1

0 1 0

Determinization and complementation yield

q0 q0, q1 q0, q2 q0, q1, q3 q0, q2, q3 q0, q3

1 0 0 1

0 1 0 1
1

0

1 0

We safely remove the three rightmost states as they cannot reach final states:

1 0

0 1

1

We further turn the automaton into an NFA-ε, which can then be converted into a regular
expression:

1 0

ε 0 1

1

εεε

Wemay now convert the automaton into a regular expression. After removing one state, we
obtain
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1

ε

ε+ 00∗ ε

00∗1

1

After removing a second state, we obtain

ε

1+ 00∗11

ε+ 00∗ + 00∗1

After removing the last state, we obtain the final expression (1+ 00∗11)∗(ε+ 00∗ + 00∗1),
which can be simplified to (1+ 00∗11)∗(0∗ + 00∗1):

(1+ 00∗11)∗(ε+ 00∗ + 00∗1)

�� Exercise 61. In example 1.9, we presented an automaton that recognizes words over
alphabet�={−, ·, 0, 1, . . . , 9} that encode real numbers with a finite decimal part (e.g., 37,
10.503, and −0.234 are accepted, but 002, −0, and 3.10000000 are not). This language is
described by these four properties:

(a) a word encoding a number consists of an integer part, followed by a possibly empty
fractional part; the integer part consists of an optional minus sign, followed by a nonempty
sequence of digits;
(b) if the first digit of the integer part is 0, then it is the only digit of the integer part;
(c) if the fractional part is nonempty, then it starts with “.” followed by a nonempty
sequence of digits that does not end with 0; and
(d) if the integer part is −0, then the fractional part is nonempty.

We seek to obtain the automaton presented in example 1.9 in a more modular and algorith-
mic way. More precisely, give an automaton for each of the above properties, construct the
pairing of these automata, and minimize the resulting automaton.
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Solution: Let D={0, 1, . . . 9} and let D+ =D \ {0}. We represent properties (a) to (d),
respectively, by the following automata:

p0 p1 p2 p3 p4

A:
− D . D

D
D D

q0

q1

q2

B:
0

� \ {0}
.

�

r0 r1 r2

C:
.

� \ {.} 0 D+

D+

0

s0 s1 s2 s3 s4

s5

D:

� \ {−}

− 0 . D

D+

D

�

By pairing all four automata, we obtain the following automaton:

p0, q0, r0, s0 p2, q2, r0, s5

p2, q1, r0, s5

p1, q2, r0, s1

p3, q2, r1, s5

p2, q2, r0, s2

p4, q2, r2, s5

p4, q2, r1, s5

p3, q2, r1, s3

p4, q2, r2, s4

p4, q2, r1, s4

D+

0

−

D

.

.

D+

0
.

0

D+

0

D+

D+

0

0

D+

0

D+

D+

0

The hatched and solid states above respectively have the same residuals. Hence, they can
be merged. This leads to the following minimal automaton, which is exactly the one of
example 1.9:



416 Solutions for Chapter 3

D+

0

−

0

D+

·

·

·

D 0 D+

D+

0

� � Exercise 63. Find a family of NFAs {An}n≥1 with O(n) states such that every NFA
recognizing the complement of L (An) has at least 2n states.

Hint: See exercise 21.

Solution: Let Ln={ww :w∈ {0, 1}n}. The language Ln is made of the set Xn of all words
of length different from 2n, plus the set Yn of all words w such that the ith and (i+ n)th
letter of w differ for some 1≤ i≤ n. Note that Xn and Yn are not disjoint. We give NFAs for
these two languages for the case n= 3, from which the general construction can be easily
deduced. Here is a NFA recognizing X3:

0, 1 0, 1 0, 1 0, 1 0, 1 0, 1 0, 1

0, 1

Let us construct an NFA for Y3. The NFA nondeterministically chooses a position
1≤ i≤ 3 and the letter at that position: if the letter is 0, it moves up, otherwise down. The
NFA then reads two more letters and checks that the next letter is the opposite of the one it
chose:

0

0, 1

1

0, 1

0

1

0, 1

0, 1

0

1

0, 1

0, 1

1

0

0, 1

�� Exercise 65. Consider the variant of IntersNFA in which line 7

if (q1 ∈F1) and (q2 ∈F2) then add [q1, q2] to F
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is replaced by

if (q1 ∈F1) or (q2 ∈F2) then add [q1, q2] to F.

Let A1⊗A2 be the result of applying this variant to two NFAs A1 and A2. An NFA A= (Q,
�, δ,Q0,F) is complete if δ(q, a) �= ∅ for all q∈Q and all a∈�.

• Prove the following: IfA1 andA2 are completeNFAs, thenL (A1⊗A2)=L (A1)∪L (L2).
• Give NFAs A1 and A2, which are not complete and such that L (A1⊗A2)=L (A1)∪
L (A2).

Solution:

• Let A1= (Q1,�, δ1,Q01,F1) and A2= (Q2,�, δ2,Q02,F2) be complete NFAs. Note that
any word can be read in both automata by completeness. Hence, if A1 accepts a word w,
then A2 can read it (regardless of whether it is accepted or not) and vice versa. Thus, we
have

w∈L (A1)∪L (A2)

⇐⇒ ∃q01 w−→ q1, q02
w−→ q2, q01 ∈Q01, q02 ∈Q02, (q1 ∈F1 ∨ q2 ∈F2)

⇐⇒ ∃[q01, q02] w−→[q1, q2] and [q1, q2] ∈F.
• The two first NFAs below accept (a+ b)∗a and (a+ b)∗b, respectively, and the resulting
third NFA correctly accepts (a+ b)∗(a+ b):

p0 p1

A1:

a, b

a q0 q1

A2:

a, b

b

p0, q0

p1, q0

p0, q1

A1⊗A2:

a, b

a

b

� � Exercise 66. The even part of a word w= a1a2 · · · an over alphabet � is the word
a2a4 · · · a2·#n/2$. Given an NFA A, construct an NFA A′ such that L (A′) is the even parts of
the words of L (A).

Solution: Let A= (Q,�, δ,Q0,F). We define the NFA A′ = (Q,�, δ′,Q0,F′) as follows.
For every, q∈Q and a, b∈�, we let δ′(q, b)= δ̂(q, ab). By taking F′ =F, we would obtain
an automaton A′ that accepts the even parts of the even-length words of L (A). To deal
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with odd-length words, we instead set F′ =F ∪ {q∈Q : δ(q, a)∩F �= ∅ for some a∈�}.
For example:

A:
a, b a a

b

A′:
a

b

b

�� Exercise 67. Let Li={w∈ {a}∗ : the length of w is divisible by i}.
(a) Construct an NFA for L=L4 ∪L6 with a single initial state and at most eleven states.
(b) Construct the minimal DFA for L.

Solution: The NFA is as follows:

aa

a a

aaa

a

a

a

a

a

We construct DFAs for L4 (four states) and L6 (six states), construct the union by tak-
ing the pairing (twenty-four states), and minimize. The resulting minimal DFA has states
Q={0, 1, . . . , 11} organized in a circle (i.e., where δ(i, a)= (i+ 1) mod 12). Its final states
are F={0, 4, 6, 8}.
�� Exercise 68.Modify algorithm Empty so that it returns a witness when the automaton
is nonempty (i.e., a word accepted by the automaton). Explain how could you further return
a shortest witness. What is the complexity of your procedure?

Solution: We can perform a breadth-first search of the automaton from the set of ini-
tial states. If the search terminates without finding any final state, then we return “empty.”
Otherwise, we halt the search as soon as some final state qf is found.

During the search, each time a state q is discovered via a transition p
a−→ q, we store

pred[q] = (p, a). This allows to reconstruct a shortest path (labeled by someword) backward
from qf to some initial state q0. The procedure runs in linear time w.r.t. the number of states
and transitions. Note that if there is a total order on the letters (e.g., a< b< c< · · ·< z),
then prioritizing them in that order will further yield a shortest certificate with respect to
the lexicographical order.
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� � Exercise 72. Let �1,�2 be two alphabets. A homomorphism is a map
h : �∗1→�∗2 such that h(ε)= ε and h(uv)= h(u)h(v) for every u, v∈�∗1 . Observe that if
�1={a1, . . . , an}, then h is completely determined by the values h(a1), . . . , h(an). Let
h : �∗1→�∗2 be a homomorphism.

(a) Construct an NFA for the language h(L (A))={h(w) :w∈L (A)} where A is an NFA
over �1.
(b) Construct an NFA for h−1(L (A))={w∈�∗1 : h(w)∈L (A)} where A is an NFA
over �2.
(c) Recall that the language {0n1n : n∈N} is not regular. Use the preceding results to show
that {(01k2)n3n : k, n∈N} is also not regular.
Solution:

(a) We consider A= (Q,�1, δ, q0,F) to be a DFA as we could otherwise determinize it. We
construct a finite automaton A′ = (Q,�2, δ′, q0,F) whose transitions are labeled by words
over �2, more precisely by the words h(�1)={h(a) : a∈�1}. Note that this set is finite as
�1 is finite. We set δ′(q, h(a))= δ(q, a) for all a∈�1. In other words, we apply h to the

edge labels of the graph underlying A (i.e., if q
a−→ q′ in A, then q

h(a)−−→ q′ in A′).
Let us show that L (A′)= h(L (A)).

⊇) Consider some word w= a1a2 · · · an ∈L (A). There is an accepting run of A on w,
that is,

q0
a1−→ q1

a2−→· · · an−→ qn with qn ∈F.
By definition of δ′, we have qi

h(ai)−−→ qi+1 in A′ for all transitions along this run. Sow′ = h(w)
is accepted by A′, and so h(L (A))⊆L (A′).
⊆) Let w′ ∈L (A′). There is some accepting run of A′

q0
u1−→ q1

u2−→· · · un−→ qn with qn ∈F and ui ∈ h(�1).

By definition of δ′, for every transition qi
ui−→ qi+1 of A′, there is some letter ai ∈�1 with

h(ai)= ui such that qi
ai−→ qi+1 in A. By construction, the following is an accepting run of A:

q0
a1−→ q1

a2−→· · · al−→ qn with qn ∈F.
Therefore, a1a2 · · · an ∈L (A) and h(a1a2 . . . an)=w′. So, L (A′)⊆ h(L (A)).

(b) We considerA′ = (Q,�2, δ, q0,F) to be a DFA aswe could otherwise determinize it.We
construct a finite automaton A accepting h−1(L (A′)). Intuitively, a transition of A labeled
by a∈�1 summarizes the behavior of A′ when reading the word h(a). Let

δ(q, a)= δ̂′(q, h(a)) for all a∈�1.

LetA= (Q,�1, δ, q0,F).We claim that δ̂(q0,w)= δ̂′(q0, h(w)) for everyw∈�1. Its validity
shows that L (A)= h−1(L (A′)) as desired. Let us prove the claim by induction on |w|. If
|w| = 0, then w= ε and the claim is obvious. If |w|> 0, then w= ua for some u∈�∗1 and



420 Solutions for Chapter 3

a∈�1. We have

δ̂(q0,w)= δ(δ̂(q0, u), a)

= δ(δ̂′(q0, h(u)), a) (by induction hypothesis)

= δ̂′(δ̂′(q0, h(u)), h(a)) (by def. of δ)

= δ̂′(q0, h(u)h(a))

= δ̂′(q0, h(ua)) (since h is a homomorphism)

= δ̂′(q0, h(w)).

(c) Let L={(01k2)n3n : k, n≥ 0}. For the sake of contradiction, suppose that L is regular
(i.e., that there exists some finite automaton Awith L=L (A)). Let h : {0, 1, 2, 3}∗→ {0, 1}∗
be the homomorphism uniquely determined by

h(0)= 0, h(1)= ε, h(2)= ε and h(3)= 1.

We have h(L)={0n1n : n≥ 0}. By the preceding results, there is a finite automaton A′ with
L (A′)={0n1n : n≥ 0}, which is a contradiction.
�� Exercise 74.Given alphabets� and
, a substitution is a map f : �→ 2
∗ assigning
to each letter a∈� a language La⊆
∗. A substitution f can be canonically extended to
a map 2�∗ → 2
∗ by defining f (ε)= ε, f (wa)= f (w)f (a), and f (L)=⋃w∈L f (w). Note
that a homomorphism can be seen as the special case of a substitution in which all Las are
singletons.
Let �={Name, Tel, :, #}, let 
={A, . . . ,Z, 0, 1, . . . , 9, :, #}, and let f be the

substitution:
f (Name)= (A+ · · ·+Z)∗

f (:)={:}
f (Tel)= 0049(1+ . . .+ 9)(0+ 1+ . . .+ 9)10+

00420(1+ . . .+ 9)(0+ 1+ . . .+ 9)8
f (#)={#}

(a) Draw a DFA recognizing L= Name:Tel(#Tel)∗.
(b) Sketch an NFA recognizing f (L).
(c) Give an algorithm that takes as input an NFA A, a substitution f , and for every a∈�
an NFA recognizing f (a) and returns an NFA recognizing f (L (A)).

Solution:

(a)

Name : Tel

#
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(b)

ε

A, . . . ,Z

ε : 0 0 4 2 0

9

0, . . . , 9 0, . . . , 9

0, . . . , 9

0, . . . , 9

#

0, . . . , 9

(c) As suggested by the above example, to replace each transition p
a−→ q, we remove the

transition, make a copy of the NFA for f (a), add ε-transitions from p to its initial states, and
add ε-transitions from its final states to q. Once this is done, we can remove the ε-transitions.

�� Exercise 75. Let A1 and A2 be two NFAs with n1 and n2 states. Let

B=NFAtoDFA(IntersNFA(A1,A2)),

C= IntersDFA(NFAtoDFA(A1),NFAtoDFA(A2)).

A superficial analysis shows that B andC haveO(2n1·n2) andO(2n1+n2) states, respectively,
wrongly suggesting that C might be more compact than B. Show that, in fact, B and C are
isomorphic and hence have the same number of states.

Solution: The following claims follow easily from the definitions of NFAtoDFA and
IntersNFA:

• Let A= (Q,�, δ,Q0,F) be an NFA. A set Q′ ⊆Q is a state of NFAtoDFA(A) iff there is a
word w∈�∗ such that Q′ = δ(Q0,w).
• LetA1= (Q1,�, δ1,Q01,F1) andA2= (Q2,�, δ2,Q02,F2) be twoNFAs. A pair [q1, q2] ∈
Q1×Q2 is a state of IntersNFA(A1,A2) iff there is a word w∈�∗ such that q1 ∈ δ1(Q01,w)
and q2 ∈ δ2(Q02,w).

Combining the claims, we obtain the following:

(a) A pair [Q′1,Q′2] ∈P(Q1)×P(Q2) is a state of C iff there is w∈�∗ such that

[Q′1,Q′2] = [δ1(Q01,w), δ2(Q02,w)] .

(b) A set Q′ ∈P(Q1×Q2) is a state of B iff there is w∈�∗ such that

Q′ = δ1(Q01,w)× δ2(Q02,w).

By (a) and (b), the map P(Q1)×P(Q2)→P(Q1×Q2) defined by [Q′1,Q′2] '→Q′1×Q′2 is
a bijection between the states of B and C. Moreover, the map preserves transitions; indeed,
by definitions of NFAtoDFA and IntersNFA, we have
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• [Q′1,Q′2]
a−→(Q′′1,Q

′′
2) in C iff there is w∈�∗ such that

[Q′1,Q′2] = [δ1(Q01,w), δ2(Q02,w)] and [Q′′1,Q′′2] = [δ1(Q01,wa), δ2(Q02,wa)] .

• Q′ a−→Q′′ in B iff there is w∈�∗ such that

Q′ = δ1(Q01,w)× δ2(Q02,w) and Q′′ = δ1(Q01,wa)× δ2(Q02,wa).

The mapping also preserves initial and final states, and so it is an isomorphism between B
and C.

� 	 Exercise 76. Let A= (Q,�, δ, q0,F) be a DFA. A word w∈�∗ is a synchronizing
word of A if reading w from any state of A leads to a common state (i.e., if there exists
q∈Q such that for every p∈Q, p w−→ q). A DFA is synchronizing if it has a synchronizing
word.

(a) Show that the following DFA is synchronizing:

p q

r s

a

b

a

b
a

b

a

b

(b) Give a DFA that is not synchronizing.
(c) Give an exponential time algorithm to decide whether a DFA is synchronizing.

Hint: Use the powerset construction.
(d) Show that a DFA A= (Q,�, δ, q0,F) is synchronizing iff for every p, q∈Q, there exist
w∈�∗ and r∈Q such that p

w−→ r and q
w−→ r.

(e) Give a polynomial time algorithm to test whether a DFA is synchronizing.
Hint: Use d.

(f) Show that (d) implies that every synchronizing DFA with n states has a synchroniz-
ing word of length at most (n2− 1)(n− 1).

Hint: You might need to reason in terms of pairing.
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(g) Show that the upper bound obtained in (f) is not tight by finding a synchronizing word
of length (4− 1)2 for the following DFA:

q0 q1

q3 q2

a

b

a

b

a, b

a

b

Solution:

(a) ba is a synchronizing word:

p
b−→ p

a−→ r ,

q
b−→ s

a−→ r ,

r
b−→ s

a−→ r ,

s
b−→ s

a−→ r .

(b) The following DFA is not synchronizing:

q0 q1

a

a

(c) Let A= (Q,�, δ, q0,F) be a DFA, and let Aq= (Q,�, δ, q,F) for every q∈Q. A wordw
is synchronizing for A iff reading w from each automaton Aq leads to the same state. There-
fore, we build a DFA B that simulates every automaton Aq simultaneously and tests whether
a common state can be reached. More formally, let B= (P(Q),�, δ′, {Q},F′), where
• δ′(Q′, a)={δ(q, a) : q∈Q′}, and
• F′ = {{q} : q∈Q}.
Automaton A is synchronizing iff L (B) �= ∅. It is possible to construct B and test L (B) �= ∅
simultaneously by adapting NFAtoDFA:
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IsSynchronizing(A)
Input: DFA A= (Q,�, δ, q0,F)
Output: A is synchronizing?
1 if |Q| = 1 then return true
2 Q,←∅; W←{Q}
3 while W �= ∅ do
4 pick Q′ from W
5 add Q′ to Q
6 for all a∈� do
7 Q′′ ← {δ(q, a) : q∈Q′}
8 if |Q′′| = 1 then return true
9 if Q′′ /∈Q then add Q′′ to W
10 return false
(d)
⇒) Immediate.
⇐) Let Q={q0, q1, . . . , qn}. For every 1≤ i, j≤ n, let w(i, j)∈�∗ be such that
δ̂(qi,w(i, j))= δ̂(qj,w(i, j)). Let us define the following sequence of words:

u1=w(q0, q1)

u	=w(δ̂(q	, u1u2 · · · u	−1), δ̂(q	−1, u1u2 · · · u	−1)) for every 2≤ 	≤ n.

We claim that u1u2 · · · un is a synchronizing word. To see that, let us prove by induction
on 	 that for every 1≤ i, j≤ 	,

δ̂(qi, u1u2 · · · u	)= δ̂(qj, u1u2 · · · u	).

For 	= 1, the claim holds by definition of u1. Let 2≤ 	≤ n. Assume that the claim holds
for 	− 1. Let 1≤ i, j≤ 	. If i, j< 	, then

δ̂(qi, u1u2 · · · u	)= δ̂(δ̂(qi, u1u2 · · · u	−1), u	)

= δ̂(δ̂(qj, u1u2 · · · u	−1), u	) (by induction hypothesis)

= δ̂(qj, u1u2 · · · u	).

If i= 	 and j< 	, then

δ̂(qi, u1u2 · · · u	)= δ̂(δ̂(qi, u1u2 · · · u	−1), u	)

= δ̂(δ̂(qi−1, u1u2 · · · u	−1), u	) (by definition of u	)

= δ̂(δ̂(qj, u1u2 · · · u	−1), u	) (by induction hypothesis)

= δ̂(qj, u1u2 · · · u	).

The case where i< 	 and i= 	 is symmetric, and the case where i= j= 	 is trivial.
(e) We use the approach used in (c), but instead of simulating every automaton Aq at once,
we simulate all pairs Ap and Aq. From (d), this is sufficient. The adapted algorithm is as
follows:
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IsSynchronizing(A)
Input: DFA A= (Q,�, δ, q0,F)
Output: A is synchronizing?
1 for all p, q∈Q s.t. p �= q do
2 if ¬PairSynchronizable(p, q) then return false
3 return true

4 PairSynchronizable(p, q)
5 Q,←∅;W←{{p, q}}
6 while W �= ∅ do
7 pick Q′ from W
8 add Q′ to Q
9 for all a∈� do
10 Q′′ ← {δ(q, a) : q∈Q′}
11 if |Q′′| = 1 then return true
12 if Q′′ /∈Q then add Q′′ toW
13 return false

The for loop at line 1 is iterated at most |Q|2 times. The while loop of the subprocedure
is iterated at most |Q|2, and the for loop within it is iterated at most |�| times. Hence, the
total running time of the algorithm is in O(|Q|4 · |�|).
Note that our algorithm runs in time O(|Q|4 · |�|) and computes a synchronizing word

of length O(|Q|3), if there exists one. It is possible to do better. An algorithm presented
in [Epp90] computes a synchronizing word of length O(|Q|3), if there exists one, in time
O(|Q|3+ |Q|2 · |�|).
(f) We say that a word w is (p, q)-synchronizing if δ̂(p,w)= δ̂(q,w). In the proof of (d), we
have built a synchronizing word w= u1u2 · · · u|Q|−1 where each ui is a (p, q)-synchronizing
word for some p, q∈Q. We claim that if there exists a (p, q)-synchronizing word, then there
exists one of length at most |Q|2− 1. This leads to the overall (|Q| − 1)(|Q|2− 1) upper
bound. To see that the claim holds, assume for the sake of contradiction that every (p, q)-
synchronizing word has length at least |Q|2. Let w be such a minimal word. Let r= δ̂(p,w).
We have

p
w−→ r,

q
w−→ r.

This yields the following run in the pairing of A and itself:[
p
q

]
w−→
[
r
r

]
.

Since |w(p, q)| ≥ |Q|2, by the pigeonhole principle, there exist s, t∈Q, x, z∈�∗, and y∈�+
such that w= xyz and [

p
q

]
x−→
[
s
t

]
y−→
[
s
t

]
z−→
[
r
r

]
.

Hence, xz is a smaller (p, q)-synchronizing word, which is a contradiction.
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Note that is possible to get a slightly better upper bound. If there exist s, t∈Q, x, z∈�∗,
and y∈�+ such that w= xyz and[

p
q

]
x−→
[
s
t

]
y−→
[
t
s

]
z−→
[
r
r

]
,

then xz is a also a shorter (p, q)-synchronizing word. Moreover, if there exist s∈Q, x∈�∗,
and y∈�+ such that w= xy and [

p
q

]
x−→
[
s
s

]
z−→
[
r
r

]
,

then x is a shorter (p, q)-synchronizing word. Thus, at most
(n
2
)
states of the form [s t] appear

along the path of a minimal (p, q)-synchronizing word, followed by a state of the form [r r].
Therefore, a minimal (p, q)-synchronizing word is of size at most

(n
2
)= (n2− n)/2. Overall,

this yields a synchronizing word of length at most (n− 1)((n2− n)/2)= n3/2− n2+ n/2.
(g) ba3ba3b is such a word. It can be obtained, for example, from the algorithm designed
in c:

q0, q1,
q2, q3

q0, q1,
q2

q1,
q2, q3

q0,
q2, q3

q0, q1,
q3

q0, q1q1,
q2q2, q3

q0,
q3

q0

b

a a a

b

aaa

b

a

b

b

a

bb

b

b

b

a
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For the interested reader, note that the Černý conjecture states that every synchronizing
DFA has a synchronizing word of length at most (|Q| − 1)2. Since 1964, no one has been
able to prove or disprove this conjecture. To this day, the best upper bound on the length of
minimal synchronizing words is ((|Q|3− |Q|)/6)− 1 (see [Pin83]).

�	 Exercise 77.

(a) Prove that the following problem is PSPACE-complete:

Given: DFAs A1, . . . ,An over the same alphabet �;
Decide: whether

⋂n
i=1 L (Ai)=∅.

Hint: Reduce from the acceptance problem for deterministic linearly bounded automata.

(b) Prove that if the DFAs are acyclic, but the alphabet is arbitrary, then the problem is
coNP-complete. Here, acyclic means that the graph induced by transitions has no cycle,
apart from a self-loop on a trap state. Hint: Reduce from 3-SAT.

(c) Prove that if � is a one-letter alphabet, then the problem is coNP-complete.

Solution: (a) Recall that a linearly bounded automaton is a deterministic Turing machine
whose head never leaves the part of the tape containing the input (plus possibly two cells to
the left and to the right of the input, so that the machine can recognize when it has reached
the “border”). The automaton accepts an input w if its run on w visits some final state.
Given a linearly bounded automaton M and an input w= a1 · · · an, we construct DFAs

A1, . . . ,An such that M accepts w iff
⋂n

i=1 L (Ai)=∅. Let Q be the set of states of M ,
and let �M be its alphabet. The transition function of M is of the form δ : Q×�M→
Q×�M ×{L,R}, where L and R stand for “move left” and “move right.” The common
alphabet � of the DFAs A1, . . . ,An contains all tuples (x, q, a, q′, a′,L) such that 0< x≤ n
and δ(q, a)= (q′, a′,L), and all tuples (x, q, a, q′, a′,R) such that 0≤ x< n and δ(q, a)=
(q′, a′,R). Intuitively, a letter of � contains all the information about a “move” of M : x, q,
and a are respectively the current position of the head, the current state, and the letter being
currently read; q′ and a′ are the new state and the new letter; and R or L gives the direction
of the move.
The states of the DFA Ai are the tuples (x, q, a) where 0≤ x≤ n+ 1, q∈Q, and a∈�M ,

plus a trap state t. Intuitively, Ai is in state (x, q, a) if the head currently reads the xth cell,
the current state ofM is q, and the current letter on the ith cell is a. The initial state of Ai is
(1, q0, ai), where q0 is the initial state ofM , and ai is the ith letter of the input word w. The
final states of Ai are the tuples (x, q, a) such that q is a final state of M .

The transition function δi of Ai is defined as follows. First, we define δi(t,α)= t for every
letter α ∈� (trap state). Let σ = (x, q, a) be a state of Ai, and let α= (y, q1, a1, q2, a2,D) be
a letter of �. We only consider the case where D=R; the case D=L is analogous. We say
that σ and α match if x= y, q= q1 and either x �= i or x= i and a= a1. We define δi(σ ,α)
as follows:

• If σ and α match and x �= i, then δi(σ ,α)= (x+ 1, q2, a).
Intuitively, as the head is not on the ith cell, after the move, the ith cell still contains an a.
• If σ and α match and x= i, a= a1, then δi(σ ,α)= (i+ 1, q2, a2).
Intuitively, since the head writes on the ith cell, we update its contents to a2.
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• If σ and α do not match, then δi(σ ,α)= t (the trap state).
Intuitively, this corresponds to a “malfunction”: M executes a “wrong” letter.

By construction,M can execute a sequence of moves leading to a configuration with the
head on cell x, state q, and tape contents b1 · · · bn iff the run of each Ai on the word corre-
sponding to this sequence of moves leads to the state (x, q, bi). If M accepts x, then, after
accepting the sequence of moves, each Ai has reached a final state, and so

⋂n
i=1 L (Ai) �= ∅.

If M does not accept x, then for every word of �∗, one of two cases holds: either the word
does not correspond to a legal sequence of moves, in which case after reading, it at least
one Ai is in its trap state, or it corresponds to a legal sequence of moves, in which case after
reading it, none of the Ai is in a final state. So we have

⋂n
i=1 L (Ai)=∅.

(b) For the membership in coNP, observe that an acyclic DFA with m states can only accept
words of length at most m− 1. Therefore, the set

⋂n
i=1 L (Ai) is nonempty iff it contains

a word of length at most m− 1, where m is the maximal number of states of A1, . . . ,An.
Consider the nondeterministic algorithm that guesses a word of length at most m− 1 and
checks whether it is accepted by all of A1, . . . ,An. Since the algorithm runs in polynomial
time, the emptiness problem is in coNP.
To prove coNP-hardness, we reduce 3-SAT to the nonemptiness problem. Let ϕ=C1 ∧

· · · ∧Cm be a boolean formula in CNF over the variables X ={x1, . . . , xn}, where each
clause Ci contains exactly three literals. For every clause Ci, let Li⊆{0, 1}n be the lan-
guage of truth assignments to the variables of X that satisfy Ci. For example, if n= 5 and
Ci= (x1 ∨ x3 ∨¬x4), then Li is the language of the following regular expression:

1(0+ 1)4+ (0+ 1)21(0+ 1)2+ (0+ 1)30(0+ 1).

It is easy to construct a DFA Ai with O(n) states recognizing Li. Therefore, the words of⋂n
i=1 L (Ai) are the truth assignments that satisfy all clauses of ϕ, and so

⋂n
i=1 L (Ai) �= ∅

iff ϕ is satisfiable.

(c) Let ϕ be a formula as in (b), and let p1, . . . , pn be the first n prime numbers. We encode a
truth assignment B= b1 · · · bn ∈ {0, 1}n as the number B̂=∑n

i=1 p
bi
i . Observe that different

assignments are encoded as different numbers because each number has a unique prime
decomposition.
For every clause Ci, let Ni be the numbers that are divisible by the prime number corre-

sponding to some positive literal ofCi or nondivisible by the prime number of some negative
literal of Ci. For example, let us reconsider n= 5 and Ci= (x1 ∨ x3 ∨¬x4). Since the first,
third, and fourth prime numbers are 2, 5, and 7, the set Ni contains the numbers that are
divisible by 2, or divisible by 5, or not divisible by 7. It follows that a number belongs to Ni
iff it is a multiple of the encoding of some assignment satisfying Ci.
Let Li={ak : k ∈Ni}. We sketch how to construct a DFA Ai recognizing Li by means

of the above example. First, we construct three DFAs with 2, 5, and 7 states, recognizing
the languages of words whose length is divisible by 2 and 5 and not divisible by 7. Then,
we construct a DFA with 2 · 5 · 7= 70 states recognizing the union of these languages. In
general, if the literals of Ci are pi1 , pi2 , pi3 , then the resulting DFA has pi1 · pi2 · pi3 states.
It follows from this construction that

⋂n
i=1 L (Ai) �= ∅ iff ϕ is satisfiable. Indeed, we have

ak ∈⋂n
i=1 L (Ai), iff the truth assignment that sets xi to true iff pi divides k is a satisfying

assignment of ϕ. It remains to show that the DFAs have polynomially many states. For this,
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we use a well-known bound on the size of the nth prime number (see the prime number
theorem): pn < n(log n+ log log n)≤ 2n log n. Consequently, Ai has at most O(n3 log n3)
states, and we are done.

� � Exercise 78. Let A= (Q,�, δ,Q0,F) be an NFA. Show that, with the univer-
sal accepting condition of exercise 21, automaton A′ = (Q,�, δ, q0,Q \F) recognizes the
complement of L (A).

Solution: Note that A and A′ have exactly the same runs on a given word w. Thus:

A accepts w

⇐⇒ some run of A on w leads to a state of F

⇐⇒ it is not the case that all runs of A′ lead to a state of Q \F
⇐⇒A′ does not accept w.

�	 Exercise 79. Recall the model of alternating automata introduced in exercise 22.

(a) Show that alternating automata can be complemented by exchanging existential
and universal states, as well as final and nonfinal states. More precisely, let A=
(Q1,Q2,�, δ, q0,F) be an alternating automaton, where Q1 and Q2 are respectively the
sets of existential and universal states and where δ : (Q1 ∪Q2)×�→P(Q1 ∪Q2). Show
that the alternating automaton A= (Q2,Q1,�, δ, q0,Q \F) recognizes the complement of
the language recognized by A.
(b) Give linear time algorithms that take two alternating automata recognizing languages
L1 and L2 and that deliver a third alternating automaton recognizing L1 ∪L2 and L1 ∩L2.

Hint: The algorithms are very similar to UnionNFA.
(c) Show that testing emptiness for alternating automata is PSPACE-complete.

Hint: Use exercise 77.

Solution:

(a) For every state q and each automaton B, let LB(q) be the set of words accepted by the
automaton with the same structure as B but having q as initial state. We prove that for every
state q and word w, the following holds: w∈LA(q) iff w /∈LA(q). We proceed by induction
on |w|.

If |w| = 0, then w= ε. We have ε ∈LA(q) iff q is a final state of A iff q is not a final state
of A iff ε /∈LA(q). If |w|> 0, then w= aw′ for some letter a and word w′. Assume that q is
an existential state of A and so a universal state of A (the other case is analogous). We have

aw′ ∈LA(q) ⇐⇒
∨

q′∈δ(q,a)

w′ ∈LA(q′) (as q is an exist. state of A)

⇐⇒
∨

q′∈δ(q,a)

w′ /∈LA(q′) (by induction hypothesis)
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⇐⇒ ¬
∧

q′∈δ(q,a)

w′ ∈LA(q′) (by De Morgan’s law)

⇐⇒ aw′ /∈LA(q) (as q is a univ. state of A).

(b) Let q01 and q02 be the initial states of the two alternating automata, and let δ1, δ2 be
their transition functions. For union, we put the two automata side by side; add a fresh
initial existential state q0, and add transitions from q0 to all states in δ1(q01, a)∪ δ2(q02, a)
for every letter a. For intersection, we proceed in the same way but making q0 universal
instead of existential.
(c) We reduce from the following problem, which is shown PSPACE-complete in
exercise 77:
Given: DFAs A1, . . . ,An over the same alphabet �;
Decide: whether

⋂n
i=1 L (Ai)=∅.

More precisely, given DFAs A1, . . . ,An, we consider them as alternating automata made
of existential states. We then construct an alternating automaton for their intersection using
repeatedly the construction of (b). The resulting automaton has an empty language iff⋂n

i=1 L (Ai)=∅.
�� Exercise 80. Recall that weakly acyclic DFAs were introduced in exercise 35. Show
that if A is a weakly acyclic DFA, then CompDFA(A) is also weakly acyclic, and that for all
binary boolean operator �, if A1 and A2 are weakly acyclic DFAs, then BinOp[�](A1,A2)
is also weakly acyclic.

Solution: The first part follows immediately from the fact that the graphs of A and
CompDFA(A) coincide. For the second part, assume that A1 and A2 are weakly acyclic,
but B=BinOp[�](A1,A2) is not. By exercise 35(a), B has a cycle of length at least 2.
Let [q1, q2] and [r1, r2] be distinct states of the cycle, and let w, v be words such that
[q1, q2] w−→[r1, r2] v−→[q1, q2]. Assume without loss of generality that q1 �= r1. By defini-
tion of B, we have q1

w1−−→ r1
w1−−→ q1 in A1. Thus, A1 has a cycle containing at least two

distinct states, contradicting that A1 is weakly acyclic.

Solutions for Chapter 4

� � Exercise 81. Use ideas from the main text to design an algorithm for the pattern
matching problem that identifies a matched [i, j]-factor of the text, where position j is min-
imal and where position i is as close to j as possible (i.e., maximal w.r.t. j). Run your
algorithm on text t= caabac and pattern p= a+(b+ c)a+ + bac. What is the complexity
of your algorithm?

Solution: Let A= (Q,�, δ,Q0,F) be an NFA for p. Let us assume that ε �∈L (A) and
L (A) �= ∅ as we can otherwise simply report (0, 0) or ⊥. Let A′ be the NFA obtained by
adding a fresh initial state qwait to A, by makingQ0 noninitial, and by allowing qwait to either
self-loop on a letter or move to where this letter would lead from Q0. More formally, let
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A′ = (Q∪ {qwait},�, δ′, {qwait},F), where δ′ extends δ with δ′(qwait, a)={qwait} ∪ δ(Q0, a)
for each a∈�. Note that L (A′)=L (�∗p).
We give an algorithm that constructs A′ from p and reads the text until a final state q is

reached. The moment at which q is reached determines the minimal position j. In order to
find the position i, we could store the predecessor of each discovered state and go back from
q to an ancestor p∈Q whose predecessor is qwait. This corresponds to the moment where
we moved to NFA A and started matching the pattern. There may exist many such moments
due to nondeterminism. Since we want the maximal i w.r.t. j, we more carefully store the
maximal moments we moved from qwait to A:

FindFactorNFA(t, p)
Input: text t= a1 · · · an ∈�+, pattern p
Output: indices (i, j) s.t. the [i, j]-factor of tmatches p, j is minimal and i is maximal
w.r.t. j; or ⊥ if no such factor exists.
1 A←RegtoNFA(p)
2 construct A′ from A
3 initialize start[q]←−∞ for each state q of A′
4

5 S←{qwait}
6 for all k= 0 to n− 1 do
7 S′ ←∅
8 for all p∈ S do
9 for all q∈ δ′(p, ak+1) do
10 add q to S′
11 if p= qwait and q �= qwait then start[q]← k
12 else if p �= qwait then start[q]←max(start[q], start[p])
13

14 for all q∈ S′ do
15 if q∈F then return (start[q], k+ 1)
16 S← S′
17 return ⊥
The algorithm takes the same time as solution 1 from the main text (i.e., O(k(k+m)2+
nm2)). Indeed, the construction of A′ from A and the initialization of “start” can be done
in linear time. The rest is as in solution 1 but with the extra constant time checks and
bookkeeping operations.
Let us illustrate the algorithm on text t= caabac and pattern p= a+(b+ c)a+ + bac. The

automaton A′ is as follows, where the original NFA A is depicted in a darker shade (with
states q0 and q4 formerly initial):
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qwait q0 q1 q2 q3

q4 q5 q6 q7

a, b, c

a

a

b

a

a b, c a

a

b a c

Schematically, reading the five first letters of t= caabac in A′ yields this trace:

qwait qwait qwait

q0

q1

qwait

q0

q1

qwait

q5

q2

qwait

q6

q3

q0

q1

c a

a

a

a

a

a

a

a

b

b

b

a

a

a

a

a

In other words, we can see column k of the above graph as the contents of S at iteration k,
and each arc (p, σ , q) indicates the discovery of state q from state p via letter σ . We stop
as soon as we discover a final state, here q3. Paths from qwait to q3, with no intermediate
occurrence of qwait, correspond to factors that match the pattern. In our case, they are aaba
(factor [1, 5]) and aba (factor [2, 5]). We would like to return the latter as 2> 1. Hence, the
algorithm memorizes the latest “start moment” of each state. Schematically, these numbers
would evolve as follows:



Solutions for Chapter 4 433

qwait qwait qwait

q0

q1

qwait

q0

q1

qwait

q5

q2

qwait

q6

q3

q0

q1

−∞ −∞ −∞ −∞ −∞ −∞

1 2

1 2

3

2 2

3

4

4

c a

a

a

a

a

a

a

a

b

b

b

a

a

a

a

a

Observe that suffix bac of the text (factor [3, 6]) is also a match. It is not detected as we stop
as soon as possible. It would be discovered if we were to read the last letter c and discover
state q7.

� � Exercise 83. Suppose we have an algorithm that solves the pattern matching
problem—that is, that finds the first [i, j]-factor (w.r.t. j) of a text t that matches a pattern p.
How can we use it as a black box to find the last [i, j]-factor w.r.t. i?
Solution: We first construct the reverse of p inductively using these rules:

∅R=∅ (r1r2)R= rR2 r
R
1

εR= ε (r1+ r2)R= rR1 + rR2

aR= a (r∗)R= (rR)∗.

We then solve the pattern matching problem for text tR and pattern pR. If the procedure (as
a black box) reports [i, j], then we report [|t| − j, |t| − i].
�� Exercise 84. Use the ideas of exercises 81 and 83 to obtain an algorithm that solves
the pattern matching problem, but this time by finding the first [i, j]-factor w.r.t. i (instead
of j).

Solution: The algorithm of exercise 81 stops as soon as it finds a final state. We can
easily adapt it to stop at the last encountered final state. This would yield a factor [i, j] that
matches the pattern and where j is maximal and i is as close to j as possible. Using the idea
of exercise 83, we can run our new procedure on tR and pR. This will yield a factor [i, j] that
matches the pattern and where i is minimal and j is as close to i as possible.

�� Exercise 86.We have shown that lazy DFAs for a word pattern may need more than
n steps to read a text of length n but not more than 2n+m, where m is the length of the
pattern. Find a text t and a word pattern p such that the run of Bp on t takes at most n steps
and the run of Cp takes at least 2n− 1 steps.

Hint: A simple pattern of the form ak is sufficient.
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Solution: Let t= an−1b and p= an. The automata Bp and Cp are as follows:

Bp:

0 0, 1 0, 1, 2 0, 1, . . . , n
a a a

b
b

b

b

a

Cp:

0 1 2 n− 1 n
a;R a;R a;R

b;R

b;N b;N a, b;N

a;R

b;N

The runs over t on Bp and Cp are, respectively,

{0} a−→{0, 1} a−→{0, 1, 2} a−→· · · a−→{0, 1, . . . , n− 1} b−→{0},
and

0
a−→ 1

a−→ 2
a−→· · · a−→(n− 1)

b−→(n− 2)
b−→(n− 3)

b−→· · · b−→ 0.

� � Exercise 87. Give an algorithm that, given a text t and a word pattern p, counts the
number of occurrences of p in t. Try to obtain a complexity of O(|t| + |p|).
Solution: We could “slide a window” and count the number of occurrences of p. However,
this would not run in linear time. Instead, we construct a lazy DFA Cp for p and read t in
C. We increment a counter each time the final state is reached.
Note that we technically have to count the number of times the final state is reached with

R (right move), not from N (no move). However, there is no transition to the final state with
N . Indeed, “no moves” occur when a state delegates to its tail. Moreover, the final state
contains n, while a tail cannot contain n since it is the largest number.

� 	 Exercise 88. Two-way DFAs are an extension of lazy automata where the read-
ing head is also allowed to move left. Formally, a two-way DFA (2DFA) is a tuple A=
(Q,�, δ, q0,F) where δ :Q× (� ∪ {%,&})→Q×{L,N ,R}. Given a word w∈�∗, A starts
in q0 with its reading tape initialized with %w& and its reading head pointing on %. When
reading a letter, A moves the head according to δ (Left, No move, Right). Moving left on %
or right on & does not move the reading head. A accepts w if, and only if, it reaches & in a
state of F.
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(a) Let n∈N. Give a 2DFA that accepts (a+ b)∗a(a+ b)n.
(b) Give a 2DFA that does not terminate on any input.
(c) Describe an algorithm to test whether a given 2DFA A accepts a given word w.
(d) Let A1,A2, . . . ,An be DFAs over a common alphabet. Give a 2DFA B such that

L (B)=L (A1)∩L (A2)∩ · · · ∩L (An) .

Solution:

(a) The following 2DFA accepts (a+ b)∗a(a+ b)n. Transitions not drawn lead to a trap
state without moving the head.

p q r1 r2 rn s

%;R
a;R
b;R

&;L
a;L
b;L

a;L
b;L a;R

a;R
b;R
&;N

a;L
b;L

(b)

%;N
a;N
&;N

(c) From (b), we know that simply reading an input word is not sufficient since the automa-
ton could loop forever. Instead, we keep track of all configurations that are encountered
when reading the input word w. A configuration is a pair (q, i) where q is a state and
0≤ i≤ |w| + 1 is a position of the reading head. If (qf , |w| + 1) with qf ∈F is encountered,
then the automaton accepts w. If a configuration is seen twice, then the automaton loops
forever.
We obtain the following algorithm:

Input: 2DFA A= (Q,�, δ, q0,F) and w∈�∗
Output: w∈L (A)?
1 W←∅; q← q0; i← 0
2 while (q, i) �∈W do
3 if q∈F and i= |w| + 1 then return true
4

5 if i= 0 then q, d← δ(q,%)
6 else if i= |w| + 1 then q, d← δ(q,&)
7 else q, d← δ(q,wi)
8

9 if d=L and i> 0 then i← i− 1
10 else if d=R and i≤ |w| then i← i+ 1
11 return false
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(d) We build a 2DFA B that first simulates A1 on w. If a final state of A1 is reached in &,
then B rewinds the tape. Automaton B then repeats this process on A2, . . . ,An. If every Ai
accepts w, then B finally moves the reading head to & in a final state. The construction looks
as follows:

q1,0

q1,f

q′1,f

A1

qn,0

qn,f

q′n,f

An

%;R

&;L

&;L

�;L

&;L

&;L

�;L

%;R

�,&;R

q1,0

q1,f,,

q′1,f,,

A1

%;R

&;L

&; L

qn,0

qn,f,,

q′n,f,,

An

&;L

&;L

a;R

b;R

c;R

d;R

%;R

Let Ai= (Qi,�, δi, qi,0,Fi). Formally, B is defined as B= (Q,�, δ, {p}, {r}), where
• Q={p, s} ∪Q1 ∪Q2 ∪ · · · ∪Qn ∪ {ri : 1≤ i≤ n},

• δ(q, a)=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(q1,0,R) if q= p and a= %,
(δi(q, a),R) if q∈Qi and a∈�,
(ri,L) if q∈Fi and a= &,
(ri,L) if q= ri and a∈�,
(qi+1,0,R) if q= ri, a= % and 1≤ i< n,
(s,R) if q= rn, a= %,
(s,R) if q= s, a∈� ∪ {&}.

It is known that the intersection problem, which is defined as follows, is PSPACE-
complete [Koz77]:

Given: DFAs A1,A2, . . . ,An;
Decide: whether L (A1)∩L (A2)∩ · · · ∩L (An).
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We have seen how to build, in polynomial time, a 2DFA B such that L (B)=L (A1)∩
L (A2)∩ · · · ∩L (An). Thus, testing emptiness for 2DFAs is “at least as hard” as the
intersection problem (i.e., it is PSPACE-hard). In fact, the emptiness problem for 2DFAs is
PSPACE-complete [GJ79, Hun73].

Solutions for Chapter 5

�� Exercise 90. In phone dials, letters are mapped into digits as follows:

ABC '→ 2 DEF '→ 3 GHI '→ 4 JKL '→ 5
MNO '→ 6 PQRS '→ 7 TUV '→ 8 WXYZ '→ 9

This map can be used to assign a telephone number to a given word. For instance, the
number for AUTOMATON is 288662866.
Consider the problem of, given a telephone number (for simplicity, we assume that it

contains neither 1 nor 0), finding the set of English words that are mapped into it. For
instance, the set of words mapping to 233 contains at least ADD, BED, and BEE. Let
N be a given DFA over alphabet {A, . . . ,Z} that recognizes the set of all English words.
Given a number n, explain how to construct an NFA recognizing the set of all words
mapped to n.

Solution: Let R be the set of all pairs (m,w) where m is a number, and w is a word
mapped to m, and let E be the set of English words. We are looking for an NFA recognizing
Post({n},R)∩E.

Let An be the obvious DFA over {2, . . . 9} recognizing the number n. The relation R is
recognized by the transducer TR with one state q0, both initial and final, and transitions

(q0, [2,A], q0), (q0, [2,B], q0), . . . , (q0, [9,Y ], q0), (q0, [9,Z], q0).
Thus, the NFA we are looking for can be computed as InterNFA(Post(An,TR),N).

� � Exercise 91. As we have seen, the application of the Post and Pre operations to
transducers requires to compute the padding closure in order to guarantee that the resulting
automaton accepts either all or none of the encodings of an object. The padding closure
has been defined for encodings where padding occurs on the right (i.e., w belongs to the
padding closure of an NFA A iff w#k ∈L (A) for some k ∈N). However, in some natural
encodings, like the most-significant-bit-first encoding of natural numbers, padding occurs
on the left. Give an algorithm for computing the padding closure of an NFA when padding
occurs on the left (i.e., where we consider #kw).

Solution: Instead of enlarging the set of final states as done by PadClosure, we symmet-
rically enlarge the set of initial states Q0 to the set

Q′0={q : q0 0n−−→ q for some q0 ∈Q0, n∈N}.
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This modification yields the following algorithm:

PadClosure′(A, #)
Input: NFA A= (�,Q, δ,Q0,F)
Output: new set Q′0 of initial states
1 W←Q0; Q′0←∅;
2 while W �= ∅ do
3 pick q from W
4 add q to Q′0
5 for all (q, #, q′)∈ δ do
6 if q′ /∈Q′0 then add q′ to W
7 return Q′0

For example, the NFA depicted below on the left recognizes the set of numbers {1, 3} under
MSBF encodings (#= 0). Its padding closure, which recognizes the same set, is depicted
on the right:

0

0

0 1 1

1

0

0

0 1 1

1

� � Exercise 93. Let U =N be the universe of natural numbers, and consider MSBF
encodings. Give transducers for the sets of pairs (n,m)∈N2 such that

(a) m= n+ 1,
(b) m=#n/2$,
(c) n≤ 2m.

Solution:

(a) Two words wn and wn+1 are MSBF encodings of n and n+ 1 of the same length iff
there is a (possibly empty) word w and some k≥ 0 such that wn=w01k and wn+1=w10k .
Thus, the transducer is as follows: [

0
0

]
,
[
1
1

]
[
0
1

]
[
1
0

]

(b) The transducer has to recognize all pairs of words of the form [0kwb, 0k0w], where
w∈ {0, 1}∗ and b∈ {0, 1} since dividing by 2 shifts the bits to the right.

The transducer is shown as follows. It reads [0, 0]s until it finds the first 1 of sn (if any).
From this moment on, it moves between the two states labeled by 0 and 1. The intuitive
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meaning of state 0 is “the last bit of n I have read was a 0” and similarly for state 1. The
transitions are then given by the requirement that the next bit of mmust be equal to the last
bit of n. So, for instance, δ(1, [0, 1])= 0 because the next bit of m must be a 1, and after
reading a 0, the last bit of n read by the transducer is a 0. Note that state 0 could be merged
with the initial state.

1 0

[
0
0

]
[
1
0

] [
0
1

][
1
1

]

[
1
0

]

[
0
0

]

(c) We first construct the two transducers T1 and T2, respectively, as follows for relations
{(n, k) : n≤ k} and {(k,m) : k= 2m}:

p q

[
0
0

]
,
[
1
1

]
[
0
1

] �

r s

[
0
0

] [
1
0

]

[
0
1

]

[
1
1

]

Then, we compute the transducer T1 ◦T2 as follows for relation {(n,m) : n≤ 2m}:

p, r p, s

q, sq, r

[
0
0

] [
1
1

]

[
0
1

]
,
[
1
1

][
0
0

]
,
[
1
0

]

[
0
0

] [
0
1

]

[
1
0

]

[
0
1

]

[
0
1

]
,
[
1
1

]

[
1
0

]
,
[
0
0

]

� � Exercise 94. Let U be some universe of objects, and let us fix an encoding of U
over �∗. Prove or disprove: If a relation R⊆U ×U is regular, then the following language
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is regular:
LR={wxwy : (wx,wy) encodes a pair (x, y)∈R}.

Solution: False. Let U ={a, b}∗, and consider the identity encoding (i.e., a word w∈
{a, b}∗ is encoded by itself and its paddings). The identity relation R={[w,w] :w∈ {a, b}∗}
is regular. Indeed, it is recognized by a transducer with a single state q, both initial and final.
However, we have LR={ww :w∈ {a, b}∗}, which is not regular.

�� Exercise 96.We have defined transducers as NFAs whose transitions are labeled by
pairs of symbols (a, b)∈�×�. With this definition, transducers can only accept pairs of
words (a1 · · · an, b1 · · · bn) of the same length, which is not suitable for many applications.
An ε-transducer is an NFA whose transitions are labeled by elements of (� ∪ {ε})×

(� ∪ {ε}). An ε-transducer accepts a pair (w,w′) of words if it has a run

q0
(a1,b1)−−−−→ q1

(a2,b2)−−−−→· · · (an,bn)−−−−→ qn with ai, bi ∈� ∪ {ε}
such that w= a1 · · · an and w′ = b1 · · · bn. Note that |w| ≤ n and |w′| ≤ n. The relation
accepted by the ε-transducer T is denoted by L (T). The following figure depicts an ε-
transducer over alphabet {a, b} that, intuitively, duplicates the letters of a word (e.g., on
input aba, it outputs aabbaa).

(a, a)

(b, b)

(ε, a)

(ε, b)

Give an algorithm Postε(A,T) that, given an NFA A and an ε-transducer T , both over a
common alphabet �, returns an NFA recognizing the language

postTε
(A)= {w : ∃w′ ∈L (A) such that (w′,w)∈L (T)

}
.

Hint: View ε as an additional letter.

Solution: Given an alphabet�, let�ε =� ∪ {ε}, where we consider ε as a symbol, not as
the representation of the empty word. Let Tε be the standard transducer over �ε obtained
from T by considering ε as another alphabet letter. So, for instance, if T is the ε-transducer
above, then Tε accepts, for instance, the pair (aεbε, aabb). Further, let Aε be NFA over �ε

obtained from A by adding to each state q of A a loop (q, ε, q). Clearly, we have

L (Aε)=
⋃

a1···an∈L(A)

ε∗a1ε∗ · · · ε∗anε∗



Solutions for Chapter 5 441

and therefore
postTε

(A)= proj�(postTε
(Aε)).

This equation leads to the following algorithm: first we construct Aε; then we construct the
NFA Bε =Post(Aε,Tε), where Post is the algorithm defined in the chapter; and finally, we
construct an NFA B recognizing the projection of L (Bε) onto �. Since computing the pro-
jection is equivalent to considering ε as the empty word, we can take B=NFAεtoNFA(Bε),
where we consider Bε as an NFA-ε. Thus, more compactly:

Postε(A,T)=NFAεtoNFA(Post(Aε,Tε)).

� � Exercise 97. In exercise 96, we have shown how to compute preimages and postim-
ages of relations described by ε-transducers. In this exercise, we show that, unfortunately,
and unlike standard transducers, ε-transducers are not closed under intersection.

(a) Construct ε-transducers T1 and T2 recognizing the relations

R1={(anbm, c2n) : n,m≥ 0} and R2={(anbm, c2m) : n,m≥ 0}.
(b) Show that no ε-transducer recognizes R1 ∩R2.

Solution:

(a)

(a, c)

(b, ε)
(ε, c)

(b, ε)

(a, ε)

(b, c)
(ε, c)

(b, c)

(b) We have R1 ∩R2={(anbn, c2n) : n≥ 0}. For the sake of contradiction, suppose there
exists an ε-transducer T recognizing R1 ∩R2. Let us replace each transition of the form

q
(x,y)−−−→ q′ by q x−→ q′, where x, y∈� ∪ {ε}.

We obtain an NFA recognizing the language {anbn : n≥ 0}, which is not regular. Thus, we
derive a contradiction, and hence no ε-transducer recognizes R1 ∪R2.

�� Exercise 98.Consider transducers whose transitions are labeled by elements of (� ∪
{ε})×�∗. Intuitively, at each transition, these transducers read one letter or no letter and
write a string of arbitrary length. These transducers can be used to perform operations on
strings like, for instance, capitalizing all the words in the string: if the transducer reads, say,
“singing in the rain”, it writes “Singing In The Rain”. Sketch ε-transducers for the following
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operations, each of which is informally defined by means of two or three examples. In each
example, when the transducer reads the string on the left, it writes the string on the right.

Company\Code\index.html Company\Code
Company\Docs\Spec\specs.doc Company\Docs\Spec

International Business Machines IBM
Principles Of Programming Languages POPL

Oege De Moor Oege De Moor
Kathleen Fisher AT&T Labs Kathleen Fisher AT&T Labs

Eran Yahav Yahav, E.
Bill Gates Gates, B.

004989273452 +49 89 273452
(00)4989273452 +49 89 273452

273452 +49 89 273452

Solution: We give informal descriptions of the behavior of the ε-transducers.

(a) Here, x ranges over all symbols and y over all symbols but the backslash:

(x, x)

(\, ε)

(y, ε)

(b) Here, X ranges over uppercase letters and x is either a lowercase letter or a space:

(X ,X )

(x, ε)

(c) Here, x ranges over all symbols but the space symbol. In order to prevent trailing spaces,
we remember seeing a space and output it before the next letter:

(x, x)
(_ , ε)

(_ , ε)

(x, _ x)

(d) We assume that the string is always of the form Firstname Lastname. Here, x
ranges over all letters:
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· · · · · · · · · · · ·
(A, ε)

(Z, ε)

(x, ε)

(_ , _ )

(x, x)

(ε, ,) (ε, _ ) (ε, A)

(ε, .)

(x, ε)

(_ , _ )

(x, x)

(ε, ,) (ε, _ ) (ε, A)

(ε, .)

(e)

[(, ε] [0, ε] [0, ε]

[), ε]

[0, ε] [0, ε] [4,+4] [9, 9_ ] [8, 8] [9, 9_ ]

[0, 0], [1, 1], . . . , [9, 9]

[1,+49 89_ 1], . . . , [9,+49 89_ 9]

�	 Exercise 100. Transducers can be used to capture the behavior of simple programs.
For example, consider this program P and its control-flow diagram:

bool x, y init 0
x←?
write x
while true do

read y until y= x∧ y
if x= y then write y end
x←x− 1 or y←x+ y
if x �= y then write x end

1

2

3

4

5
6

78

9 10

x←?

write x

read y

y= x∧ y

y �= x∧ y

x �= y

x= y

write y

y←x+ yx←x− 1

x �= y

write x

x= y

Program P communicates with the environment through its two boolean variables, both
initialized to 0. The instruction end finishes the execution of P. The I/O-relation of P is the
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set of pairs (wI ,wO)∈ {0, 1}∗ × {0, 1}∗ such that there is an execution of P, during which P
reads the sequence wI of values and writes the sequence wO.

Let [i, x, y] denote the configuration of P in which P is at node i of the control-flow
diagram, and the values of its two boolean variables are x and y, respectively. The initial
configuration of P is [1, 0, 0]. By executing the first instruction, P moves nondeterministi-
cally to one of the configurations [2, 0, 0] and [2, 1, 0]; no input symbol is read and no output
symbol is written. Similarly, by executing its second instruction, the program Pmoves from
[2, 1, 0] to [3, 1, 0] while reading nothing and writing 1.

(a) Give an ε-transducer recognizing the I/O-relation of P.
(b) Can an overflow error occur? That is, can a configuration be reached in which the value
of x or y is not 0 or 1?
(c) Can node 10 of the control-flow graph be reached?
(d) What are the possible values of x upon termination, that is, upon reaching end?
(e) Is there an execution during which P reads 101 and writes 01?
(f) Let I and O be regular sets of inputs and outputs, respectively. Think of O as a set of
dangerous outputs that we want to avoid. We wish to prove that the inputs from I are safe,
that is, when P is fed inputs from I , none of the dangerous outputs can occur. Describe
an algorithm that decides, given I and O, whether there are i∈ I and o∈O such that (i, o)
belongs to the I/O-relation of P.

Solution:

(a) The states of the transducer are the reachable configurations of P:

[1, 0, 0]

[2, 0, 0]

[3, 0, 0]

[4, 0, 0]

[4, 0, 1]

[5, 0, 0]

[3, 0, 1]

[6, 0, 0]

[7, 0, 0]

[2, 1, 0]

[3, 1, 0]

[4, 1, 0] [4, 1, 1]

[5, 1, 0] [5, 1, 1]

[8, 1, 0] [6, 1, 1]

[9, 0, 0] [7, 1, 1]

[3, 1, 1]

[9, 1, 1]

ε/ε ε/ε

ε/0

0/ε

1/ε

ε/ε

ε/ε

ε/0

ε/ε1/ε

0/ε

ε/1

0/ε 1/ε

ε/ε

ε/ε

ε/ε

ε/ε

ε/ε

ε/ε

ε/ε

ε/1

ε/ε

0/ε 1/ε
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(b) No.
(c) No. The node is redundant. In fact, the last line of P can be removed without changing
the behavior.
(d) 0 and 1, because the reachable final configurations are [7, 0, 0] and [7, 1, 1].
(e) Let T be transducer for P, and let AI and AO be NFAs recognizing I andO, respectively.
A possible algorithm for the task is

EmptyNFA(IntersNFA(Postε(AI ,T),A0)).

Solutions for Chapter 6

�� Exercise 102. Give an efficient algorithm that receives as input the minimal DFA of
a fixed-length language and returns the number of words it contains.

Solution: The algorithm recursively computes the number of words accepted by each
state q of the DFA. If q= q∅, then the number is 0, and if q= qε, then it is 1. Otherwise,
let �={a1, . . . , an} be the alphabet of the DFA; the number of words accepted by q is
the sum of the number of words accepted by the ai-successor of q. In pseudocode, we
obtain
number(q)
Input: state q
Output: number of words recognized from q
1 if G(q) is not empty then return G(q)
2 if q= q∅ then return 0
3 else if q= qε then return 1
4 else
5 G(q)← number(qa1)+ · · ·+ number(qan)
6 return G(q)

� � Exercise 103. The algorithm for fixed-length universality given in table 28 has a
best-case runtime equal to the length of the input state q. Give an improved algorithm that
only needs O(|�|) time for inputs q such that L (q) is not fixed-size universal.

Solution: Let q be the input to the algorithm, and consider the set of states {qa : a∈�}. If
the set contains two distinct states qa and qb, then, since every state recognizes a different
language, either qa or qb is not fixed-length universal, and we can conclude that q is not
fixed-length universal. So the algorithm computes qa for every a∈� in time O(|�|). If at
least two states are different, then the algorithm returns false. If all states are equal to the
same state, say q′, then the algorithm calls itself recursively with input q′. In pseudocode,
we obtain:
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univ′(q)
Input: state q
Output: true if L (q) is fixed-length universal,

false otherwise
1 if q= q∅ then return false
2 else if q= qε then return true
3 else
4 q′ ← qa1
5 for all i= 2, . . . ,m do
6 if qai �= q′ then return false
7 return univ’(q′)

�� Exercise 106.

(a) Give an algorithm to compute L (p) ·L (q) given states p and q of the fixed-length
master automaton.
(b) Give an algorithm to compute both the length and size of L (q) given a state q of the
fixed-length master automaton.
(c) The length and size of L (q) could be obtained in constant time if they were simply
stored in the fixed-length master automaton table. Give a new implementation of make for
this representation.

Solution:

(a) Let L and L′ be fixed-length languages. We have

L ·L′ =

⎧⎪⎪⎨⎪⎪⎩
∅ if L=∅,
L′ if L={ε},⋃
a∈�

a ·La ·L′ otherwise.

These identities give rise to the following algorithm:

concat(p, q)
Input: states p and q
Output: state r such that L (r)=L (p) ·L (q)
1 if G(p, q) is not empty then return G(p, q)
2 if p= q∅ then return q∅
3 else if p= qε then return q
4 else
5 for all a∈� do
6 sa← concat(pa, q)
7 G(p, q)←make(s)
8 return G(p, q)

(b) Let L be a fixed-length language. We have
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length(L)=
⎧⎨⎩
∞ if L=∅,
0 if L={ε},
length(La)+ 1 for any a∈� s.t. La �= ∅ otherwise.

and

|L| =
⎧⎨⎩
0 if L=∅,
1 if L={ε},∑

a∈� |La| otherwise.

These identities give rise to the following algorithm:

len-size(q)
Input: states q
Output: length and size of L (q)
1 if G(q) is not empty then return G(q)
2 if p= q∅ then return (∞, 0)
3 else if p= qε then return (0, 1)
4 else
5 k←∞
6 n← 0
7 for all a∈� do
8 k′, n′ ← len-size(qa)
9 if k′ �=∞ then k← k′ + 1
10 n← n+ n′
11 G(q)← (k, n)
12 return G(q)

(c) Let q be a state of the fixed-length master automaton. We denote the length and the size
of q, respectively, by len(q) and |q|. These values are encoded in two new columns of the
table. We set

len(q∅) = ∞, |q∅| = 0,

len(qε) = 0, |qε| = 1.

From the observations made in (b), we obtain the following algorithm:

make′(q)
Input: mapping s from � to the fixed-length master automaton states
Output: state q s.t. L (q)a= sa for each a∈�
1 if Table contains s then return associated state
2 r← new state number
3 k←∞
4 n← 0
5 for all a∈� do
6 if sa �= q∅ then k←|sa| + 1
7 n← n+ len(sa)
8 Table(r)← (s, k, n)
9 return r
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� � Exercise 107. Let k ∈N>0. Let flip : {0, 1}k→{0, 1}k be the function that inverts
the bits of its input (e.g., flip(010)= 101). Let val : {0, 1}k→N be such that val(w) is the
number represented by w with the “least-significant-bit-first” encoding.

(a) Describe the minimal transducer that accepts

Lk =
{
[x, y] ∈ ({0, 1}× {0, 1})k : val(y)= val(flip(x))+ 1 mod 2k

}
.

(b) Build the state r of the fixed-length master transducer for L3 and the state q of the
fixed-length master automaton for {010, 110}.
(c) Adapt the algorithm pre seen in the chapter to compute post(r, q).

Solution:

(a) Let [x, y] ∈Lk . We flip the bits of xwhile adding 1. If x1= 1, then¬x= 0, and so adding
1 to val(flip(x)) results in y1= 1. Thus, for every 1< i≤ k, we have yi=¬xi. If x1= 0,
then ¬x1= 1. Adding 1 yields y1= 0 with a carry. This carry is propagated as long as
¬xi= 1 and thus as long as xi= 0. When some position j with xj= 1 is encountered, the
carry is “consumed,” and we flip the remaining bits of x. These observations give rise to the
following minimal transducer for Lk :

q0 q1 q2 qk−1

p1 p2 pk−1 pk

[
0
0

] [
0
0

]
[
0
0

]
,
[
1
1

]

[
0
1

]
,
[
1
0

] [
0
1

]
,
[
1
0

]
[
1
1

] [
1
1

]

[
0
0

]

[
0
1

]
,
[
1
0

]
[
1
1

]

(b) The minimal transducer accepting L3 is

6 4 2

5 3 rε

r∅

rεrεrε

[
0
0

] [
0
0

]
[
0
0

]
,
[
1
1

]

[
0
1

]
,
[
1
0

] [
0
1

]
,
[
1
0

]
[
1
1

] [
1
1

]
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State 4 of the following fragment of the fixed-length master automaton accepts
{010, 110}:

qε q∅

2 3

4

0, 1

0, 1

0
1

0

1

0, 1

(c) We can establish the following identities similar to those obtained for pre:

postR(L)=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∅ if R=∅ or L=∅,
{ε} if R={[ε, ε]} and L={ε},⋃
a,b∈�

b · postR[a,b](La) otherwise.

To see that these identities hold, let b∈� and v∈�k for some k ∈N. We have

bv∈ postR(L) ⇐⇒ ∃a∈�, u∈�k s.t. au∈L and [au, bv] ∈R
⇐⇒ ∃a∈�, u∈La s.t. [au, bv] ∈R

⇐⇒ ∃a∈�, u∈La s.t. [u v] ∈R[a,b]

⇐⇒ ∃a∈� s.t. v∈PostR[a,b](La)

⇐⇒ v∈
⋃
a∈�

PostR[a,b](L
a)

⇐⇒ bv∈
⋃
a∈�

b ·PostR[a,b](La).

We obtain the following algorithm:
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post(r, q)
Input: states r and q of the fixed-length master transducer and automaton
Output: PostR(L (q)) where R=L (r)
1 if G(r, q) is not empty then return G(r, q)
2 else if r= r∅ or q= q∅ then return q∅
3 else if r= rε and q= qε then return qε

4 else
5 for all b∈� do
6 p← q∅
7 for all a∈� do
8 p← union(p, post(r[a,b], qa))
9 sb← p
10 G(r, q)←make(s)
11 return G(r, q)

Note that the transducer for L3 has a “strong” deterministic property. Indeed, for each
state r and b∈ {0, 1}, if r[a,b] �= r∅, then r[¬a,b] = r∅. Hence, for a fixed b∈ {0, 1}, at most
one post(r[a,b], qa) can differ from q∅ at line 8 of the algorithm. Thus, unions made on this
transducer are trivial, and executing post(6, 4) yields the following computation tree:

post(6, 4)

make(post(4, 3), post(5, 3))

make(post(2, q∅), post(3, 2)) make(post(3, 2), post(3, q∅))

make(post(rε, q∅), post(rε, qε))
q∅q∅

q∅ qε

G(3, 2)
5

6

5

7

8

Calling post(6, 4) adds the following rows to the fixed-length master automaton table and
returns 8:

Ident. 0-succ 1-succ

5 q∅ qε
6 q∅ 5
7 5 q∅
8 6 7
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The new fixed-length master automaton fragment:

qε q∅

2 3

4

5

6

78Post(L3, {010, 110})

0, 1

0, 1

0
1

0

1

0, 1 0

1
0

1

1

0

0

1

�� Exercise 109.Given X ⊆{0, 1, . . . , 2k − 1}, where k≥ 1, let AX be the minimal DFA
recognizing the “least-significant-bit-first” encodings of length k of the elements of X .

(a) Let X + 1={x+ 1 mod 2k : x∈X }. Give an algorithm that on input AX produces AX+1.
(b) Let AX = (Q, {0, 1}, δ, q0,F). What is the set of numbers recognized by the automaton
A′ = (Q, {0, 1}, δ′, q0,F), where δ′(q, b)= δ(q, 1− b)?

Solution:

(a) The following recursive algorithm takes as input the initial state of AX (from the fixed-
length master automaton) and returns the state for AX+1:
Add1(q)
Input: state q recognizing a set X of numbers
Output: state of the same length as q recognizing X + 1
1 if G(q) is not empty then return G(q)
2 if q= q∅ or q= qε then return q
3 else
4 r0←Add1(q1)
5 r1← q0

6 G(q)←make(r0, r1)
7 return G(q)

(b) Automaton A′ recognizes a word b1 · · · bk iff AX recognizes (1− b1) · · · (1− bk). Thus,
the set of numbers Y recognized by A′ is Y ={(2k − 1)− x : x∈X }.
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�� Exercise 110. Recall that weakly acyclic languages and DFAs have been introduced
in exercise 35. Recall that the relation � on the states of a weakly acyclic DFA, defined by
q� q′ iff δ(q,w)= q′ for some word w, is a partial order. Show that:

(a) Every fixed-length language is weakly acyclic.
(b) If L is weakly acyclic, then Lw is also weakly acyclic for every w∈�∗.

Given weakly acyclic languages L and L′, let L�L L′ denote that L= (L′)w for some word
w. Show that:

(c) �L is a partial order on the set of all weakly acyclic languages.
(d) �L has no infinite descending chains.
(e) The only two minimal languages w.r.t. �L are ∅ and �∗.

Recall that, by exercise 57, the minimal DFA recognizing a given weakly acyclic language
is weakly acyclic. We define the weakly acyclic master automaton over alphabet � as
M= (QM ,�, δM ,FM ), where

• QM is the set of all weakly acyclic languages over �;
• δ : QM ×�→QM is given by δ(L, a)=La for every q∈QM and a∈�; and
• L∈FM iff ε ∈L.
Prove the following result, which generalizes the corresponding one for fixed-length
languages:

(f) For every weakly acyclic language L, the language recognized from the state L of the
weakly acyclic master automaton M is L.

Solution:

(a) Let L be a fixed-length language of length n. We prove that L is weakly acyclic by
induction on n. If n= 0, then L=∅ or L={ε}, which is clearly weakly acyclic. If n> 0,
then La has length n− 1 for every a∈�, and by induction hypothesis, it is weakly acyclic.
So there is a weakly acyclic DFA Aa recognizing La. Let qa0 be the initial state of A

a, and
let A be the DFA obtained by putting the DFAs Aa side by side, adding a new initial state
q0, and adding transitions q0

a−→ qa0 for every a∈�. We have L (A)=L. Further, since all
of the Aa are weakly acyclic, so is A, and therefore L is weakly acyclic.
(b) Let A= (Q,�, δ, q0,F) be a weakly acyclic DFA recognizing L, and let q be the state
such that δ(q0,w)= q. We have L (q)=Lw. Let Aq be the DFA obtained by removing from
A all states not reachable from q andmaking q the initial state. Clearly, we haveL (Aq

)=Lw.
Since removing states from a weakly acyclic DFA cannot destroy weak acyclicity, Aq is also
weakly acyclic.
(c) The relation�L is clearly reflexive and transitive.We show that it is also antisymmetric.
Let L,L′ ⊆�∗ be weakly acylic languages, and let w,w′ ∈�∗ be words such that L′ =Lw

and L= (L′)w′ . We prove that L=L′. Let A= (Q,�, δ, q0,F) be the minimal weakly acyclic
DFA recognizing L. Let q be the state such that δ(q0,w)= q. Since A is minimal, q0 and
q are the unique states of A such that L (q0)=L and L (q)=L′. So we have δ(q,w)= q0,
which implies q0� q� q0. Since � is a partial order, q0= q follows, and so L=L′.
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(d) This follows from (c) and the fact that a regular language has finitely many residuals.

(e) By definition of�L, a language L is minimal w.r.t.�L iff L=La for every a∈�. Thus,
either L=∅ or L=�∗.
(f) By (d) and (e), it suffices to show that the property holds for L=∅ and L=�∗, and that
if La satisfies the property for every a∈� such that La �=L, then L satisfies it too. For L=∅,
observe that L=La, and so every transition leaving L is a self-loop. Further, L is not final.
Thus, the language accepted from L is ∅. The proof for L=�∗ is similar. Finally, assume
that the language recognized from every state La such that La �=L is La. Let EL be defined
as {ε} if ε ∈L and ∅ otherwise. The language recognized from L is

EL ∪
⎛⎝ ⋃

a∈�,La �=L
aLa

⎞⎠∪
⎛⎝ ⋃

a∈�,La=L
aL

⎞⎠

= EL ∪
⎛⎝ ⋃

a∈�,La �=L
aLa

⎞⎠∪
⎛⎝ ⋃

a∈�,La=L
aLa

⎞⎠
= EL ∪

⋃
a∈�

aLa

= L.

�� Exercise 111. Recall that exercise 110 establishes that weakly acyclic languages can
be represented by a weakly acyclic master automaton. A state q of the weakly acyclic master
automaton can be represented by a table as follows. A node is a triple 〈q, s, b〉, where
• q is a state identifier;
• s= (α1, . . . ,αm) is the successor tuple of the node, where for every 1≤ i≤m, the
component αi is either a state identifier or the special symbol SELF; and
• b∈ {0, 1} indicates whether the state is accepting (b= 1) or not (b= 0).

For example, if �={a, b} and q is an accepting state satisfying δ(q, a)= q′ and δ(q, b)=
q, then q is represented by the triple 〈q, s, b〉, where s= (q′, SELF) and b= 1. The state
identifiers of the states for the languages ∅ and �∗ are denoted, respectively, by q∅ and q�∗ .
Given a table T that represents a fragment of the weakly acyclic master automaton, the

proceduremake(s, b) returns the state identifier of the unique state of T having s as successor
tuple and b as boolean flag, if such a state exists; otherwise, it adds a new node 〈q, s, b〉 to
T , where q is a fresh identifier, and it returns q.

(a) Give an algorithm to compute L (q1)∩L (q2) given states q1 and q2 of the weakly
acyclic master automaton.
(b) Give an algorithm to compute L (q1)∪L (q2) given states q1 and q2 of the weakly
acyclic master automaton.
(c) Give an algorithm to compute L (q) given a state q of the weakly acyclic master
automaton.
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Solution:

(a) The following properties lead to the recursive algorithm inter(q1, q2) shown as below:
• if L1=∅ or L2=∅, then L1 ∩L2=∅;
• if L1=�∗ and L2=�∗, then L1 ∩L2=�∗; and
• if L1,L2 /∈ {∅,�∗}, then L1 ∩L2= (L1 ∩L2 ∩ {ε})∪⋃a∈� a · (L1 ∩L2)a.

inter(q1, q2)
Input: states q1, q2 of the weakly acyclic master automaton
Output: state recognizing L (q1)∩L (q2)
1 if G(q1, q2) is not empty then return G(q1, q2)
2 if q1= q∅ or q2= q∅ then return q∅
3 else if q1= q�∗ and q2= q�∗ then return q�∗
4 else /* q1, q2 /∈ {q∅, q�∗} */
5 for all i= 1, . . . ,m do
6 if qai1 = qai2 = SELF then ri← SELF

7 else if qai1 = SELF then ri← inter(q1, q
ai
2 )

8 else if qai2 = SELF then ri← inter(qai1 , q2)
9 else ri← inter(qai1 , q

ai
2 )

10 b← qb1 ∧ qb2
11 G(q1, q2)←make(r1, . . . , rm, b)
12 return G(q1, q2)

(b) The following properties lead to the recursive algorithm union(q1, q2) shown as
follows:
• if L1=∅ and L2=∅, then L1 ∪L2=∅;
• if L1=�∗ or L2=�∗, then L1 ∪L2=�∗; and
• if L1,L2 /∈ {∅,�∗}, then L1 ∪L2= ((L1 ∩ {ε})∪ (L2 ∩ {ε}))∪⋃a∈� a · (L1 ∪L2)a.

union(q1, q2)
Input: states q1, q2 of the weakly acyclic master automaton
Output: state recognizing L (q1)∪L (q2)
1 if G(q1, q2) is not empty then return G(q1, q2)
2 if q1= q∅ and q2= q∅ then return q∅
3 else if q1= q�∗ or q2= q�∗ then return q�∗
4 else /* q1, q2 /∈ {q∅, q�∗} */
5 for all i= 1, . . . ,m do
6 if qai1 = qai2 = SELF then ri← SELF

7 else if qai1 = SELF then ri← union(q1, q
ai
2 )

8 else if qai2 = SELF then ri← union(qai1 , q2)
9 else ri← union(qai1 , q

ai
2 )

10 b← qb1 ∨ qb2
11 G(q1, q2)←make(r1, . . . , rm, b)
12 return G(q1, q2)
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(c) The following properties lead to the recursive algorithm comp(q) shown as follows:
• if L=∅, then L=�∗;
• if L=�∗, then L=∅; and
• if L /∈ {∅,�∗}, then L= (L∩ {ε})∪⋃a∈� a

(
L
)a.

comp(q)
Input: state q of the weakly acyclic master automaton
Output: state recognizing L (q)
1 if G(q) is not empty then return G(q)
2 if q= q∅ then return q�∗
3 if q= q�∗ then return q∅
4 else /* q /∈ {q∅, q�∗} */
5 for all i= 1, . . . ,m do
6 if qai = SELF then ri← SELF
7 else ri← comp(qai)
8 b←¬qb
9 G(q)←make(r1, . . . , rm, b)
10 return G(q1, q2)

�	 Exercise 112. Recall that we can associate a language to a boolean formula as done
in exercise 108. Show that the following problem is NP-hard:

Given: a boolean formula ϕ,
Decide: whether the minimal DFA for L (ϕ) has more than one state.

Solution: We give a reduction from the NP-complete problem SAT. Recall that this pro-
blem asks whether a given boolean formula ψ is satisfiable. Let x1, . . . , xn be the variables
that occur withinψ , and let y be a new variable. Let ϕ=ψ ∧ y. We claim thatψ is satisfiable
iff the minimal DFA for L (ϕ) has more than one state.

⇒) Ifψ is satisfiable, then there existsw∈ {0, 1}n such thatψ(w)= true. Thus,w1∈L (ϕ).
Note that w0 /∈L (ϕ) as ϕ requires y to be true. Consequently, L (ϕ) is neither empty nor
universal, which means that its minimal DFA has more than one state.

⇐) If the minimal DFA for ϕ has more than one state, then L (ϕ) �= ∅. This means
there exists w∈ {0, 1}n such that ϕ(w, 1)= true. In particular, this implies that ψ(w)=
true.
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Solutions for Chapter 7

� � Exercise 113. Exhibit a family {Pn}n≥1 of sequential programs (like program 1)
satisfying the following conditions:

• Pn has O(n) boolean variables, O(n) lines, and exactly one initial configuration;
• Pn has at least 2n reachable configurations.

Solution: If nondeterminism is allowed, then we can simply define Pn as a program that
nondeterministically sets variables x1, . . . , xn to 0 or 1 and terminates:

1 for all 1≤ i≤ n do
2 xi← 0 or xi← 1
3 end
If we require the program to be deterministic, then we can take Pn as a program that
repeatedly increases an n-bit counter, where xi contains the value of the ith least signifi-
cant bit. For instance, if n= 3, then the program visits the sequence of variable valuations
000, 001, 010, . . . , 110, 111. To increase a valuation, the program goes over all bits with
value 1, setting them to 0, and then sets the first bit with value 0 (if any) to 1:

1 for all 0≤ i< n do xi← 0
2 while true do
3 for all 0≤ i< n do
4 xi← 1− xi
5 if xi= 1 then break
6 end
These two programs have a constant number of lines, but the iterator of the loop is
not a boolean variable. If we want to strictly adhere to the specification of the exercise
(only boolean variables), then we can just replace the loop by a chain of if-then-else instr-
uctions.

� � Exercise 114. When applied to program 1, algorithm SysAut outputs the system
automaton shown in the middle of figure 7.1. Give an algorithm SysAut′ that outputs the
automaton depicted at the bottom.

Solution: First we modify line 14 of SysAut so that it adds transition

[q1, . . . , qn] [q1,...,qn]−−−−−−→[q′1, . . . , q′n] rather than [q1, . . . , qn]
[q′1,...,q′n]−−−−−−→[q′1, . . . , q′n].

We must further drop the initial state i. However, every reachable configuration c without
any successor must now have an outgoing transition, labeled with c, leading to a final state
f . We introduce a flag no_successor to determine if a configuration has some successor or
not. The resulting algorithm is depicted as follows. The flag is set to false right after adding
the first successor at line 15. If the configuration has no successors, then we add the new
transition at line 17:
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SysAut′(A1, . . . ,An)
Input: a network of automata 〈A1, . . .An〉, where

A1= (Q1,�1, δ1,Q01,Q1), . . . ,An= (Qn,�n, δn,Q0n,Qn)
Output: a system automaton S= (Q,�, δ,Q0,F)

1 Q, δ,F←∅
2 Q0←Q01× · · ·×Q0n
3 W←Q0
4 while W �= ∅ do
5 pick [q1, . . . , qn] from W
6 add [q1, . . . , qn] to Q
7 add [q1, . . . , qn] to F
8 no_successors← true
9 for all a∈�1 ∪ . . .∪�n do
10 for all i∈ [1..n] do
11 if a∈�i then Q′i← δi(qi, a) else Q′i={qi}
12 for all [q′1, . . . , q′n] ∈Q′1× . . .×Q′n do
13 if [q′1, . . . , q′n] /∈Q then add [q′1, . . . , q′n] to W
14 add ([q1, . . . , qn], [q1, . . . , qn], [q′1, . . . , q′n]) to δ
15 no_successors← false
16 if no_successors= true then
17 add f to Q; add f to F; add ([q1, . . . , qn], [q1, . . . , qn], f ) to δ
18 return (Q,�, δ,Q0,F)

� � Exercise 117. Consider two processes (process 0 and process 1) being executed
through the following generic mutual exclusion algorithm:

1 while true do
2 enter(process_id)
3 critical section
4 leave(process_id)
5 for arbitrarily many iterations do
6 noncritical section
7 end

(a) Consider the following implementations of enter and leave:

1 x← 0
2 proc enter(i)
3 while x= 1− i do
4 pass
5 proc leave(i)
6 x← 1− i

(i) Design a network of automata capturing the executions of the two processes.
(ii) Build the asynchronous product of the network.
(iii) Show that both processes cannot reach their critical sections at the same time.
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(iv) If a process wants to enter its critical section, is it always the case that it can eventually
enter it? Hint: Reason in terms of infinite executions.
(b) Consider the following alternative implementations of enter and leave:

1 x0← false
2 x1← false
3 proc enter(i)
4 xi← true
5 while x1−i do
6 pass
7 proc leave(i)
8 xi← false

(i) Design a network of automata capturing the executions of the two processes.
(ii) Say whether a deadlock can occur—that is, can both processes get stuck trying to enter
their critical sections?

Solution:

(a)
(i)

0 1

x= 0

x← 0

x= 1

x← 1

x← 1

x← 0

e0 c0 	0 nc0
x= 0

x= 1

c0 x← 1

x← 1

nc0

nc0

e1 c1 	1 nc1
x= 1

x= 0

c1 x← 0

x← 0

nc1

nc1

Note that the above network forces the processes to read the contents of x simultaneously.
To avoid this, we can add new disjoint actions x= 0′ and x= 1′ as follows:
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0 1

x= 0, x= 0′

x← 0

x= 1, x= 1′

x← 1

x← 1

x← 0

e0 c0 	0 nc0
x= 0

x= 1

c0 x← 1

x← 1

nc0

nc0

e1 c1 	1 nc1
x= 1′

x= 0′

c1 x← 0

x← 0

nc1

nc1

(ii)

0, e0, e1 0, c0, e1 0, 	0, e1 1, nc0, e1

1, e0, e11, e0, c11, e0, 	10, e0, nc1

x= 0 c0 x← 1

x← 1

nc0

nc0

x= 1c1x← 0

nc1

nc1

x← 0

For the second solution where asynchronous reads are allowed, we obtain the following
automaton:
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0, e0, e1 0, c0, e1 0, 	0, e1 1, nc0, e1

1, e0, e11, e0, c11, e0, 	10, e0, nc1

1, nc0, c11, nc0, 	10, nc0, nc10, nc0, e1

0, c0, nc1 0, 	0, nc1 1, nc0, nc1 1, e0, nc1

x= 0 c0 x← 1

x← 1

nc0

nc0

x= 1′c1x← 0

nc1

nc1

x← 0

x= 1′

c1

nc0

nc0

x← 0

x← 0

nc0

nc0nc0, nc1

nc0

nc1

nc0, x= 0′

nc0

x= 0

nc1

nc1

c0

nc1

nc1

x← 1

x← 1

nc0, nc1

nc0

nc1

nc1

nc1, x= 1

x= 0′ x= 0′ x= 0′

x= 1x= 1x= 1

(iii) Both processes can reach their critical section at the same time iff the asynchronous
product contains a state of the form (x, c0, c1). Since it contains none, this behavior cannot
occur. It also cannot occur in our second modeling.
(iv) No. Consider the following infinite run:

(0, e0, e1)
x=0−−→ (0, c0, e1)

c0−→ (0, 	0, e1)
x←1−−→ (1, nc0, e1)

nc0−→ (1, nc0, e1)
nc0−→· · ·

illustrated as follows:

0, e0, e1 0, c0, e1 0, 	0, e1 1, nc0, e1

1, e0, e11, e0, c11, e0, 	10, e0, nc1

x= 0 c0 x← 1

x← 1

nc0

nc0

x= 1c1x← 0

nc1

nc1

x← 0
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The second process remains in e1 throughout this infinite run, so it never enters its critical
section. Since we have restricted x to be read at the same time, a process can stay in its
noncritical section as long as it wants while the other one cannot do anything.
In our second modeling, this infinite run still occurs as illustrated below. However, here

the second process is not stuck since it could take transition (1, nc0, e1)
x=1′−−→ (1, nc0, c1)

to reach its critical section. Therefore, the colored infinite run only occurs if the pro-
cess scheduler can let a process i run forever even though process 1− i could make
progress.

0, e0, e1 0, c0, e1 0, 	0, e1 1, nc0, e1

1, e0, e11, e0, c11, e0, 	10, e0, nc1

1, nc0, c11, nc0, 	10, nc0, nc10, nc0, e1

0, c0, nc1 0, 	0, nc1 1, nc0, nc1 1, e0, nc1

x= 0 c0 x← 1

x← 1

nc0

nc0

x= 1′c1x← 0

nc1

nc1

x← 0

x= 1′

c1

nc0

nc0

x← 0

x← 0

nc0

nc0nc0, nc1

nc0

nc1

nc0, x= 0′

nc0

x= 0

nc1

nc1

c0

nc1

nc1

x← 1

x← 1

nc0, nc1

nc0

nc1

nc1

nc1, x= 1

x= 0′ x= 0′ x= 0′

x= 1x= 1x= 1
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(b)
(i)

f t

x0= 0

x0← 0

x0= 1

x0← 1

x0← 1

x0← 0

f t

x1= 0

x1← 0

x1= 1

x1← 1

x1← 1

x1← 0

e0 e′0 c0 	0 nc0
x0← t

x1= t

x1= f c0 x0← f

x0← f

nc0

nc0

e1 e′1 c1 	1 nc1
x1← t

x0= t

x0= f c1 x1← f

x1← f

nc1

nc1

(ii) Yes, consider this fragment of the asynchronous product of the network:

f , f , e0, e1 t, f , e′0, e1 t, t, e′0, e
′
1

x0← t x1← t

x0= t

x1= t

When (t, t, e′0, e
′
1) is reached, both processes are still trying to enter their critical section,

and it is impossible to move to a new state.

�� Exercise 118. Consider a circular railway divided into eight tracks: 0→ 1→ . . .→
7→ 0. Three trains, modeled by three automata T1, T2, and T3, circulate on the railway.
Each automaton Ti is defined as follows:

• states: {qi,0, . . . , qi,7};
• alphabet: {enter[i, j] : 0≤ j≤ 7}, where enter[i, j] models that train i enters track j;
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• transition relation: {(qi,j, enter[i, j⊕ 1], qi,j⊕1) : 0≤ j≤ 7}, where ⊕ denotes addition
mod 8; and
• initial state: qi,2i (i.e., initially the trains occupy tracks 2, 4, and 6).

Describe automata C0, . . . ,C7, called local controllers, that ensure that two trains can
never be on the same track or adjacent tracks (i.e., there must always be at least one empty
track between two trains). Each controller Cj can only have knowledge of the state of tracks
j. 1, j, and j⊕ 1; there must be no deadlocks; and every train must eventually visit every
track. More formally, the network of automataA=〈C0, . . . ,C7,T1,T2,T3〉must satisfy the
following specification:

(a) Cj only knows the state of local tracks: Cj has alphabet {enter[i, j. 1], enter[i, j],
enter[i, j⊕ 1] : 1≤ i≤ 3};
(b) no deadlock and each train eventually visits every segment: L (A)|�i= (enter[i, 2i]
enter[i, 2i⊕ 1] · · · enter[i, 2i⊕ 7])∗ for each i∈ {1, 2, 3}; and
(c) no two trains on the same or adjacent tracks: for every word w∈L (A), it is the case
that w= u enter[i, j] enter[i′, j′] v and i′ �= i implies |j− j′| /∈ {0, 1, 7}.
Solution: Let us write x �=? y as a shorthand for ¬(x= y∧ x �= ?) (i.e., x �= y or x= ?= y).
We define the states of Cj as triples assigning a track number from {j. 1, j, j⊕ 1, ?} to
each train, where ? stands for an unknown track number w.r.t. the knowledge of the local
controller:

Qj={x∈ {j. 1, j, j⊕ 1, ?}3 : x1 �=? x2, x1 �=? x3, x2 �=? x3,

{x1, x2, x3} \ {?} ∈ {∅, {j. 1}, {j}, {j⊕ 1}, {j. 1, j⊕ 1}}.
The constraints ensure that no two trains are either on the same track or on adjacent tracks
w.r.t. {j. 1, j, j⊕ 1}. The sole initial state of Cj is defined as (fj(1), fj(2), fj(3)), where

fj(i)=
{
2i if 2i∈ {j. 1, j, j⊕ 1},
? otherwise.

The transition relation of Cj is defined as δ(x, enter[i, k])= y, where yi= k and y	= x	

for 	 �= i. Note that an invalid move (e.g., train 1 moving to track j while train 2 is on track
j⊕ 1), leads to an implicit trap state as no such state belongs to Qj.
The definition of Cj takes care of (a) and (c). Item (b) follows by definition of T1, T2,

and T3.

Solutions for Chapter 8

�� Exercise 119. Give formulations in plain English of the languages described by the
following formulas of FO({a, b}), and give a corresponding regular expression:

(a) ∃x first(x)
(b) ∀x x< x
(c) [¬∃x∃y (x< y∧Qa(x)∧Qb(y))] ∧ [∀x (Qb(x)→∃y x< y∧Qa(y))] ∧ [∃x ¬∃y x< y]
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Solution:

(a) All nonempty words: (a+ b)(a+ b)∗.
(b) The empty word: ε.
(c) The first conjunct expresses that no a precedes an occurrence of b. The corresponding
regular expression is b∗a∗. The second conjunct states that every b is followed (immediately
or not) by an a; this excludes the words of b+. Finally, the third conjunct expresses that there
is a last letter (which, by the second conjunct, must be an a). So, the overall expression
is b∗a+.

�� Exercise 120. Let �={a, b}.
(a) Give a formula ϕn(x, y) from FO(�), of size O(n), that holds iff y= x+ 2n. Note that
the abbreviation y= x+ k on page 202 has length O(k) and hence cannot be directly used.
(b) Give a sentence from FO(�), of size O(n), for the language Ln={ww :w∈
�∗ and |w| = 2n}.
(c) Show that the minimal DFA accepting Ln has at least 22

n
states.

Hint: Consider residuals.

Solution:

(a) To simplify the notation, let us write “y= x+ 2n” for “ϕn(x, y).” We can define y=
x+ 2n inductively as follows:

(y= x+ 2n) :=∃t
(
t= x+ 2n−1 ∧ y= t+ 2n−1

)
.

However, since the formula for n is roughly twice as long as the formula for n− 1, this
yields a formula of exponential size. It can be made linear by rewriting it in the foll-
owing way:

(y= x+ 2n)

= ∃t ∀x′ ∀y′
(
(x′ = x∧ y′ = t)→ y′ = x′ + 2n−1

)
∧
(
(x′ = t∧ y′ = y)→ y′ = x′ + 2n−1

)
= ∃t ∀x′ ∀y′

(
¬(x′ = x∧ y′ = t)∨ y′ = x′ + 2n−1

)
∧
(
¬(x′ = t∧ y′ = y)∨ y′ = x′ + 2n−1

)
= ∃t ∀x′ ∀y′ (¬(x′ = x∧ y′ = t)∧¬(x′ = t∧ y′ = y)

)∨ y′ = x′ + 2n−1

= ∃t ∀x′ ∀y′ ((x′ = x∧ y′ = t)∨ (x′ = t∧ y′ = y)
)→ y′ = x′ + 2n−1.
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(b)

word has length 2n+ 2n︷ ︸︸ ︷(∃x, y, y′, z first(x)∧ y= x+ 2n ∧ y′ = y+ 1∧ z= y′ + 2n ∧ last(z)
)

∧
⎛⎝∀x∀y ∧

σ∈{a,b}

(
Qσ (x)∧ y= x+ 2n

)→Qσ (y)

⎞⎠
︸ ︷︷ ︸

word is of the form ww

.

(c) Let u, v∈ {a, b}∗ be distinct words such that |u| = |v| = 2n. We have uu∈Ln and vu �∈Ln.
Thus, all words of length 2n belong to distinct residuals. There are 22

n
such words; hence,

Ln has at least 22
n
residuals.

�� Exercise 121. The nesting depth d(ϕ) of a formula ϕ of FO({a}) is defined inductively
as follows:

• d(Qa(x))= d(x< y)= 0,
• d(¬ψ)= d(ψ),
• d(ϕ1 ∨ ϕ2)=max{d(ϕ1), d(ϕ2)}, and
• d(∃x ψ)= 1+ d(ψ).

Prove that every formula ϕ from FO({a}) of nesting depth n is equivalent to a formula f
of QF having the same free variables as ϕ and such that every constant k appearing in f
satisfies k≤ 2n. Hint: Modify suitably the proof of theorem 8.17.

Solution: We prove the claim by induction on the structure of formula ϕ. If it is of the
formQa(x), then the claim trivially holds asQa(x) is a tautology over {a}, and no constant is
involved. If ϕ(x, y)= x< y, then d(ϕ)= 0 and ϕ≡ x< y+ 0. If ϕ=¬ψ , then, by induction
hypothesis, ψ to a formula f of QF with constants of at most 2d , where d is the depth of ψ
and hence of ϕ. By De Morgan’s rule, we can remove the negation (e.g., ¬(x< k) becomes
x≥ k). If ϕ= ϕ1 ∨ ϕ2, then the claim follows immediately by induction hypothesis.

Let us now consider the case where ϕ=∃x ψ . Let d and d+ 1 be the nesting depth
of ψ and ϕ, respectively. By induction hypothesis, ψ is equivalent to a formula f of QF
whose constants are at most 2d , and we can further assume that f is in disjunctive normal
form, say f = f1 ∨ . . .∨ fn. Thus, ϕ≡∃xf1 ∨∃xf2 ∨ . . .∨∃xfn, and so it suffices to find a
formula gi of QF equivalent to ∃xfi and whose constants are of size at most 2d+1. The
formula gi is a conjunction defined as follows. All conjuncts of fi not containing x are
also conjuncts of gi; for every conjunct of fi of the form x≥ k or x≥ y+ k, the formula
gi contains a conjunct last≥ k; for every two conjuncts of fi containing x, the formula gi
contains a conjunct obtained by “quantifying x away.” We only explain this by means of
an example: if the conjuncts are x≥ k1 and y≥ x+ k2, then gi has the conjunct y≥ k1+ k2.
It is easy to see that gi≡∃x fi. Moreover, since the constants in the new conjuncts are the
sum of the two old constants, the new constants are bounded by 2 · 2d = 2d+1.
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� � Exercise 124. Give a formula Odd_card(X ) from MSO(�) expressing that the set
of positions X has odd cardinality. Hint: Follow the pattern of Even(X ).

Solution: We first give formulas First(x,X ) and Last(x,X ) expressing that x is the first
and last position among those of X . We also give a formula Next(x, y,X ) expressing that
y is the successor of x in X . It is then easy to give a formula Odd(Y ,X ) expressing that Y
is the set of odd positions of X . More precisely, Y contains the first position among those
of X , the third, the fifth, and so on. Finally, formula Odd_card(X ) expresses that the last
position of X belongs to the set of odd positions of X .

First(x,X ) := (x∈X )∧∀y (y< x)→ (y /∈X ),

Last(x,X ) := (x∈X )∧∀y (y> x)→ (y /∈X ),

Next(x, y,X ) := (x∈X )∧ (y∈X )∧ (x< y)∧¬∃z (x< z)∧ (z< y)∧ (z∈X ),

Odd(Y ,X ) :=∀x (x∈Y↔ (First(x,X )∨∃z ∃u (z∈Y )∧Next(z, u,X )∧Next(u, x,X )
)
,

Odd_card(X ) :=∃Y (Odd(Y ,X )∧∀x Last(x,X )→ (x∈Y )
)
.

�� Exercise 125. Give formulas of MSO({a, b}) that define the following languages:
(a) aa∗b∗,
(b) the set of words with an odd number of occurrences of a, and
(c) the set of words such that every two b with no other b in between are separated by a
block of a of odd length.

Solution: We use the macros defined in the chapter and the solution of exercise 124:

(a) ∃x Qa(x)∧ [∀x∀y (Qa(x)∧Qb(y))→ (x< y)],
(b) ∃X [∀x (x∈X )↔Qa(x)] ∧Odd_card(X ),
(c) ∀X [Block(X )∧∀x Qb(x)↔ (First(x,X )∨Last(x,X ))]→Odd_card(X ).

� � Exercise 126. Given a formula ϕ from MSO(�) and a second order variable X not
occurring in ϕ, show how to construct a formula ϕX with X as a free variable expressing
“the projection of the word onto the positions ofX satisfies ϕ.” Formally, ϕX must satisfy the
following property: for every interpretationV of ϕX , we have (w,V) |= ϕX iff (w|V(X ),V) |=
ϕ, where w|V(X ) denotes the result of deleting from w the letters at all positions that do not
belong to V(X ).

Solution: We first define two macros:

∃x∈X ψ :=∃x (x∈X ∧ψ),

∃Y ⊆X ψ :=∃Y (∀x (x∈Y )→ (x∈X ∧ψ)).

Now we define ϕX inductively as follows:

• if ϕ is of the form Qa(x), x< y, x∈X , ¬ψ or ϕ1 ∨ ϕ2, then ϕX = ϕ;
• if ϕ=∃x ψ , then ϕX =∃x∈X ψX ; and
• if ϕ=∃Y ψ , then ϕX =∃Y ⊆X ψX .
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�� Exercise 128. Consider the logic PureMSO(�) with syntax

ϕ ::=X ⊆Qa | X <Y | X ⊆Y | ¬ϕ | ϕ ∨ ϕ | ∃X ϕ

Note that formulas of PureMSO(�) do not contain first-order variables. The satisfaction
relation of PureMSO(�) is given by

(w,V) |= X ⊆Qa iff w[p] = a for every p∈V(X ),
(w,V) |= X <Y iff p< p′ for every p∈V(X ), p′ ∈V(Y ),
(w,V) |= X ⊆Y iff V(X )⊆V(Y ),

with the rest as for MSO(�).
Prove that MSO(�) and PureMSO(�) have the same expressive power for sentences—

that is, show that for all sentence φ of MSO(�), there is an equivalent sentence ψ of
PureMSO(�) and vice versa.

Solution: ⇐) Let ψ be a sentence of PureMSO(�). Let φ be the sentence of MSO(�)
obtained by replacing every subformula of ψ of the form

X ⊆Y by ∀x (x∈X→ x∈Y ),
X ⊆Qa by ∀x (x∈X→Qa(x)),
X <Y by ∀x∀y (x∈X ∧ y∈Y )→ (x< y).

Clearly, φ and ψ are equivalent.
⇒) Let Sing(X ) :=∃x∈X ∀y∈X (x= y) express that X is a singleton. Let φ be a sen-

tence of MSO(�). Assume without loss of generality that for every first-order variable x,
the second-order variable X does not appear in φ (otherwise, rename second-order vari-
ables appropriately). Let ψ be the sentence of PureMSO(�) obtained by replacing every
subformula of φ of the form

Qa(x) by X ⊆Qa,
x< y by X <Y ,
x∈Y by X ⊆Y ,
∃x ψ ′ by ∃X (Sing(X )∧ψ ′[x/X ]),

where ψ ′[x/X ] is the result of substituting X for x in ψ ′.

Clearly, φ and ψ are equivalent.

�� Exercise 129. Recall the syntax of MSO(�):

ϕ :=Qa(x) | x< y | x∈X | ¬ϕ | ϕ ∨ ϕ | ∃x ϕ | ∃X ϕ

We have introduced y= x+ 1 (“y is the successor position of x”) as an abbreviation:

(y= x+ 1) := (x< y)∧¬∃z (x< z∧ z< y).

Consider now the variant MSO′(�) in which, instead of an abbreviation, y= x+ 1 is part
of the syntax and replaces x< y. In other words, the syntax of MSO′(�) is

ϕ :=Qa(x) | y= x+ 1 | x∈X | ¬ϕ | ϕ ∨ ϕ | ∃x ϕ | ∃X ϕ

Prove that MSO′(�) has the same expressive power as MSO(�).
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Solution: It suffices to give a formula of MSO′(�) with the same meaning as x< y.
Observe that x< y holds iff there is a set Y of positions containing y and satisfying the fol-
lowing property: every z∈Y is either the successor of x or the successor of another element
of Y . Formally:

(x< y) :=∃Y [y∈Y ] ∧ [∀z∈Y ((z= x+ 1)∨∃u∈Y (z= u+ 1))].
�� Exercise 131.Consider a formula φ(X ) of MSO(�) that does not contain any occur-
rence of predicates of the form Qa(x). Given two interpretations that assign the same set of
positions to X , we have that either both interpretations satisfy φ(X ), or none of them does.
Thus, we can speak of the sets of natural numbers satisfying φ(X ).
This observation can be used to automatically prove some (very) simple properties of

the natural numbers. Consider, for instance, the following “conjecture”: every finite set of
natural numbers has a minimal element.1 The conjecture holds iff the formula

Has_min(X ) :=∃x∈X ∀y∈X (x≤ y)

is satisfied by every interpretation in which X is nonempty. Construct an automaton for
Has_min(X ), and check that it recognizes all nonempty sets.

Solution: After replacing abbreviations, we obtain the equivalent formula

∃x [x∈X ∧ (¬∃y (y∈X ∧ y< x))].
The DFA for formula ¬∃y (y∈X ∧ y< x), where the encoding of x is at the top and the
encoding for X is at the bottom, is as follows:

[
0
0

]
[
1
0

]
,
[
1
1

] [
0
0

]
, . . . ,

[
1
1

]

In words, this DFA checks that the 1 marking position x comes before or at the same time
as the ones encoding the elements of X . Intersecting this DFA with one for formula x∈X
yields

1. Of course, it also holds for all infinite sets, but we cannot prove it using MSO over finite words.
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[
0
0

]
[
1
1

] [
0
0

]
, . . . ,

[
1
1

]

After projection onto X (second row), we get a DFA for Has_min(X ):

0

1
0, 1

In words, this DFA recognizes all words with at least one 1, which corresponds to nonempty
sets.

Solutions for Chapter 9

�� Exercise 133. Express the following expressions in Presburger arithmetic:

(a) x= 0 and y= 1 (if 0 and 1 were not part of the syntax),
(b) z=max(x, y) and z=min(x, y).

Solution:

(a) x= x+ x and (x≤ y)∧¬[∃z ¬(z≤ x)∧¬(y≤ z)],
(b) [(y≤ x)→ (z= x)∧ (x≤ y)→ (z= y)] and [(y≤ x)→ (z= y)∧ (x≤ y)→ (z= x)].
� � Exercise 134. How can one determine algorithmically whether two formulas from
Presburger arithmetic have the same solutions?

Solution: Given two formulas ϕ1 and ϕ2 over the same free variables, we can construct
automata A1 and A2, respectively, for ϕ1 and ϕ2. It then suffices to check whether L (A1)=
L (A2), which can be done, for example, by testingL (A1)∩L (A2)=∅ andL (A1)∩A2=∅
using the pairing of A1 and A2.

�� Exercise 136. Construct an automaton for the Presburger formula ∃y (x= 3y) using
the algorithms of the chapter.

Solution: Let us rewrite the formula as ∃y (x− 3y= 0). We first use algorithm EqtoDFA
to obtain an automaton for the expression x− 3y= 0:
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Iter. Current automaton W

0
0

{0}

1
0 1

[
0
0

] [
1
1

]

{1}

2

0 1 2

[
0
0

] [
1
1

]

[
1
0

]

[
0
1

]

{2}

3

0 1 2

[
0
0

] [
1
1

]

[
1
0

]

[
1
1

][
0
1

]

[
0
0

]
∅

It remains to project the automaton on x (i.e., on the first component of the letters). We
obtain

0 1 2

0
1

1

1
0

0

�� Exercise 137.Algorithm AFtoDFA yields a DFA that recognizes solutions of a linear
inequation encoded using the LSBF encoding.Wemay also use themost-significant-bit-first
encoding—for example,

MSBF
([

2
3

])
=
[
0
0

]∗ [1
1

] [
0
1

]
.

(a) Construct a DFA for 2x− y≤ 2, w.r.t. MSBF encodings, by considering the reversal of
the DFA given in figure 9.1 for LSBF encodings.
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(b) Rename the states of the DFA obtained in (a) by their minimal state number, and explic-
itly introduce a trap state named 3. Compare values 2x− y and q for tuples [x, y] that lead
to a state q. What do you observe?
(c) Adapt algorithm AFtoDFA to the MSBF encoding.
Hint: Design an infinite automaton obtained from a · c= q and make it finite based on (b).

Solution:

(a) Let us consider the DFA from figure 9.1. By reversing its transitions, making its
accepting states initial, and making its initial states accepting, we obtain this NFA:

2

1

0

−1 −2

[
0
0

]
,
[
0
1

]

[
0
0

]
,
[
1
1

]
[
1
0

]
,
[
1
1

]
[
0
1

]

[
0
1

]
[
0
0

]
,
[
0
1

] [
0
0

]
,
[
1
1

][
1
0

]

[
1
0

]
,
[
1
1

]

[
0
0

]
,
[
0
1

]
[
1
0

]
,
[
1
1

]
[
1
0

]

By determinizing the above NFA, we obtain this DFA:

0, 1, 2 −1, 0, 1, 2 −2,−1, 0, 1, 2

2 1, 2

[
0
0

]

[
1
0

] [
1
1

]

[
0
1

]
[
1
1

]
[
0
0

]
,
[
0
1

]
[
1
0

]

[
0
0

]
,
[
0
1

]
,
[
1
0

]
,
[
1
1

]

[
0
1

][
0
0

]

(b) By renaming the states of the DFA obtained in (a) by their minimal number, and by
adding a trap state 3, we obtain this DFA:
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0−1−2 1 2 3

[
0
0

]

[
1
0

]

[
1
1

]
[
0
1

]

[
1
1

]
[
0
0

]
,
[
0
1

] [
1
0

]

�

[
0
1

]
[
0
0

]
�

�

By inspection, we observe that the tuples [x, y] that lead to state q∈ {−1, 0, 1, 2} are those
that satisfy 2x− y= q. For example, the word [001001, 010011] leads to state −1, and it
encodes [9, 19], which yields 2 · 9− 19= 18− 19=−1. Furthermore, the tuples that lead
to states q=−2 and q= 3 are those that respectively satisfy 2x− y≤−2 and 2x− y≥ 3.
(c) We consider the language recognized by some state q of an automaton A to be the
language recognized by A when making q its unique accepting state. The hint and the
observation of (b) suggest to construct an automaton for a · c≤ b that satisfies the following
property:

q∈Z recognizes the encodings of the tuples c∈Nn s.t. a · c= q. (0.1)

Let �={0, 1}n. Given a state q∈Z and a letter ζ ∈�, let us determine the target state q′ of
the transition (q, ζ , q′) of the automaton. Awordw∈�∗ is recognized by q iff thewordwζ is
recognized by q′. Since we use theMSBF encoding, if c∈Nn is the tuple of natural numbers
encoded by w, then the tuple encoded by wζ is 2c+ ζ . Thus, c∈Nn is recognized by q iff
2c+ ζ is recognized by q′. Therefore, in order to satisfy property (0.1), we must choose q′
so that a · c= q iff a · (2c+ ζ )= q′. Consequently, q′ = 2(a · c)+ a · ζ = 2q+ a · ζ , and so
we define the transition function of the automaton by δ(q, ζ )= 2q+ a · ζ . We observe that a
state is final iff it recognizes tuples c such that a · c= q for q≤ b; hence, we make all states
q≤ b final. We choose 0 as the initial state since a · (0, . . . , 0)= 0.
The resulting automaton is infinite. For example, let us reconsider 2x− y≤ 2. We have

0
[1,0]−−−→ 2

[0,0]−−−→ 4
[0,0]−−−→ 8

[0,0]−−−→· · · , and

0
[0,1]−−−→−1 [0,0]−−−→−2 [0,0]−−−→−4 [0,0]−−−→· · · .

Nonetheless, once we reach−2 or 3, the next states are irrelevant: either we accept or reject
forever. Indeed, from−2 and 3, only numbers respectively from (−∞, 2] and [3,+∞) can
be generated. More generally, let


− =
∑
1≤i≤n

min(ai, 0)︸ ︷︷ ︸
sum of negative coefficients

and 
+ =
∑
1≤i≤n

max(ai, 0)︸ ︷︷ ︸
sum of positive coefficients

.

It can be shown that states from [max(b+ 1,−
−),+∞) can only reach states from this set
and that states from (−∞, min(b,−
+)] can only reach states from this set. For example,
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for 2x− y≤ 2, we obtain the previously identified numbers:

max(b+ 1,−
−)= max(2+ 1,−(−1))= 3,

min(b,−
+)= min(2,−2) = −2.
This leads to the algorithm AFtoDFA′(ϕ) below, where for clarity, the state corresponding
to k ∈Z is denoted by sk :

AFtoDFA′(ϕ)
Input: Atomic formula ϕ= a · x≤ b
Output: DFA Aϕ = (Q,�, δ, q0,F) such that L (Aϕ

)=L (ϕ)

1 Q, δ,F←∅; q0← s0
2 W←{s0}
3 hi←max(b+ 1,−∑1≤i≤nmin(ai, 0))
4 lo←min(b,−∑1≤i≤nmax(ai, 0))
5 while W �= ∅ do
6 pick sk from W
7 add sk to Q
8 if k≤ b then add sk to F
9 for all ζ ∈ {0, 1}n do
10 j← 2k+ a · ζ
11 if j≥ hi then j← hi
12 if j≤ lo then j← lo
13 if sj /∈Q then add sj to W
14 add (sk , ζ , sj) to δ

Let us now prove that it is indeed correct to “finitize” the states as we did. Let w∈�∗
and ζ ∈�. Assume that a · val(w)≥max(b+ 1,−
−). First, note that w is rejected since
val(w) > b. Moreover, we have a · val(wζ )≥max(b+ 1,−
−) since

a · val(wζ )= 2 · a · val(w)+ a · val(ζ )

≥ 2 ·max(b+ 1,−
−)+ a · val(ζ )

≥ 2 ·max(b+ 1,−
−)+
∑
1≤i≤n

min(ai, 0)

= 2 ·max(b+ 1,−
−)+
−
=max(2(b+ 1),−
−)

≥max(b+ 1,−
−) (by −
− ≥ 0).

Thus, it is correct to “merge” all states from [max(b+ 1,−
−),+∞) into a rejecting trap
state.
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Now, assume that a · val(w)≤min(b,−
+). First, note that w is accepted since val(w)≤
b. Moreover, we have a · val(wζ )≤min(b,−
+) since

a · val(wζ )= 2 · a · val(w)+ a · val(ζ )

≤ 2 ·min(b,−
+)+ a · val(ζ )

≤ 2 ·min(b,−
+)+
∑
1≤i≤n

max(ai, 0)

= 2 ·min(b,−
+)+
+
=min(2b,−
+)

≥min(b,−
+) (by −
+ ≤ 0).

So, it is correct to “merge” all states from (−∞, min(b,−
+)] into a self-accepting
state.

� � Exercise 138. Suppose it is late and you are craving for chicken nuggets. Since
you are stuck in the subway, you have no idea how hungry you will be when reaching
the restaurant. Since nuggets are only sold in boxes of 6, 9, and 20, you wonder if it will
be possible to buy exactly the amount of nuggets you will be craving for when arriving.
You also wonder whether it is always possible to buy an exact number of nuggets if one is
hungry enough. Luckily, you can answer these questions since you are quite knowledgeable
about Presburger arithmetic and automata theory.
For every finite set S⊆N, we say that number n∈N is an S-number if n can be obtained as

a linear combination of elements of S. For example, if S={6, 9, 20}, then 67 is an S-number
since 67= 3 · 6+ 1 · 9+ 2 · 20, but 25 is not. For some sets S, there are only finitely many
numbers that are not S-numbers. When this is the case, we say that the largest number that
is not an S-number is the Frobenius number of S. For example, 7 is the Frobenius number
of {3, 5}, and S={2, 4} has no Frobenius number.
To answer your questions, it suffices to come up with algorithms for Frobenius numbers

and to instantiate them with S={6, 9, 20}.
(a) Give an algorithm that decides, on input n∈N and a finite set S⊆finite N, whether n is
an S-number.
(b) Give an algorithm that decides, on input S⊆finite N, whether S has a Frobenius number.
(c) Give an algorithm that computes, on input S⊆finite N, the Frobenius number of S
(assuming it exists).
(d) Show that S={6, 9, 20} has a Frobenius number, and identify it.

Solution:

(a) Let S={a1, a2, . . . , ak}. A number n∈N is an S-number iff there exist x1, x2, . . . , xk ∈
N such that n= a1x1+ a2x2+ . . .+ akxk which is equivalent to n− a1x1− a2x2− . . .−
akxk = 0. Therefore, given S, we do the following:
(i) construct a transducer A that accepts the solutions of y− a1x1− a2x2− . . .− akxk = 0
using algorithm EqtoDFA,
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(ii) construct an automaton B obtained by projecting A onto y,
(iii) test whether LSBF(n) is accepted by B, and
(iv) return true iff LSBF(n) is accepted.
Note that A is a DFA, but B might be an NFA due to the projection.

(b) Let B be the automaton constructed in (a). Observe that S has a Frobenius number iff
{n∈N : LSBF(n) �∈L (B)} is finite. This suggests to complement B. Since B is an NFA, we
first convert it to a DFA B′ and then complement B′. Let C be the resulting DFA.
To test whether S has a Frobenius number, it is now tempting to test whether L (C) is

finite. This is, however, incorrect. Indeed, every natural number has infinitely many LSBF
encodings (e.g., 2 is encoded by 010∗). Thus,L (C)will be infinite even ifC accepts finitely
many numbers. To address this issue, we pruneL (C) by keeping only theminimal encoding
of each number accepted by C. Note that an LSBF encoding is minimal iff it does not
contain any trailing 0. Thus, we can construct a DFA M that accepts the set of minimal
LSBF encodings:

0

1 2

0 1

0

1

0

1

To prune L (C) of the redundant LSBF encodings, we construct a new DFA D obtained by
intersecting C with M .
It remains to test whether L (D) is finite. By construction, every state of D is reachable

from the initial state. However, due to our transformations, it may be the case that some
states of D cannot reach a final state. We may remove these states in linear time. This can
be done by (implicitly) reversing the arcs ofD (seen as graph) and then performing a depth-
first search from the final states. The states that are not explored by the search are removed
from D. Let D′ be the resulting DFA. Testing whether L (D′) is finite amounts to testing
whether D′ contains no cycle. This can be done in linear time using a depth-first search.
The overall algorithm is as follows:

(i) convert B to a DFA B′,
(ii) obtain a new DFA C by complementing B′,
(iii) obtain a new DFA D by intersecting C with M ,
(iv) obtain a new DFA D′ by removing every state of D that cannot reach some final state,
(v) test whether D′ contains a cycle, and
(vi) return true iff D′ contains no cycle.

Let us show that it is indeed the case thatL (D′) is finite iffD′ has no cycle or, equivalently,
that L (D′) is infinite iff D′ contains a cycle. Let D′ = (Q, {0, 1}, δ, q0,F).

⇒) Assume L (D′) is infinite. By assumption, D′ accepts a word w such that |w| =m

for some m> |Q|. Let q0, q1, . . . , qm ∈Q be such that q0
w1−→ q1

w2−→ q2 · · · wm−→ qm. By the
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pigeonhole principle, there exist 0≤ i< j≤m such that qi= qj. Thus, D′ contains the cycle

qi
wi+1−−→ qi+1

wi+2−−→· · · wj−→ qi.

⇐) Assume D′ contains a cycle q v−→ q for some q∈Q and v∈ {0, 1}+. By construction of
D′, state q is reachable from q0, and q can reach some final state qf ∈F. Therefore, there
exist u,w∈ {0, 1}∗ such that

q0
u−→ q

v−→ q
w−→ qf .

Since q
v−→ q can be iterated arbitrarily many times, every word of uv∗w is accepted by D′,

which implies that L (D′) is infinite.
(c) Assume S has a Frobenius number. Let D′ be the DFA obtained in (b). The Frobe-
nius number of S is the largest natural number n accepted by D′. By assumption, L (D′)
is finite. Thus, we could find n by using a brute-force approach where we go through all
words accepted by D′. It is, however, possible to find nmuch more efficiently with dynamic
programming.
Observe that D′ is acyclic. Therefore, we may compute a topological ordering

q0, q1, . . . , qm of Q. For every 0≤ i≤m, let

	i= argmaxw∈Livalue(w),

where Li={w∈ {0, 1}∗ : q0 w−→ qi}. Due to the topological ordering, each 	i can be computed
as follows:

	i=
⎧⎨⎩

ε if i= 0,
argmaxw∈Wvalue(w), where
W ={	j · a : 0≤ j< i, a∈ {0, 1}, δ(qj, a)= qi} if i> 0.

Once each 	i is computed, we can easily derive n since n=max{value(	i) : qi ∈F}.
Note that to test whether value(u)≥ value(v), it is not necessary to convert u and v to

their numerical values. Instead, the test can be carried by testing whether u is greater than
or equal to v under the colexicographic ordering (i.e., uR7lex vR).

(d) By executing our procedure for S={6, 9, 20}, we obtain a DFA D′ with thirty states
and no cycle. Thus, S has a Frobenius number. By executing the procedure described in (c),
we obtain 43 as the Frobenius number of S.

�	 Exercise 140.Converting a Presburger formula over k variables into a DFA yields an
alphabet of 2k letters. In order tomitigate this combinatorial explosion, one can instead label
transitions with boolean expressions. For example, [0, 1] can be written as ¬x∧ y, and the
set {[1, 0], [1, 1]} can be written as x. Such expressions can internally be represented (e.g.,
as binary decision diagrams).

(a) Give DFAs for formulas x< y and y< z, using boolean expressions rather than letters.
(b) Construct a DFA for x< y< z.
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Solution:

(a)

p0 p1

x∨¬y
¬x∧ y

¬x∨ y

x∧¬y
q0 q1

y∨¬z
¬y∧ z

¬y∨ z

y∧¬z

(b) We intersect the two aboveDFAs by taking the conjunction of expressions. For example,

p0
x∨¬y−−−→ p0 and q0

¬y∧z−−−→ q1 yields (p0, q0)
(x∨¬y)∧(¬y∧z)−−−−−−−−−−→(p0, q1).

The expression (x∨¬y)∧ (¬y∧ z) can be simplified to¬y∧ z. By proceeding this way and
simplifying boolean expressions, we obtain the following DFA whose trap state is omitted
for the sake of readability:

p0, q0 p0, q1

p1, q0 p1, q1

(x∨¬y)∧ (y∨¬z)
¬y∧ z

¬x∧ y

¬y∨ (x∧ z)

x∧ y∧¬z

¬x∧ y∧¬z
¬x∧ y∧ zx∧¬y∧¬z

x∧¬y∧ z

y∨ (¬x∧¬z)

¬x∧¬y∧ z

x∧¬y

y∧¬z
(¬x∨ y)∧ (¬y∨ z)

Note that the above DFA has fourteen explicit transitions plus three implicit transitions
for the omitted trap states. The DFA we would obtain by using letters rather than boolean
expressions would have twenty-eight explicit transitions plus twelve implicit transitions for
the omitted trap states.
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Solutions for Chapter 10

�� Exercise 141. Construct Büchi automata and ω-regular expressions, as small as pos-
sible, recognizing the following ω-languages over the alphabet {a, b, c}. Recall that inf(w)
is the set of letters of {a, b, c} that occur infinitely often in w.

(a) {w∈ {a, b, c}ω : {a, b}⊇ inf(w)},
(b) {w∈ {a, b, c}ω : {a, b}= inf(w)},
(c) {w∈ {a, b, c}ω : {a, b}⊆ inf(w)}.
Solution: Let us first provide ω-regular expressions for the three languages:

(a) [(b+ c)∗a(a+ c)∗b]ω,
(b) (a+ b+ c)∗(a+ b)ω,
(c) (a+ b+ c)∗(aa∗bb∗)ω.

We now provide Büchi automata for the three languages.

(a) The automaton must recognize the set of ω-words containing only finitely many c.
We claim that the following Büchi automaton achieves this task. Indeed, every word with
finitely many occurrences of c is accepted: the automaton just moves to q1 after the last
c. Conversely, every accepting run must eventually move to q1, and so the word accepted
contains only finitely many c.

q0 q1

a, b, c

a, b

a, b

(b) The automaton must recognize the ω-words containing infinitely many a, infinitely
many b, but only finitely many c. Every such ω-word is accepted by the following automa-
ton: the automaton moves to q1 after the last c. The rest of the word contains only a and b,
both infinitely many times, and hence infinitely many occurrences of ab. At each of them,
the automaton takes the loop through q2. Conversely, every accepted word contains only
finitely many c, because after moving to q1, no further c can be read, and both infinitely
many occurrences of a and b, because every accepting run must visit q2 infinitely often,
and each visit contributes an a and a b.

q0 q1 q2

a, b, c

a, b

a, b

a

b

(c) The following automaton recognizes all ω-words containing infinitely many a and
infinitely many b and either finitely or infinitely many c. To show that every such word is
accepted by the automaton, we have to modify the argument of (b): now every word in the
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language contains infinitely many subwords of ac∗b, and the automaton accepts the word
by moving to q1 at each of these subwords. For the converse, it is clear that every visit to
q1 requires to read an a and a b, and so every accepted word contains both letters infinitely
often. Note that we cannot remove q2 and add a self-loop labeled by c to q1, because then
the automaton would accept, for instance, acω.

�� Exercise 145. Recall that every finite set of finite words is a regular language. Prove
that this does not hold for infinite words. More precisely:

(a) Prove that every nonempty ω-regular language contains an ultimately periodic ω-word
(i.e., an ω-word of the form uvω for some finite words u∈�∗ and v∈�+).
(b) Give an ω-word w such that {w} is not an ω-regular language. Hint: Use (a).

Solution:

(a) Let L be a nonempty ω-regular language and let B= (Q, {0, 1}, δ,Q0,F) be an NBA
that recognizes L. Since Q is finite, there exist u∈�∗, v∈�+, q0 ∈Q0, and q∈F such that

q0
u−→ q

v−→ q.

Consequently, we have uvω ∈L by iterating v from state q.
(b) Let w∈ {0, 1}ω be the word given by

wi=
{
1 if i is a square,
0 otherwise.

We prove that w is not ultimately periodic, which, by (a), implies that {w} is not ω-regular.
For the sake of contradiction, supposew= uvω for some u∈ {0, 1}∗ and v∈ {0, 1}+. If v∈ 0∗,
then we obtain a contradiction. Thus, there exists 1≤ i≤ |v| such that vi= 1. Letm= |u| + i
and n= |v|. By definition of w, m+ j · n is a square for every j≥ 0. In particular, there exist
0< a< b such that

m+ n · n= a2 and m+ n · n+ n= b2.

Note that a≥ n. Moreover,

b2= a2+ n≤ a2+ a< a2+ 2a+ 1= (a+ 1)2.

Therefore, a2 < b2 < (a+ 1)2, which is a contradiction.
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�� Exercise 146.Consider the class of nondeterministic automata over ω-words with the
following acceptance condition: an infinite run is accepting iff it visits an accepting state
at least once. Show that no such automaton accepts the language of all words over {a, b}
containing infinitely many a and infinitely many b.

Solution: For the sake of contradiction, suppose there exists such an automaton B=
(Q, {a, b}, δ,Q0,F) recognizing L. Let n= |Q|. Since w= (abn)ω belongs to L, there exist
u, v∈ {a, b}∗, q0 ∈Q0, qacc ∈F, and r0, r1, . . . , rn ∈Q such that

q0
u−→ qacc

v−→ r0
b−→ r1

b−→· · · b−→ rn.

By the pigeonhole principle, there exist 0≤ i< j≤ n such that ri= rj. Therefore,

q0
u−→ qacc

vbi−−→ ri
bj−i−−−→ rj

bj−i−−−→ rj
bj−i−−−→· · · .

We conclude that uvbi(bj−i)ω is accepted byB, which is a contradiction as it contains finitely
many occurrences of a.

� � Exercise 147. The limit of a language L⊆�∗ is the ω-language lim(L) defined
as w∈ lim(L) iff infinitely many prefixes of w are words of L (e.g., the limit of (ab)∗ is
{(ab)ω}).
(a) Determine the limit of the following regular languages over {a, b}:
(i) (a+ b)∗a,
(ii) the set of words containing an even number of a,
(iii) a∗b.
(b) Prove the following: Anω-language is recognizable by a deterministic Büchi automaton
iff it is the limit of a regular language.
(c) Exhibit a nonregular language whose limit is ω-regular.
(d) Exhibit a nonregular language whose limit is not ω-regular.

Solution:

(a)
(i) The set of ω-words containing infinitely many a.
(ii) The set of ω-words containing infinitely many a, plus the set of ω-words containing a
finite even number of a.
(iii) The empty ω-language.
(b) Let B be a deterministic Büchi automaton recognizing an ω-language L. Consider B
as a DFA, and let L′ be the regular language recognized by B. We show that L= lim(L′).
If w∈ lim(L′), then B (as a DFA) accepts infinitely many prefixes of w. Since B is determin-
istic, the runs of B on these prefixes are prefixes of the unique infinite run of B (as a DBA)
on w. So the infinite run visits accepting states infinitely often, and so w∈L. If w∈L, then
the unique run of B on w (as a DBA) visits accepting states infinitely often, and so infinitely
many prefixes of w are accepted by B (as a DFA). Thus, w∈ lim(L′).
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(c) Let L={an2 : n≥ 0}. We have lim(L)={aω}, which is ω-regular, although L is not
regular. Alternatively, if L={anbn : n≥ 0}, then lim(L)=∅, which is also ω-regular.
(d) Let L={anbncm : n,m≥ 0}. We have lim(L)={anbncω : n≥ 0}. Suppose this language
is ω-regular and hence recognized by a Büchi automaton B. By the pigeonhole principle,
there are distinct n1, n2 ∈N and accepting runs ρ1, ρ2 of B on an1bn1cω and an2bn2cω such
that the state reached in ρ1 after reading an1 and the state reached in ρ2 after reading an2
coincide. This means that B accepts an1bn2cω, which contradicts the assumption that B
recognizes L.

�� Exercise 148. Let L1= (ab)ω and let L2 be the ω-language of all ω-words over {a, b}
containing infinitely many a and infinitely many b.

(a) Exhibit three different DBAs with three states recognizing L1.
(b) Exhibit six different DBAs with three states recognizing L2.
(c) Show that no DBA with at most two states recognizes L1 or L2.

Solution:

(a) We obtain three DBAs for L1 from the one below by making q0, q1, or both accepting

q0

q1

q2

a

b
b

a

a, b

(b) Here are two different DBAs for L2. We obtain two further DBAs from each of these
automata by making either q1 or q2 the initial state.

q0 q1q2
a

b

b

ab

a

q0

q1

q2

a, b

b

a

a

b
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(c) Assume there is a DBA Bwith at most two states recognizing L1. Since L1 is nonempty,
B has at least one (reachable) accepting state q. Consider the transitions leaving q labeled by
a and b. If any of them leads to q again, then B accepts an ω-word of the form waω or wbω

for some finite word w. Since no word of this form belongs to L1, we reach a contradiction.
Thus, B must have two states q and q′, and transitions

ta= q
a−→ q′ and tb= q

b−→ q′.

Consider any accepting run ρ of B. If the word accepted by the run does not belong to L1, we
are done. So assume it belongs to L1. Since ρ is accepting, it contains some occurrence of
ta or tb. Consider the run ρ′ obtained by exchanging the first occurrence of one of them by
the other (i.e., if ta occurs first, then replace it by tb and vice versa). Then, ρ′ is an accepting
run, and the word it accepts is the result of turning an a into a b or vice versa. In both cases,
the resulting word does not belong to L1, so we reach again a contradiction, and we are
done.

The proof for L2 is similar.

� � Exercise 150. In definition 2.20, we introduced the quotient A/P of an NFA A with
respect to a partition P of its states. In lemma 2.22, we proved L (A)=L (A/P	) for the
language partition P	 that puts two states q1, q2 in the same block iff LA(q1)=LA(q2). Let
B= (Q,�, δ,Q0,F) be an NBA. Given a partition P ofQ, define the quotient B/P of Bwith
respect to P as for an NFA.

(a) Let P	 be the partition of Q that puts two states q1, q2 of B in the same block iff
Lω,B(q1)=Lω,B(q2), where Lω,B(q) denotes the ω-language containing the words accepted
by B with q as initial state. Does Lω (B)=Lω (B/P	) always hold?
(b) Let CSR be the coarsest stable refinement of the equivalence relation with equivalence
classes {F,Q \F}. Does Lω (A)=Lω (A/CSR) always hold?

Solution:

(a) No. The following Büchi automaton, which is even deterministic, is a counterexample.
All states accept the same language: the words containing infinitely many a and infinitely
many b. The quotient is an automaton with a single state, both initial and accepting, that
recognizes the set of all words.

q0

q1

q2

a

b

a

b

a

b
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(b) Yes. The relation CSR partitions the set of states into blocks such that the states of a
block are either all accepting or all nonaccepting (because every equivalence class of CSR
is included in F orQ \F). Moreover, since CSR is stable, for every two states q, r of a block
of CSR and for every (q, a, q′)∈ δ, there is a transition (r, a, r′) such that q′, r′ belong to the
same block. This implies L (q)=L (r), because every run

q
a1−−→ q1

a2−−→ q2 · · · an−−→ qn

can be “matched” by a run

r
a1−−→ r1

a2−−→ r2 · · · an−−→ rn

in such a way that, for every i≥ 1, states qi, ri belong to the same block, and so, in particular,
qn is accepting iff rn is accepting, which implies a1 · · · an ∈L (q) iff a1 · · · an ∈L (r).

Observe that we not only have that qn and rn are both accepting or nonaccepting: the
same holds for every pair qi, ri. Moreover, the property also holds for ω-words: every in-
finite run

q
a1−−→ q1

a2−−→ q2
a3−−→ q3 · · ·

is “matched” by an infinite run

r
a1−−→ r1

a2−−→ r2
a3−−→ r3 · · ·

so that, for every i≥ 1, states qi, ri are both accepting or nonaccepting. This immediately
proves Lω (A)=Lω (A/CSR).

� � Exercise 151. Let L be an ω-language over alphabet �, and let w∈�∗. The w-
residual of L is the ω-language Lw={w′ ∈�ω :ww′ ∈L}. An ω-language L′ is a residual
of L if L′ =Lw for some word w∈�∗. We show that the theorem stating that a language
of finite words is regular iff it has finitely many residuals does not extend to ω-regular
languages.

(a) Prove this statement: If L is an ω-regular language, then it has finitely many residuals.
(b) Disprove this statement: Every ω-language with finitely many residuals is ω-regular.

Hint: Consider a nonultimately periodic ω-word w and its language Tailw of infinite tails.

Solution:

(a) Let B= (Q,�, δ,Q0,F) be an NBA that recognizes L. For every Q′ ⊆Q, let Lω

(
Q′
)
be

the language recognized by B with Q′ as the set of initial states. For every w∈�∗, let

Qw={q∈Q : q0
w−→ q for some q0 ∈Q0}.

Clearly, we have Lw=Lω (Qw). Therefore, L has at most 2|Q| residuals.
(b) Let w be some nonultimately periodic ω-word (e.g., the one from the solution of exer-
cise 145 or the digits of π ). Let Tailw be the set of all infinite suffixes of w, and define
L=�∗ Tailw, where � is the alphabet of letters that appear in w. We show the following:
• L has only one residual.
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Let w1,w2 ∈�∗. We prove Lw1 =Lw2 . Let w′ ∈Lw1 . By the definition of residual and
of L, we have w1w′ ∈�∗Tailw. Note that Tailw is closed under suffix (i.e., if an ω-word
belongs to Tailw, then so do all their suffixes). Thus, we have w′ = u v for some v∈Tailw.
Consequently, w2uv∈�∗Tailw, which implies w2w′ ∈L, and so w′ ∈Lw2 .
• L is not ω-regular.

Assume L is ω-regular. By exercise 145, L contains an ultimately periodic word uvω.
This means that some tail of w is of the form u′vω, and hence w= u′′vω for some word u′′,
contradicting the fact that w is not ultimately periodic.

�� Exercise 152. The solution to exercise 150(2) shows that the reduction algorithm for
NFAs that computes the partition CSR of a given NFA A and constructs the quotient A/CSR
can also be applied to NBAs. Generalize the algorithm so that it works for NGAs.

Solution: Let B= (Q,�, δ, q0, {F1, . . . ,Fn}) be an NGA. Let us consider the following
partition of Q. Two states q, r∈Q belong to the same block if

for every i∈ {1, . . . , n} either {q, r}⊆Fi or {q, r} ∩Fi=∅.
Let CSR′ be defined as the coarsest stable refinement of this partition. For every two states
q, r∈Q belonging to the same block of CSR′, we now have that every infinite run

q
a1−−→ q1

a2−−→ q2
a3−−→ q3 · · ·

is “matched” by a run
r

a1−−→ r1
a2−−→ r2

a3−−→ r3 · · ·
so that for every i≥ 1 and for every j∈ {1, . . . , n}, either {qi, ri}⊆Fj or {qi, ri} ∩Fj=∅.
Thus, we get Lω (B)=Lω

(
B/CSR′

)
.

� � Exercise 154. Show that a parity condition (F1,F2, . . . ,F2m) is equivalent to the
Streett condition {〈∅,F1〉, 〈F2,F3〉, . . . , 〈F2m−2,F2m−1〉}.
Solution: With the parity condition (F1,F2, . . . ,F2m), a run ρ is accepting iff the smallest
index i satisfying inf ρ ∩Fi �= ∅ is even. This is equivalent to: A run ρ is accepting iff it is
not the case that the minimal index i such that inf(ρ)∩Fi �= ∅ is odd. In other words, ρ is
accepting iff

not
(

inf(ρ)∩F1 �= ∅
or inf(ρ)∩F2=∅ and inf(ρ)∩F3 �= ∅,
or · · ·
or inf(ρ)∩F2m−2=∅ and inf(ρ)∩F2m−1 �= ∅

)
which can be rewritten as

inf(ρ)∩∅ �= ∅ or inf(ρ)∩F1=∅,
and inf(ρ)∩F2 �= ∅ or inf(ρ)∩F3=∅,
and · · ·
and inf(ρ)∩F2m−2 �= ∅ or inf(ρ)∩F2m−1=∅.

This is exactly the Streett condition {〈∅,F1〉, 〈F2,F3〉, . . . , 〈F2m−2,F2m−1〉}.
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�� Exercise 155. Consider the following two Büchi automata (NBAs). Interpret them as
generalized Büchi automata (NGAs), construct their intersection, and convert the resulting
NGA into an NBA.

p q r

A:

b

a

c

a

b

s t

B:

a

a, c

b

Solution: We first obtain the following NGA with acceptance condition G={F0,F1}
depicted respectively as hatched and filled states:

p, s q, t

r, t q, s

a

a

b

a

c

By making two copies, we obtain the following equivalent NBA:

(p, s)0 (q, t)0

(r, t)0 (q, s)0

(q, t)1

(r, t)1 (q, s)1

a

a

b

a

c a

b a

c

� � Exercise 156. Let Lσ ={w∈ {a, b, c}ω :w contains infinitely many σ s}. Give deter-
ministic Büchi automata for languages La, Lb, and Lc; construct the intersection of these
automata interpreted as NGAs; and convert the resulting NGA as a Büchi automaton.

Solution: The following Büchi automata respectively accept La,Lb, and Lc:

p0 p1 q0 q1 r0 r1

b, c

a

a

b, c

a, c

b

b

a, c

a, b

c

c

a, b
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By applying the intersection and conversion procedures, we obtain the following determin-
istic Büchi automaton:

(p1, q0, r0)0

(p0, q1, r0)0

(p0, q0, r1)0

(p0, q0, r0)0

(p1, q0, r0)1

(p0, q1, r0)1

(p0, q0, r1)1

(p1, q0, r0)2

(p0, q1, r0)2

(p0, q0, r1)2

a

b

c

a

b

c

a

b

c

a

b

c

a

b

c

a

b

c

a

b

c

a

b

c

a

b

c

a

b

c

Note that La ∩Lb ∩Lb is accepted by a smaller DBA:

b, c
b, cb, c

a

b

c

a, ca, b

a

� � Exercise 158. An ω-automaton has acceptance on transitions if the acceptance
condition specifies which transitions must appear infinitely often in a run. All classes of
ω-automata (Büchi, Rabin, etc.) can be defined with acceptance on transitions rather than
states.
Give minimal deterministic automata, for the language of words over {a, b} containing

infinitely many a and infinitely many b, of the following kinds: (a) Büchi (with state-
based accepting condition), (b) generalized Büchi (with state-based accepting condition),
(c) Büchi with acceptance on transitions, and (d) generalized Büchi with acceptance on
transitions.

Solution: Automata (a), (b), (c), and (d) are respectively as follows, where colored
patterns indicate the sets of accepting states or transitions:
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q0

q1

q2

a

b

a

b

a

b

q0

q1

a

b

b

a

q0

q1

a

b

b

a q0

a

b

�� Exercise 159. Consider the following Büchi automaton over �={a, b}:

q0 q1

a, b b

b

(a) Sketch dag(ababω) and dag((ab)ω).
(b) Let rw be the ranking of dag(w) defined by

rw(q, i)=
⎧⎨⎩
1 if q= q0 and 〈q0, i〉 appears in dag(w),
0 if q= q1 and 〈q1, i〉 appears in dag(w),
⊥ otherwise.

Are rababω and r(ab)ω odd rankings?
(c) Show that rw is an odd ranking if and only if w �∈Lω (B).
(d) Build a Büchi automaton accepting Lω (B) using the construction seen in the chapter.

Hint: By (c), it is sufficient to use {0, 1} as ranks.
Solution:

(a) dag(ababω):

q0, 0 q0, 1 q0, 2

q1, 2

q0, 3 q0, 4

q1, 4

a b

b

a b

b

b

b

b

dag((ab)ω):
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q0, 0 q0, 1 q0, 2

q1, 2

q0, 3 q0, 4

q1, 4

a b

b

a b

b

a

(b)
• rababω is not an odd ranking since

〈q0, 0〉 a−→〈q0, 1〉 b−→〈q0, 2〉 a−→〈q0, 3〉 b−→〈q1, 4〉 b−→〈q1, 5〉 b−→· · ·
is an infinite path of dag(ababω) not visiting odd nodes i.o.

• r(ab)ω is an odd ranking since it has a single infinite path:

〈q0, 0〉 a−→〈q0, 1〉 b−→〈q0, 2〉 a−→〈q0, 3〉 b−→〈q0, 4〉 a−→〈q0, 5〉 b−→· · ·
which only visits odd nodes.
(c) ⇒) Let w∈Lω (B). We have w= ubω for some u∈ {a, b}∗. This implies that

〈q0, 0〉 u−→〈q0, |u|〉 b−→〈q1, |u| + 1〉 b−→〈q1, |u| + 2〉 b−→· · ·
is an infinite path of dag(w). Since this path does not visit odd nodes infinitely often, r is
not odd for dag(w).

⇐) Let w �∈Lω (B). Suppose there exists an infinite path of dag(w) that does not visit
odd nodes infinitely often. At some point, this path must only visit nodes of the form 〈q1, i〉.
Thus, there exists u∈ {a, b}∗ such that

〈q0, 0〉 u−→〈q1, |u|〉 b−→〈q1, |u| + 1〉 b−→〈q1, |u| + 2〉 b−→· · · .
This implies that w= ubω ∈Lω (B), which is a contradiction.
(d) By (c), for every w∈ {a, b}ω, if dag(w) has an odd ranking, then it has one ranging over
0 and 1. Therefore, it suffices to execute CompNBA with rankings ranging over 0 and 1. We
obtain the following Büchi automaton:
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Actually, by (c), it is sufficient to only explore the colored states as they correspond to
the family of rankings {rw :w∈�ω}.
� 	 Exercise 162. A Büchi automaton A= (Q,�, δ,Q0,F) is weak if no strongly con-
nected component (SCC) of A contains both accepting and nonaccepting states—that is,
every SCC C⊆Q satisfies either C⊆F or C⊆Q \F.
(a) Prove that a Büchi automaton A isweak iff for every run ρ, either inf(ρ)⊆F or inf(ρ)⊆
Q \F.
(b) Prove that the algorithms for union, intersection, and complementation of DFAs are
correct for weak DBAs. More precisely, show that the algorithms return weak DBAs recog-
nizing respectively the union, intersection, and complement of the languages of the input
automata.

Solution:

(a) For every run ρ, any two states of inf(ρ) are necessarily reachable from each other, and
hence inf(ρ) is contained in a SCC of A. Let Cρ be this SCC.
⇒) If A is weak, then either Cρ ⊆F or Cρ ⊆Q \F, and so inf(ρ)⊆F or inf(ρ)⊆Q \F.
⇐) Assume that for every run ρ, either inf(ρ)⊆F or inf(ρ)⊆Q \F. Let C be an SCC

of A. There is a word w such that the run ρ of A on w satisfies inf(ρ)=C. Therefore, we
have C⊆F or C⊆Q \F.
(b) We first consider the complementation algorithm CompDFA (section 3.1.2). Recall that
the algorithm simply exchanges accepting and nonaccepting states. Let A= (Q,�, δ, q0,F)
be a weak DBA, and let A=CompDFA(A). Since the SCCs of A and A coincide, A is also
a weak DBA. Moreover, for every ω-word w, both A and A have the same run ρ on w. If A
accepts w, then by (a), we have inf(ρ)⊆F, and so A does not acept w. If A does not accept
w, then by (a), we have inf(ρ)⊆Q \F, and so A accepts w.

We now consider the algorithm for intersection (the union is similar). Let A1= (Q1,�,
δ1, q01,F1) and A2= (Q2,�, δ2, q02,F2) be weak DBAs. Let us recall the algorithm for
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intersection—that is, the result of instantiating algorithm BinOp (section 3.1.3) with the
boolean operator “and.” It constructs a deterministic automatonAwith set of statesQ1×Q2,
initial state [q01, q02], and set of final states F1×F2. Given an ω-word w, we have that

ρ1= q01
a1−−→ q11

a2−−→ q21 · · · an−−→ qn1 · · ·
ρ2= q02

a1−−→ q12
a2−−→ q22 · · · an−−→ qn2 · · ·

are the (unique) runs of A1 and A2 on w if and only if

ρ=
[
q01
q02

]
a1−−→
[
q11
q12

]
a2−−→
[
q21
q22

]
· · · an−−→

[
qn1
qn2

]
· · ·

is the (unique) run of A on w.
We first show that A is weak. By (a), it suffices to show that for every run ρ, either

inf(ρ)⊆F or inf(ρ)⊆Q \F. Consider two cases:
• ρ only visits states of F finitely often. We immediately have inf(ρ)⊆Q \F.
• ρ visits states of F infinitely often. Since F=F1×F2, both ρ1 and ρ2 visit states of F1
and F2 infinitely often. Since A1 and A2 are weak, we have inf(ρ1)⊆F1 and inf(ρ2)⊆F2.
Thus, there are indices i1 and i2 such that qj1 ∈F1 for every j≥ i1, and qj2 ∈F2 for every
j≥ i2. Taking i=max{i1, i2}, we get [qj1, qj2] ∈F for every j≥ i, and hence inf(ρ)⊆F.

It remains to show that Lω (A)=Lω (A1)∩Lω (A2) holds. Let w∈�ω. Let ρ1, ρ2, and
ρ be respectively the runs of A1, A2, and A on a word w.
⊆) Assume w∈Lω (A). Since ρ is accepting, it visits F1×F2 infinitely often, and hence

ρ1 and ρ2 visit F1 and F2 infinitely often.
⊇) Assume w∈Lω (A1)∩Lω (A2). Since ρ1 and ρ2 are accepting, by (a), we have

inf(ρ1)⊆F1 and inf(ρ2)⊆F2. Thus, there are indices i1 and i2 such that q1j ∈F1 for every
j≥ i1, and q2j ∈F2 for every j≥ i2. Taking i=max{i1, i2}, we get [q1j, q2j] ∈F for every
j≥ i, and hence ρ is an accepting run of A. Thus, w∈Lω (A).

� � Exercise 163. Give algorithms that directly complement deterministic Muller and
parity automata, without going through Büchi automata.

Solution: Let us consider the case of a deterministic Muller automaton Awith acceptance
condition F ={F0, . . . ,Fm−1}⊆ 2Q. Since every ω-word w has a single run ρw in A, we
have w �∈Lω (A) iff inf(ρw)∈ 2Q \F . Thus, to complement A, we change its acceptance
condition to F ′ = 2Q \F .
Let us consider the case of a deterministic parity automaton A with acceptance condition

F1⊆ · · ·⊆F2n. Since every ω-word w has a single run ρw in A, we have

w∈Lω (A) ⇐⇒ min{i : inf(ρw)∩Fi �= ∅} is even.
Thus, to complement A, it suffices to “swap the parity” of states. This can be achieved
by adding a new dummy state q⊥ to A and changing its acceptance condition to {q⊥}⊆
(F1 ∪ {q⊥})⊆ · · ·⊆ (F2n ∪ {q⊥}), where the purpose of q⊥ is to keep the chain of inclusion
required by the definition.



Solutions for Chapter 11 491

� � Exercise 164. Let A= (Q,�, q0, δ, {〈F0,G0〉, . . . , 〈Fm−1,Gm−1〉}) be a determin-
istic automaton. What is the relation between the languages recognized by A seen as a
deterministic Rabin automaton and seen as a deterministic Streett automaton?

Solution: They accept the complement of their respective languages. Indeed, their runs
are unique due to determinism. Moreover, the acceptance condition of a Streett automaton
is the negation of the acceptance condition of a Rabin automaton.

�	 Exercise 165. Consider Büchi automata with universal accepting condition (UBA):
an ω-word w is accepted if every run of the automaton on w is accepting, that is, if every
run of the automaton on w visits accepting states infinitely often.
Recall that automata on finite words with existential and universal accepting conditions

recognize the same languages (see exercise 21). Prove that this does not hold for automata
on ω-words by showing that, for every UBA, there is a DBA that recognizes the same
language. This implies that the ω-languages recognized by UBAs are a proper subset of
ω-regular languages.

Hint: On input w, the DBA checks that every path of dag(w) visits some final state infinitely
often. The states of the DBA are pairs (Q′,O) of sets of the UBA where O⊆Q′ is a set of
“owing” states. Loosely speaking, the transition relation is defined to satisfy the following
property: after reading a prefix w′ of w, the DBA is at the state (Q′,O) given by:

• Q′ is the set of states reached by the runs of the UBA on w′;
• O is the subset of states of Q′ that “owe” a visit to a final state of the UBA (see the
construction for the complement of a Büchi automaton).

Solution: This algorithm constructs a DBA from a given UBA by using the hint:

UBAtoDBA(A)
Input: Büchi automaton A= (Q,�, δ,Q0,F) with univ. accepting condition
Output: DBA B= (Q,�,
,Q0,F) with L (B)=L (A)

1 Q,
,F←∅
2 if q0 ∈F then Q0← ({q0},∅)
3 else Q0← ({q0}, {q0})
4 W ={Q0}
5 while W �= ∅ do
6 pick (Q′,O) from W
7 add (Q′,O) to Q
8 if O=∅ then add (Q′,O) to F
9 for all a∈� do
10 Q′′ ← δ(Q′, a)
11 if O=∅ then
12 if (Q′′,Q′′ \F) /∈Q then add (Q′′,Q′′ \F) toW
13 else
14 O′ ← δ(O, a)
15 if (Q′′,O′) /∈Q then add (Q′′,O′) to W
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�� Exercise 166. Let B be the following Büchi automaton:

q0 q1

q2

q6

q3

q5 q4 q7 q8

a

b a

a

b

a

b
b

a

a b a

(a) Execute the emptiness algorithm NestedDFS on B. Assume that states are picked in
ascending order with respect to their indices.
(b) Recall that NestedDFS is a nondeterministic algorithm and different choices of runs
may return different lassos. Which lassos of B can be found by NestedDFS?
(c) Show that NestedDFS is not optimal by exhibiting some search sequence on B.
(d) Execute the SCC-based emptiness algorithm on B. Assume that states are picked in
ascending order with respect to their indices.
(e) Execute the SCC-based emptiness algorithm on B. Assume that transitions labeled by
a are picked before those labeled by b.
(f) Which lassos of B can be found by the SCC-based algorithm?

Solution:

(a) Procedure dfs1 visits q0, q1, q2, q3, q4, q5, q6, then calls dfs2, which visits q6, q1, q2,
q3, q4, q5, q6 and reports “nonempty.”
(b) Since q7 does not belong to any lasso, only lassos that contain state q1 or q6 can be
found. In every run of the algorithm, dfs1 blackens q6 before q1. The only lasso that contains
q6 is q0, q1, q3, q4, q6, q1. Therefore, this is the only lasso that can be found by the algorithm.
(c) The execution given in (a) shows that NestedDFS is not optimal since it returns the
lasso q0, q1, q3, q4, q6, q1 even though the lasso q0, q1, q2, q1 was already appearing in the
explored subgraph.
(d) The algorithm reports “nonempty” after the following execution:
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Step Active states, visited states and ranks Stack

1

q0 q1

q2

q6

q3

q5 q4 q7 q8

1

(q0, {q0})

2

q0 q1

q2

q6

q3

q5 q4 q7 q8

1 2

(q1, {q1})
(q0, {q0})

3
q0 q1

q2

q6

q3

q5 q4 q7 q8

1 2

3

(q2, {q2})
(q1, {q1})
(q0, {q0})

4
q0 q1

q2

q6

q3

q5 q4 q7 q8

1 2

3

(q1, {q1, q2})
(q0, {q0})
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(e) The algorithm reports “nonempty” after the following execution:

Step Active states, visited states and ranks Stack

1
q0 q1

q2

q6

q3

q5 q4 q7 q8

1

(q0, {q0})

2
q0 q1

q2

q6

q3

q5 q4 q7 q8

1 2

(q1, {q1})
(q0, {q0})

3
q0 q1

q2

q6

q3

q5 q4 q7 q8

1 2 3

(q3, {q3})
(q1, {q1})
(q0, {q0})

4

q0 q1

q2

q6

q3

q5 q4 q7 q8

1 2 3

4

(q4, {q4})
(q3, {q3})
(q1, {q1})
(q0, {q0})



Solutions for Chapter 12 495

5

q0 q1

q2

q6

q3

q5 q4 q7 q8

1 2 3

4 5

(q7, {q7})
(q4, {q4})
(q3, {q3})
(q1, {q1})
(q0, {q0})

6

q0 q1

q2

q6

q3

q5 q4 q7 q8

1 2 3

4 5 6

(q8, {q8})
(q7, {q7})
(q4, {q4})
(q3, {q3})
(q1, {q1})
(q0, {q0})

7

q0 q1

q2

q6

q3

q5 q4 q7 q8

1 2 3

4 5 6

(q7, {q7})
(q4, {q4})
(q3, {q3})
(q1, {q1})
(q0, {q0})

8

q0 q1

q2

q6

q3

q5 q4 q7 q8

1 2 3

4 5 6

(q4, {q4})
(q3, {q3})
(q1, {q1})
(q0, {q0})
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9

q0 q1

q2

q6

q3

q5 q4 q7 q8

1 2 3

4 5 67

(q5, {q5})
(q4, {q4})
(q3, {q3})
(q1, {q1})
(q0, {q0})

10

q0 q1

q2

q6

q3

q5 q4 q7 q8

1 2 3

4 5 67

(q1, {q1, q3, q4, q5})
(q0, {q0})

(f) All of them. The lasso q0, q1, q2, q1 was found by the execution of (d). The lasso
q0, q1, q3, q4, q5, q1 was found by the execution of (e). The lasso q0, q1, q3, q4, q6, q1 was
found by the following execution:

Step Active states, visited states and ranks Stack

1
q0 q1

q2

q6

q3

q5 q4 q7 q8

1

(q0, {q0})

2
q0 q1

q2

q6

q3

q5 q4 q7 q8

1 2

(q1, {q1})
(q0, {q0})
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3
q0 q1

q2

q6

q3

q5 q4 q7 q8

1 2 3

(q3, {q3})
(q1, {q1})
(q0, {q0})

4

q0 q1

q2

q6

q3

q5 q4 q7 q8

1 2 3

4

(q4, {q4})
(q3, {q3})
(q1, {q1})
(q0, {q0})

5

q0 q1

q2

q6

q3

q5 q4 q7 q8

1 2 3

4

5

(q6, {q6})
(q4, {q4})
(q3, {q3})
(q1, {q1})
(q0, {q0})

6

q0 q1

q2

q6

q3

q5 q4 q7 q8

1 2 3

4

5 (q1, {q1, q3, q4, q6})
(q0, {q0})
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�� Exercise 167. Let A be an NBA, and let At be the sub-NBA of A containing the states
and transitions discovered by a DFS up to (and including) time t. Show that if a state q
belongs to some cycle of A, then it already belongs to some cycle of Af [q].

Solution: Let π be a cycle containing q, and consider the snapshot of the DFS at time
f [q]. If π is entirely black, then π is a cycle of Af [q], and we are done. Thus, assume that
it contains at least one nonblack state. Let r be the last state of π such that all states on the
subpath from q to r are black. Such a node exists since q is black. Let s be the successor of
r in π , as depicted as follows:

q

r

s

Since r is black and s is not black, we have f [r] ≤ f [q]< f [s]. Moreover, since all suc-
cessors of r have been discovered at time f [r], we have d[s]< f [r]. Altogether, we obtain
d[s]< f [r] ≤ f [q]< f [s]. By the parenthesis theorem, intervals [d[q], f [q]] and [d[s], f [s]]
are either disjoint, or one is a subinterval of the other one. Consequently, since d[s]<
f [q]< f [s], we must have d[s]< d[q]< f [q]< f [s]. By the parenthesis theorem, q is a
DFS-descendant of s.

Let π ′ be the DFS-path from s to q. By the parenthesis theorem, each state p along π ′
is such that d[p]< d[q]< f [q]< f [p]. In particular, d[p]< f [q] means that all states of π ′
have been discovered at time f [q]. Let σ be the cycle obtained by concatenating the prefix
of π from q to r, transition (r, s), and π ′, as depicted in bold and color as follows:

q

r

s

π ′

Recall that: the prefix of π is entirely black, the transition from r to s has been explored,
and all states of π ′ have been discovered by time d[q] via π ′. Thus, cycle π ′ belongs to
Af [q].

�� Exercise 169. Execute SCCsearch on the Büchi automaton as follows. When a state
has many outgoing transitions, pick letters in this order: a< b< c.

q0 q1 q2

q3 q4 q5

q6
a b

a

ca

b

bc

b

a

b
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Solution:

Active graph N

q0 q1 q2

q3 q4 q5

q6
a

b

a

ca

b

bc

b

a

b

[(q0, {q0})]

q0 q1 q2

q3 q4 q5

q6
a

b

a

ca

b

bc

b

a

b

[(q0, {q0}); (q1, {q1})]

q0 q1 q2

q3 q4 q5

q6
a

b

a

ca

b

bc

b

a

b

[(q0, {q0}); (q1, {q1}); (q2, {q2})]

q0 q1 q2

q3 q4 q5

q6
a

b

a

ca

b

bc

b

a

b

[(q0, {q0}); (q1, {q1, q2})]

q0 q1 q2

q3 q4 q5

q6
a

b

a

bca

b

c

b

a

b

[(q0, {q0}); (q1, {q1, q2}); (q4, {q4})]

q0 q1 q2

q3 q4 q5

q6
a

b

a

b

b

ca

b

c a

b

[(q0, {q0}); (q1, {q1, q2}); (q4, {q4}); (q5, {q5})]

q0 q1 q2

q3 q4 q5

q6
a

b

a

b

b

aca

b

c

b

[(q0, {q0}); (q1, {q1, q2}); (q4, {q4}); (q5, {q5});
(q6, {q6})]

q0 q1 q2

q3 q4 q5

q6
a

b

a

b

b

aca

b

c

b

[(q0, {q0}); (q1, {q1, q2}); (q4, {q4}); (q5, {q5})]
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q0 q1 q2

q3 q4 q5

q6
a

b

a

b

b

aca

b

c

b

[(q0, {q0}); (q1, {q1, q2}); (q4, {q4})]

q0 q1 q2

q3 q4 q5

q6
a

b

a

bc

b

aca

b

b

[(q0, {q0}); (q1, {q1, q2, q4})]

q0 q1 q2

q3 q4 q5

q6
a

b

a

c bc

b

aa

b

b

[(q0, {q0}); (q1, {q1, q2, q4}); (q3, {q3})]

q0 q1 q2

q3 q4 q5

q6
a

b

a

ca bc

b

a

b

b [(q0, {q0}); (q1, {q1, q2, q3, q4})]
lasso detected via q3

� � Exercise 170. Recall that SCCsearch runs in time O(|Q| + |δ|) if we consider
set unions as atomic. However, set unions are generally not constant-time operations.
Explain how beads can be implemented so that SCCsearch truly runs in linear time.

Hint: Can two beads share a state?

Solution: First note that the beads of SCCsearch are disjoint sets, that is, two beads share
no state in common. Moreover, we need to support these operations: (1) initializing a trivial
bead, (2) merging a bead into another one, (3) obtaining the root of a bead, and (4) iterating
over the states of a bead.We have already taken into account that operation (4) works in time
O(|Q|) when analyzing case (vi) of SCCsearch. Thus, we must implement operations (1)
to (3) so that they operate in constant time.
We implement a bead (r,C) as a linked list whose head is r and whose elements are those

of C stored in an arbitrary order. We further keep a pointer to the last state of the list, which
we call the tail. The operations are respectively implemented as follows:

(1) We set r as both the head and tail, and we set the successor of r as “null.”
(2) To merge B′ = (r′,C′) into B= (r,C), we proceed as follows: the new head is r, the new
tail is the tail of B′, and the successor of the tail of B becomes the head of B′ (i.e., r′).
(3) We simply return the head.
(4) We iterate over the linked list from the head to the tail.

Operations (1) to (3) work in constant time as the head and tails are known.

Readers familiar with disjoint sets (also known as union-find) may have been tempted to
use this data structure instead. However, it yields quasilinear time, typically O(n log n) or
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O(α(n) · n), where α is the (very slow-growing) inverse Ackermann function. Disjoint sets
turn out to be an overkill since we do not need the “find” operation, that is, we never query
whether a given state belongs to a given bead. This explains why we are able to obtain a
better complexity.

� � Exercise 171. Recall that exercise 170 gives an implementation of SCCsearch that
truly works in linear time. Let us now take the memory usage into account. Let at and bt
denote respectively the number of active states and the number of beads at time t. Let f (t) be
the number of bits used at time t to store the current beads. Let w be the size of an address.
The solution of exercise 170 satisfies f (t)= 2(at+ bt)w. Indeed, it uses two addresses

per active state (one pointing to the state itself and one to its successor), plus two extra
addresses per bead (for the head and tail). Give an implementation of SCCsearch that halves
the memory usage—namely, one that runs in linear time and satisfies f (t)= (at+ bt)w.

Hint: Use two stacks, one for roots and one for active states.

Solution: Recall that the original implementation of SCCsearch uses stack N to store the
beads. We get rid of N . Instead, we use a stack R to store the roots and a stack V to store
the active states. We implement the algorithm in such a way that if q is the top of R and
r1r2 · · · rkq is on the top of V , then (q, {r1, r2, . . . , rk , q}) is the current bead, that is, it would
be the top ofN in the original implementation. We call this a proper encoding ofN . Such an
encoding stores all beads together in V , and the top element of R gives enough information
to pop the current bead from V , that is, it suffices to pop until we find the current root. This
can be achieved with the following pseudocode:

1 S,R,V←∅; n← 0
2 dfs(q0)
3 report EMP

4 proc dfs(q)
5 n← n+ 1; rank(q)← n
6 add q to S; act(q)← true; push q onto R; push q onto V
7 for all r∈ δ(q) do
8 if r /∈ S then dfs(r)
9 else if act(r) then
10 repeat
11 pop s from R; if s∈F then report NEMP
12 until rank(s)≤ rank(r)
13 push s onto R
14 if top(R)= q then
15 pop q from R
16 repeat
17 pop r from V ; act(r)← false
18 until r= q

Let us explain why this implementation is correct. We do so by arguing that (R,V)
remains a proper encoding of the original stack N throughout the execution:
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• Line 6: Clearly, “push q onto R; push q onto V” properly implements “push (q, {q})
onto N .”
• Lines 10–13: The difference with the original implementation is that there is no explicit
union of the beads. Let s be the state found after the repeat loop. Suppose that prior to the
loop, q	= s,R= q1 · · · q	 · · · , andV = r1,1 · · · r1,k1q1 · · · r	,1 · · · r	,k	q	 · · · . After executing
the loop and pushing s, we obtain R= q	 · · · and V has not changed. Thus, the top ele-
ment of R correctly represents the bead obtained by merging beads (q1, {q1,1, . . . , q1,k1}),
. . . , (q	, {q	,1, . . . , q	,k	}). Note that this cleverly avoids any explicit union since V has not
changed at all!
• Line 14: Since (R,V) is a proper encoding, we have “top(R)= q” iff q is the top root in N .
• Lines 15–18: Since (R,V) is a proper encoding, all states from the top of V down to state q
correspond to the bead of q. Hence, the pop from R and the repeat loop properly implement
“pop (q,C) from N .”

It remains to consider the running time and memory usage for the beads. The algorithm
runs in linear time. Indeed, the original analysis still applies but nowwithout any set union to
consider at all. Moreover, at time t, we have |V | + |R| = at+ bt. Thus, by storing addresses
on the stack (pointing to the states), we use f (t)= (at+ bt)w bits at time t.

�� Exercise 173. Execute Emerson–Lei’s algorithm and MEL on this NBA:

q0

q1

q2

q3

q4

q5

q6

q7

q8

q9

Solution: Let us first execute Emerson–Lei’s algorithm:

Iter. L

1

q0

q1

q2

q3

q4

q5

q6

q7

q8

q9
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2

q0

q1

q2

q3

q4

q5

q6

q7

q8

q9

3

q0

q1

q2

q3

q4

q5

q6

q7

q8

q9

4 Unchanged, report “nonempty” since it contains q0.

The very first iteration of MEL filters {q8, q9} via line 4 and {q4, q5, q6, q7} via lines 5
and 6:

Iter. L

1

q0

q1

q2

q3

q4

q5

q6

q7

q8

q9

2 Unchanged, report “nonempty” since it contains q0.

�� Exercise 175. This exercise deals with a variation of Emerson–Lei’s algorithm.

(a) For every R, S⊆Q, let pre+(R, S) be the set of states q such that there is a nonempty
path π from q to some state of R where π only contains states from S. Give an algorithm to
compute pre+(R, S).
(b) Execute the algorithm from (a) on the following automaton, where states from R and S
are respectively solid and hatched:
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(c) Show that the following modification of Emerson–Lei’s algorithm is correct:

MEL2(A)
Input: NBA A= (Q,�, δ,Q0,F)
Output: EMP if Lω (A)=∅, NEMP otherwise
1 L←Q
2 repeat
3 OldL←L
4 L← pre+(L∩F,L)
5 until L=OldL
6 if q0 ∈L then report NEMP
7 else report NEMP

(d) What is the difference between the sequences of sets computed by MEL and MEL2?

Solution:

(a)

Input: NBA A= (Q,�, δ,Q0,F) and sets R, S⊆Q
Output: pre+(R, S)
1 L←R∩ S
2 repeat
3 OldL←L
4 L← pre(L)∩ S
5 until L=OldL
6 return L
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(b)

Iter. L

0

1

2

3
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4

(c) Let L[0] =L[0]′′ =Q, L[n+ 1] = pre+(L[n] ∩F), and L[n+ 1]′′ = pre+(L[n]′′ ∩F,
L[n]′′). Emerson–Lei’s algorithm computes the fixpoint of the sequence {L[n]}n≥0, while
MEL2 computes the fixpoint of the sequence {L[n]′′}n≥0. Let L[i] be the fixpoint of the first
sequence. We claim that L[i] ⊆L[n]′′ ⊆L[n] holds for every n≥ 0. This claim implies that
MEL2 is correct. Indeed, let L[j]′′ be the fixpoint of the second sequence. Let 	=max(i, j).
We have L[i] ⊆L[	]′′ ⊆L[	] =L[i]. Thus, L[i] =L[	]′′ =L[j]′′ and hence the two sequences
have the same fixpoint.
It remains to show the claim. We proceed by induction. For n= 0, we trivially have

L[i] ⊆Q=L[0]′′ =L[0]. Let n≥ 0. By induction hypothesis, we have L[i] ⊆L[n]′′ ⊆L[n].
Since L[i] is the fixpoint of the first sequence, we have pre+(L[i] ∩F)=L[i]. This implies
pre+(L[i] ∩F,L[i])=L[i]. Thus, the following holds:

L[i] = pre+(L[i] ∩F,L[i])⊆ pre+(L[n]′′ ∩F,L[n]′′)=L[n+ 1]′′.
Moreover, we have

L[n+ 1]′′ = pre+(L[n]′′ ∩F,L[n]′′)⊆ pre+(L[n]′′ ∩F)

⊆ pre+(L[n] ∩F)=L[n+ 1].
(d) At each iteration, MEL2 computes set f (L)= pre+(L∩F,L), and MEL computes set
g(L)= pre+(inf(L)∩F). Set f (L) contains states that can reach an accepting state from L
via a nonempty path within L. Set g(L) contains states that can reach an accepting state from
L, from which there exists a lasso within L. Therefore, f (L) and g(L) are incomparable.

Solutions for Chapter 13

�� Exercise 176. Prove formally the following equivalences:

(a) ¬Xϕ≡X¬ϕ

(b) ¬Fϕ≡G¬ϕ

(c) ¬Gϕ≡F¬ϕ

(d) XFϕ≡FXϕ

(e) XGϕ≡GXϕ
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Solution:

(a)

σ |=¬Xϕ ⇐⇒ σ �|=Xϕ

⇐⇒ σ 1 �|= ϕ

⇐⇒ σ 1 |=¬ϕ

⇐⇒ σ |=X¬ϕ.

(b)

σ |=¬Fϕ ⇐⇒ ¬(σ |=Fϕ)

⇐⇒ ¬(∃k≥ 0 : σ k |= ϕ)

⇐⇒ ∀k≥ 0 ¬(σ k |= ϕ)

⇐⇒ ∀k≥ 0 (σ k |=¬ϕ)

⇐⇒ G¬ϕ.

(c)

σ |=¬Gϕ ⇐⇒ ¬(σ |=Gϕ)

⇐⇒ ¬(∀k≥ 0 (σ k |= ϕ))

⇐⇒ ∃k≥ 0 :¬(σ k |= ϕ)

⇐⇒ ∃k≥ 0 : (σ k |=¬ϕ)

⇐⇒ F¬ϕ.

(d)

σ |=XFϕ ⇐⇒ σ 1 |=Fϕ

⇐⇒ ∃k≥ 0 : (σ 1)k |= ϕ

⇐⇒ ∃k≥ 0 : (σ k)1 |= ϕ

⇐⇒ ∃k≥ 0 : σ k |=Xϕ

⇐⇒ σ |=FXϕ.
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(e)

σ |=XGϕ ⇐⇒ σ 1 |=Gϕ

⇐⇒ ∀k≥ 0 ((σ 1)k |= ϕ)

⇐⇒ ∀k≥ 0 (σ k |=Xϕ)

⇐⇒ σ |=GXϕ.

� � Exercise 178. Let AP={p, q} and �= 2AP. Give LTL formulas defining the
following languages:

(a) {p, q} ∅ �ω

(b) �∗ ({p}+ {p, q}) �∗ {q} �ω
(c) �∗ {q}ω
(d) {p}∗ {q}∗ ∅ω

Solution:

(a) (p∧ q)∧X(¬p∧¬q).
(b) F(p∧XF(¬p∧ q)).
(c) FG(¬p∧ q).
(d) (p∧¬q)U [(¬p∧ q)UG(¬p∧¬q)].
� � Exercise 180. Let AP={p, q} and let �= 2AP. Give Büchi automata for the ω-
languages over � defined by the following LTL formulas:

(a) XG¬p
(b) (GFp)→ (Fq)
(c) p∧¬(XFp)

(d) G(pU (p→ q))
(e) Fq→ (¬qU (¬q∧ p))

Solution:

(a)

�

∅, {q}

(b) Note that GFp→Fq≡¬(GFp)∨Fq≡FG¬p∨Fq. We build Büchi automata for
FG¬p and Fq and take their union:

� ∅, {q}
{q},∅

{q}, {p, q}
�
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(c) Note that p∧¬(XFp)≡ p∧XG¬p. We build a Büchi automaton for p∧XG¬p:

{p}, {p, q}

∅, {q}

(d)

{p}
∅, {q}, {p, q}

∅, {q}, {p, q}

{p}

(e) Note that Fq→ (¬qU (¬q∧ p))≡G¬q∨ (¬qU (¬q∧ p)). Computations that satisfy
the latter formula either have no occurrence of p, and hence of q, or a first occurrence of p
with no q before or at the same time:

∅

{p}

�

� � Exercise 182. Let V ∈ {F,G}∗ be a sequence made of the temporal operators F and
G. Show that FGp≡V FGp and GFp≡V GFp.

Solution: Given LTL formulas ϕ and ψ , we denote by ϕ |=ψ that every computation
satisfying ϕ satisfies ψ . Note that ϕ≡ σ iff ϕ |=ψ and ψ |= ϕ. It is readily seen that the
following holds:

FFϕ≡Fϕ, (14.6)

GGϕ≡Gϕ, (14.7)

Gϕ |= ϕ and ϕ |=Fϕ. (14.8)

Let us show that (a) FGϕ≡GFGϕ and (b) GFϕ≡FGFϕ.

(a) We have GFGϕ |=FGϕ by (14.8). Let σ |=FGϕ. There exists i≥ 0 such that σ j |= ϕ
for every j≥ i. Thus, for every k≥ 0 there is some 	≥ 0 such that (σ k)	 |= ϕ. Indeed, if
k≥ i, then take 	= 0, and if k < i, then take 	= i− k. Therefore, we have σ k |=FGϕ for
every k≥ 0, and hence σ |=GFGϕ. This means that FGϕ |=GFGϕ.
(b) We have GFϕ |=FGFϕ by (14.8). It is the case that FGFϕ |=GFϕ. Indeed, if there
exists i≥ 0 such that σ j |= ϕ holds for infinitely many j≥ i, then, in particular, σ j |= ϕ holds
for infinitely many j≥ 0.

We prove FGϕ≡V FGϕ by induction on the length of V . If V = ε, then we are done. If
V =UF, then we have V FGϕ≡U FGϕ by (14.6). If V =UG, then we have the same equiv-
alence by (a). By induction hypothesis, we get U FGϕ≡FGϕ. The other equivalence is
proved similarly using (14.7) and (b).
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�� Exercise 183.Recall that a formula is a tautology if all computations satisfy it. Which
of the following formulas of LTL are tautologies? If the formula is not a tautology, then give
a computation that does not satisfy it.

(a) Gp→Fp
(b) G(p→ q)→ (Gp→Gq)
(c) F(p∧ q)↔ (Fp∧Fq)
(d) ¬Fp→F¬Fp

(e) (Gp→Fq)↔ (pU (¬p∨ q))
(f) (FGp→GFq)↔G(pU (¬p∨ q))
(g) G(p→Xp)→ (p→Gp)

Solution:

(a) Gp→Fp is readily seen to be a tautology from the definitions of F and G.
(b) G(p→ q)→ (Gp→Gq) is a tautology. The left-hand side states that any point of the
computation that satisfies p also satisfies q. Thus, if every point satisfies p, then every point
satisfies q.
(c) F(p∧ q)↔ (Fp∧Fq) is not a tautology. The computation {p}{q}∅ω satisfies Fp∧Fq
but not F(p∧ q).
(d) ¬Fp→F¬Fp is a tautology. The formula ϕ→Fϕ is clearly a tautology for every
formula ϕ and hence in particular with ϕ=¬Fp.
(e) (Gp→Fq)↔ (pU (¬p∨ q)) is a tautology. The left-hand side is equivalent to F¬p∨
Fq≡F(¬p∨ q). If the right-hand side holds, then some point of the computation satisfies
¬p∨ q, and hence the left-hand side holds. If the left-hand side holds, then there exists a
first point at which ¬p∨ q holds, and, since it is the first, all points before it satisfy p∧¬q,
and so in particular, they all satisfy p. Thus, the right-hand side holds as well.
(f) (FGp→GFq)↔G(pU (¬p∨ q)) is a tautology. The left-hand side is equivalent to for-
mulas GF¬p∨GFq≡GF(¬p∨ q). If a computation σ = σ0σ1 · · · satisfies the right-hand
side, then every suffix of σ satisfies pU (¬p∨ q). So for every point of σ , some future point
satisfies¬p∨ q, which implies that the left-hand side holds. If a computation σ satisfies the
left-hand side, then its points can be partitioned into the infinite set of points satisfying
¬p∨ q, and the rest, which satisfy p∧ q, and so, in particular, p. Therefore, every suffix of
σ satisfies pU (¬p∨ q), which implies that σ satisfies G(pU (¬p∨ q)).
(g) G(p→Xp)→ (p→Gp) is a tautology. We have

G(p→Xp)→ (p→Gp)≡¬G(¬p∨Xp)∨ (¬p∨Gp)

≡F(p∧¬Xp)∨¬p∨Gp

≡F¬p∨Gp,

which is clearly a tautology.

� 	 Exercise 184. We say that an LTL formula is negation-free if negations only occur
in front of atomic formulas (that is, ¬true or ¬a where a is an atomic proposition). In this
exercise, we show how to construct a deterministic Büchi automaton for negation-free LTL
formulas. In the remainder, we assume that ϕ denotes such a formula over a set of atomic
propositions AP. We inductively define the formula af(ϕ, ν), read “ϕ after ν” where ν ∈ 2AP,
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as follows:

af(true, ν)= true, af(ϕ ∧ψ , ν)= af(ϕ, ν)∧ af(ψ , ν),

af(false, ν)= false, af(ϕ ∨ψ , ν)= af(ϕ, ν)∨ af(ψ , ν),

af(a, ν)= af(a∈ ν, ν), af(Xϕ, ν)= ϕ,

af(¬a, ν)= af(a /∈ ν, ν), af(ϕ Uψ , ν)= af(ψ , ν)∨ (af(ϕ, ν)∧ ϕ Uψ).

We extend it to finite words: af(ϕ, ε)= ϕ and af(ϕ, νw)= af(af(ϕ, ν),w) for every ν ∈ 2AP
and every finite word w. Prove the following statements:

(a) For every formula ϕ, finite word w∈ (2AP)∗ and ω-word w′ ∈ (2AP)ω:
ww′ |= ϕ ⇐⇒ w′ |= af(ϕ,w).

So, intuitively, af(ϕ,w) holds “after reading w” iff ϕ holds “at the beginning” of ww′.
(b) For every negation-free formula ϕ: w |= ϕ iff af(ϕ,w′)≡ true for some finite prefix w′
of w.
(c) For every formula ϕ andω-wordw∈ (2AP)ω: af(ϕ,w) is a positive boolean combination
of subformulas of ϕ.
(d) For every formula ϕ of length n: the set of formulas {af(ϕ,w) :w∈ (2AP)∗} has at most
22

n
equivalence classes up to LTL-equivalence.

(e) There exists a deterministic Büchi automaton recognizing Lω (ϕ) with at most 22
n

states, where n is the length of ϕ. Hint: Use (b)–(d).

Solution:

(a) First we prove the property for the case where w is a single letter ν⊆AP—that is, we
prove

νw′ |= ϕ ⇐⇒ w′ |= af(ϕ, ν) (14.9)

by structural induction on ϕ. We only consider two representative cases.
• Case ϕ= a. We have

νw′ |= a ⇐⇒ a∈ ν

⇐⇒ af(a, ν)= true

⇐⇒ w′ |= af(a, ν).

• Case ϕ= ϕ′ U ϕ′′. We have

νw′ |= ϕ′U ϕ′′

⇐⇒ νw′ |= ϕ′′ ∨ (ϕ′ ∧X(ϕ′ U ϕ′′))

⇐⇒ (νw′ |= ϕ′′)∨ [(νw′ |= ϕ′)∧ (w′ |= ϕ′ U ϕ′′)]
⇐⇒ [w′ |= af(ϕ′′, ν)] ∨ [(w′ |= af(ϕ′, ν))∧ (w′ |= ϕ′ U ϕ′′)]
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⇐⇒ w′ |= af(ϕ′′, ν)∨ (af(ϕ′, ν)∧ ϕ′ U ϕ′′)

⇐⇒ w′ |= af(ϕ′ U ϕ′′, ν).

Now, let us prove the property for every word w by induction on the length of w. If w= ε,
then af(ϕ,w)= ϕ, and hence

ww′ |= ϕ ⇐⇒ w′ |= ϕ ⇐⇒ w′ |= af(ϕ,w).

If w= νw′′ for some ν ∈ 2AP, then we have
w′ |= af(ϕ,w) ⇐⇒ w′ |= af(ϕ, νw′′)

⇐⇒ w′ |= af(af(ϕ, ν),w′′) (by def. of af)

⇐⇒ w′′w′ |= af(ϕ, ν) (by induction hypothesis)

⇐⇒ νw′′w′ |= ϕ (by (14.9))

⇐⇒ ww′ |= ϕ.

(b) If af(ϕ,w′)≡ true, then, by (a), we have w′w′′ |= ϕ for every w′′, and so in particular,
w |= ϕ. For the other direction, assume that w |= ϕ. The proof is by structural induction on
ϕ. We only consider two representative cases as in (a).
• Case ϕ= a. Since w |= ϕ, we have w= νw′ for some word w′ and some ν ∈AP such that
a∈ ν. By definition of af, we have af(a, ν)≡ true.
• Case ϕ= ϕ′ U ϕ′′. By the semantics of LTL, there exists k ∈N such that wk |= ϕ′′
and w	 |= ϕ′ for every 0≤ 	 < k. By induction hypothesis, for every 0≤ 	 < k, there
exists i	≥ 	 such that af(ϕ′,w[	..i	])≡ true. Furthermore, there exists ik ≥ k such that
af(ϕ′′,w[k..ik])≡ true. Let m=max{ij : 0≤ j≤ k}. We show that af(ϕ′U ϕ′′,w[0..m])≡
true by induction on k.
• Case k= 0. We have

af(ϕ′U ϕ′′,w[0..m])
= af(ϕ′′,w[0..m])∨ (af(ϕ′,w[0..m])∧ af(ϕ′ U ϕ′′,w[1..m]))
= af(af(ϕ′′,w[k..ik]),w[ik + 1..m])∨

(af(ϕ′,w[0..m])∧ af(ϕ′ U ϕ′′,w[1..m]))
= af(true,w[ik + 1..m])∨

(af(ϕ′,w[0..m])∧ af(ϕ′ U ϕ′′,w[1..m]))
≡ true∨ (af(ϕ1,w[0..m])∧ af(ϕ′ U ϕ′′,w[1..m]))
≡ true.

• Case k > 0. We have

af(ϕ′U ϕ′′,w[0..m])
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= af(ϕ′′,w[0..m])∨ (af(ϕ′,w[0..m])∧ af(ϕ′ U ϕ′′,w[1..m]))
= af(ϕ′′,w[0..m])∨

(af(af(ϕ′,w[0..i0]),w[i0+ 1..m])∧ af(ϕ′ U ϕ′′,w[1..m]))
= af(ϕ′′,w[0..m])∨

(af(true,w[i0+ 1..m])∧ af(ϕ′ U ϕ′′,w[1..m]))
≡ af(ϕ′′,w[0..m])∨ (true∧ af(ϕ′ U ϕ′′,w[1..m]))
≡ af(ϕ′′,w[0..m])∨ (true∧ true)

≡ true,

where af(ϕ′ U ϕ′′,w[1..m])≡ true by induction hypothesis.
(c) This follows by a straightforward structural induction on ϕ since all definitions only
involve true, false, ∧, ∨, and subformulas of ϕ.
(d) We assign a boolean variable bψ to each subformula ψ of ϕ. Let

Bϕ ={bψ :ψ is a subformula of ϕ}.
Since ϕ has length n, the set Bϕ contains at most n variables. By (c), we can assign to
each formula af(ϕ,w) a boolean function fw over Bϕ . Clearly, if fw and fw′ are equal, then
af(ϕ,w)≡ af(ϕ,w′). The result follows because there are 22

n
boolean functions over n

variables.
(e) The set of states are the equivalence classes of the formulas:{

af(ϕ,w) :w∈
(
2AP
)∗}

.

By (d), there are at most 22
n
states. The only initial and final states are respectively

the equivalence class of ϕ and true. The transition relation is given by [ψ1] ν−→[ψ2] iff
af(ψ1, ν)≡ψ2.

�� Exercise 185. In this exercise, we show that the reduction algorithm of exercise 150(2)
does not reduce the Büchi automata generated from LTL formulas, as well as show that a
little modification to the algorithm LTLtoNGA (algorithm 57) can alleviate this problem.

Let ϕ be a formula of LTL(AP), and let Aϕ =LTLtoNGA(ϕ).

(a) Prove that the reduction algorithm of exercise 150(2) does not reduce A, that is, show
that A=A/CSR.
(b) Prove that Lω

(
Bϕ

)=Lω

(
Aϕ

)
, where Bϕ is the result of modifying Aϕ as follows:

• add a new state q0 and make it the unique initial state.

• for every initial state q of Aϕ , add a transition q0
q∩AP−−−−→ q to Bϕ (recall that q is an atom

of cl(ϕ), and so q∩AP is well defined).

• replace every transition q1
q1∩AP−−−−→ q2 of Aϕ by q1

q2∩AP−−−−→ q2.



514 Solutions for Chapter 13

(c) Construct the automaton Bϕ for the automaton of figure 13.7.
(d) Apply the reduction algorithm of exercise 150(2) to Bϕ . Is the resulting automaton
minimal?

Solution:

(a) If the reduction algorithmmerges two states q1 and q2, then we haveLω (q1)=Lω (q2).
Since the automata for LTL formulas satisfy Lω (q1)∩Lω (q2)=∅ for every two distinct
states, no states are merged.
(b) Recall that, for every computation σ = σ0σ1σ2 · · · , the unique run of Aϕ on σ is

α0
σ0−−→α1

σ1−−→α2
σ2−−→ . . .

where α=α0α1α2 · · · is the unique satisfaction sequence for ϕ matching σ . By definition
of Bϕ , the unique run of Bϕ on σ is

q0
σ0−−→α0

σ1−−→α1
σ2−−→α2

σ3−−→ . . .

(c) Automata Aϕ and Bϕ are respectively as follows:

p, q, pU q

p,¬q, pU q

¬p, q, pU q

¬p,¬q,¬(pU q)

p,¬q,¬(pU q){p, q}

{p, q}

{p}

{p, q}

{q}

{p, q}

∅

{p, q}

{p}

{p}

{q}

{q}

{q}

∅

{q}

∅

∅
{p}

∅

{p}

p, q, pU q

p,¬q, pU q

¬p, q, pU q

¬p,¬q,¬(pU q)

p,¬q,¬(pU q)

q0
{p, q}

{p}

{q}

{p, q}

{p}

{p, q}

{q}

{p, q}

∅

{p, q}

{p}

{p}

{q}

{p}

{q}

∅

{q}

{p}

∅

{p}
∅

{p}

{p}
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(d) The relation CSR′ has three equivalence classes:

Q0=
{
q0, {p,¬q, pU q}

}
,

Q1=
{
{p, q, pU q}, {¬p, q, pU q}, {¬p,¬q,¬(pU q)}

}
,

Q2=
{
{p,¬q,¬(pU q)}

}
.

This leads to the following reduced NBA:

Q0 Q1 Q2

{p}
{q}, {p, q}

{p}

∅, {q}, {p, q}
{p}

∅

{p}

Note that the above reduced NBA is not minimal since it could be simplified to

{p}

{q}, {p, q}

∅, {p}, {q}, {p, q}

�� Exercise 187. In this exercise, we prove that, in the worst case, the number of states of
the smallest deterministic Rabin automaton for an LTL formula can be doubly exponential
in the size of the formula. Let �0={a, b}, �1={a, b, #} and �={a, b, #, $}. For every
n≥ 0, let us define the ω-language Ln⊆�ω as follows:

Ln=
∑
w∈�n

0

�∗1 # w # �∗1 $ w #ω.

Informally, an ω-word belongs to Ln iff

• it contains a single occurrence of $,
• the word to the left of $ is of the formw0#w1# · · · #wk for some k≥ 1 and (possibly empty)
words w0, . . . ,wk ∈�∗0 ,
• the ω-word to the right of $ consists of a word w∈�n

0 followed by an infinite tail #
ω, and

• w is equal to at least one of w0, . . . ,wn.

Show the following statements:

(a) There is an infinite family {ϕn}n≥0 of formulas of LTL(�) such that ϕn has size O(n2)
and Lω (ϕn)=Ln. Here, “Lω (ϕn)=Ln” stands for σ ∈Lω (ϕn) iff σ ={a1}{a2}{a3} · · · for
some ω-word a1a2a3 · · · ∈Ln.
(b) The smallest deterministic Rabin automaton recognizing Ln has at least 22

n
states.
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Solution:

(a) We first define some auxiliary formulas.
(i) Let

Sing :=G

⎛⎝∨
α∈�

α∧
∧

α,β∈�

(¬α∨¬β)

⎞⎠.
This formula expresses that at every position, exactly one proposition of � holds (i.e.,

the set of atomic propositions that hold is a singleton set). Therefore, for every computation
satisfying Sing and for every position n, we can speak of “the” letter of � at position n.
(ii) Let

One_$ :=¬$U ($∧XG¬$).
Together with (i), this formula expresses that $ occurs exactly once.
(iii) Let

Matchi := #∧
i∧

j=1

(
Xja∧G($→Xja)

)∨ ((Xjb∧G($→Xjb)
)
)∧Xi+1#.

Together with (i) and (ii), this formula expresses that the current letter and the next i+ 1
letters constitute a block of the form #w # for some word w∈�∗0 , and moreover, w also
occurs immediately after the only occurrence of $.
(iv) For every i≥ 0, we define the formula After_$i inductively as follows:

After_$0 :=G#,

After_$i+1 := (a∨ b)∧XAfter_$i.

Together with (i), After_$n expresses that the next n letters are taken from the set {a, b} and
that they are followed by an infinite tail of #.
We choose

ϕn :=Sing∧One_$∧ F (Matchn)∧G($→After_$n).

Since the lengths of After_$n and Matchn belong, respectively, to O(n) and O(n2), the
length of ϕn belongs to O(n2). Clearly, we have Lω (ϕn)=Ln.
(b) Take an ω-word of the form # w1 # · · · # wk # $ w #ω, where all of w1, . . . ,wk are of
length n. The intuition is that, after reading the only occurrence of $, the DRA must have
stored in its state the set {w1, . . . ,wn}, since otherwise, after reading w it cannot decide
whether it belongs to the set. Since there are 22

n
sets of words over {a, b} of length n, the

automaton also needs at least this number of states.
Formally, for every set S={w1, . . . ,wk} of words from�n

0 , where wi is lexicographically
smaller than wj for all i< j, let wS = # w1 # · · · # wk # $. Let A be a DRA recognizing Ln.
For the sake of contradiction, suppose that A has less than 22

n
states. There must exist

distinct sets S and T such that the state reached by A after reading wS and wT is the same.
Moreover, we may assume w.l.o.g. that there is a word w that belongs to S \T . Note that
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A accepts wS w #ω and hence wT w #ω. The latter does not belong to Ln, which yields a
contradiction.

Solutions for Chapter 14

� � Exercise 188. Give an MSO({a, b}) sentence for each of the following ω-regular
languages:

(a) Finitely many as: (a+ b)∗bω

(b) Infinitely many bs: ((a+ b)∗b)ω
(c) as at each even position: (a(a+ b))ω

What regular languages would you obtain if your sentences were interpreted over finite
words?

Solution:

(a) ∃x ∀y ((x< y)→Qb(y))
(b) ∀x ∃y ((x< y)∧Qb(y))
(c) ∃X : [∀x (x∈X↔ (x= 0∨∃y (x= y+ 2∧ y∈X )))] ∧ [∀x ((x∈X )→Qa(x))] where

(x= 0) :=∀y ¬(y< x),

(x= y+ 2) :=∃z [(y< z∧ z< x)∧ (∀z′ ((y< z′ ∧ z′< x)→ (z′ = z)))],
(z′ = z) :=¬((z′< z)∨ (z< z′)).

Over finite words, we obtain

(a) (a+ b)+
(b) (a+ b)∗b
(c) (a(a+ b))∗

� � Exercise 189. Let us revisit exercise 131 over infinite words rather than finite ones.
Consider a formula φ(X ) of MSO(�) that does not contain any occurrence of predicates of
the formQa(x). Given two interpretations that assign the same set of positions to X , we have
that either both interpretations satisfy φ(X ), or none of them does. Thus, we can speak of
the sets of natural numbers satisfying φ(X ). This observation can be used to automatically
prove some (very) simple properties of the natural numbers. Consider, for instance, the fol-
lowing “conjecture”: every set of natural numbers has a minimal element.3 The conjecture
holds iff the formula

Has_min(X ) :=∃x∈X ∀y∈X (x≤ y)

is satisfied by every interpretation in which X is nonempty. Construct an automaton for
Has_min(X ), and check that it recognizes all nonempty sets.

3. We only proved the case of finite sets in exercise 131. Here, we handle finite and infinite sets.
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Solution: After replacing abbreviations, we obtain the equivalent formula

∃x [x∈X ∧ (¬∃y (y∈X ∧ y< x))].
The Büchi automaton for formula¬∃y (y∈X ∧ y< x), where the encoding of x is at the top
and the encoding for X is at the bottom, is as follows:

p q

[
0
0

]
[
1
0

]
,
[
1
1

] [
0
0

]
,
[
0
1

]

The Büchi automaton for x∈X is as follows:

p′ q′

[
0
0

]
,
[
0
1

]
[
1
1

] [
0
0

]
,
[
0
1

]

The intersection of the two automata is as follows:

p, p′, 1 q, q′, 1 q, q′, 2

[
0
0

]
[
1
1

] [
0
0

]
,
[
0
1

]

[
0
0

]
,
[
0
1

]

After projection onto X (second row), we get a Büchi automaton for Has_min(X ):

0

1
0, 1

0, 1

In words, it recognizes all ω-words with at least one 1, which corresponds to nonempty
sets.
�� Exercise 191. Let ϕ be a formula from linear arithmetic s.t. V |= ϕ iff V(x)≥V(y)≥
0. Give an NBA that accepts the solutions of ϕ (over R), without necessarily following the
construction presented in the chapter.

Solution: We provide the following automaton. The part on the left deals with edge cases
where x or y begins with 1 but is equal to zero (e.g., x= 1,1ω). The part on the right deals
with the general case where both x and y begin with 0.
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[
0
0

]
[
0
0

]
,
[
1
1

]
[
1
0

]

[
�
�

]

[
0
0

]
,
[
1
0

]
,
[
0
1

]
,
[
1
1

]

[
�
�

]
[
0
0

]
,
[
1
1

]
[
0
1

]

[
1
0

]

[
1
0

]
[
0
0

]
,
[
1
0

]
,
[
0
1

]
,
[
1
1

]

[
1
1

]

[
1
0

]

[
0
1

]

[
�
�

]

[
�
�

]

[
�
�

]

[
1
1

]

[
1
0

]

[
0
1

]
,
[
1
1

]

[
1
1

]

[
1
0

]

[
0
1

]
,
[
1
1

]

�� Exercise 193. Linear arithmetic cannot express the operations y=5x6 (ceiling) and
y=#x$ (floor). Explain how they can be implemented with Büchi automata.

Solution: Let us consider the case of y=#x$, where both numbers begin with 0 (there are
other edge cases to consider, e.g., x= 0 � 0ω and y= 1 � 1ω). If the fractional part of x is not
1ω, then we can copy the integer part and set the fractional part to 0ω. However, there exists
a second representation of the resulting integer. For example, 0110 � 010ω (6.25) becomes
either 0110 � 0ω (6.0) or 0101 � 1ω (5.9). If the fractional part is 1ω, then the number is
already an integer. We produce its two versions—that is, from MSBF(x) � 1ω, we produce
MSBF(x) � 1ω itself or MSBF(x+ 1) � 0ω. For example, 0011 � 1ω (3.9) becomes either
0011 � 1ω (3.9) or 0100 � 0ω (4.0). The resulting automaton is as follows:
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[
0
0

]
[
0
0

]
,
[
1
1

]

[
�
�

]

[
1
0

]

[
0
1

]

[
1
0

]
[
0
0

]
[
0
0

]
,
[
1
0

]

[
0
1

]
[
�
�

]
[
1
1

]
[
0
1

]
[
0
1

]
,
[
1
1

]

[
1
0

]
[
�
�

]
[
1
0

]

[
�
�

] [
1
1

]

The reasoning is symmetric for negative numbers. For example, 101 � 110ω represents
−2.25, and its floor can be represented by 101 � 000ω (−3.0) or 100 � 111ω (−4+ 0.9).
Similarly, 110 � 1ω represents−1, and its floor can be represented either by itself (−2+ 0.9)
or by 111 � 0ω (−1.0).
�� Exercise 194. Let c be an irrational number such as π , e, or

√
2. Show that no formula

from linear arithmetic is such that V |= ϕ iff V(x)= c.

Solution: For the sake of contradiction, suppose that there exists some formula from linear
arithmetic such that V |= ϕ iff V(x)= c. There exists a Büchi automaton A= (Q,�, δ,Q0,
F) for ϕ. Recall that a Büchi automaton always accepts at least one periodic word. Since A
only accepts encodings of c, which is irrational, this is a contradiction.
More precisely, A accepts some word of the form

wk−1 · · ·w0 � x1 · · · xm(y1 · · · yn)ω
for some m≥ 0 and k, n≥ 1. Thus, c is rational as it can be expressed as a finite sum of
rational numbers:

c=
k−1∑
	=0

w	 · 2	+
m∑
j=1

xj
2j
+

∞∑
i=0

1
2m+i·n

·
⎛⎝ n∑

j=1

yj
2j

⎞⎠
=

k−1∑
	=0

w	 · 2	+
m∑
j=1

xj
2j
+

∞∑
i=0

1
2m+i·n

· y1 · 2
n−1+ . . .+ yn · 20

2n
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=
k−1∑
	=0

w	 · 2	+
m∑
j=1

xj
2j
+ y1 · 2n−1+ . . .+ yn · 20

2m+n
·
∞∑
i=0

(
1
2n

)i

=
k−1∑
	=0

w	 · 2	+
m∑
j=1

xj
2j
+ y1 · 2n−1+ . . .+ yn · 20

2m+n
· 1
1− (1/2n)

(*)

=
k−1∑
	=0

w	 · 2	+
m∑
j=1

xj
2j
+ y1 · 2n−1+ . . .+ yn · 20

2m+n · (1− (1/2n))︸ ︷︷ ︸
�=0 since n≥1

,

where (*) follows from a geometric sum with r= 1/2n.
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Koz97, And06].
Regular expressions were introduced by Kleene in [Kle51, Kle56] under the name “regu-

lar events.” The equivalence laws of table 1.1 are folklore. Kleene already asked the question
of finding an axiomatization—that is, a collection of equivalence laws such that any two
equivalent regular expressions can be proved equivalent by applying a sequence of laws
in the collection. Redko showed that no finite axiomatization consisting only of equiva-
lence laws exists [Red64]. Salomaa gave a finite axiomatization containing the laws of
table 1.1 and Arden’s lemma [Ard61], an inference rule stating that if r≡ rs+ t, then r= ts∗.
Regular expressions and their axiomatization are also the subject of a monograph by Con-
way [Con71]. The textbook by Hopcroft, Motwani, and Ullman describes extensions of
regular expressions and applications to pattern matching and lexical analysis [HMU07].
DFAs and NFAs were introduced by Rabin and Scott [RS59]. Previous automata models

had been defined by McCulloch and Pitts under the name “nerve nets” (this model inspired
Kleene’s work in [Kle51, Kle56]) and, according to [RS59], byMyhill in unpublished work.
The Rabin–Scott model defines finite automata as a special class of Turing machines. It
introduced many of the results presented in chapters 1–3 and much of the terminology and
notations we use today. However, the paper is not written in an algorithmic style. For exam-
ple, corollary 7.1 states: Given a finite automaton A, there is an effective procedure whereby
in a finite number of steps, it can be decided whether L (A) is empty. The complexity is not
discussed, and the algorithm is hidden in the proof.
The powerset construction is due to Rabin and Scott [RS59]. The construction that

transforms regular expressions into NFA-ε is due to Thompson [Tho68]. Previously,
McNaughton and Yamada presented an algorithm that directly transforms a regular expres-
sion into a DFA [MY60]. The same paper contains an algorithm to transform a DFA into a
regular expression, although not the one given in the chapter using NFA-reg.



524 Bibliographic Notes

Exercises 5 and 7 were respectively inspired by Marijana Lazić and Peter Rossmanith.
Alternating automata (exercise 22) were introduced by Chandra, Kozen, and Stockmeyer
in [CKS81] and have become a popular model. Exercise 26 is borrowed from Abdulla,
Bouajjani, and Jonsson [ABJ98]. Exercise 31 was inspired by Rupak Majumdar. Exer-
cise 34 is due to Andrzej Ehrenfeucht and Paul Zeiger [EZ76]. Weakly acyclic automata
(exercise 35) are inspired by Krötzsch, Masopust, and Thomazo [KMT17].

Chapter 2. Minimization and Reduction

The existence of a unique minimal DFA for a given regular language is shown in [RS59],
where it is credited to unpublished work by Myhill and Nerode [Ner58]. Textbooks usually
introduce the Myhill–Nerode equivalence relation on words. This equivalence relation has
one equivalence class for each state of the canonical automaton, say q, containing all words
leading from the initial state of the canonical automaton to q. Our residuals are defined
differently; the residual for the state q is the set of words leading from q to the final states of
the canonical automaton. Hopcroft’s algorithmwas presented in [Hop71]. The version of the
chapter is taken from a paper byKnuutila [Knu01]. An extensive discussion ofminimization
algorithms is conducted by Berstel, Boasson, Carton, and Fagnot in [BBCF21].
The reduction algorithm for NFAs is actually an algorithm that constructs the unique

minimal NFA that is strongly bisimilar to a given one. For the definition of strong bisimi-
larity, see, for example, the book byMilner [Mil89]. An efficient algorithm to construct this
automaton was proposed by Kannellakis and Smolka [KS90], later improved by Paige and
Tarjan [PT87]. The algorithm of Paige and Tarjan runs in time O(m log n+ n) for an NFA
with n states and m transitions.
The characterization of the regular languages as those with a finite number of residuals

(theorem 2.31) is similar to the one given byRabin and Scott in [RS59]: a language is regular
iff the Myhill–Nerode equivalence relation has a finite number of equivalence classes.
Exercise 50 was inspired by Thomas Henzinger. Exercise 53 presents Brzozowski’s min-

imization algorithm for DFAs [Brz62]; for a generalization, see [BT14]. Exercise 54 is due
to Salomon Sickert.

Chapter 3. Operations on Sets: Implementations

Rabin and Scott showed that the regular languages are closed under union, intersection,
and complement, and in particular, they introduced the pairing construction [RS59]. Their
approach is not algorithmic. The subsumption test for checking universality and inclusion
of NFAs is due to De Wulf, Doyen, Henzinger, and Raskin [WDHR06]. Theorem 3.13
and proposition 3.14 showing that the universality and inclusion problems are PSPACE-
complete for NFAs can be traced back to Meyer and Stockmeyer [MS72], although the



Bibliographic Notes 525

results appear more prominently in Hunt, Rosenkrantz, and Szymanski in [IRS76]. Both
papers reduce the membership problem for context-sensitive grammars (which is PSPACE-
complete, but this terminology was not established at the time) to universality and inclusion
of regular expressions.
The automaton from exercise 76 appears, for example, in [Vol08].

Chapter 4. Application I: Pattern Matching

Pattern matching (also called string matching) is a fundamental problem of computer sci-
ence, for example, see [AG97, NR02]. Chapter 3 of [HMU07] contains a brief introduction
to applications of regular expressions and finite automata to pattern matching. The chapter
is influenced by David Eppstein’s lecture notes for his course on the design and analysis
of algorithms.1 In the literature, algorithm CompMiss is known as the Knuth–Morris–Pratt
(string-searching) algorithm [KJP77]. Different variants were independently discovered by
James H. Morris, Donald Knuth, Yuri Matijasevich, and Vaughan Pratt.
Mohri presents in [Moh97] an automata-theoretic description of the Knuth–Morris–Pratt

algorithm, related to, but different from, ours. Lazy automata are a (very) restricted case of
two-way automata, introduced by Rabin and Scott [RS59] (see also exercise 88). In two-way
automata, the reading head can move right, stay put, or move left. Rabin and Scott show
that finite two-way automata have the same expressive power as finite (one-way) automata,
that is, they precisely recognize regular languages.

Chapter 5. Operations on Relations: Implementations

Transducers are automata that transform finite input words into finite output words. Early
definitions of transducers were introduced by Moore [Moo56] and Mealy [Mea55], known
in the literature as Moore and Mealy machines, respectively. An early appearance of
the term “finite transducer” is [Sch61]. The transducers defined in the chapter produce
exactly one output symbol for each input symbol and are often called length-preserving
transducers. More general transducers can also produce a (possibly empty) sequence of
output symbol and also produce outputs on ε-input. For a modern introduction to finite
transducers, going beyond this chapter, see, for example, [HK21]. For applications to
language processing, see [Moh97]. Applications to program verification are discussed in
chapter 7.
The Collatz function, also known as the 3n+ 1 function, is named after Lothar Collatz,

who formulated the conjecture in 1937.
Exercise 98 was inspired by [Gul11].

1. See http://www.ics.uci.edu/~eppstein/teach.html.



526 Bibliographic Notes

Chapter 6. Finite Universes and Decision Diagrams

This chapter is very influenced by Andersen’s introduction to reduced ordered binary deci-
sion diagrams (ROBDDs) [And98]. Thismodel was introduced byBryant as a data structure
for the representation and manipulation of boolean functions [Bry86]. ROBDDs are exten-
sively used in the field of formal verification, for example, in CTL model checkers such as
NuSMV [CCGR99]. The observation that the ROBDD of a boolean function is very related
to the minimal DFA recognizing its satisfying assignments (once a variable order is chosen)
is folklore, but, to our knowledge, it has not been explicitly described in the literature.

Chapter 7. Application II: Verification

The approach to formal verification presented in the chapter is usually known as model
checking, which consists of a systematic and exhaustive exploration of the set of reachable
configurations of the formal model of the system. Dedicated books on model checking
include [BK08, CGK+18, CHVB18].
The application of automata-theoretic techniques to model checking was pioneered by

Kurshan in the early 1980s. Kurshan led the development of COSPAN, a software sys-
tem for the formal verification of coordinating processes [Kur95]. Kurshan used finite
automata to formalize both the behavior of single processes and their specification and
composed them by means of an operation similar to our asynchronous product. The idea
of modeling program variables as processes that communicate with the control process
appears in Milner’s book [Mil89]; see also work on Petri net semantics of concurrent
programs [Jen92, Bes96, Rei98].
Compositional verification is one of the raisons d’être of process algebras such as

CSP [Hoa85] and CCS [Mil89]. The approach to compositional verification from the chap-
ter is close to that of software like FDR [GABR14] or CADP [GLMS13]. Symbolic state-
space explorationwas proposed byBurch, Clarke,McMillan, Dill, andHwanng [BCM+92].
NuSMV [CCG+02] is, for example, a well-known symbolic model checker.
The Lamport–Burns’ mutual exclusion algorithm is taken from [Lam86]. The distinction

between safety and liveness properties is due to Lamport [Lam77].

Chapter 8. Automata and Logic

The equivalence of MSO(�) and regular languages is due to Büchi [B60], Elgot [Elg61],
and Trakhtenbrot [Tra62]. The logic FO(�) was first considered by McNaughton and
Papert [MP71], who established its equivalence with star-free languages (see exercise 123).
The algorithm that converts a formula ofMSO(�) into an equivalent automaton is the core
engine of the MONA tool [HJJ+95, KS99], a satisfiability checker for MSO(�). MONA
has been applied to the verification of hardware circuits [BK95].



Bibliographic Notes 527

Chapter 9. Application III: Presburger Arithmetic

The first decision procedure for Presburger arithmetic was given by Presburger in
1929 [Pre29]. The connection of Presburger arithmetic and automata theory was first estab-
lished by Büchi in [B60], where he showed how to transform a formula ϕ into an automaton
that encodes the set of solutions of ϕ.

It was shown by Cobham and Semenov that the subsets of integer vectors encodable
by finite automata in any base b≥ 2 are those definable in Presburger arithmetic [Cob69,
Sem77]. For a fixed base b≥ 2, the expressiveness extends slightly beyond Presburger
arithmetic as one can test for powers of b [BHMV94].
The algorithmic manipulation of Presburger formulas through automata was consid-

ered by Wolper and Boigelot [WB95, Boi98]. Dedicated constructions for translating
(in)equations into automata, as those presented in chapter 9, were presented in [BC96,
WB00].
A column of Haase provides an overview on “the history, decision procedures, extensions

and geometric properties of Presburger arithmetic” [Haa18].
Exercise 138 is known as the chicken nuggets problem or the Frobenius coin pro-

blem, after the mathematician Ferdinand Frobenius. In the coin version, the problem asks
for the largest monetary amount that cannot be obtained using only coins of specified
denominations.

Chapter 10. Classes of ω-Automata and Conversions

Automata on infinite words were introduced in the 1960s by several authors as a tool for
solving decision problems in logical theories. In particular, Büchi used what we now call
Büchi automata to give a decision procedure for monadic second-order logic on ω-words, a
result discussed in chapter 14 [B6̈2, BL69]. (Büchi’s works were collected by McLane and
Siefkes in [MLS90].)
Büchi automata, ω-regular expressions, and their equivalence, demonstrated in sec-

tion 10.2.2.1, were introduced by Büchi [B6̈2]. The determinization procedure for co-Büchi
automata of section 10.2.3.1 can be traced back to Miyano and Hayashi [MH84], but
the form shown in the chapter goes to Kupferman and Vardi [KV97, KV01]. The Rabin
condition was introduced by Rabin in [Rab68], although for automata on infinite trees, a
generalization of automata on infinite words. Theorem 10.18 is due to Safra [Saf88]. The
proof of proposition 10.20 can be found in [Bok18], a paper by Boker containing an exhaus-
tive analysis of the blowups involved in conversions between automata types. The Streett
acceptance condition was introduced by Street in [Str81]; again, it was originally defined
for automata on infinite trees. The conversion NSA → NBA is described by Choueka
in [Cho74]. The parity condition was introduced independently by Mostowski [Mos84]
and by Emerson and Jutla in [EJ91] under the name “chain Rabin condition.” A proof
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of theorem 10.25 due to Piterman can be found in [Pit06, Pit07]. Muller automata were
introduced by Muller in [Mul63]. McNaughton showed that every NBA has an equiva-
lent DMA [McN66]. Proposition 10.20 is adapted from a similar result by Boker [Bok17].
Exercise 148 is inspired by Kupferman [Kup18].
For the reader interested in the theory of ω-automata, there exist excellent publications

containing more advanced results. Thomas’s chapter in the Handbook of Theoretical Com-
puter Science presents a very clear account of the work of Büchi [Tho90]. The monograph
by Perrin and Pin presents the connection with algebra and topology. The most exten-
sive work is [GTW02], a monograph by multiple authors. Wilke’s brief introduction to
ω-automata for automata-theorists presents basic constructions one can use to implement
operations like complementation or determinization [WS21]. Kupferman’s chapter in the
Handbook of Model Checking, and the chapter by Kupferman, Vardi, and Esparza in the
Handbook of Automata Theory [Kup18, EKV21] are oriented toward the application of
ω-automata to program verification.

Chapter 11. Boolean Operations: Implementations

The conversion “NGA→ NBA” appears in [Cho74], where it is used with a slightly dif-
ferent purpose—namely, to implement intersection of NBAs. The first complementation
procedure for NBAs, due to Büchi [B6̈2], had a double-exponential blowup in the num-
ber of states. Sistla, Vardi, and Wolper presented in [SVW87] an improved construction
with a 2O(n2) blowup. The complementation procedure of section 11.3, with a blowup
of 2O(n log n), is due to Kupferman and Vardi [KV01]. An improvement with the same
asymptotic blowup but a smaller constant in the O-notation was presented by Friedgut,
Kupferman, and Vardi [FKV06]. Schewe gave a construction that matches the lower bound
of section 11.3.3 modulo a O(n2) polynomial factor [Sch09]. Detlef Kähler and Wilke
introduced a different construction in [KW08] that can be used to both complement Büchi
automata and determinize them. The 2O(n log n) lower bound of section 11.3.3 is due to
Michel [Mic88]. The constant was improved by Qiqi Yan in [Yan08]. For a survey of these
developments up to 2007, see [Var07], and for an experimental comparison of different
algorithms, see [TFVT14].
Exercise 158 on automata with transition-based acceptance is inspired by the tool SPOT

of Duret-Lutz et al. [DLF+16] that offers translations into such automata. Exercise 162
is inspired by the work of Muller, Saoudi, and Schupp [MSS86] and Kupferman and
Vardi [KV01] on weak alternating automata.

Chapter 12. Emptiness Check: Implementations

The introduction to depth-first search, at the beginning of section 12.1, particularly
the parenthesis theorem and the white-path theorem, is taken from the chapter on
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elementary graph algorithms of Cormen, Leiserson, Rivest, and Stein’s textbook on
algorithms [CLRS22]. The nested-DFS algorithm of section section 12.1.1 is due to
Courcoubetis, Vardi, Woper, and Yannakakis [CVWY90, CVWY92]. The improvement
of section 12.1.1.2 is due to Holzmann, Peled, and Yannakakis [HPY96]. The algorithm
and its use in the model checker SPIN [Hol04] is described in Holzmann’s chapter of
the Handbook of Model Checking [Hol18]. Gastin, Moro, and Zeitoun proposed a fur-
ther improvement in [GMZ04] with slightly higher memory requirements. A version that
incorporates the improvements of [HPY96, GMZ04] but without the additional mem-
ory requirements is Schwoon and Esparza’s four-color algorithm presented in section 3
of [SE05]. SCC-based algorithms for Büchi emptiness are modifications of Tarjan’s algo-
rithm for the computation of the SCCs of a graph [Tar72]. The first such algorithms were
proposed by Couvreur [Cou99] and Geldenhuys and Valmari [GV04]. Both of them are
optimal in the sense explained in the chapter. The algorithm of section 12.1.2 is based on
unpublished lecture notes by Schwoon. Emerson–Lei’s algorithm in section 12.2 is taken
from [EL86]. A comparison of several algorithms is presented byRavi, Bloem, and Somenzi
in [RBS00]. The modified algorithm of section 12.2.2 is due to Fisler, Fraer, Kamhi, Vardi,
and Yang [FFK+01].

Chapter 13. Application I: Verification and Temporal Logic

The classification of program properties into “safety” and “liveness” properties (already
introduced in chapter 7) was introduced by Owicki and Lamport in [OL82]. A formal
definition of these terms was given by Alpern and Schneider in [AS85]. Lamport–Burns’
mutual-exclusion algorithm is described by Lamport in [Lam86].
Temporal logic was proposed as a formalism for the specification of program properties

by Pnueli [Pnu77, Pnu81]. Readers interested on a compact survey on LTL and other tem-
poral logics and their applications to program reasoning can consult the survey by Emerson
in the Handbook of Theoretical Computer Science [Eme90]. The standard textbook on lin-
ear temporal logic and its application to specification of reactive and concurrent systems
is the monograph by Manna and Pnueli [MP92]; a second volume by the same authors
focuses on the verification of safety properties [MP95]. More recent monographs have also
been authored by Kröger and Merz [KM08] and by Demri, Goronko, and Lange [DGL16].
Dwyer, Avrunin, and Corbett carried out a survey of specifications formalized in LTL
and other temporal logics, and they compiled a set of useful property specification pat-
terns [DAC99]. The property specification language (PSL) is an IEEE standard that extends
LTL with regular expressions and syntactic sugar to ease specification and improve the
expressive power. For introductions to PSL, the reader can consult the monographs by
Cisner and Fisman [EF06]
A first translation of LTL to (generalized) Büchi automata is due to Wolper, Vardi,

and Sistla [WVS83, VW94] (in fact, these papers translate an extension of LTL). The
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translation of section 13.3 closely follows unpublished lecture notes by Vardi. A more
efficient construction yielding smaller automata was presented by Gerth, Peled, Vardi, and
Wolper in [GPVW95] and implemented in SPIN [Hol04]. It is a tableau construction that
produces a Büchi automaton, instead of a generalized one, and was improved further by
Daniele, Giunchiglia and Vardi [DGV99], Etessami and Holzmann [EH00], and Somenzi
and Bloem [SB00]. A new construction using very weak alternating automata as an inter-
mediate step was given by Gastin and Oddoux [GO01]; it is also distributed with SPIN.
Couvreur proposed in [Cou99] a construction similar to the one of [GPVW95], but yield-
ing a generalized Büchi automaton with sets of accepting transitions, instead of accepting
states; it always produces automata at most as large as those of [GPVW95]. Duret-Lutz
and Poitrenaud provided a more efficient implementation of Couvreur’s construction in the
SPOT tool [DP04], further improved by Duret-Lutz in [Dur14]. This is essentially the con-
struction implemented in SPOT 2.0 [DLF+16]. SPOT 2.0 offers an online translator from
LTL formulas into different automata models that constitutes an invaluable tool for teaching
LTL. The procedure for the automatic verification of LTL formulas described in section 13.4
was proposed by Vardi and Wolper in [VW86]. It is usually called the automata-theoretic
approach to model checking (of LTL). The approach is described in Kupferman’s chapter
in the Handbook of Model Checking [Kup18] and, among other topics, in the monographs
on model checking by Clarke, Grumberg, Kroening, Peled, and Veith [CGK+18] and Baier
and Katoen [BK08]. The approach was implemented by Holzmann in SPIN [Hol04].
Exercise 179 is taken from [DAC99], adapted by Salomon Sickert. Exercise 183 is due

to Schwoon. Exercise 187 is taken from Kupferman and Rosenberg [KR10].

Chapter 14. Application II: Monadic Second-Order Logic on ω-Words and
Linear Arithmetic

Monadic second-order logic on ω-words was studied by Büchi across several
papers [MLS90], and his successful attempt to finding a decision procedure for the logic led
to the introduction of Büchi automata. Thomas’s chapters in the Handbook of Theoretical
Computer Science and the Handbook of Formal Languages give very clear introductions to
this work and to its extension to monadic second-order logic on ω-trees [Tho90, Tho97].
The idea of using Büchi automata as a data structure for sets of real numbers can be

traced back to Boigelot, Rassart, and Wolper [BRW98]. The algorithmics of this data
structure were developed by Boigelot, Wolper, and others in several publications [WB00,
BJW01, BJW05]. The sets of real numbers representable by Büchi automata were studied
by Boigelot and Brusten [BB09]; Boigelot, Brusten, and Bruyère [BBB10]; and Boigelot,
Brusten, and Leroux [BBL09]. The constructions have been implemented in the tool LASH
(Liège Automata-based Symbolic Handler) [Las04]. Boigelot’s chapter in the Handbook of
Automata Theory is an excellent introduction to this work [Boi21].
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